1
|
Manning MC, Holcomb RE, Payne RW, Stillahn JM, Connolly BD, Katayama DS, Liu H, Matsuura JE, Murphy BM, Henry CS, Crommelin DJA. Stability of Protein Pharmaceuticals: Recent Advances. Pharm Res 2024; 41:1301-1367. [PMID: 38937372 DOI: 10.1007/s11095-024-03726-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
There have been significant advances in the formulation and stabilization of proteins in the liquid state over the past years since our previous review. Our mechanistic understanding of protein-excipient interactions has increased, allowing one to develop formulations in a more rational fashion. The field has moved towards more complex and challenging formulations, such as high concentration formulations to allow for subcutaneous administration and co-formulation. While much of the published work has focused on mAbs, the principles appear to apply to any therapeutic protein, although mAbs clearly have some distinctive features. In this review, we first discuss chemical degradation reactions. This is followed by a section on physical instability issues. Then, more specific topics are addressed: instability induced by interactions with interfaces, predictive methods for physical stability and interplay between chemical and physical instability. The final parts are devoted to discussions how all the above impacts (co-)formulation strategies, in particular for high protein concentration solutions.'
Collapse
Affiliation(s)
- Mark Cornell Manning
- Legacy BioDesign LLC, Johnstown, CO, USA.
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA.
| | - Ryan E Holcomb
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Robert W Payne
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | - Joshua M Stillahn
- Legacy BioDesign LLC, Johnstown, CO, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | | | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
2
|
Gavade A, Nagraj AK, Patel R, Pais R, Dhanure P, Scheele J, Seiz W, Patil J. Understanding the Specific Implications of Amino Acids in the Antibody Development. Protein J 2024; 43:405-424. [PMID: 38724751 DOI: 10.1007/s10930-024-10201-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2024] [Indexed: 06/01/2024]
Abstract
As the demand for immunotherapy to treat and manage cancers, infectious diseases and other disorders grows, a comprehensive understanding of amino acids and their intricate role in antibody engineering has become a prime requirement. Naturally produced antibodies may not have the most suitable amino acids at the complementarity determining regions (CDR) and framework regions, for therapeutic purposes. Therefore, to enhance the binding affinity and therapeutic properties of an antibody, the specific impact of certain amino acids on the antibody's architecture must be thoroughly studied. In antibody engineering, it is crucial to identify the key amino acid residues that significantly contribute to improving antibody properties. Therapeutic antibodies with higher binding affinity and improved functionality can be achieved through modifications or substitutions with highly suitable amino acid residues. Here, we have indicated the frequency of amino acids and their association with the binding free energy in CDRs. The review also analyzes the experimental outcome of two studies that reveal the frequency of amino acids in CDRs and provides their significant correlation between the outcomes. Additionally, it discusses the various bond interactions within the antibody structure and antigen binding. A detailed understanding of these amino acid properties should assist in the analysis of antibody sequences and structures needed for designing and enhancing the overall performance of therapeutic antibodies.
Collapse
Affiliation(s)
- Akshata Gavade
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Anil Kumar Nagraj
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Riya Patel
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Roylan Pais
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Pratiksha Dhanure
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India
| | | | | | - Jaspal Patil
- Innoplexus Consulting Services Pvt Ltd, 7Th Floor, Midas Tower, Hinjawadi, Pune, Maharashtra, 411057, India.
| |
Collapse
|
3
|
Chen YC, Wu HY, Lin LC, Chang CW, Liao PC. Characterizing the D-Amino Acid Position in Peptide Epimers by Using Higher-Energy Collisional Dissociation Tandem Mass Spectrometry: A Case Study of Liraglutide. Int J Mol Sci 2024; 25:1379. [PMID: 38338662 PMCID: PMC10855602 DOI: 10.3390/ijms25031379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
D-amino acid-containing peptides (DAACPs) occur in biological and artificial environments. Since the importance of DAACPs has been recognized, various mass spectrometry-based analytical approaches have been developed. However, the capability of higher-energy collisional dissociation (HCD) fragmentation to characterize DAACP sites has not been evaluated. In this study, we compared the normalized spectra intensity under different conditions of HCD and used liraglutide along with its DAACPs as examples. Our results indicated that the difference in the intensity of y ions between DAACPs and all-L liraglutide could not only distinguish them but also localize the sites of D-amino acids in the DAACPs. Our data demonstrate the potential of using HCD for the site characterization of DAACPs, which may have great impact in biological studies and peptide drug development.
Collapse
Affiliation(s)
- Yuan-Chih Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, Taipei 106, Taiwan
| | | | - Chih-Wei Chang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|
4
|
Liu Y, VanAernum Z, Zhang Y, Gao X, Vlad M, Feng B, Cross R, Kilgore B, Newman A, Wang D, Schuessler HA, Richardson DD, Chadwick JS. LC-MS Approach to Decipher a Light Chain Chromatographic Peak Splitting of a Monoclonal Antibody. Pharm Res 2023; 40:3087-3098. [PMID: 37936013 DOI: 10.1007/s11095-023-03631-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
PURPOSE Monoclonal antibodies (mAbs), like other protein therapeutics, are prone to various forms of degradation, some of which are difficult to distinguish from the native form yet may alter potency. A generalizable LC-MS approach was developed to enable quantitative analysis of isoAsp. In-depth understanding of product quality attributes (PQAs) enables optimization of the manufacturing process, better formulation selection, and decreases risk associated with product handling in the clinic or during shipment. METHODS Reversed-phase chromatographic peak splitting was observed when a mAb was exposed to elevated temperatures. Multiple LC-MS based methods were applied to identify the reason for peak splitting. The approach involved the use of complementary HPLC columns, multiple enzymatic digestions and different MS/MS ion dissociation methods. In addition, mAb potency was measured by enzyme-linked immunosorbent assay (ELISA). RESULTS The split peaks had identical masses, and the root cause of the peak splitting was identified as isomerization of an aspartic acid located in the complementarity-determining region (CDR) of the light chain. And the early eluting and late eluting peaks were collected and performed enzymatic digestion to confirm the isoAsp enrichment in the early eluting peak. In addition, decreased potency was observed in the same heat-stressed sample, and the increased isoAsp levels in the CDR correlate well with a decrease of potency. CONCLUSION Liquid chromatography-mass spectrometry (LC-MS) has been utilized extensively to assess PQAs of biological therapeutics. In this study, a generalizable LC-MS-based approach was developed to enable identification and quantitation of the isoAsp-containing peptides.
Collapse
Affiliation(s)
- Yanjun Liu
- ProtaGene US, Inc. was Formerly BioAnalytix Inc., 4 Burlington Woods Dr., Burlington, MA, 01803, USA.
| | - Zac VanAernum
- Analytical Research & Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA.
| | - Yue Zhang
- ProtaGene US, Inc. was Formerly BioAnalytix Inc., 4 Burlington Woods Dr., Burlington, MA, 01803, USA
- Biogen, 225 Binney Street, Cambridge, MA, 02142, USA
| | - Xinliu Gao
- Analytical Research & Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Mariana Vlad
- Analytical Research & Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Bo Feng
- Analytical Research & Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Robert Cross
- Analytical Research & Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Bruce Kilgore
- Analytical Research & Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Alice Newman
- Analytical Research & Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Dongdong Wang
- ProtaGene US, Inc. was Formerly BioAnalytix Inc., 4 Burlington Woods Dr., Burlington, MA, 01803, USA
- Takeda Pharmaceutical Company, 35 Landsdowne St, Cambridge, MA, 02139, USA
| | - Hillary A Schuessler
- Analytical Research & Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Douglas D Richardson
- Analytical Research & Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Jennifer S Chadwick
- ProtaGene US, Inc. was Formerly BioAnalytix Inc., 4 Burlington Woods Dr., Burlington, MA, 01803, USA
| |
Collapse
|
5
|
VanAernum ZL, Sergi JA, Dey M, Toner T, Kilgore B, Lay-Fortenbery A, Wang Y, Bian S, Kochert BA, Bothe JR, Gao X, Richardson D, Schuessler HA. Discovery and Control of Succinimide Formation and Accumulation at Aspartic Acid Residues in The Complementarity-Determining Region of a Therapeutic Monoclonal Antibody. Pharm Res 2023; 40:1411-1423. [PMID: 36627449 DOI: 10.1007/s11095-022-03462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE Succinimide formation and isomerization alter the chemical and physical properties of aspartic acid residues in a protein. Modification of aspartic acid residues within complementarity-determining regions (CDRs) of therapeutic monoclonal antibodies (mAbs) can be particularly detrimental to the efficacy of the molecule. The goal of this study was to characterize the site of succinimide accumulation in the CDR of a therapeutic mAb and understand its effects on potency. Furthermore, we aimed to mitigate succinimide accumulation through changes in formulation. METHODS Accumulation of succinimide was identified through intact and reduced LC-MS mass measurements. A low pH peptide mapping method was used for relative quantitation and localization of succinimide formation in the CDR. Statistical modeling was used to correlate levels of succinimide with basic variants and potency measurements. RESULTS Succinimide accumulation in Formulation A was accelerated when stored at elevated temperatures. A strong correlation between succinimide accumulation in the CDR, an increase in basic charge variants, and a decrease in potency was observed. Statistical modeling suggest that a combination of ion exchange chromatography and potency measurements can be used to predict succinimide levels in a given sample. Reformulation of the mAb to Formulation B mitigates succinimide accumulation even after extended storage at elevated temperatures. CONCLUSION Succinimide formation in the CDR of a therapeutic mAb can have a strong negative impact on potency of the molecule. We demonstrate that thorough characterization of the molecule by LC-MS, ion exchange chromatography, and potency measurements can facilitate changes in formulation that mitigate succinimide formation and the corresponding detrimental changes in potency.
Collapse
Affiliation(s)
- Zachary L VanAernum
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA.
| | - Joseph A Sergi
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Monisha Dey
- Biostatistics and Research Decision Sciences, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Timothy Toner
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Bruce Kilgore
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Ashley Lay-Fortenbery
- Preclinical Development, Merck & Co., Inc, 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Yi Wang
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
- Biologics Process and Analytical Development, National Resilience, Inc, Waltham, MA, 02451, USA
| | - Shengjie Bian
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
- CMC Regulatory & Technical Strategy, Amicus Therapeutics Inc. Philadelphia, Philadelphia, PA, 19104, USA
| | - Brent A Kochert
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Jameson R Bothe
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Xinliu Gao
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Douglas Richardson
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| | - Hillary A Schuessler
- Analytical Research and Development, Merck & Co., Inc., 126 E. Lincoln Ave, Rahway, NJ, 07065, USA
| |
Collapse
|
6
|
Hicks D, Baehr C, Silva-Ortiz P, Khaimraj A, Luengas D, Hamid FA, Pravetoni M. Advancing humanized monoclonal antibody for counteracting fentanyl toxicity towards clinical development. Hum Vaccin Immunother 2022; 18:2122507. [PMID: 36194773 PMCID: PMC9746415 DOI: 10.1080/21645515.2022.2122507] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/19/2022] [Accepted: 09/04/2022] [Indexed: 12/15/2022] Open
Abstract
Innovative therapies to complement current treatments are needed to curb the growing incidence of fatal overdoses related to synthetic opioids. Murine and chimeric monoclonal antibodies (mAb) specific for fentanyl and its analogs have demonstrated pre-clinical efficacy in preventing and reversing drug-induced toxicity in rodent models. However, mAb-based therapeutics require extensive engineering as well as in vitro and in vivo characterization to advance to first-in-human clinical trials. Here, novel murine anti-fentanyl mAbs were selected for development based on affinity for fentanyl, and efficacy in counteracting the pharmacological effects of fentanyl in mice. Humanization and evaluation of mutations designed to eliminate predicted post-translational modifications resulted in two humanized mAbs that were effective at preventing fentanyl-induced pharmacological effects in rats. These humanized mAbs showed favorable biophysical properties with respect to aggregation and hydrophobicity by chromatography-based assays, and thermostability by dynamic scanning fluorimetry. These results collectively support that the humanized anti-fentanyl mAbs developed herein warrant further clinical development for treatment of fentanyl toxicity.
Collapse
Affiliation(s)
- Dustin Hicks
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Carly Baehr
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Pedro Silva-Ortiz
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Aaron Khaimraj
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Diego Luengas
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Fatima A. Hamid
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- School of Medicine, Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Abstract
Monoclonal antibodies are susceptible to chemical and enzymatic modifications during manufacturing, storage, and shipping. Deamidation, isomerization, and oxidation can compromise the potency, efficacy, and safety of therapeutic antibodies. Recently, in silico tools have been used to identify liable residues and engineer antibodies with better chemical stability. Computational approaches for predicting deamidation, isomerization, oxidation, glycation, carbonylation, sulfation, and hydroxylation are reviewed here. Although liable motifs have been used to improve the chemical stability of antibodies, the accuracy of in silico predictions can be improved using machine learning and molecular dynamic simulations. In addition, there are opportunities to improve predictions for specific stress conditions, develop in silico prediction of novel modifications in antibodies, and predict the impact of modifications on physical stability and antigen-binding.
Collapse
Affiliation(s)
- Shabdita Vatsa
- Development Services, Lonza Biologics, Singapore, Singapore
| |
Collapse
|
8
|
Irudayanathan FJ, Zarzar J, Lin J, Izadi S. Deciphering deamidation and isomerization in therapeutic proteins: Effect of neighboring residue. MAbs 2022; 14:2143006. [PMID: 36377085 PMCID: PMC9673968 DOI: 10.1080/19420862.2022.2143006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Deamidation of asparagine (Asn) and isomerization of aspartic acid (Asp) residues are among the most commonly observed spontaneous post-translational modifications (PTMs) in proteins. Understanding and predicting a protein sequence's propensity for such PTMs can help expedite protein therapeutic discovery and development. In this study, we used proton-affinity calculations with semi-empirical quantum mechanics and microsecond long equilibrium molecular dynamics simulations to investigate mechanistic roles of structural conformation and chemical environment in dictating spontaneous degradation of Asn and Asp residues in 131 clinical-stage therapeutic antibodies. Backbone secondary structure, side-chain rotamer conformation and solvent accessibility were found to be key molecular indicators of Asp isomerization and Asn deamidation. Comparative analysis of backbone dihedral angles along with N-H proton affinity calculations provides a mechanistic explanation for the strong influence of the identity of the n + 1 residue on the rate of Asn/Asp degradation. With these findings, we propose a minimalistic physics-based classification model that can be leveraged to predict deamidation and isomerization propensity of proteins.
Collapse
Affiliation(s)
| | - Jonathan Zarzar
- Pharmaceutical Development Department, Genentech Inc, South San Francisco, United States
| | - Jasper Lin
- Pharmaceutical Development Department, Genentech Inc, South San Francisco, United States
| | - Saeed Izadi
- Pharmaceutical Development Department, Genentech Inc, South San Francisco, United States,CONTACT Saeed Izadi Pharmaceutical Development Department, Genentech Inc, South San Francisco, United States
| |
Collapse
|
9
|
Minamizaki T, Sakurai K, Hayashi I, Toshishige M, Yoshioka H, Kozai K, Yoshiko Y. Active sites of human MEPE-ASARM regulating bone matrix mineralization. Mol Cell Endocrinol 2020; 517:110931. [PMID: 32712387 DOI: 10.1016/j.mce.2020.110931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 11/25/2022]
Abstract
The proteolytic fragment ASARM (acidic serine- and aspartate-rich motif) of MEPE (matrix extracellular phosphoglycoprotein) (MEPE-ASARM) may act as an endogenous anti-mineralization factor involved in X-linked hypophosphatemic rickets/osteomalacia (XLH). We synthesized MEPE-ASARM peptides and relevant peptide fragments with or without phosphorylated Ser residues (pSer) to determine the active site(s) of MEPE-ASARM in a rat calvaria cell culture model. None of the synthetic peptides elicited changes in cell death, proliferation or differentiation, but the peptide (pASARM) with three pSer residues inhibited mineralization without causing changes in gene expression of osteoblast markers tested. The anti-mineralization effect was maintained in peptides in which any one of three pSer residues was deleted. Polyclonal antibodies recognizing pASARM but not ASARM abolished the pASARM effect. Deletion of six N-terminal residues but leaving the recognition sites for PHEX (phosphate regulating endopeptidase homolog, X-linked), a membrane endopeptidase responsible for XLH, intact and two C-terminal amino acid residues did not alter the anti-mineralization activity of pASARM. Our results strengthen understanding of the active sites of MEPE-pASARM and allowed us to identify a shorter more stable sequence with fewer pSer residues still exhibiting hypomineralization activity, reducing peptide synthesis cost and increasing reliability for exploring biological and potential therapeutic effects.
Collapse
Affiliation(s)
- Tomoko Minamizaki
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kaoru Sakurai
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan; Department of Pediatric Dentistry, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Ikue Hayashi
- Research Facility, Hiroshima University School of Dentistry, Hiroshima, Japan
| | - Masaaki Toshishige
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hirotaka Yoshioka
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Katsuyuki Kozai
- Department of Pediatric Dentistry, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yuji Yoshiko
- Department of Calcified Tissue Biology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
| |
Collapse
|
10
|
Lu X, Nobrega RP, Lynaugh H, Jain T, Barlow K, Boland T, Sivasubramanian A, Vásquez M, Xu Y. Deamidation and isomerization liability analysis of 131 clinical-stage antibodies. MAbs 2018; 11:45-57. [PMID: 30526254 PMCID: PMC6343770 DOI: 10.1080/19420862.2018.1548233] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Contemporary in vivo and in vitro discovery platform technologies greatly increase the odds of identifying high-affinity monoclonal antibodies (mAbs) towards essentially any desired biologically relevant epitope. Lagging discovery throughput is the ability to select for highly developable mAbs with drug-like properties early in the process. Upstream consideration of developability metrics should reduce the frequency of failures in later development stages. As the field moves towards incorporating biophysical screening assays in parallel to discovery processes, similar approaches should also be used to ensure robust chemical stability. Optimization of chemical stability in the early stages of discovery has the potential to reduce complications in formulation development and improve the potential for successful liquid formulations. However, at present, our knowledge of the chemical stability characteristics of clinical-stage therapeutic mAbs is fragmented and lacks comprehensive comparative assessment. To address this knowledge gap, we produced 131 mAbs with amino acid sequences corresponding to the variable regions of clinical-stage mAbs, subjected these to low and high pH stresses and identified the resulting modifications at amino acid-level resolution via tryptic peptide mapping. Among this large set of mAbs, relatively high frequencies of asparagine deamidation events were observed in CDRs H2 and L1, while CDRs H3, H2 and L1 contained relatively high frequencies of instances of aspartate isomerization.
Collapse
Affiliation(s)
- Xiaojun Lu
- a Protein Analytics , Adimab , Lebanon , NH , USA
| | | | | | - Tushar Jain
- b Computational Biology , Adimab , Palo Alto , CA , USA
| | - Kyle Barlow
- b Computational Biology , Adimab , Palo Alto , CA , USA
| | - Todd Boland
- b Computational Biology , Adimab , Palo Alto , CA , USA
| | | | | | - Yingda Xu
- a Protein Analytics , Adimab , Lebanon , NH , USA
| |
Collapse
|
11
|
Chung S, Tian J, Tan Z, Chen J, Lee J, Borys M, Li ZJ. Industrial bioprocessing perspectives on managing therapeutic protein charge variant profiles. Biotechnol Bioeng 2018. [DOI: 10.1002/bit.26587] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Stanley Chung
- Department of Chemical Engineering; Northeastern University; Boston Massachusetts
| | - Jun Tian
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Zhijun Tan
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Jie Chen
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Jongchan Lee
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Michael Borys
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| | - Zheng Jian Li
- Biologics Development, Global Product Development and Supply; Bristol-Myers Squibb Company; Devens Massachusetts
| |
Collapse
|
12
|
Jansson ET. Strategies for analysis of isomeric peptides. J Sep Sci 2017; 41:385-397. [PMID: 28922569 DOI: 10.1002/jssc.201700852] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 01/09/2023]
Abstract
This review presents an overview and recent progress of strategies for detecting isomerism in peptides, with focus on d/l epimerization and the various isomers that the presence of an aspartic acid residue may yield in a protein or peptide. While mass spectrometry has become a majorly used method of choice within proteomics, isomerism is inherently difficult to analyze because it is a modification that does not yield any change in mass of the analyte. Here, several techniques used for analysis of peptide isomerism are discussed, including enzymatic assays, liquid chromatography, and capillary electrophoresis. Recent progress in method development using mass spectrometry is also discussed, including labeling strategies, fragmentation techniques, and ion-mobility spectrometry.
Collapse
Affiliation(s)
- Erik T Jansson
- Department of Chemistry-BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Plotnikov NV, Singh SK, Rouse JC, Kumar S. Quantifying the Risks of Asparagine Deamidation and Aspartate Isomerization in Biopharmaceuticals by Computing Reaction Free-Energy Surfaces. J Phys Chem B 2017; 121:719-730. [DOI: 10.1021/acs.jpcb.6b11614] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Nikolay V. Plotnikov
- Pharmaceutical
Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., 700 Chesterfield Pkwy West, Chesterfield, Missouri 63017, United States
| | - Satish Kumar Singh
- Pharmaceutical
Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., 700 Chesterfield Pkwy West, Chesterfield, Missouri 63017, United States
| | - Jason C. Rouse
- Analytical
Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., 1 Burtt Road, Andover, Massachusetts 01810, United States
| | - Sandeep Kumar
- Pharmaceutical
Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., 700 Chesterfield Pkwy West, Chesterfield, Missouri 63017, United States
| |
Collapse
|