1
|
Caliskan A, Dangwal S, Dandekar T. Metadata integrity in bioinformatics: Bridging the gap between data and knowledge. Comput Struct Biotechnol J 2023; 21:4895-4913. [PMID: 37860229 PMCID: PMC10582761 DOI: 10.1016/j.csbj.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
In the fast-evolving landscape of biomedical research, the emergence of big data has presented researchers with extraordinary opportunities to explore biological complexities. In biomedical research, big data imply also a big responsibility. This is not only due to genomics data being sensitive information but also due to genomics data being shared and re-analysed among the scientific community. This saves valuable resources and can even help to find new insights in silico. To fully use these opportunities, detailed and correct metadata are imperative. This includes not only the availability of metadata but also their correctness. Metadata integrity serves as a fundamental determinant of research credibility, supporting the reliability and reproducibility of data-driven findings. Ensuring metadata availability, curation, and accuracy are therefore essential for bioinformatic research. Not only must metadata be readily available, but they must also be meticulously curated and ideally error-free. Motivated by an accidental discovery of a critical metadata error in patient data published in two high-impact journals, we aim to raise awareness for the need of correct, complete, and curated metadata. We describe how the metadata error was found, addressed, and present examples for metadata-related challenges in omics research, along with supporting measures, including tools for checking metadata and software to facilitate various steps from data analysis to published research.
Collapse
Affiliation(s)
- Aylin Caliskan
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Seema Dangwal
- Stanford Cardiovascular Institute, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305-5101, United States
| | - Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| |
Collapse
|
2
|
Khani F, Nafian S, Mollamohammadi S, Nemati S, Shokoohian B, Hassani SN, Baharvand H, Soleimanpour-Lichaei HR, Salekdeh GH. Y Chromosome Genes May Play Roles in the Development of Neural Rosettes from Human Embryonic Stem Cells. Stem Cell Rev Rep 2022; 18:3008-3020. [PMID: 35661078 DOI: 10.1007/s12015-022-10392-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2022] [Indexed: 01/24/2024]
Abstract
BACKGROUND The human Y chromosome harbors genes that are mainly involved in the growth, development, sexual dimorphism, and spermatogenesis process. Despite many studies, the function of the male-specific region of the Y chromosome (MSY) awaits further clarification, and a cell-based approach can help in this regard. RESULTS In this study, we have developed four stable transgenic male embryonic stem cell (ESCs) lines that can overexpress male-specific genes HSFY1, RBMY1A1, RPS4Y1, and SRY. As a proof of principle, we differentiated one of these cell lines (RPS4Y1 over-expressing ESCs) to the neural stem cell (rosette structure) and characterized them based on the expression level of lineage markers. RPS4Y1 expression in the Doxycycline-treated group was significantly higher than control groups at transcript and protein levels. Furthermore, we found Doxycycline-treated group had a higher differentiation efficiency than the untreated control groups. CONCLUSIONS Our results suggest that the RPS4Y1 gene may play a critical role in neurogenesis. Also, the generated transgenic ESC lines can be widely employed in basic and preclinical studies, such as sexual dimorphism of neural and cardiac functions, the development of cancerous and non-cancerous disease models, and drug screening.
Collapse
Affiliation(s)
- Farzaneh Khani
- Department of Stem Cells and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering & Biotechnology (NIGEB), P.O.Box: 14965-161, Tehran, Iran.,Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16656-59911, Tehran, Iran
| | - Simin Nafian
- Department of Stem Cells and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering & Biotechnology (NIGEB), P.O.Box: 14965-161, Tehran, Iran.,Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16656-59911, Tehran, Iran
| | - Sepideh Mollamohammadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16656-59911, Tehran, Iran
| | - Shiva Nemati
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16656-59911, Tehran, Iran
| | - Bahare Shokoohian
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16656-59911, Tehran, Iran
| | - Seyedeh Nafiseh Hassani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16656-59911, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16656-59911, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, 13145-871, Tehran, Iran
| | - Hamid Reza Soleimanpour-Lichaei
- Department of Stem Cells and Regenerative Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering & Biotechnology (NIGEB), P.O.Box: 14965-161, Tehran, Iran.
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, 16656-59911, Tehran, Iran. .,Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Heydari R, Jangravi Z, Maleknia S, Seresht-Ahmadi M, Bahari Z, Salekdeh GH, Meyfour A. Y chromosome is moving out of sex determination shadow. Cell Biosci 2022; 12:4. [PMID: 34983649 PMCID: PMC8724748 DOI: 10.1186/s13578-021-00741-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/21/2021] [Indexed: 01/05/2023] Open
Abstract
Although sex hormones play a key role in sex differences in susceptibility, severity, outcomes, and response to therapy of different diseases, sex chromosomes are also increasingly recognized as an important factor. Studies demonstrated that the Y chromosome is not a 'genetic wasteland' and can be a useful genetic marker for interpreting various male-specific physiological and pathophysiological characteristics. Y chromosome harbors male‑specific genes, which either solely or in cooperation with their X-counterpart, and independent or in conjunction with sex hormones have a considerable impact on basic physiology and disease mechanisms in most or all tissues development. Furthermore, loss of Y chromosome and/or aberrant expression of Y chromosome genes cause sex differences in disease mechanisms. With the launch of the human proteome project (HPP), the association of Y chromosome proteins with pathological conditions has been increasingly explored. In this review, the involvement of Y chromosome genes in male-specific diseases such as prostate cancer and the cases that are more prevalent in men, such as cardiovascular disease, neurological disease, and cancers, has been highlighted. Understanding the molecular mechanisms underlying Y chromosome-related diseases can have a significant impact on the prevention, diagnosis, and treatment of diseases.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Jangravi
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Samaneh Maleknia
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrshad Seresht-Ahmadi
- Department of Basic Science and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Zahra Bahari
- Department of Physiology and Medical Physics, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
4
|
Lu B, Yu Y, Xing XL, Liu RY. miR-183/TMSB4Y, a new potential signaling axis, involving in the progression of laryngeal cancer via modulating cell adhesion. J Recept Signal Transduct Res 2020; 42:133-140. [PMID: 33356743 DOI: 10.1080/10799893.2020.1863987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Laryngeal cancer (LCa) is a prevalent malignant head and neck cancer with relatively unclear pathogenesis. A prior study has suggested that miR-183 differentially expressed in laryngeal-related malignancies, but its accurate role has not been fully ascertained in LCa. miR-183 expression in LCa tissues and cells was detected assisted by TCGA/GEO databases or qRT-PCR assay, relatively. Target genes of miR-183 were predicted via accessing to TargetScan website. Luciferase activity analysis was conducted to determine the relationship between miR-183 and its possible target. CCK-8, colony formation and transwell invasion and migration experiments were implemented to measure LCa cell viability, invasion and migration. Western blot assay was utilized to evaluate cell adhesion and EMT-related proteins expressions. The expression of miR-183 was expressed in LCa tissue samples and cells at higher levels than normal controls. Upregulation of miR-183 facilitated Hep-2 and TU212 cells viability, while miR-183 reduction inhibited the proliferative potential of Hep-2 and TU212 cells. TMSB4Y was determined as a possible target of miR-183, and its expression was decreased in LCa. LCa patients with low TMSB4Y expression had poorer outcomes relative to that with high TMSB4Y expression. TMSB4Y overturned the promoting impacts of miR-183 on the LCa cellular malignant behaviors, including cell proliferation, colonogenicity, invasion and migration. miR-183 overexpression inhibited cell adhesion through inhibiting TMSB4Y expression. Overall, all results elucidated that miR-183, as an oncogenic molecule in LCa, may be used to predict the prognosis of LCa patients by targeting TMSB4Y.
Collapse
Affiliation(s)
- Bin Lu
- Department of Otorhinolaryngology and Head and Neck Surgery, The first people's Hospital of Jingzhou, Jingzhou, P.R. China
| | - Ying Yu
- E.N.T. department, Gaotang County People's Hospital, Liaocheng, P.R. China
| | - Xiao-Ling Xing
- Intravenous Medication Center of Binzhou People's Hospital, Binzhou, P.R. China
| | - Rui-Yue Liu
- Department of Otolaryngology, Heze Municipal Hospital, Heze, P.R. China
| |
Collapse
|
5
|
Prensner JR, Feng FY. "Lincing" the Y Chromosome to Prostate Cancer: TTTY15 Takes Center Stage. Eur Urol 2019; 76:327-328. [PMID: 30799189 DOI: 10.1016/j.eururo.2019.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 02/12/2019] [Indexed: 01/29/2023]
Affiliation(s)
- John R Prensner
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute/Boston Children's Hospital, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Felix Y Feng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
TSPYL5-mediated inhibition of p53 promotes human endothelial cell function. Angiogenesis 2018; 22:281-293. [DOI: 10.1007/s10456-018-9656-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
|
7
|
Sedaghat N, Fathy M, Modarressi MH, Shojaie A. Identifying functional cancer-specific miRNA-mRNA interactions in testicular germ cell tumor. J Theor Biol 2016; 404:82-96. [PMID: 27235586 DOI: 10.1016/j.jtbi.2016.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 04/26/2016] [Accepted: 05/19/2016] [Indexed: 12/30/2022]
Abstract
Testicular cancer is the most common cancer in men aged between 15 and 35 and more than 90% of testicular neoplasms are originated at germ cells. Recent research has shown the impact of microRNAs (miRNAs) in different types of cancer, including testicular germ cell tumor (TGCT). MicroRNAs are small non-coding RNAs which affect the development and progression of cancer cells by binding to mRNAs and regulating their expressions. The identification of functional miRNA-mRNA interactions in cancers, i.e. those that alter the expression of genes in cancer cells, can help delineate post-regulatory mechanisms and may lead to new treatments to control the progression of cancer. A number of sequence-based methods have been developed to predict miRNA-mRNA interactions based on the complementarity of sequences. While necessary, sequence complementarity is, however, not sufficient for presence of functional interactions. Alternative methods have thus been developed to refine the sequence-based interactions using concurrent expression profiles of miRNAs and mRNAs. This study aims to find functional cancer-specific miRNA-mRNA interactions in TGCT. To this end, the sequence-based predicted interactions are first refined using an ensemble learning method, based on two well-known methods of learning miRNA-mRNA interactions, namely, TaLasso and GenMiR++. Additional functional analyses were then used to identify a subset of interactions to be most likely functional and specific to TGCT. The final list of 13 miRNA-mRNA interactions can be potential targets for identifying TGCT-specific interactions and future laboratory experiments to develop new therapies.
Collapse
Affiliation(s)
- Nafiseh Sedaghat
- Computer Engineering School, Iran University of Science and Technology, Iran
| | - Mahmood Fathy
- Computer Engineering School, Iran University of Science and Technology, Iran
| | | | - Ali Shojaie
- Department of Biostatistics, University of Washington, United States
| |
Collapse
|
8
|
Khosravi P, Gazestani VH, Pirhaji L, Law B, Sadeghi M, Goliaei B, Bader GD. Inferring interaction type in gene regulatory networks using co-expression data. Algorithms Mol Biol 2015; 10:23. [PMID: 26157474 PMCID: PMC4495944 DOI: 10.1186/s13015-015-0054-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/16/2015] [Indexed: 01/28/2023] Open
Abstract
Background Knowledge of interaction types in biological networks is important for understanding the functional organization of the cell. Currently information-based approaches are widely used for inferring gene regulatory interactions from genomics data, such as gene expression profiles; however, these approaches do not provide evidence about the regulation type (positive or negative sign) of the interaction. Results This paper describes a novel algorithm, “Signing of Regulatory Networks” (SIREN), which can infer the regulatory type of interactions in a known gene regulatory network (GRN) given corresponding genome-wide gene expression data. To assess our new approach, we applied it to three different benchmark gene regulatory networks, including Escherichia coli, prostate cancer, and an in silico constructed network. Our new method has approximately 68, 70, and 100 percent accuracy, respectively, for these networks. To showcase the utility of SIREN algorithm, we used it to predict previously unknown regulation types for 454 interactions related to the prostate cancer GRN. Conclusions SIREN is an efficient algorithm with low computational complexity; hence, it is applicable to large biological networks. It can serve as a complementary approach for a wide range of network reconstruction methods that do not provide information about the interaction type. Electronic supplementary material The online version of this article (doi:10.1186/s13015-015-0054-4) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Tiirikka T, Moilanen JS. Human Chromosome Y and Haplogroups; introducing YDHS Database. Clin Transl Med 2015; 4:60. [PMID: 26061870 PMCID: PMC4477006 DOI: 10.1186/s40169-015-0060-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 06/01/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As the high throughput sequencing efforts generate more biological information, scientists from different disciplines are interpreting the polymorphisms that make us unique. In addition, there is an increasing trend in general public to research their own genealogy, find distant relatives and to know more about their biological background. Commercial vendors are providing analyses of mitochondrial and Y-chromosomal markers for such purposes. Clearly, an easy-to-use free interface to the existing data on the identified variants would be in the interest of general public and professionals less familiar with the field. Here we introduce a novel metadatabase YDHS that aims to provide such an interface for Y-chromosomal DNA (Y-DNA) haplogroups and sequence variants. METHODS The database uses ISOGG Y-DNA tree as the source of mutations and haplogroups and by using genomic positions of the mutations the database links them to genes and other biological entities. YDHS contains analysis tools for deeper Y-SNP analysis. RESULTS YDHS addresses the shortage of Y-DNA related databases. We have tested our database using a set of different cases from literature ranging from infertility to autism. The database is at http://www.semanticgen.net/ydhs CONCLUSIONS Y-chromosomal DNA (Y-DNA) haplogroups and sequence variants have not been in the scientific limelight, excluding certain specialized fields like forensics, mainly because there is not much freely available information or it is scattered in different sources. However, as we have demonstrated Y-SNPs do play a role in various cases on the haplogroup level and it is possible to create a free Y-DNA dedicated bioinformatics resource.
Collapse
Affiliation(s)
- Timo Tiirikka
- Department of Clinical Genetics, Oulu University Hospital, PEDEGO Research Unit, University of Oulu, and Medical Research Center Oulu, Oulu University Hospital and University of Oulu, PO Box 23, FI-90029, Oulu, Finland,
| | | |
Collapse
|
10
|
Khosravi P, Gazestani VH, Asgari Y, Law B, Sadeghi M, Goliaei B. Network-based approach reveals Y chromosome influences prostate cancer susceptibility. Comput Biol Med 2014; 54:24-31. [DOI: 10.1016/j.compbiomed.2014.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/14/2014] [Accepted: 08/17/2014] [Indexed: 11/26/2022]
|
11
|
Tahmasbpour E, Balasubramanian D, Agarwal A. A multi-faceted approach to understanding male infertility: gene mutations, molecular defects and assisted reproductive techniques (ART). J Assist Reprod Genet 2014; 31:1115-37. [PMID: 25117645 PMCID: PMC4156950 DOI: 10.1007/s10815-014-0280-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/16/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The assisted reproductive techniques aimed to assist infertile couples have their own offspring carry significant risks of passing on molecular defects to next generations. RESULTS Novel breakthroughs in gene and protein interactions have been achieved in the field of male infertility using genome-wide proteomics and transcriptomics technologies. CONCLUSION Male Infertility is a complex and multifactorial disorder. SIGNIFICANCE This review provides a comprehensive, up-to-date evaluation of the multifactorial factors involved in male infertility. These factors need to be first assessed and understood before we can successfully treat male infertility.
Collapse
Affiliation(s)
| | | | - Ashok Agarwal
- />Center for Reproductive Medicine, Cleveland Clinic, 44195 Cleveland, OH USA
| |
Collapse
|
12
|
Yadav SK, Kumari A, Ali S. Fate of the human Y chromosome linked genes and loci in prostate cancer cell lines DU145 and LNCaP. BMC Genomics 2013; 14:323. [PMID: 23663454 PMCID: PMC3660188 DOI: 10.1186/1471-2164-14-323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/07/2013] [Indexed: 11/30/2022] Open
Abstract
Background Prostate cancer is a known cause of mortality in men worldwide although the risk factor varies among different ethnic groups. Loss of the Y chromosome is a common chromosomal abnormality observed in the human prostate cancer. Results We screened 51 standard sequence tagged sites (STSs) corresponding to a male-specific region of the Y chromosome (MSY), sequenced the coding region of the SRY gene and assessed the status of the DYZ1 arrays in the human prostate cancer cell lines DU145 and LNCaP. The MSY was found to be intact and coding region of SRY showed no sequence variation in both the cell lines. However, DYZ1 arrays showed sequence and copy number variations. DU145 and LNCaP cells were found to carry 742 and 1945 copies of the DYZ1, respectively per 3.3 pg of genomic DNA. The DYZ1 copies detected in these cell lines are much below the average of that reported in normal human males. Similarly, the number of “TTCCA” repeat and its derivatives within the DYZ1 arrays showed variation compared to those of the normal males. Conclusions Clearly, the DYZ1 is maximally affected in both the cell lines. Work on additional cell lines and biopsied samples would augment our understanding about the susceptibility of this region. Based on the present work, we construe that copy number status of the DYZ1 may be exploited as a supplementary prognostic tool to monitor the occurrence of prostate cancer using biopsied samples.
Collapse
|
13
|
Jangravi Z, Alikhani M, Arefnezhad B, Sharifi Tabar M, Taleahmad S, Karamzadeh R, Jadaliha M, Mousavi SA, Ahmadi Rastegar D, Parsamatin P, Vakilian H, Mirshahvaladi S, Sabbaghian M, Mohseni Meybodi A, Mirzaei M, Shahhoseini M, Ebrahimi M, Piryaei A, Moosavi-Movahedi AA, Haynes PA, Goodchild AK, Nasr-Esfahani MH, Jabbari E, Baharvand H, Sedighi Gilani MA, Gourabi H, Salekdeh GH. A fresh look at the male-specific region of the human Y chromosome. J Proteome Res 2012; 12:6-22. [PMID: 23253012 DOI: 10.1021/pr300864k] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The Chromosome-centric Human Proteome Project (C-HPP) aims to systematically map the entire human proteome with the intent to enhance our understanding of human biology at the cellular level. This project attempts simultaneously to establish a sound basis for the development of diagnostic, prognostic, therapeutic, and preventive medical applications. In Iran, current efforts focus on mapping the proteome of the human Y chromosome. The male-specific region of the Y chromosome (MSY) is unique in many aspects and comprises 95% of the chromosome's length. The MSY continually retains its haploid state and is full of repeated sequences. It is responsible for important biological roles such as sex determination and male fertility. Here, we present the most recent update of MSY protein-encoding genes and their association with various traits and diseases including sex determination and reversal, spermatogenesis and male infertility, cancers such as prostate cancers, sex-specific effects on the brain and behavior, and graft-versus-host disease. We also present information available from RNA sequencing, protein-protein interaction, post-translational modification of MSY protein-coding genes and their implications in biological systems. An overview of Human Y chromosome Proteome Project is presented and a systematic approach is suggested to ensure that at least one of each predicted protein-coding gene's major representative proteins will be characterized in the context of its major anatomical sites of expression, its abundance, and its functional relevance in a biological and/or medical context. There are many technical and biological issues that will need to be overcome in order to accomplish the full scale mapping.
Collapse
Affiliation(s)
- Zohreh Jangravi
- Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Transcriptome-wide detection of differentially expressed coding and non-coding transcripts and their clinical significance in prostate cancer. JOURNAL OF ONCOLOGY 2012; 2012:541353. [PMID: 22956952 PMCID: PMC3431106 DOI: 10.1155/2012/541353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/30/2012] [Indexed: 12/22/2022]
Abstract
Prostate cancer is a clinically and biologically heterogeneous disease. Deregulation of splice variants has been shown to contribute significantly to this complexity. High-throughput technologies such as oligonucleotide microarrays allow for the detection of transcripts that play a role in disease progression in a transcriptome-wide level. In this study, we use a publicly available dataset of normal adjacent, primary tumor, and metastatic prostate cancer samples (GSE21034) to detect differentially expressed coding and non-coding transcripts between these disease states. To achieve this, we focus on transcript-specific probe selection regions, that is, those probe sets that correspond unambiguously to a single transcript. Based on this, we are able to pinpoint at the transcript-specific level transcripts that are differentially expressed throughout prostate cancer progression. We confirm previously reported cases and find novel transcripts for which no prior implication in prostate cancer progression has been made. Furthermore, we show that transcript-specific differential expression has unique prognostic potential and provides a clinically significant source of biomarker signatures for prostate cancer risk stratification. The results presented here serve as a catalog of differentially expressed transcript-specific markers throughout prostate cancer progression that can be used as basis for further development and translation into the clinic.
Collapse
|
15
|
Silversides DW, Raiwet DL, Souchkova O, Viger RS, Pilon N. Transgenic mouse analysis of Sry expression during the pre- and peri-implantation stage. Dev Dyn 2012; 241:1192-204. [PMID: 22539273 DOI: 10.1002/dvdy.23798] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2012] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The SRY/Sry gene is expressed in pre-Sertoli cells of the male genital ridge and functions as the mammalian testis determining factor (TDF). In addition, expression of SRY/Sry outside the genital ridge has been reported, including preimplantation embryos, although the functional significance of this is not well understood. RESULTS Using Cre-mediated lineage studies and transgenic reporter mouse models, we now show that promoter sequences of human, pig and mouse SRY drive robust reporter gene expression in epiblast cells of peri-implantation embryos between embryonic day (E) 4.5 and E6.5. Analysis of endogenous Sry expression revealed that linear transcripts are produced by means of multiple polyadenylation sites in E4.5 embryos. Within the epiblast, SRY reporter expression mimics the expression seen using a Gata4 reporter model, but is dissimilar to that seen using an Oct4 reporter model. In addition, we report that overexpression of mouse Sry in embryonic stem cells leads to down-regulation of the core pluripotency markers Sox2 and Nanog. CONCLUSION We propose that SRY/Sry may function as a male-specific maturation factor in the peri-implantation mammalian embryo, providing a genetic mechanism to help explain the observation that male embryos are developmentally more advanced compared with female embryos, and suggesting a role for SRY beyond that of TDF.
Collapse
Affiliation(s)
- David W Silversides
- Department of Veterinary Biomedicine, Centre de Recherche en Reproduction Animale, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, QC, Canada.
| | | | | | | | | |
Collapse
|
16
|
Jenq RR, Curran MA, Goldberg GL, Liu C, Allison JP, van den Brink MRM. Repertoire enhancement with adoptively transferred female lymphocytes controls the growth of pre-implanted murine prostate cancer. PLoS One 2012; 7:e35222. [PMID: 22493742 PMCID: PMC3320876 DOI: 10.1371/journal.pone.0035222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/13/2012] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND In prostate cancer, genes encoding androgen-regulated, Y-chromosome-encoded, and tissue-specific antigens may all be overexpressed. In the adult male host, however, most high affinity T cells targeting these potential tumor rejection antigens will be removed during negative selection. In contrast, the female mature T-cell repertoire should contain abundant precursors capable of recognizing these classes of prostate cancer antigens and mediating effective anti-tumor immune responses. METHODOLOGY/PRINCIPAL FINDINGS We find that syngeneic TRAMP-C2 prostatic adenocarcinoma cells are spontaneously rejected in female hosts. Adoptive transfer of naïve female lymphocytes to irradiated male hosts bearing pre-implanted TRAMP-C2 tumor cells slows tumor growth and mediates tumor rejection in some animals. The success of this adoptive transfer was dependent on the transfer of female CD4 T cells and independent of the presence of CD25-expressing regulatory T cells in the transferred lymphocytes. We identify in female CD4 T cells stimulated with TRAMP-C2 a dominant MHC II-restricted response to the Y-chromosome antigen DBY. Furthermore, CD8 T cell responses in female lymphocytes to the immunodominant MHC I-restricted antigen SPAS-1 are markedly increased compared to male mice. Finally, we find no exacerbation of graft-versus-host disease in either syngeneic or minor-antigen mismatched allogeneic lymphocyte adoptive transfer models by using female into male versus male into male cells. CONCLUSIONS/SIGNIFICANCE This study shows that adoptively transferred female lymphocytes, particularly CD4 T cells, can control the outgrowth of pre-implanted prostatic adenocarcinoma cells. This approach does not significantly worsen graft-versus-host responses suggesting it may be viable in the clinic. Further, enhancing the available immune repertoire with female-derived T cells may provide an excellent pool of prostate cancer reactive T cells for further augmentation by combination with either vaccination or immune regulatory blockade strategies.
Collapse
Affiliation(s)
- Robert R. Jenq
- Department of Immunology and Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- Weill Cornell Medical College, New York, New York, United States of America
| | - Michael A. Curran
- Howard Hughes Medical Institute, Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Gabrielle L. Goldberg
- Department of Immunology and Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Chen Liu
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - James P. Allison
- Howard Hughes Medical Institute, Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Marcel R. M. van den Brink
- Department of Immunology and Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
17
|
Finkbeiner WE, Zlock LT, Morikawa M, Lao AY, Dasari V, Widdicombe JH. Cystic fibrosis and the relationship between mucin and chloride secretion by cultures of human airway gland mucous cells. Am J Physiol Lung Cell Mol Physiol 2011; 301:L402-14. [PMID: 21724859 DOI: 10.1152/ajplung.00210.2010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated how cystic fibrosis (CF) alters the relationship between Cl(-) and mucin secretion in cultures of non-CF and CF human tracheobronchial gland mucous (HTGM and CFTGM, respectively) cells. Biochemical studies showed that HTMG cells secreted typical airway mucins, and immunohistochemical studies showed that these cells expressed MUC1, MUC4, MUC5B, MUC8, MUC13, MUC16, and MUC20. Effects of cumulative doses of methacholine (MCh), phenylephrine (Phe), isoproterenol (Iso), and ATP on mucin and Cl(-) secretion were studied on HTGM and CFTGM cultures. Baseline mucin secretion was not significantly altered in CFTGM cells, and the increases in mucin secretion induced by mediators were unaltered (Iso, Phe) or slightly decreased (MCh, ATP). Across mediators, there was no correlation between the maximal increases in Cl(-) secretion and mucin secretion. In HTGM cells, the Cl(-) channel blocker, diphenylamine-2-carboxylic acid, greatly inhibited Cl(-) secretion but did not alter mucin release. In HTGM cells, mediators (10(-5) M) increased mucin secretion in the rank order ATP > Phe = Iso > MCh. They increased Cl(-) secretion in the sequence ATP > MCh ≈ Iso > Phe. The responses in Cl(-) secretion to MCh, ATP, and Phe were unaltered by CF, but the response to Iso was greatly reduced. We conclude that mucin secretion by cultures of human tracheobronchial gland cells is independent of Cl(-) secretion, at baseline, and is unaltered in CF; that the ratio of Cl(-) secretion to mucus secretion varies markedly depending on mediator; and that secretions induced by stimulation of β-adrenergic receptors will be abnormally concentrated in CF.
Collapse
Affiliation(s)
- Walter E Finkbeiner
- Department of Pathology, University of California, San Francisco, 94110, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Karyagyna AS, Vassiliev MO, Ershova AS, Nurtdinov RN, Lossev IS. Probe-Level Universal Search (PLUS) algorithm for gender differentiation in affymetrix datasets. J Bioinform Comput Biol 2010; 8:553-77. [PMID: 20556862 DOI: 10.1142/s0219720010004823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 01/22/2010] [Accepted: 02/12/2010] [Indexed: 11/18/2022]
Abstract
Affymetrix microarrays measure gene expression based on the intensity of hybridization of a panel of oligonucleotide probes (probe set) with mRNA. The signals from all probes within a probe set are converted into a single measure that represents the expression value of a gene. This step diminishes the number of independently measured parameters and eliminates from consideration individual "good-working" probes. We propose a new feature selection algorithm (Probe Level Universal Search or PLUS algorithm) for probe-level analysis of gene expression datasets. The algorithm evaluates the intensities of perfect-match Affymetrix probes individually and selects probes that allow one to distinguish two given classes of samples. The algorithm was used to differentiate the samples according to their gender ("gender differentiation"). The universal gender differentiating set of 3' Gene Affymetrix microarray probes was selected; the set consists of 38 probes from XIST gene of X-chromosome and 17 probes from five Y-chromosome genes: RPS4Y1, EIF1A, DDX3Y, JARID1D and USP9Y. The selection procedure based on the probes selected by PLUS algorithm differentiates the sex chromosome karyotype of the sample, reveals samples with incorrect gender labels and samples from patients with hereditary syndromes or cancer-associated chromosome abnormalities.
Collapse
Affiliation(s)
- Anna S Karyagyna
- NF Gamaleya Research Institute of Epidemiology and Microbiology, Russian Academy of Medical Sciences, Institute of Agricultural Biotechnology, Moscow, Russia.
| | | | | | | | | |
Collapse
|
19
|
Abstract
Spermatogenesis requires the concerted action of thousands of genes, all contributing to its efficiency to a different extent. The Y chromosome contains several testis-specific genes and among them the AZF region genes on the Yq and the TSPY1 array on the Yp are the most relevant candidates for spermatogenic function. TSPY1 was originally described as the putative gene for the gonadoblastoma locus on the Y (GBY) chromosome. Besides its oncogenic properties, expression analyses in the testis and in vitro and in vivo studies all converge on a physiological involvement of the TSPY1 protein in spermatogenesis as a pro-proliferative factor. The majority of TSPY1 copies are arranged in 20.4 kb of tandemly repeated units, with different copy numbers among individuals. Our recent study addressing the role of TSPY1 copy number variation in spermatogenesis reported that TSPY1 copy number influences spermatogenic efficiency and is positively correlated with sperm count. This finding provides further evidence for a role of TSPY1 in testicular germ cell proliferation and stimulates future research aimed at evaluating the relationship between the copy number and the protein expression level of the TSPY1 gene.
Collapse
|
20
|
The chromosome Y-linked testis-specific protein locus TSPY1 is characteristically present in gonadoblastoma. Hum Pathol 2010; 41:1544-9. [PMID: 20656323 DOI: 10.1016/j.humpath.2010.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 03/31/2010] [Accepted: 04/02/2010] [Indexed: 01/15/2023]
Abstract
Gonadoblastoma is a rare gonadal neoplasm that occurs almost exclusively in individuals who are phenotypically females. Most cases develop in women who have an abnormal karyotype in which at least a portion of the centromeric region of the short arm of chromosome Y is present, a region often referred to as the GBY locus. Of the several genes present in the GBY locus, the TSPY1 gene (which encodes testis-specific protein, a protein thought to have a role in cell cycle regulation) appears to be the most likely to have a critical role in the pathogenesis of gonadoblastoma. To evaluate the association of TSPY1 with the tumor, we developed an interphase fluorescent in situ hybridization assay that uses probes that target the region of the GBY locus that contains TSPY1 and a commercially available chromosome X CEP probe. Using this set of probes in a dual-color approach, we evaluated 6 cases of gonadoblastoma identified from our files and found that both TSPY1 and chromosome X were present in 5 (84%) of 6 cases; in these 5 cases, the adjacent nonneoplastic gonadal parenchyma showed the same genotype as the tumor. Of 6 cases, 1 (16%) showed no evidence of TSPY1; in this case, which occurred in a gravida 2 para 2 woman, 2 X chromosomes were present in the nonneoplastic ovary, the gonadoblastoma, and associated dysgerminoma and granulosa cell tumors. From a basic science perspective, our data demonstrate that the TSPY1 gene is present in most gonadoblastomas, supporting the hypothesized role for TSPY1 in gonadoblastoma tumorigenesis; the lack of TSPY1 in a fertile woman suggests that other loci can, however, substitute for TSPY1 in the development of the tumor. From a clinical perspective, our data show that interphase fluorescence in situ hybridization targeting TSPY1 is a straightforward approach that can be used in the evaluation of Y-associated intersex disorders in women who develop gonadoblastoma.
Collapse
|
21
|
Carvalho R, Pinheiro MF, Medeiros R. Localization of Candidate Genes in a Region of High Frequency of Microvariant Alleles for Prostate Cancer Susceptibility: The Chromosome Region Yp11.2 Genetic Variation. DNA Cell Biol 2010; 29:3-7. [DOI: 10.1089/dna.2009.0905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Raquel Carvalho
- Molecular Oncology Group, Portuguese Institute of Oncology (IPO), Porto, Portugal
- National Institute of Legal Medicine, North Branch, Porto, Portugal
| | - Maria Fátima Pinheiro
- National Institute of Legal Medicine, North Branch, Porto, Portugal
- Faculty of Health Sciences, Fernando Pessoa University, Porto, Portugal
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology Group, Portuguese Institute of Oncology (IPO), Porto, Portugal
- National Institute of Legal Medicine, North Branch, Porto, Portugal
- Faculty of Health Sciences, Fernando Pessoa University, Porto, Portugal
- Abel Salazar Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
- Department of Virology, Portuguese Institute of Oncology (IPO), Porto, Portugal
| |
Collapse
|
22
|
Lau YFC, Li Y, Kido T. Gonadoblastoma locus and the TSPY gene on the human Y chromosome. ACTA ACUST UNITED AC 2009; 87:114-22. [PMID: 19306348 DOI: 10.1002/bdrc.20144] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The gonadoblastoma (GBY) locus is the only oncogenic locus on the human Y chromosome. It is postulated to serve a normal function in the testis, but could exert oncogenic effects in dysgenetic gonads of individuals with intersex and/or dysfunctional testicular phenotypes. Recent studies establish the testis-specific protein Y-encoded (TSPY) gene to be the putative gene for GBY. TSPY serves normal functions in male stem germ cell proliferation and differentiation, but is ectopically expressed in early and late stages of gonadoblastomas, testicular carcinoma in situ (the premalignant precursor for all testicular germ cell tumors), seminomas, and selected nonseminomas. Aberrant TSPY expression stimulates protein synthetic activities, accelerates cell proliferation, and promotes tumorigenicity in athymic mice. TSPY binds to type B cyclins, enhances an activated cyclin B-CDK1 kinase activity, and propels a rapid G(2)/M transition in the cell cycle. TSPY also counteracts the normal functions of its X-homologue, TSPX, which also binds to cyclin B and modulates the cyclin B-CDK1 activity to insure a proper G(2)/M transition in the cell cycle. Hence, ectopic expression and actions of the Y-located TSPY gene in incompatible germ cells, such as those in dysgenetic or ovarian environments and dysfunctional testis, disrupt the normal cell cycle regulation and predispose the host cells to tumorigenesis. The contrasting properties of TSPY and TSPX suggest that somatic cancers, such as intracranial germ cell tumors, melanoma, and hepatocellular carcinoma, with detectable TSPY expression could exhibit sexual dimorphisms in the initiation and/or progression of the respective oncogenesis.
Collapse
Affiliation(s)
- Yun-Fai Chris Lau
- Division of Cell and Developmental Genetics, Department of Medicine, VA Medical Center, University of California, San Francisco, California 94121, USA.
| | | | | |
Collapse
|
23
|
Lindström S, Adami HO, Adolfsson J, Wiklund F. Y Chromosome Haplotypes and Prostate Cancer in Sweden. Clin Cancer Res 2008; 14:6712-6. [DOI: 10.1158/1078-0432.ccr-08-0658] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Hansen MA, Nielsen JE, Retelska D, Larsen N, Leffers H. A shared promoter region suggests a common ancestor for the human VCX/Y, SPANX, and CSAG gene families and the murine CYPT family. Mol Reprod Dev 2008; 75:219-29. [PMID: 17342728 DOI: 10.1002/mrd.20651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many testis-specific genes from the sex chromosomes are subject to rapid evolution, which can make it difficult to identify murine genes in the human genome. The murine CYPT gene family includes 15 members, but orthologs were undetectable in the human genome. However, using refined homology search, sequences corresponding to the shared promoter region of the CYPT family were identified at 39 loci. Most loci were located immediately upstream of genes belonging to the VCX/Y, SPANX, or CSAG gene families. Sequence comparison of the loci revealed a conserved CYPT promoter-like (CPL) element featuring TATA and CCAAT boxes. The expression of members of the three families harboring the CPL resembled the murine expression of the CYPT family, with weak expression in late pachytene spermatocytes and predominant expression in spermatids, but some genes were also weakly expressed in somatic cells and in other germ cell types. The genomic regions harboring the gene families were rich in direct and inverted segmental duplications (SD), which may facilitate gene conversion and rapid evolution. The conserved CPL and the common expression profiles suggest that the human VCX/Y, SPANX, and CSAG2 gene families together with the murine SPANX gene and the CYPT family may share a common ancestor. Finally, we present evidence that VCX/Y and SPANX may be paralogs with a similar protein structure consisting of C terminal acidic repeats of variable lengths.
Collapse
Affiliation(s)
- Martin A Hansen
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej, Denmark.
| | | | | | | | | |
Collapse
|
25
|
Harlap S, Paltiel O, Friedlander Y, Calderon-Margalit R, Deutsch L, Kleinhaus KR, Manor O, Neugut AI, Opler M, Perrin MC, Terry MB, Tiram E, Yanetz R. Prostate cancer in fathers with fewer male offspring: the Jerusalem Perinatal Study cohort. J Natl Cancer Inst 2007; 99:77-81. [PMID: 17202115 DOI: 10.1093/jnci/djk007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recent studies have suggested the involvement of loci on the Y chromosome in prostate cancer. We studied the relative risk (RR) of prostate cancer in relation to sex ratio of offspring in a cohort of 38,934 Israeli men who were followed from the birth of their offspring (in 1964 through 1976) until 2005. Cox models were used to adjust for changes in incidence over time, age, the man's year of birth, and social and ethnic variables. A total of 712 men were diagnosed with prostate cancer. Compared with men who had at least one son, men with only daughters had an increased risk of prostate cancer (adjusted RR = 1.40, 95% confidence interval [CI] = 1.20 to 1.64, P<.0001). In men with one, two, or three or more offspring, the relative risks associated with absence of sons were 1.25 (95% CI = 1.00 to 1.56), 1.41 (95% CI = 1.04 to 1.91), and 1.60 (95% CI = 1.05 to 2.43), respectively. Men with no daughters showed no statistically significantly altered risk, compared with men who had offspring of both sexes. The relative risk of prostate cancer decreased as the number of sons increased (P(trend)<.0001) but did not change with the number of daughters. These findings suggest that a Y chromosome locus may be involved in prostate cancer risk in this population.
Collapse
Affiliation(s)
- Susan Harlap
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th Street, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kim W, Yoo TK, Kim SJ, Shin DJ, Tyler-Smith C, Jin HJ, Kwak KD, Kim ET, Bae YS. Lack of association between Y-chromosomal haplogroups and prostate cancer in the Korean population. PLoS One 2007; 2:e172. [PMID: 17245448 PMCID: PMC1766463 DOI: 10.1371/journal.pone.0000172] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 12/21/2006] [Indexed: 11/30/2022] Open
Abstract
The Y chromosome has recently been suggested to have an association with prostate cancer risk in human populations. Since this chromosome is haploid and lacks recombination over most of its length, haplotypes constructed from binary markers throughout the chromosome can be used for association studies. To assess the possible Y-chromosomal contribution to prostate cancer risk, we have therefore analyzed 14 Y-chromosomal binary markers in 106 prostate cancer cases and 110 controls from the Korean population. In contrast to previous findings in the Japanese population, no statistically significant difference in the distribution of Y-chromosomal haplogroup frequencies was observed between the case and control groups of Koreans. Thus, our data imply that the previously reported associations between Y-chromosomal lineages and a predisposition to, or protection against, prostate cancer might be explained by statistical fluctuations, or by genetic effects that are seen only in some environments.
Collapse
Affiliation(s)
- Wook Kim
- Department of Biological Sciences, Dankook University, Cheonan, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang H, McKnight NC, Zhang T, Lu ML, Balk SP, Yuan X. SOX9 Is Expressed in Normal Prostate Basal Cells and Regulates Androgen Receptor Expression in Prostate Cancer Cells. Cancer Res 2007; 67:528-36. [PMID: 17234760 DOI: 10.1158/0008-5472.can-06-1672] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
SOX9 is a member of the SOX [Sry-related high-mobility group (HMG) box] family of HMG DNA-binding domain transcription factors and is required for the development and differentiation of multiple cell lineages. This report shows that basal epithelial cells express SOX9 in normal prostate, with no detectable expression in luminal epithelial cells. In contrast, SOX9 is expressed in primary prostate cancers in vivo, at a higher frequency in recurrent prostate cancer and in prostate cancer cell lines (LNCaP, CWR22, PC3, and DU145). SOX9 message and protein levels in prostate cancer cells were increased by treatment with glycogen synthase kinase 3beta inhibitor (SB415286), and SOX9 was reduced when beta-catenin was down-regulated by small interfering RNA (siRNA), indicating that SOX9 expression in prostate cancer is regulated by Wnt/beta-catenin signaling. SOX9 bound specifically to androgen receptor (AR) DNA-binding domain glutathione S-transferase fusion proteins, and this interaction was dependent on a short peptide immediately COOH-terminal to the DNA-binding domain (the C-terminal extension), which is required for interactions between steroid hormone receptors and the architectural HMG proteins. Exogenous SOX9 expressed at high nonphysiologic levels decreased AR expression and activity; however, at lower levels, SOX9 increased AR protein expression. Significantly, down-regulation of SOX9 by siRNA in prostate cancer cells reduced endogenous AR protein levels, and cell growth indicating that SOX9 contributes to AR regulation and decreased cellular proliferation. These results indicate that SOX9 in prostate basal cells supports the development and maintenance of the luminal epithelium and that a subset of prostate cancer cells may escape basal cell requirements through SOX9 expression.
Collapse
Affiliation(s)
- Hongyun Wang
- Cancer Biology Program, Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Urology Research Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
28
|
Su MT, Lee IW, Kuo PL. Presence of TSPY transcript and absence of transcripts of other Y chromosomal genes in a case of microscopic gonadoblastoma. Gynecol Oncol 2006; 103:357-60. [PMID: 16784771 DOI: 10.1016/j.ygyno.2006.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 05/02/2006] [Accepted: 05/06/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND Gonadoblastoma is found almost exclusively in people with gonadal dysgenesis and Y chromosomal DNA fragment. Accordingly, GBY (gonadoblastoma locus on the Y chromosome) has been mapped to the Y chromosome. Testis-specific protein Y-encoded (TSPY) gene may participate in the oncogenesis of gonadoblastoma expression of TSPY in the tumor tissue. This might suggest TSPY as a candidate gene for gonadoblastoma. CASE REPORT A 14-year-old phenotypic girl with typical features of gonadal dysgenesis and a normal male karyotype. She underwent prophylactic bilateral gonadectomy to prevent future malignant changes of streak gonads. Histopathologic examination revealed microscopic foci of gonadoblastoma on the left side of ovary. We tested transcripts of 14 Y chromosomal genes by RT-PCR (TSPY, DAZ, BPY1 and BPY2, PRY, XKRY, CDY1 and CDY2, TTY1 and TTY2, PRKY, RBMY1, DBY and USP9Y), and only transcript of TSPY was detectable in the tumor tissue. CONCLUSION Expression of TSPY in microscopic gonadoblastoma might suggest important roles of TSPY, but not other Y chromosomal genes, in the very early stage of oncogenesis.
Collapse
Affiliation(s)
- Mei-Tsz Su
- Department of Obstetrics and Gynecology, National Cheng Kung University Medical Center, 138 Sheng Li Road, Tainan 704, Taiwan
| | | | | |
Collapse
|
29
|
Deng S, Zhou H, Xiong R, Lu Y, Yan D, Xing T, Dong L, Tang E, Yang H. Over-expression of genes and proteins of ubiquitin specific peptidases (USPs) and proteasome subunits (PSs) in breast cancer tissue observed by the methods of RFDD-PCR and proteomics. Breast Cancer Res Treat 2006; 104:21-30. [PMID: 17004105 DOI: 10.1007/s10549-006-9393-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 08/23/2006] [Indexed: 12/11/2022]
Abstract
The ubiquitin-proteasome system facilitates the degradation of damaged proteins and regulators of growth and stress response. Alterations in this proteolytic system are associated with a variety of human pathologies. By restriction fragment differential display polymerase chain reaction (RFDD-PCR) and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF-TOF MS) based on two-dimensional polyacrylamide gel electrophoresis (2-DE), differentially expressed genes and proteins of ubiquitin specific proteases (USPs), proteasome subuinits (PSs) and ubiquitin protein ligase E3A (UBE3A) were analyzed between breast cancer and adjacent normal tissues. Some of them were further verified as over-expression by immunohistochemical stain. Five genes of proteasome subunits (PSs), including PSMB5, PSMD1, PSMD2, PSMD8 and PSMD11, four genes of USPs, including USP9X, USP9Y, USP10 and USP25, and ubiquitin protein ligase E3A (UBE3A) were over-expressed (>3-fold) in breast cancer tissue compared to adjacent normal tissue, and over-expression (>4-fold) of proteins of PSMA1 and SMT3A were observed in breast cancer tissue. PSMD8, PSMD11 and UBE3A were further verified as over-expression by immunohistochemical stain. The action of ubiquitin-proteasome system were obviously enhanced in breast cancer, and selectively intervention in action of ubiquitin-proteasome system may be a useful method of treating human breast cancer.
Collapse
Affiliation(s)
- Shishan Deng
- Department of Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University, Renmin South Road No. 17, Chengdu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Oram SW, Liu XX, Lee TL, Chan WY, Lau YFC. TSPY potentiates cell proliferation and tumorigenesis by promoting cell cycle progression in HeLa and NIH3T3 cells. BMC Cancer 2006; 6:154. [PMID: 16762081 PMCID: PMC1526451 DOI: 10.1186/1471-2407-6-154] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 06/09/2006] [Indexed: 01/09/2023] Open
Abstract
Background TSPY is a repeated gene mapped to the critical region harboring the gonadoblastoma locus on the Y chromosome (GBY), the only oncogenic locus on this male-specific chromosome. Elevated levels of TSPY have been observed in gonadoblastoma specimens and a variety of other tumor tissues, including testicular germ cell tumors, prostate cancer, melanoma, and liver cancer. TSPY contains a SET/NAP domain that is present in a family of cyclin B and/or histone binding proteins represented by the oncoprotein SET and the nucleosome assembly protein 1 (NAP1), involved in cell cycle regulation and replication. Methods To determine a possible cellular function for TSPY, we manipulated the TSPY expression in HeLa and NIH3T3 cells using the Tet-off system. Cell proliferation, colony formation assays and tumor growth in nude mice were utilized to determine the TSPY effects on cell growth and tumorigenesis. Cell cycle analysis and cell synchronization techniques were used to determine cell cycle profiles. Microarray and RT-PCR were used to investigate gene expression in TSPY expressing cells. Results Our findings suggest that TSPY expression increases cell proliferation in vitro and tumorigenesis in vivo. Ectopic expression of TSPY results in a smaller population of the host cells in the G2/M phase of the cell cycle. Using cell synchronization techniques, we show that TSPY is capable of mediating a rapid transition of the cells through the G2/M phase. Microarray analysis demonstrates that numerous genes involved in the cell cycle and apoptosis are affected by TSPY expression in the HeLa cells. Conclusion These data, taken together, have provided important insights on the probable functions of TSPY in cell cycle progression, cell proliferation, and tumorigenesis.
Collapse
Affiliation(s)
- Shane W Oram
- Department of Medicine, VA Medical Center, University of California, San Francisco, USA
| | - Xing Xing Liu
- Department of Medicine, VA Medical Center, University of California, San Francisco, USA
| | - Tin-Lap Lee
- Laboratory of Clinical Genomics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Wai-Yee Chan
- Laboratory of Clinical Genomics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Yun-Fai Chris Lau
- Department of Medicine, VA Medical Center, University of California, San Francisco, USA
- Laboratory of Cell and Developmental Genetics, Department of Medicine, VA Medical Center, 111C5, 4150 Clement St, San Francisco, CA 94121, USA
| |
Collapse
|
31
|
Crespi BJ, Summers K. Positive selection in the evolution of cancer. Biol Rev Camb Philos Soc 2006; 81:407-24. [PMID: 16762098 DOI: 10.1017/s1464793106007056] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 03/27/2006] [Accepted: 03/29/2006] [Indexed: 01/29/2023]
Abstract
We hypothesize that forms of antagonistic coevolution have forged strong links between positive selection at the molecular level and increased cancer risk. By this hypothesis, evolutionary conflict between males and females, mothers and foetuses, hosts and parasites, and other parties with divergent fitness interests has led to rapid evolution of genetic systems involved in control over fertilization and cellular resources. The genes involved in such systems promote cancer risk as a secondary effect of their roles in antagonistic coevolution, which generates evolutionary disequilibrium and maladaptation. Evidence from two sources: (1) studies on specific genes, including SPANX cancer/testis antigen genes, several Y-linked genes, the pem homebox gene, centromeric histone genes, the breast cancer gene BRCA1, the angiogenesis gene ANG, cadherin genes, cytochrome P450 genes, and viral oncogenes; and (2) large-scale database studies of selection on different functional categories of genes, supports our hypothesis. These results have important implications for understanding the evolutionary underpinnings of cancer and the dynamics of antagonistically-coevolving molecular systems.
Collapse
Affiliation(s)
- Bernard J Crespi
- Behavioural Ecology Research Group, Department of Biology, Simon Fraser University, Burnaby, BC V5A 1 S6 Canada.
| | | |
Collapse
|
32
|
Ewis AA, Lee J, Naroda T, Sano T, Kagawa S, Iwamoto T, Shinka T, Shinohara Y, Ishikawa M, Baba Y, Nakahori Y. Prostate cancer incidence varies among males from different Y-chromosome lineages. Prostate Cancer Prostatic Dis 2006; 9:303-9. [PMID: 16683011 DOI: 10.1038/sj.pcan.4500876] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The incidence rate of prostate cancer in African-American males is two times higher than Caucasian men and ten times higher than Japanese men. The geographical specificity of Y haplogroups implies that males from different ethnic groups undoubtedly have various Y lineages with different Y-chromosomal characteristics that may affect their susceptibility or resistance to such a male-specific cancer. To confirm this hypothesis we studied the Y-chromosomal haplogroups of 92 Japanese prostate cancer patients comparing them with randomly selected 109 unrelated healthy Japanese male controls who were confirmed to be residents of the same geographical area. Males could be classified using three binary Y-chromosome markers (sex-determining region Y (SRY), YAP, 47z) into four haplogroups DE, O2b(*), O2b1, and untagged group. Our results confirmed that prostate cancer incidence varies among males from different Y-chromosome lineages. Males from DE and the untagged haplogroups are at a significantly higher risk to develop prostate cancer than O2b(*) and O2b1 haplogroups (P=0.01), odds ratio 2.17 and 95% confidence interval (1.16-4.07). Males from haplogroup DE are over-represented in the patient group showing a percentage of 41.3%. The underlying possible causes of susceptibility variations of different Y lineages for such a male-specific cancer tumorigenesis are discussed. These findings explain the lower incidence of prostate cancer in Japanese and other South East Asian males than other populations. To our knowledge, this is the first reliable study examining the association between prostate cancer and Y-chromosomal haplogroups, comparing prostate cancer patients with carefully selected matched controls.
Collapse
Affiliation(s)
- A A Ewis
- Health Technology Research Center, National Institute of Advanced Industrial Science and Technology, Hayashi-cho 2217-14, Takamatsu, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Vijayakumar S, Garcia D, Hensel CH, Banerjee M, Bracht T, Xiang R, Kagan J, Naylor SL. The human Y chromosome suppresses the tumorigenicity of PC-3, a human prostate cancer cell line, in athymic nude mice. Genes Chromosomes Cancer 2005; 44:365-72. [PMID: 16080199 DOI: 10.1002/gcc.20250] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The loss of the Y chromosome is a frequent numerical chromosomal abnormality observed in human prostate cancer. In cancer, loss of specific genetic material frequently accompanies simultaneous inactivation of tumor suppressor genes. It is not known whether the Y chromosome harbors such genes. To address the role of genes on the Y chromosome in human prostate cancer, we transferred a tagged Y chromosome into PC-3, a human prostate cancer cell line lacking a Y chromosome. A human Y chromosome was tagged with the hisD gene and transferred to PC-3 by microcell-mediated chromosome transfer. Tumorigenicity of these PC-3 hybrids was tested in vivo and in vitro, and the results were compared with those of the polymerase chain reaction analyses conducted on the PC-3 hybrids using Y chromosome-specific markers. Among 60 mice injected with 12 different PC-3 hybrids (five mice per hybrid), tumor growth was apparent in only one mouse, whereas tumors grew in all mice injected with the parental PC-3 cells. An in vitro assay showed that the Y chromosome did not suppress anchorage-independent growth of PC-3 cells. We found that addition of the Y chromosome suppressed tumor formation by PC-3 in athymic nude mice, and that this block of tumorigenesis was independent of the in vitro growth properties of the cells. This observation suggests the presence of a gene important for prostate tumorigenesis on the Y chromosome.
Collapse
Affiliation(s)
- Sapna Vijayakumar
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Gallagher WM, Bergin OE, Rafferty M, Kelly ZD, Nolan IM, Fox EJP, Culhane AC, McArdle L, Fraga MF, Hughes L, Currid CA, O'Mahony F, Byrne A, Murphy AA, Moss C, McDonnell S, Stallings RL, Plumb JA, Esteller M, Brown R, Dervan PA, Easty DJ. Multiple markers for melanoma progression regulated by DNA methylation: insights from transcriptomic studies. Carcinogenesis 2005; 26:1856-67. [PMID: 15958521 DOI: 10.1093/carcin/bgi152] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The incidence of melanoma is increasing rapidly, with advanced lesions generally failing to respond to conventional chemotherapy. Here, we utilized DNA microarray-based gene expression profiling techniques to identify molecular determinants of melanoma progression within a unique panel of isogenic human melanoma cell lines. When a poorly tumorigenic cell line, derived from an early melanoma, was compared with two increasingly aggressive derivative cell lines, the expression of 66 genes was significantly changed. A similar pattern of differential gene expression was found with an independently derived metastatic cell line. We further examined these melanoma progression-associated genes via use of a tailored TaqMan Low Density Array (LDA), representing the majority of genes within our cohort of interest. Considerable concordance was seen between the transcriptomic profiles determined by DNA microarray and TaqMan LDA approaches. A range of novel markers were identified that correlated here with melanoma progression. Most notable was TSPY, a Y chromosome-specific gene that displayed extensive down-regulation in expression between the parental and derivative cell lines. Examination of a putative CpG island within the TSPY gene demonstrated that this region was hypermethylated in the derivative cell lines, as well as metastatic melanomas from male patients. Moreover, treatment of the derivative cell lines with the DNA methyltransferase inhibitor, 2'-deoxy-5-azacytidine (DAC), restored expression of the TSPY gene to levels comparable with that found in the parental cells. Additional DNA microarray studies uncovered a subset of 13 genes from the above-mentioned 66 gene cohort that displayed re-activation of expression following DAC treatment, including TSPY, CYBA and MT2A. DAC suppressed tumor cell growth in vitro. Moreover, systemic treatment of mice with DAC attenuated growth of melanoma xenografts, with consequent re-expression of TSPY mRNA. Overall, our data support the hypothesis that multiple genes are targeted, either directly or indirectly, by DNA hypermethylation during melanoma progression.
Collapse
MESH Headings
- Animals
- Azacitidine/analogs & derivatives
- Azacitidine/pharmacology
- Azacitidine/therapeutic use
- Biomarkers, Tumor
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- DNA Methylation
- DNA Modification Methylases/antagonists & inhibitors
- DNA Modification Methylases/genetics
- DNA Modification Methylases/metabolism
- Decitabine
- Disease Progression
- Enzyme Inhibitors/pharmacology
- Enzyme Inhibitors/therapeutic use
- Epigenesis, Genetic
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Melanoma, Experimental/genetics
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/prevention & control
- Mice
- Mice, Nude
- Oligonucleotide Array Sequence Analysis
- RNA, Messenger/metabolism
- RNA, Neoplasm/metabolism
- Skin Neoplasms/genetics
- Skin Neoplasms/prevention & control
- Skin Neoplasms/secondary
- Transplantation, Heterologous
- Tumor Cells, Cultured
Collapse
|
35
|
Abstract
Ninety-five percent of the length of the human Y chromosome is inherited as a single block in linkage from father to male offspring as a haploid entity. Thus, the Y chromosome represents an invaluable record of all mutations that have occurred along male lineages throughout evolution. For this reason, Y chromosomal DNA variation has been mainly used for investigations on human evolution and for forensic purposes or paternity analysis. Recently, Y chromosomal polymorphisms have been applied in molecular medicine from the perspective of male-specific (spermatogenic failure, testis and prostate cancer) and prevalently male-associated (hypertension, autism) diseases. The absence of recombination on the MSY (male-specific Y) region means that polymorphisms, located in this region, are in tight association with potential functional variations associated with Y-linked phenotypes. Thus, an indirect way to explore if Y chromosome genes are involved in the etiology of a specific disease is the definition of Y chromosome haplogroups in patients versus disease-free and/or the general population. Data on patients with reduced sperm count and prostate cancer indicate that the 'at risk Y haplogroup' may be different in different populations. The situation is rather contradictory for other male-specific or male-associated diseases and further multicenter--possibly multiethnic--studies are needed.
Collapse
Affiliation(s)
- Csilla Krausz
- Department of Clinical Physiopathology, University of Florence, Florence, Italy.
| | | | | |
Collapse
|
36
|
Liao DJ, Du QQ, Yu BW, Grignon D, Sarkar FH. Novel perspective: focusing on the X chromosome in reproductive cancers. Cancer Invest 2003; 21:641-58. [PMID: 14533452 DOI: 10.1081/cnv-120022385] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In an XX female, one of the two X chromosomes has been inactivated during early embryonic life to achieve a compensation of X-linked gene products between males and females, leaving only one allele of X-linked genes functional. There are some X-linked genes escaping the X-inactivation, i.e., being expressed from both alleles. Escape from X-inactivation varies at different levels; some genes have both alleles active in some women but only one allele active in others, whereas some other genes have both alleles active in neoplastic tissue but only one allele active normally. The X-inactivation may be considered functionally equivalent to a loss of heterozygosity (LOH) for some genes, whereas escape from X-inactivation may be equivalent to functional gene amplification for others. The physiological LOH may make X-linked tumor suppressor genes lose their function more easily, compared with autosomal tumor suppressor genes, thus predisposing women to cancer formation more easily. Moreover, the human X chromosome contains many genes related to cancer or to sex and reproduction. All these properties of the X chromosome suggest that it may play more important roles than any autosomal chromosome in the development and progression of reproductive and urologic cancers.
Collapse
Affiliation(s)
- Dezhong Joshua Liao
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA.
| | | | | | | | | |
Collapse
|
37
|
Nowicki MO, Pawlowski P, Fischer T, Hess G, Pawlowski T, Skorski T. Chronic myelogenous leukemia molecular signature. Oncogene 2003; 22:3952-63. [PMID: 12813469 DOI: 10.1038/sj.onc.1206620] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To obtain comprehensive information about the genes involved in BCR/ABL-dependent leukemogenesis, samples from 15 chronic myelogenous leukemia (CML) patients and seven normal donors were analysed using a cDNA microarray assay. After subtraction of the artificial, random or cross-hybridization signals, data about 5315 genes have been effectively analysed in all samples. The assay revealed >/=4-fold difference in the average expression of 263 genes in all CML samples when compared to normal counterparts, with 148 genes being upregulated and 115 being downregulated. Differentially expressed genes include those associated with BCR/ABL-induced abnormalities in signal transduction, gene transactivation, cell cycle, apoptosis, adhesion, DNA repair, differentiation, metabolism and malignant progression. Interestingly, CML-blast crisis cells in peripheral blood differ from those from bone marrow, indicating major changes in gene expression profiles upon entering into the bloodstream. Moreover, BCR/ABL modulates expression of genes, which are involved in regulation of chromosome/chromatin/DNA dynamics during S and M cell cycle phase. Moreover, the ability of CML cells to recognize and respond to a pathogen infection may be compromised. Altogether, this work provides a large body of information regarding gene expression profiles associated with CML and also represents a source of potential targets for CML therapeutics.
Collapse
MESH Headings
- Blast Crisis/genetics
- Blast Crisis/metabolism
- Blood Cells/metabolism
- Bone Marrow Cells/metabolism
- Cell Cycle
- Disease Progression
- Fusion Proteins, bcr-abl/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Neoplasm Proteins/classification
- Neoplasm Proteins/genetics
- Neoplastic Stem Cells/metabolism
- Oligonucleotide Array Sequence Analysis
- Subtraction Technique
Collapse
Affiliation(s)
- Michal Oskar Nowicki
- Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | | | | | | | | | | |
Collapse
|
38
|
Tascou S, Trappe R, Nayernia K, Jarry H, König F, Schulz-Schaeffer W, Saeger W, Meinhardt A, Engel W, Schmidtke J, Burfeind P. TSPY-LTA transgenic mice develop endocrine tumors of the pituitary and adrenal gland. Mol Cell Endocrinol 2003; 200:9-18. [PMID: 12644295 DOI: 10.1016/s0303-7207(02)00426-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In an attempt to determine the susceptibility of spermatogonia to malignant transformation transgenic mice were generated harboring a 1.3 kb 5'-flanking region of the germ cell specific expressed human testis specific protein, Y-encoded gene fused with the simian virus 40 large T antigen (TAg). Unexpectedly, TAg expression in transgenic mice was also detected in somatic tissues. Between days 65 and 85 after birth most of the transgenic mice developed anterior lobe tumors of the pituitary gland and to a less extent medulla type tumors of the adrenal gland. In addition, a few older transgenic mice developed tumors of the seminal vesicle, but no testicular tumors were observed in transgenic mice up to an age of 5 months. The pituitary tumors were immunoreactive for anti-prolactin (PRL) and anti-adrenocorticotropic hormone (ACTH). PRL and corticosterone concentrations in serum of transgenic mice were significantly increased. Taken together, our studies provide a novel mouse model for pituitary adenomas displaying a unique combination of hormone expression by tumor cells secreting PRL and ACTH.
Collapse
Affiliation(s)
- Semi Tascou
- Institute of Human Genetics, University of Göttingen, Heinrich-Düker-Weg 12, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Krick R, Jakubiczka S, Arnemann J. Expression, alternative splicing and haplotype analysis of transcribed testis specific protein (TSPY) genes. Gene 2003; 302:11-9. [PMID: 12527192 DOI: 10.1016/s0378-1119(02)01104-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Testis specific protein (TSPY) is a human Y-chromosome derived gene with numerous functional and non-functional copies. Specific expression patterns in testis and testicular tumors, as in prostate cancer samples and cell lines led to the postulation of a potential role in cell proliferation, supported by the presence of a suppressor of variegation, enhancer of zeste and Trithorax/nucleosome assembling protein (nucleosome assembly protein) domain in the mature protein. Expression studies have now identified two transcripts of variable length, termed TSPY-S and -L, which differ in their 3'-translated region due to alternative splicing, and in the quantitative level of transcripts, with TSPY-S being at least 3-4-fold more abundant. In immunoblot experiments on human testis and LNCaP protein extracts using an anti-peptide-antiserum against the TSPY-L specific C-terminus TSPY-L was characterized as a functional variant on the protein level. As there are at least three intragenic positions differing between various TSPY genes and thus defining certain haplotypes, the alternatively spliced TSPY transcripts were analysed for their haplotypes in order to link them to well defined TSPY loci. Surprisingly, no evidence of a G-G-18 haplotype was found for the TSPY-L transcript, while this haplotype makes up almost 50% of all TSPY-S transcripts. This excludes the corresponding TSPY-1 locus from alternative splicing. The only significant differences between the TSPY-1 locus and eight other loci were identified in the promotor region as revealed by detailed sequence comparisons. Thus one might speculate that the alternative splicing could be influenced by elements binding to the promotor region.
Collapse
Affiliation(s)
- Roswitha Krick
- Institute of Human Genetics, Johann Wolfgang Goethe University Hospital, Theodor-Stern-Kai 7/Haus 9, D-60590, Frankfurt am Main, Germany
| | | | | |
Collapse
|
40
|
Chen MW, Vacherot F, De La Taille A, Gil-Diez-De-Medina S, Shen R, Friedman RA, Burchardt M, Chopin DK, Buttyan R. The emergence of protocadherin-PC expression during the acquisition of apoptosis-resistance by prostate cancer cells. Oncogene 2002; 21:7861-71. [PMID: 12420223 DOI: 10.1038/sj.onc.1205991] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2002] [Revised: 08/19/2002] [Accepted: 08/20/2002] [Indexed: 02/07/2023]
Abstract
In order to identify gene products associated with the development of acquired therapeutic resistance by prostate cancer cells, we created two novel apoptosis-resistant prostate cancer cell lines, LNCaP-TR (phorbol-ester [TPA]-Resistant) and LNCaP-SSR (Serum Starvation-Resistant) by repeated transient exposure of cultured human LNCaP cells to apoptotic stimuli followed by expansion of surviving cell populations. These cell lines were found to be cross-resistant to the alternative selective agent and also hormone-resistant when xenografted into castrated male immunodeficient mice. RNA from the LNCaP-TR line was comparatively screened using a subtractive hybridization-PCR procedure. This allowed us to identify a 249 bp cDNA fragment that hybridized to a 4.8 kb mRNA preferentially expressed by the apoptosis-resistant cells. Using RACE procedures, we cloned and sequenced the complete 4.8 kb cDNA. It is an unusual member of the protocadherin gene family containing two large overlapping open reading frames encoding homologous polypeptides, one having a signal sequence and the other lacking a signal sequence and we refer to it as protocadherin-PC. LNCaP cells directly transformed with protocadherin-PC cDNA were comparatively resistant to phorbol-ester induced apoptosis. Antibody recognition studies demonstrating the cytoplasmic nature of the protcadherin-PC translation product and its propensity to bind beta-catenin suggest that it might influence the apoptotic sensitivity of prostate cancer cells through a unique mechanism.
Collapse
Affiliation(s)
- Min-Wei Chen
- The Department of Urology, The College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Intragenomic conflict occurs when some elements within the genome produce effects that enhance their own probability of replication or transmission at the expense of other elements within the same genome. Here it is proposed that mutations involved in intragenomic conflict are particularly likely to be co-opted by evolving lineages of cancer cells, and hence should be associated with the occurrence of cancer. We discuss several types of intragenomic conflict that are associated with various forms of cancer.
Collapse
Affiliation(s)
- K Summers
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| | | | | |
Collapse
|
42
|
Rubes J, Vozdova M, Robbins WA, Rezacova O, Perreault SD, Wyrobek AJ. Stable variants of sperm aneuploidy among healthy men show associations between germinal and somatic aneuploidy. Am J Hum Genet 2002; 70:1507-19. [PMID: 11992257 PMCID: PMC379139 DOI: 10.1086/340791] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2001] [Accepted: 03/19/2002] [Indexed: 11/03/2022] Open
Abstract
Repeated semen specimens from healthy men were analyzed by sperm fluorescence in situ hybridization (FISH), to identify men who consistently produced elevated frequencies of aneuploid sperm and to determine whether men who were identified as stable variants of sperm aneuploidy also exhibited higher frequencies of aneuploidy in their peripheral blood lymphocytes. Seven semen specimens were provided by each of 15 men over a 2-year period and were evaluated by the X-Y-8 multicolor sperm FISH method (i.e., approximately 1,050,000 sperm were analyzed from 105 specimens). Three men were identified as stable aneuploidy variants producing significantly higher frequencies of XY, disomy X, disomy Y, disomy 8, and/or diploid sperm over time. In addition, one man and three men were identified as sperm-morphology and sperm-motility variants, respectively. Strong correlations were found between the frequencies of sperm with autosomal and sex-chromosome aneuploidies and between the two types of meiosis II diploidy; but not between sperm aneuploidy and semen quality. A significant association was found between the frequencies of sex-chromosome aneuploidies in sperm and lymphocytes in a subset of 10 men (r2=0.67, P=.004), especially between XY sperm and sex-chromosome aneuploidy in lymphocytes (r2=0.70, P=.003). These findings suggest that certain apparently healthy men can produce significantly higher frequencies of both aneuploid sperm and lymphocytes. Serious long-term somatic and reproductive health consequences may include increased risks of aneuploidy-related somatic diseases and of having children with paternally transmitted aneuploidies, such as Klinefelter, Turner, triple-X, and XYY syndromes.
Collapse
Affiliation(s)
- Jiri Rubes
- Veterinary Research Institute, Hudcova 70, 621 32 Brno, Czech Republic.
| | | | | | | | | | | |
Collapse
|
43
|
DASARI VIJAYK, DENG DAVID, PERINCHERY GEETHA, YEH CHECHUNG, DAHIYA RAJVIR. DNA METHYLATION REGULATES THE EXPRESSION OF Y CHROMOSOME SPECIFIC GENES IN PROSTATE CANCER. J Urol 2002. [DOI: 10.1016/s0022-5347(05)65464-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- VIJAY K. DASARI
- From the Departments of Urology, Veterans Affairs Medical Center and University of California-San Francisco, San Francisco, California
| | - DAVID DENG
- From the Departments of Urology, Veterans Affairs Medical Center and University of California-San Francisco, San Francisco, California
| | - GEETHA PERINCHERY
- From the Departments of Urology, Veterans Affairs Medical Center and University of California-San Francisco, San Francisco, California
| | - CHE-CHUNG YEH
- From the Departments of Urology, Veterans Affairs Medical Center and University of California-San Francisco, San Francisco, California
| | - RAJVIR DAHIYA
- From the Departments of Urology, Veterans Affairs Medical Center and University of California-San Francisco, San Francisco, California
| |
Collapse
|
44
|
|
45
|
Yuan X, Lu ML, Li T, Balk SP. SRY interacts with and negatively regulates androgen receptor transcriptional activity. J Biol Chem 2001; 276:46647-54. [PMID: 11585838 DOI: 10.1074/jbc.m108404200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This study investigated interactions between SRY, the Y chromosome encoded male sex determining factor, and the androgen receptor (AR). Coexpression of AR and SRY caused marked repression of AR transcriptional activity on a series of androgen-responsive reporter genes. Mammalian one- and two-hybrid experiments demonstrated an AR-SRY interaction mediated by the AR DNA binding domain. Precipitations with glutathione S-transferase fusion proteins indicated that AR-SRY interactions were direct and mediated by the AR DNA binding domain and the SRY high mobility group box DNA binding domain. Transient expression of SRY in LNCaP prostate cancer cells repressed expression of an androgen-dependent prostate-specific antigen (PSA) reporter gene and stable SRY expression repressed the endogenous PSA gene. SRY protein expression was increased by proteosome inhibitors and by the androgen-liganded AR in transient and stable transfectants. AR transcriptional activity was also repressed by DAX1, and the effects of SRY and DAX1 on the AR were additive. These findings indicate that interactions between the AR, SRY, and DAX1 contribute to normal male development and function and suggest a general role for protein-protein interactions between high mobility group box proteins and steroid hormone receptors in regulating tissue-specific gene expression.
Collapse
Affiliation(s)
- X Yuan
- Cancer Biology Program, Hematology-Oncology Division, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | |
Collapse
|