1
|
Chaves AR, Snow NJ, Alcock LR, Ploughman M. Probing the Brain-Body Connection Using Transcranial Magnetic Stimulation (TMS): Validating a Promising Tool to Provide Biomarkers of Neuroplasticity and Central Nervous System Function. Brain Sci 2021; 11:384. [PMID: 33803028 PMCID: PMC8002717 DOI: 10.3390/brainsci11030384] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/18/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive method used to investigate neurophysiological integrity of the human neuromotor system. We describe in detail, the methodology of a single pulse TMS protocol that was performed in a large cohort of people (n = 110) with multiple sclerosis (MS). The aim was to establish and validate a core-set of TMS variables that predicted typical MS clinical outcomes: walking speed, hand dexterity, fatigue, and cognitive processing speed. We provide a brief and simple methodological pipeline to examine excitatory and inhibitory corticospinal mechanisms in MS that map to clinical status. Delayed and longer ipsilateral silent period (a measure of transcallosal inhibition; the influence of one brain hemisphere's activity over the other), longer cortical silent period (suggestive of greater corticospinal inhibition via GABA) and higher resting motor threshold (lower corticospinal excitability) most strongly related to clinical outcomes, especially when measured in the hemisphere corresponding to the weaker hand. Greater interhemispheric asymmetry (imbalance between hemispheres) correlated with poorer performance in the greatest number of clinical outcomes. We also show, not surprisingly, that TMS variables related more strongly to motor outcomes than non-motor outcomes. As it was validated in a large sample of patients with varying severities of central nervous system dysfunction, the protocol described herein can be used by investigators and clinicians alike to investigate the role of TMS as a biomarker in MS and other central nervous system disorders.
Collapse
Affiliation(s)
| | | | | | - Michelle Ploughman
- L.A. Miller Centre, Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1A 1E5, Canada; (A.R.C.); (N.J.S.); (L.R.A.)
| |
Collapse
|
2
|
Teixeira PEP, Pacheco-Barrios K, Gunduz ME, Gianlorenço AC, Castelo-Branco L, Fregni F. Understanding intracortical excitability in phantom limb pain: A multivariate analysis from a multicenter randomized clinical trial. Neurophysiol Clin 2021; 51:161-173. [PMID: 33648819 DOI: 10.1016/j.neucli.2020.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVES To explore associations of intracortical excitability with clinical characteristics in a large sample of subjects with phantom limb pain (PLP). METHODS Ancillary study using baseline and longitudinal data from a large multicenter randomized trial that investigated the effects of non-invasive brain stimulation combined with sensorimotor training on PLP. Multivariate regression modeling analyses were used to investigate the association of intracortical excitability, measured by percentages of intracortical inhibition (ICI) and facilitation (ICF) with clinical variables. RESULTS Ninety-eight subjects were included. Phantom sensation of itching was positively associated with ICI changes and at baseline in the affected hemisphere (contralateral to PLP). However, in the non-affected hemisphere (ipsilateral to PLP), the phantom sensation of warmth and PLP intensity were negatively associated with ICI (both models). For the ICF, PLP intensity (baseline model only) and age (longitudinal model) were negatively associated, while time since amputation and amputation level (both for longitudinal model only) were positively associated in the affected hemisphere. Additionally, use of antidepressants led to lower ICF in the non-affected hemisphere for the baseline model while higher amputation level also led to less changes in the ICF. CONCLUSION Results revealed clear associations of clinical variables and cortical excitability in a large chronic pain sample. ICI and ICF changes appear not to be mainly explained by PLP intensity. Instead, other variables associated with duration of neuroplasticity changes (such as age and duration of amputation) and compensatory mechanisms (such as itching and phantom limb sensation) seem to be more important in explaining these variables.
Collapse
Affiliation(s)
- Paulo E P Teixeira
- Neuromodulation and Clinical Research Learning Center, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; MGH Institute of Health Professions, Boston, MA, USA; Instituto Wilson Mello, Campinas, SP, Brazil.
| | - Kevin Pacheco-Barrios
- Neuromodulation and Clinical Research Learning Center, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Muhammed Enes Gunduz
- Neuromodulation and Clinical Research Learning Center, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Anna Carolyna Gianlorenço
- Neuromodulation and Clinical Research Learning Center, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Laboratory of neuroscience, Department of Physical Therapy, Federal University of Sao Carlos, SP, Brazil
| | - Luis Castelo-Branco
- Neuromodulation and Clinical Research Learning Center, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Felipe Fregni
- Neuromodulation and Clinical Research Learning Center, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
3
|
Khedr EM, Elserogy Y, Fawzy M, Abdelrahman AA, Galal AM, Noaman MM. Effect of psychotropic drugs on cortical excitability of patients with major depressive disorders: A transcranial magnetic stimulation study. Psychiatry Res 2020; 291:113287. [PMID: 32763548 DOI: 10.1016/j.psychres.2020.113287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 11/24/2022]
Abstract
Transcranial magnetic stimulation (TMS) can be used to evaluate the effects of pharmacological interventions. The aim of this study was to assess the impact of the selective serotonin reuptake inhibitor, sertraline, and the atypical antipsychotic drugs quetiapine and olanzapine, on cortical excitability in unmedicated patients with major depressive disorder (MDD). The study included 45 medication-free MDD patients diagnosed according to DSM V. They were divided randomly into three groups who received a single oral dose of one of the three drugs sertraline (50 mg), quetiapine (100 mg) and olanzapine (10 mg). Psychological evaluation was conducted using the Mini-Mental State Examination (MMSE) and Beck Depression Inventory Scale (BDI). Resting and active motor thresholds (rMT and aMT) together with contralateral and ipsilateral cortical silent periods (cSP, and iSP) were measured for each participant before and at the time of maximum concentration of drug intake. There was significant increase in excitability of motor cortex after sertraline without changes in GABAB neurotransmission. Quetiapine and olanzapine potentiated inhibitory GABAB neurotransmission (prolongation of cSP); olanzapine additionally prolonged the iSP. Thus TMS can differentiate between the impact of different psychotropic drugs on excitatory and inhibitory transmission in motor cortex.
Collapse
Affiliation(s)
- Eman M Khedr
- Neuropsychiatry Department, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Yasser Elserogy
- Neuropsychiatry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed Fawzy
- Neuropsychiatry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed A Abdelrahman
- Neuropsychiatry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amr M Galal
- Neuropsychiatry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mostafa M Noaman
- Neuropsychiatry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
4
|
Doruk Camsari D, Lewis CP, Sonmez AI, Nandakumar AL, Gresbrink MA, Daskalakis ZJ, Croarkin PE. Transcranial Magnetic Stimulation Markers of Antidepressant Treatment in Adolescents With Major Depressive Disorder. Int J Neuropsychopharmacol 2019; 22:435-444. [PMID: 31095686 PMCID: PMC6600470 DOI: 10.1093/ijnp/pyz021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 04/01/2019] [Accepted: 05/14/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The goal of this study was to examine baseline transcranial magnetic stimulation measures of cortical inhibition and excitability in depressed patients and characterize their longitudinal posttreatment changes. METHODS Fifteen adolescents (age 13-17 years) with moderate to severe major depressive disorder and 22 healthy controls (age 9-17) underwent single- and paired-pulse transcranial magnetic stimulation and clinical assessments. Transcranial magnetic stimulation measures included short-interval intracortical inhibition (2 and 4 milliseconds), long-interval intracortical inhibition (100, 150, and 200 milliseconds), cortical silent period, and intracortical facilitation (10, 15, and 20 milliseconds). Ten participants with major depressive disorder initiated antidepressant treatment or had dose adjustments. These participants were reassessed after treatment. Depression symptom severity was measured with the Children's Depression Rating Scale, Revised. Robust regression modeling compared healthy and depressed adolescents at baseline. Relationships between changes in cortical inhibition and changes in depressive symptom severity were assessed in the depressed adolescents receiving antidepressant treatment. RESULTS Our results revealed that at baseline, short-interval intracortical inhibition-2 was significantly reduced (Padj = .01) in depressed participants, suggesting impaired cortical inhibition compared with healthy controls. At follow-up, improvement in Children's Depression Rating Scale, Revised scores correlated with improvement in short-interval intracortical inhibition-4 amplitude (greater inhibition) after antidepressant treatment (R2 = 0.63; P = .01). CONCLUSIONS These results suggest that cortical inhibition measures may have promise as biomarkers in adolescents treated for depression.
Collapse
Affiliation(s)
| | - Charles P Lewis
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Ayse Irem Sonmez
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Ontario, Canada
| | - Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
5
|
Minzenberg MJ, Leuchter AF. The effect of psychotropic drugs on cortical excitability and plasticity measured with transcranial magnetic stimulation: Implications for psychiatric treatment. J Affect Disord 2019; 253:126-140. [PMID: 31035213 DOI: 10.1016/j.jad.2019.04.067] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/03/2019] [Accepted: 04/08/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Repetitive transcranial magnetic stimulation (rTMS) is an emerging treatment for neuropsychiatric disorders. Patients in rTMS treatment typically receive concomitant psychotropic medications, which affect neuronal excitability and plasticity and may interact to affect rTMS treatment outcomes. A greater understanding of these drug effects may have considerable implications for optimizing multi-modal treatment of psychiatric patients, and elucidating the mechanism(s) of action (MOA) of rTMS. METHOD We summarized the empirical literature that tests how psychotropic drugs affect cortical excitability and plasticity, using varied experimental TMS paradigms. RESULTS Glutamate antagonists robustly attenuate plasticity, largely without changes in excitability per se; antiepileptic drugs show the opposite pattern of effects, while calcium channel blockers attenuate plasticity. Benzodiazepines have moderate and variable effects on plasticity, and negligible effects on excitability. Antidepressants with potent 5HT transporter inhibition reduce both excitability and alter plasticity, while antidepressants with other MOAs generally lack either effect. Catecholaminergic drugs, cholinergic agents and lithium have minimal effects on excitability but exhibit robust and complex, non-linear effects in TMS plasticity paradigms. LIMITATIONS These effects remain largely untested in sustained treatment protocols, nor in clinical populations. In addition, how these medications impact clinical response to rTMS remains largely unknown. CONCLUSIONS Psychotropic medications exert robust and varied effects on cortical excitability and plasticity. We encourage the field to more directly and fully investigate clinical pharmaco-TMS studies to improve outcomes.
Collapse
Affiliation(s)
- M J Minzenberg
- Neuromodulation Division, Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, 760 Westwood Plaza, Los Angeles, CA 90024, United States.
| | - A F Leuchter
- Neuromodulation Division, Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, 760 Westwood Plaza, Los Angeles, CA 90024, United States
| |
Collapse
|
6
|
Balzekas I, Lewis CP, Shekunov J, Port JD, Worrell GA, Joon Jo H, Croarkin PE. A pilot study of GABA B correlates with resting-state functional connectivity in five depressed female adolescents. Psychiatry Res Neuroimaging 2018; 279:60-63. [PMID: 29886088 PMCID: PMC6449039 DOI: 10.1016/j.pscychresns.2018.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 02/02/2023]
Abstract
Connectivity features based on resting-state (RS) functional magnetic resonance imaging (fMRI) demonstrate great promise as biomarkers to guide diagnosis and treatment in major depressive disorder (MDD). However, there is a pressing need for valid, reliable biomarkers closer to the bedside for clinical research and practice. This study directly compared RS-fMRI connectivity features with transcranial magnetic stimulation (TMS) neurophysiological measures, long interval cortical inhibition (LICI) and cortical silent period (CSP), in female adolescents with MDD. LICI-200 showed the most significant associations with RS functional connectivity features, demonstrating its potential to evaluate the neurochemical underpinnings of network features in MDD.
Collapse
Affiliation(s)
- Irena Balzekas
- Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Charles P Lewis
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Julia Shekunov
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - John D Port
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA; Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Hang Joon Jo
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Neurosurgery, Mayo Clinic, Rochester, MN, USA.
| | - Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
7
|
Lewis CP, Nakonezny PA, Blacker CJ, Vande Voort JL, Port JD, Worrell GA, Jo HJ, Daskalakis ZJ, Croarkin PE. Cortical inhibitory markers of lifetime suicidal behavior in depressed adolescents. Neuropsychopharmacology 2018; 43:1822-1831. [PMID: 29703993 PMCID: PMC6046050 DOI: 10.1038/s41386-018-0040-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/05/2018] [Accepted: 02/26/2018] [Indexed: 11/09/2022]
Abstract
Although suicide is the second-leading cause of death in adolescents and young adults worldwide, little progress has been made in developing reliable biological markers of suicide risk and suicidal behavior. Converging evidence suggests that excitatory and inhibitory cortical processes mediated by the neurotransmitters glutamate and γ-aminobutyric acid (GABA) are dysregulated in suicidal individuals. This study utilized single- and paired-pulse transcranial magnetic stimulation (TMS) to assess excitatory and inhibitory cortical functioning in healthy control adolescents (n = 20), depressed adolescents without any history of suicidal behavior ("Depressed", n = 37), and depressed adolescents with lifetime history of suicidal behavior ("Depressed+SB", n = 17). In a fixed-effects general linear model analysis, with age, sex, and depression severity as covariates, no significant group main effects emerged for resting motor threshold, intracortical facilitation, short-interval intracortical inhibition, or cortical silent period. However, group main effects were significant for long-interval intracortical inhibition (LICI) at interstimulus intervals (ISIs) of 100 ms and 150 ms, but not 200 ms. Depressed+SB adolescents demonstrated impaired LICI compared to healthy control and Depressed adolescents, while healthy control and Depressed participants did not differ in LICI. Multiple linear robust regression revealed significant positive linear relationships between lifetime suicidal behavior severity and impairment in LICI at 100-ms and 150-ms ISIs. In a post hoc receiver operating characteristic analysis, LICI significantly discriminated Depressed from Depressed+SB youth in 100-ms and 150-ms paradigms. These findings suggest that GABAB receptor-mediated inhibition is distinctly dysregulated in depressed adolescents with histories of suicidal behavior. Further research is warranted to establish the utility of cortical inhibition in the assessment of suicide risk and as a target for treatment interventions.
Collapse
Affiliation(s)
- Charles P Lewis
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Paul A Nakonezny
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Clinical Sciences, Division of Biostatistics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Caren J Blacker
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | - John D Port
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Hang Joon Jo
- Department of Neurologic Surgery, Neural Engineering Lab, Mayo Clinic, Rochester, MN, USA
| | - Zafiris J Daskalakis
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Temerty Centre for Therapeutic Brain Intervention, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada
| | - Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Fee C, Banasr M, Sibille E. Somatostatin-Positive Gamma-Aminobutyric Acid Interneuron Deficits in Depression: Cortical Microcircuit and Therapeutic Perspectives. Biol Psychiatry 2017; 82:549-559. [PMID: 28697889 PMCID: PMC5610074 DOI: 10.1016/j.biopsych.2017.05.024] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/11/2017] [Accepted: 05/30/2017] [Indexed: 12/17/2022]
Abstract
The functional integration of external and internal signals forms the basis of information processing and is essential for higher cognitive functions. This occurs in finely tuned cortical microcircuits whose functions are balanced at the cellular level by excitatory glutamatergic pyramidal neurons and inhibitory gamma-aminobutyric acidergic (GABAergic) interneurons. The balance of excitation and inhibition, from cellular processes to neural network activity, is characteristically disrupted in multiple neuropsychiatric disorders, including major depressive disorder (MDD), bipolar disorder, anxiety disorders, and schizophrenia. Specifically, nearly 3 decades of research demonstrate a role for reduced inhibitory GABA level and function across disorders. In MDD, recent evidence from human postmortem and animal studies suggests a selective vulnerability of GABAergic interneurons that coexpress the neuropeptide somatostatin (SST). Advances in cell type-specific molecular genetics have now helped to elucidate several important roles for SST interneurons in cortical processing (regulation of pyramidal cell excitatory input) and behavioral control (mood and cognition). Here, we review evidence for altered inhibitory function arising from GABAergic deficits across disorders and specifically in MDD. We then focus on properties of the cortical microcircuit, where SST-positive GABAergic interneuron deficits may disrupt functioning in several ways. Finally, we discuss the putative origins of SST cell deficits, as informed by recent research, and implications for therapeutic approaches. We conclude that deficits in SST interneurons represent a contributing cellular pathology and therefore a promising target for normalizing altered inhibitory function in MDD and other disorders with reduced SST cell and GABA functions.
Collapse
Affiliation(s)
- Corey Fee
- Campbell Family Mental Health Research Institute of Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Mounira Banasr
- Campbell Family Mental Health Research Institute of Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute of Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Evidence for Pretreatment LICI Deficits Among Depressed Children and Adolescents With Nonresponse to Fluoxetine. Brain Stimul 2014; 7:243-51. [DOI: 10.1016/j.brs.2013.11.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/12/2013] [Accepted: 11/21/2013] [Indexed: 01/15/2023] Open
|
10
|
Couch Y, Martin CJ, Howarth C, Raley J, Khrapitchev AA, Stratford M, Sharp T, Sibson NR, Anthony DC. Systemic inflammation alters central 5-HT function as determined by pharmacological MRI. Neuroimage 2013; 75:177-186. [PMID: 23473937 PMCID: PMC4004801 DOI: 10.1016/j.neuroimage.2013.02.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 02/02/2023] Open
Abstract
Considerable evidence indicates a link between systemic inflammation and central 5-HT function. This study used pharmacological magnetic resonance imaging (phMRI) to study the effects of systemic inflammatory events on central 5-HT function. Changes in blood oxygenation level dependent (BOLD) contrast were detected in selected brain regions of anaesthetised rats in response to intravenous administration of the 5-HT-releasing agent, fenfluramine (10 mg/kg). Further groups of rats were pre-treated with the bacterial lipopolysaccharide (LPS; 0.5 mg/kg), to induce systemic inflammation, or the selective 5-HT2A receptor antagonist MDL100907 prior to fenfluramine. The resultant phMRI data were investigated further through measurements of cortical 5-HT release (microdialysis), and vascular responsivity, as well as a more thorough investigation of the role of the 5-HT2A receptor in sickness behaviour. Fenfluramine evoked a positive BOLD response in the motor cortex (+15.9±2%) and a negative BOLD response in the dorsal raphe nucleus (-9.9±4.2%) and nucleus accumbens (-7.7±5.3%). In all regions, BOLD responses to fenfluramine were significantly attenuated by pre-treatment with LPS (p<0.0001), but neurovascular coupling remained intact, and fenfluramine-evoked 5-HT release was not affected. However, increased expression of the 5-HT2A receptor mRNA and decreased 5-HT2A-dependent behaviour (wet-dog shakes) was a feature of the LPS treatment and may underpin the altered phMRI signal. MDL100907 (0.5 mg/kg), 5-HT2A antagonist, significantly reduced the BOLD responses to fenfluramine in all three regions (p<0.0001) in a similar manner to LPS. Together these results suggest that systemic inflammation decreases brain 5-HT activity as assessed by phMRI. However, these effects do not appear to be mediated by changes in 5-HT release, but are associated with changes in 5-HT2A-receptor-mediated downstream signalling pathways.
Collapse
Affiliation(s)
- Yvonne Couch
- Department of Pharmacology, University of Oxford, Mansfield Rd, Oxford, OX1 3QT, UK; CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Chris J Martin
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Clare Howarth
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Josie Raley
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Alexandre A Khrapitchev
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Michael Stratford
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Trevor Sharp
- Department of Pharmacology, University of Oxford, Mansfield Rd, Oxford, OX1 3QT, UK
| | - Nicola R Sibson
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK.
| | - Daniel C Anthony
- Department of Pharmacology, University of Oxford, Mansfield Rd, Oxford, OX1 3QT, UK
| |
Collapse
|
11
|
Radhu N, de Jesus DR, Ravindran LN, Zanjani A, Fitzgerald PB, Daskalakis ZJ. A meta-analysis of cortical inhibition and excitability using transcranial magnetic stimulation in psychiatric disorders. Clin Neurophysiol 2013; 124:1309-20. [PMID: 23485366 DOI: 10.1016/j.clinph.2013.01.014] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 12/05/2012] [Accepted: 01/13/2013] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To evaluate transcranial magnetic stimulation (TMS) measures of inhibition and excitation in obsessive-compulsive disorder (OCD), major depressive disorder (MDD) and schizophrenia (SCZ). METHODS Paradigms included: short-interval cortical inhibition (SICI), cortical silent period (CSP), resting motor threshold, intracortical facilitation, and motor evoked potential amplitude. A literature search was performed using PubMed, Ovid Medline, Embase Psychiatry and PsycINFO 1990 through April 2012. RESULTS A significant Hedge's g was found for decreased SICI (g=0.572, 95% confidence interval [0.179, 0.966], p=0.004), enhanced intracortical facilitation (g=0.446, 95% confidence interval [0.042, 0.849], p=0.030) and decreased CSP (g=-0.466, 95% confidence interval [-0.881, -0.052], p=0.027) within the OCD population. For MDD, significant effect sizes were demonstrated for decreased SICI (g=0.641, 95% confidence interval [0.384, 0.898], p=0.000) and shortened CSP (g=-1.232, 95% confidence interval [-1.530, -0.933], p=0.000). In SCZ, a significant Hedge's g was shown for decreased SICI (g=0.476, 95% confidence interval [0.331, 0.620], p=0.000). CONCLUSION Inhibitory deficits are a ubiquitous finding across OCD, MDD, SCZ and enhancement of intracortical facilitation is specific to OCD. SIGNIFICANCE Provides a clear platform from which diagnostic procedures can be developed.
Collapse
Affiliation(s)
- Natasha Radhu
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Radhu N, Ravindran LN, Levinson AJ, Daskalakis ZJ. Inhibition of the cortex using transcranial magnetic stimulation in psychiatric populations: current and future directions. J Psychiatry Neurosci 2012; 37:369-78. [PMID: 22663947 PMCID: PMC3493095 DOI: 10.1503/jpn.120003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Several lines of evidence suggest that deficits in γ-aminobutyric acid (GABA) inhibitory neurotransmission are implicated in the pathophysiology of schizophrenia, bipolar disorder, major depressive disorder and obsessive-compulsive disorder. Cortical inhibition refers to a neurophysiological process, whereby GABA inhibitory interneurons selectively attenuate pyramidal neurons. Transcranial magnetic stimulation (TMS) represents a noninvasive technique to measure cortical inhibition, excitability and plasticity in the cortex. These measures were traditionally specific to the motor cortex, which is an important limitation when nonmotor neurophysiological processes are of primary interest. Recently, TMS has been combined with electro encephalography (EEG) to derive such measurements directly from the cortex. This review focuses on neurophysiological studies related to inhibitory and excitatory TMS paradigms, linking dysfunctional GABAergic neurotransmission to disease states. We review evidence that suggests cortical inhibition deficits among psychiatric populations and demonstrate how each disorder has a specific neurophysiological response to treatment. We conclude by discussing the future directions of TMS combined with EEG, demonstrating the potential to identify biological markers of neuropsychiatric disorders.
Collapse
Affiliation(s)
| | | | | | - Zafiris J. Daskalakis
- Correspondence to: Z.J. Daskalakis, Schizophrenia Program, Centre for Addiction and Mental Health, 7th Floor — Clarke Division, 250 College St., Toronto ON M5T 1R8;
| |
Collapse
|
13
|
Is disturbed intracortical excitability a stable trait of chronic insomnia? A study using transcranial magnetic stimulation before and after multimodal sleep therapy. Biol Psychiatry 2010; 68:950-5. [PMID: 20728874 DOI: 10.1016/j.biopsych.2010.06.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 06/06/2010] [Accepted: 06/30/2010] [Indexed: 11/21/2022]
Abstract
BACKGROUND Chronic insomnia is a poorly understood disorder. Risk factors for developing chronic insomnia are largely unknown, yet disturbances in brain indexes of arousal seem to accompany the disorder. We here investigate whether insomnia patients and control participants differ with respect to brain responses to direct stimulation, i.e., cortical excitability. Transcranial magnetic stimulation (TMS) offers a method to directly investigate the excitability level of the human cerebral cortex in psychiatric and neurological disease. METHODS We investigated cortical excitability in 16 insomnia patients and 14 carefully matched control participants using absolute and relative amplitudes of motor evoked potentials in response to single- and paired-pulse stimulation using TMS. RESULTS Nonmedicated insomnia patients showed, first, an exaggerated absolute response to both suprathreshold single- and paired-pulse stimulation compared with control participants and second, a reduced relative response to paired-pulse stimulation at long interpulse intervals (i.e., a reduced intracortical facilitation). The abnormal excitability persisted despite sleep therapy that effectively improved sleep quality as well as behavioral and neuroimaging indexes of brain function. CONCLUSIONS The results suggest that a subtly disturbed intracortical excitability characterizes patients with chronic insomnia: a relatively reduced intracortical facilitation in the context of a globally increased absolute excitability. The findings do not resemble TMS findings after sleep deprivation or in sleep apnea and thus seem specific to insomnia. They may offer diagnostic value and implications for assessment of risk to develop this common and disabling disorder.
Collapse
|
14
|
Evidence for GABAergic inhibitory deficits in major depressive disorder. Neurosci Biobehav Rev 2010; 35:818-25. [PMID: 20946914 DOI: 10.1016/j.neubiorev.2010.10.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/14/2010] [Accepted: 10/05/2010] [Indexed: 01/03/2023]
Abstract
Converging evidence suggests that deficits in gamma-aminobutyric acid (GABA) functioning are implicated in the pathophysiology of major depressive disorder (MDD). This is highlighted by research investigating cortical inhibition (CI), a process whereby GABAergic interneurons selectively attenuate pyramidal neurons. Transcranial magnetic stimulation (TMS) paradigms evaluate this marker of neuronal inhibitory activity in the cortex. This review will examine the neuroanatomic and neurophysiological evidence from neuroimaging, molecular, treatment, and TMS studies linking dysfunctional GABAergic neurotransmission to MDD.
Collapse
|
15
|
Motor cortex excitability correlates with novelty seeking in social anxiety: a transcranial magnetic stimulation investigation. J Neurol 2010; 257:1362-8. [DOI: 10.1007/s00415-010-5533-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 03/03/2010] [Accepted: 03/08/2010] [Indexed: 12/23/2022]
|
16
|
Grimm S, Bajbouj M. Efficacy of vagus nerve stimulation in the treatment of depression. Expert Rev Neurother 2010; 10:87-92. [PMID: 20021323 DOI: 10.1586/ern.09.138] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Major depressive disorder is a disease with prominent individual, medical and economic impacts. A relevant proportion of depressive patients suffering from a therapy-resistant course are increasingly being treated with antidepressant brain stimulation techniques. One of these interventions is the vagus nerve stimulation that has recently been tested in a number of clinical trials. To date, the acute and long-term efficacy of vagus nerve stimulation are still under debate. Thus further studies are required, especially since the exact mode of action of vagus nerve stimulation is still not well understood. In this paper we will review the results of existing clinical trials as well as the neurobiological effects measured with neuroimaging, biochemical and electrophysiology approaches.
Collapse
Affiliation(s)
- Simone Grimm
- Freie Universitaet Berlin, Cluster of Excellence Languages of Emotion and Dahlem Institute for Neuroscience of Emotion, Habelschwerdter Allee 45, 14195 Berlin, Germany. www.languages-of-emotion.de
| | | |
Collapse
|
17
|
de Carvalho M, Chio A, Dengler R, Hecht M, Weber M, Swash M. Neurophysiological measures in amyotrophic lateral sclerosis: Markers of progression in clinical trials. ACTA ACUST UNITED AC 2009; 6:17-28. [PMID: 16036422 DOI: 10.1080/14660820410020600] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review we evaluate clinical neurophysiological methods, originally described for use in diagnosis that can be applied to measurement of change during the progress of amyotrophic lateral sclerosis (ALS). Such measurements are potentially important in clinical trials, and also in clinical practice. We have assessed methods for lower and upper motor neuron function, including conventional EMG, nerve conduction and F-wave studies, the derived Neurophysiological Index, motor unit counting methods (MUNE), and transcranial magnetic motor cortex stimulation. We have also addressed the validity of measurements of electromechanical coupling. Methods for measuring muscle strength are beyond the scope of this review. We conclude that MUNE, M-wave amplitude and the Neurophysiological Index are sufficiently reliable, sensitive, and relevant to the clinical problem of ALS, to be used in clinical trials in the disease. Transcranial magnetic stimulation is of limited value, but a combination of the measurements made as part of this technique may also be useful. We conclude that clinical neurophysiological techniques should now be used in measuring change in clinical trials in ALS.
Collapse
Affiliation(s)
- Mamede de Carvalho
- Department of Neurology at Hospital de Santa Maria, Institute for Molecular Medecine, University of Lisbon, Portugal.
| | | | | | | | | | | |
Collapse
|
18
|
Minelli A, Bortolomasi M, Scassellati C, Salvoro B, Avesani M, Manganotti P. Effects of intravenous antidepressant drugs on the excitability of human motor cortex: a study with paired magnetic stimulation on depressed patients. Brain Stimul 2009; 3:15-21. [PMID: 20633426 DOI: 10.1016/j.brs.2009.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 02/24/2009] [Accepted: 04/21/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The effect of various drugs was investigated by using transcranial magnetic stimulation (TMS) both in healthy subjects and patients, and the results indicated an influence of antidepressant drugs (ADs) on motor excitability. OBJECTIVE The aim of our study was to analyze the effects of two ADs, the tricyclic (TCA) clomipramine and the serotoninergic antidepressant (SSRI) citalopram on the motor cortex excitability in major depressed patients with TMS. METHODS Thirty affected subjects were placed into three groups: two received an intravenous dose of 25 mg clomipramine or 40 mg citalopram, and one received an injection of a placebo. Motor cortex excitability was studied by single and paired TMS before and after 3.5, 8, and 24 hours from administration of the drugs and placebo. Motor cortical excitability was measured using different TMS parameters: resting motor threshold (RMT), motor-evoked potential (MEP) amplitude, intracortical inhibition (ICI), and intracortical facilitation (ICF). RESULTS The results indicated a temporary but significant increase of RMT and ICI and a decrease of ICF after the administration of both drugs, with a longer inhibition for the clomipramine rather than the citalopram. MEP amplitude was not significantly affected by the antidepressant injections. CONCLUSIONS Our findings highlight that a single intravenous dose of clomipramine or citalopram exerts a significant but transitory suppression of motor cortex excitability in depressed patients. TMS represents a useful research tool in assessing the effects of motor cortical excitability of drugs used in the treatment of mental disorders.
Collapse
Affiliation(s)
- Alessandra Minelli
- Genetics Unit, IRCCS Centro S. Giovanni di Dio Fatebenefratelli, Via Piastroni 4, Brescia, Italy.
| | | | | | | | | | | |
Collapse
|
19
|
A double blind placebo RCT to investigate the effects of serotonergic modulation on brain excitability and motor recovery in stroke patients. J Neurol 2009; 256:1152-8. [DOI: 10.1007/s00415-009-5093-7] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 11/12/2008] [Accepted: 11/21/2008] [Indexed: 10/21/2022]
|
20
|
Overeem S, Afink J, Bakker M, Lammers GJ, Zwarts M, Bloem BR, van Dijk JG. High frequency repetitive transcranial magnetic stimulation over the motor cortex: No diagnostic value for narcolepsy/cataplexy. J Neurol 2007; 254:1459-61. [PMID: 17579803 PMCID: PMC2778683 DOI: 10.1007/s00415-007-0562-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 12/19/2006] [Accepted: 01/03/2007] [Indexed: 12/03/2022]
Affiliation(s)
- S. Overeem
- Dept. of Neurology, Radboud University Nijmegen Medical Centre, 9101, 6500 HB Nijmegen, The Netherlands
- Dept. of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - J. Afink
- Dept. of Neurology, Radboud University Nijmegen Medical Centre, 9101, 6500 HB Nijmegen, The Netherlands
| | - M. Bakker
- Dept. of Neurology, Radboud University Nijmegen Medical Centre, 9101, 6500 HB Nijmegen, The Netherlands
| | - G. J. Lammers
- Dept. of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - M. Zwarts
- Dept. of Neurology, Radboud University Nijmegen Medical Centre, 9101, 6500 HB Nijmegen, The Netherlands
| | - B. R. Bloem
- Dept. of Neurology, Radboud University Nijmegen Medical Centre, 9101, 6500 HB Nijmegen, The Netherlands
| | - J. G. van Dijk
- Dept. of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
21
|
Bajbouj M, Gallinat J, Lang UE, Hellen F, Vesper J, Lisanby SH, Danker-Hopfe H, Neu P. Motor cortex excitability after vagus nerve stimulation in major depression. J Clin Psychopharmacol 2007; 27:156-9. [PMID: 17414238 DOI: 10.1097/jcp.0b013e31803308f3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent data suggest that inhibitory pathways may be involved in the pathophysiology of depression and in the mode of action of some antidepressant interventions. The aim of the present study was to test whether vagus nerve stimulation (VNS) can affect motor cortex excitability. Measures of motor cortical excitability were probed by using single-pulse and paired-pulse transcranial magnetic stimulation at baseline, after 10 weeks of left VNS, and additionally, in an on-off paradigm in 10 patients with treatment-resistant unipolar depression. Ten weeks of VNS was associated with a selective and pronounced increase in intracortical inhibition, whereas no changes occurred in the on-off paradigm. These results suggest that VNS is capable of changing motor cortical excitability in patients with depression.
Collapse
Affiliation(s)
- Malek Bajbouj
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Luft AR, Manto MU, Ben Taib NO. Modulation of motor cortex excitability by sustained peripheral stimulation: The interaction between the motor cortex and the cerebellum. THE CEREBELLUM 2005; 4:90-6. [PMID: 16035190 DOI: 10.1080/14734220410019084] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The excitability of cortical neurons in the motor cortex is determined by their membrane potential and by the level of intracortical inhibition. The excitability of the motor cortex as a whole is a function of single cell excitability, synaptic strength, and the balance between excitatory cells and inhibitory cells. It is now established that a sustained period of somatosensory stimulation increases the excitability of motor cortex areas controlling muscles in those body parts that received the stimulation prior to excitability testing. So far, it has been supposed that the sensorimotor cortex was the anatomical substrate of these excitability changes, which could represent an early change in cortical network function before structural plasticity occurs. Recent experimental studies highlight that the cerebellum, especially the interpositus nucleus, plays a key role in the adaptation of the motor cortex to repeated trains of stimulation. Interpositus neurons, which receive inputs from both sensorimotor cortex and the spinal cord, are involved in somesthetic reflex behaviors and assist the cerebral cortex in transforming sensory signals to motor-oriented commands by acting via the cerebello-thalamo-cortical projections. Moreover, climbing fibers originating in the inferior olivary complex and innervating the nucleus interpositus mediate highly integrated sensorimotor information derived from spinal modules. It appears that the interpositus nucleus is a main subcortical modulator of the excitability changes occurring in the motor cortex, which may be a substrate of early plasticity effective in motor learning and recovery from lesion.
Collapse
Affiliation(s)
- Andreas R Luft
- Abt. für Allgemeine Neurologie, Hertie Center for Clinical Brain Research, Universität Tübingen, Tübingen, Germany.
| | | | | |
Collapse
|
23
|
Motor cortical excitability and clinical response to rTMS in depression. J Affect Disord 2004; 82:71-6. [PMID: 15465578 DOI: 10.1016/j.jad.2003.09.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2003] [Revised: 09/29/2003] [Accepted: 09/29/2003] [Indexed: 11/30/2022]
Abstract
BACKGROUND The relationship between frontal lobe activity in the left and right hemispheres and the pathophysiology of depression remains unclear. In addition, it is uncertain whether levels of frontal or motor cortical excitability relate to clinical response to treatment modalities. We aimed to explore whether motor cortical excitability as assessed with single and paired pulse transcranial magnetic stimulation (TMS) could be used to predict the response to treatment with repetitive TMS (rTMS) applied to the left or right prefrontal cortex. METHODS Motor thresholds, cortical excitability and cortical inhibition (CI) were assessed prior to a trial of rTMS in patients with treatment resistant depression. RESULTS There was no consistent pattern of differences in hemispheric activity, although there was a relationship between the degree of psychopathology and cortical excitability (right hemisphere) and an inverse relationship between inhibitory activity and clinical response (left hemisphere). CONCLUSIONS The study does not support a simple model of laterality in motor cortical excitability in depression. The TMS measures used in this study appear to be of limited use in the prediction of clinical response to rTMS.
Collapse
|
24
|
Abstract
Transcranial magnetic stimulation (TMS) provides new possibilities for studying localized changes in the electrical properties of the human cortex. TMS combined with electromyography (EMG) has revealed that drugs blocking Na(+) or Ca(2+) channels such as phenytoin, lamotrigin or carbamazepine change the motor threshold without affecting intracortical inhibition or facilitation. Gabaergic agents vigabatrin, lorazepam, diazepam, baclofen and ethanol do not affect the motor threshold, but increase intracortical inhibition and decrease facilitation. N-methyl-D-aspartate receptor antagonists riluzole, dextromethorphan and memantine have similar effects. Dopamine receptor antagonists such as haloperidol, but not sulpiride, decrease intracortical inhibition and increase intracortical facilitation. Other monoamines, such as serotonin and noradrenaline, may have some modulating effect on the cortical excitability. However, TMS combined with EMG gives only indirect evidence about the excitability of the motor cortex because spinal mechanisms may contribute to the results. Cortical excitability can be studied directly by combining TMS with brain imaging methods such as electroencephalography (EEG). Motor and non-motor areas can be stimulated and subsequent brain activity can be measured. Ethanol has been shown to modulate EEG responses evoked by motor-cortex TMS, the effects being largest at the right prefrontal cortex, meaning that ethanol would have changed the functional connectivity. Furthermore, alcohol decreases amplitudes of EEG responses after the left prefrontal stimulation mainly in anterior parts of the cortex, which may be associated with the decrease of the prefrontal cortical excitability. Taken together, TMS provides a new insight to the actions of central nervous system drugs at the cortical level.
Collapse
Affiliation(s)
- Seppo Kähkönen
- BioMag Laboratory, Engineering Centre, Helsinki University Central Hospital and Cognitive Brain Research Unit, Department of Psychology, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
25
|
Robol E, Fiaschi A, Manganotti P. Effects of citalopram on the excitability of the human motor cortex: a paired magnetic stimulation study. J Neurol Sci 2004; 221:41-6. [PMID: 15178212 DOI: 10.1016/j.jns.2004.03.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 02/18/2004] [Accepted: 03/08/2004] [Indexed: 11/29/2022]
Abstract
Several recent reports suggest the possibility of monitoring pharmacological effects on brain excitability through transcranial magnetic stimulation (TMS). Different drugs have been studied using paired magnetic stimulation in normal subjects and patients. In particular, it has been suggested that antidepressant drugs may have an appreciable effect on motor excitability. The aim of the present study was to investigate motor area excitability in normal subjects after oral administration of a single dose of citalopram, a selective serotonin reuptake inhibitor (SSRI) antidepressant. Motor cortex excitability was studied by single and paired transcranial magnetic stimulation before and 2.5 and 36 (t1/2=36 h) h after oral administration of 30 mg of citalopram. Cortical excitability was measured using different transcranial magnetic stimulation parameters: motor threshold (MT), motor-evoked potential (MEP) amplitude and latency, motor recruitment, duration of cortical silent period (CSP), intracortical inhibition and intracortical facilitation. Spinal excitability and peripheral nerve conduction were measured by F response and M wave. Temporary but significant increases in motor threshold, motor-evoked potentials, silent period and intracortical inhibition were observed 2.5 h after drug administration, without any significant changes in motor-evoked potential amplitude and latency and spinal excitability parameters. Our findings suggest that a single oral dose of citalopram can induce significant but transitory suppression of motor cortex excitability in normal subjects.
Collapse
Affiliation(s)
- Elisa Robol
- Dipartimento di Scienze Neurologiche e della Visione, Sezione Neurologia Riabilitativa, Policlinico Giambattista Rossi, Università di Verona, Via delle Menegone, 10-Verona 37134, Italy.
| | | | | |
Collapse
|
26
|
Bares M, Kanovský P, Klajblová H, Rektor I. Intracortical inhibition and facilitation are impaired in patients with early Parkinson's disease: a paired TMS study. Eur J Neurol 2003; 10:385-9. [PMID: 12823490 DOI: 10.1046/j.1468-1331.2003.00610.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Twelve patients with early Parkinson's disease (PD), none of whom had received any previous L-DOPA treatment, but using other antiparkinsonian drugs, were studied using transcranial magnetic stimulation (TMS). Contralateral and ipsilateral hemispheres were examined, with a focus on the more pronounced parkinsonian symptoms. The conditioning-test TMS paradigm (with a subthreshold conditioning stimulus and a suprathreshold test stimulus) was used through a stimulating round coil. Paired stimuli of short (3, 5 and 7 ms), medium (10, 15 and 20 ms), and long (100, 150, 200 and 250 ms) interstimulus intervals (ISI) were pseudo-randomly mixed with a single stimulus. The first interosseus muscle was used for the motor-evoked potential recordings. Ten healthy subjects (age and sex matched) were studied in the same manner to obtain normative data. When both groups were compared, the significant difference (reduction of the intracortical inhibition and facilitation) between the PD patients and the control group was found at the short and the medium ISI (3, 5, 7, 10, 15 and 20 ms) in both hemispheres (P < 0.05). The longer ISI produced non-significant differences between the two groups in intracortical excitability. There was a non-significant difference in the motor threshold. In conclusion, it can be supposed that both intracortical inhibition and facilitation are impaired in patients with early PD using other antiparkinsonian treatments than L-DOPA or dopamine agonists.
Collapse
Affiliation(s)
- M Bares
- First Department of Neurology and the Movement Disorders Centre, Masaryk University, St Anne's Hospital, Brno, Czech Republic.
| | | | | | | |
Collapse
|
27
|
Sharshar T, Ross E, Hopkinson NS, Dayer M, Nickol A, Lofaso F, Moxham J, Similowski T, Polkey MI. Effect of voluntary facilitation on the diaphragmatic response to transcranial magnetic stimulation. J Appl Physiol (1985) 2003; 95:26-34. [PMID: 12639850 DOI: 10.1152/japplphysiol.00918.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We assessed recruitment curves of the surface diaphragm motor-evoked potential (MEP) after transcranial magnetic stimulation during relaxation and at three different levels of facilitation (20, 40, and 60% of maximal inspiratory esophageal pressure) in 10 healthy subjects (six young and four elderly). MEP amplitude recruitment curves varied between individuals during relaxation and at each level of facilitation. Amplitude recruitment curves during relaxation were reproducible in individual subjects. Inspiratory maneuvers caused a decrease in motor threshold and latency and an increase in MEP amplitude, positively correlated to the intensity of facilitation. These changes were similar in young and elderly subjects. The best fit for MEP amplitude recruitment curves for each condition was obtained with a Boltzmann model. The performance of repeated submaximal inspiratory maneuvers did not affect the amplitude recruitment curves of the relaxed diaphragm. We conclude that the recruitment curve of the diaphragm with transcranial magnetic stimulation is repeatable and changes consistently with facilitation and will, therefore, be a robust experimental tool for the investigation of supraspinal pathways to the diaphragm.
Collapse
Affiliation(s)
- Tarek Sharshar
- Respiratory Muscle Laboratory, Royal Brompton and Harefield National Health Service, Trust and King's College Hospital, London SW3 6NP, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|