1
|
Halder N, Yadav S, Lal G. Neuroimmune communication of the cholinergic system in gut inflammation and autoimmunity. Autoimmun Rev 2024; 23:103678. [PMID: 39500481 DOI: 10.1016/j.autrev.2024.103678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Neuroimmune communication in the body forms a bridge between two central regulatory systems of the body, i.e., nervous and immune systems. The cholinergic system is a crucial modulatory neurotransmitter in the central and peripheral nervous system. It includes the neurotransmitter acetylcholine (ACh), the enzyme required for the synthesis of ACh (choline acetyltransferase, ChAT), the enzyme required for its degradation (acetylcholinesterase, AChE), and cholinergic receptors (Nicotinic acetylcholine receptors and muscarinic acetylcholine receptors). The cholinergic system in neurons is well known for its role in cognitive function, sensory perception, motor control, learning, and memory processes. It has been shown that the non-neuronal cholinergic system (NNCS) is present in various tissues and immune cells and forms a neuroimmune communications system. In the present review, we discussed the NNCS on immune cells, its role in homeostasis and inflammatory reactions in the gut, and how it can be exploited in treating inflammatory responses.
Collapse
Affiliation(s)
- Namrita Halder
- Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), SPPU campus, Ganeshkhind, Pune, MH-411007, India
| | - Sourabh Yadav
- Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), SPPU campus, Ganeshkhind, Pune, MH-411007, India
| | - Girdhari Lal
- Biotechnology Research and Innovation Council-National Centre for Cell Science (BRIC-NCCS), SPPU campus, Ganeshkhind, Pune, MH-411007, India.
| |
Collapse
|
2
|
Halder N, Lal G. Cholinergic System and Its Therapeutic Importance in Inflammation and Autoimmunity. Front Immunol 2021; 12:660342. [PMID: 33936095 PMCID: PMC8082108 DOI: 10.3389/fimmu.2021.660342] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022] Open
Abstract
Neurological and immunological signals constitute an extensive regulatory network in our body that maintains physiology and homeostasis. The cholinergic system plays a significant role in neuroimmune communication, transmitting information regarding the peripheral immune status to the central nervous system (CNS) and vice versa. The cholinergic system includes the neurotransmitter\ molecule, acetylcholine (ACh), cholinergic receptors (AChRs), choline acetyltransferase (ChAT) enzyme, and acetylcholinesterase (AChE) enzyme. These molecules are involved in regulating immune response and playing a crucial role in maintaining homeostasis. Most innate and adaptive immune cells respond to neuronal inputs by releasing or expressing these molecules on their surfaces. Dysregulation of this neuroimmune communication may lead to several inflammatory and autoimmune diseases. Several agonists, antagonists, and inhibitors have been developed to target the cholinergic system to control inflammation in different tissues. This review discusses how various molecules of the neuronal and non-neuronal cholinergic system (NNCS) interact with the immune cells. What are the agonists and antagonists that alter the cholinergic system, and how are these molecules modulate inflammation and immunity. Understanding the various functions of pharmacological molecules could help in designing better strategies to control inflammation and autoimmunity.
Collapse
Affiliation(s)
- Namrita Halder
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| | - Girdhari Lal
- Laboratory of Autoimmunity and Tolerance, National Centre for Cell Science, Ganeshkhind, Pune, India
| |
Collapse
|
3
|
Horkowitz AP, Schwartz AV, Alvarez CA, Herrera EB, Thoman ML, Chatfield DA, Osborn KG, Feuer R, George UZ, Phillips JA. Acetylcholine Regulates Pulmonary Pathology During Viral Infection and Recovery. Immunotargets Ther 2020; 9:333-350. [PMID: 33365281 PMCID: PMC7751717 DOI: 10.2147/itt.s279228] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction This study was designed to explore the role of acetylcholine (ACh) in pulmonary viral infection and recovery. Inflammatory control is critical to recovery from respiratory viral infection. ACh secreted from non-neuronal sources, including lymphocytes, plays an important, albeit underappreciated, role in regulating immune-mediated inflammation. Methods ACh and lymphocyte cholinergic status in the lungs were measured over the course of influenza infection and recovery. The role of ACh was examined by inhibiting ACh synthesis in vivo. Pulmonary inflammation was monitored by Iba1 immunofluorescence, using a novel automated algorithm. Tissue repair was monitored histologically. Results Pulmonary ACh remained constant through the early stage of infection and increased during the peak of the acquired immune response. As the concentration of ACh increased, cholinergic lymphocytes appeared in the BAL and lungs. Cholinergic capacity was found primarily in CD4 T cells, but also in B cells and CD8 T cells. The cholinergic CD4+ T cells bound to influenza-specific tetramers and were retained in the resident memory regions of the lung up to 2 months after infection. Histologically, cholinergic lymphocytes were found in direct physical contact with activated macrophages throughout the lung. Inflammation was monitored by ionized calcium-binding adapter molecule 1 (Iba1) immunofluorescence, using a novel automated algorithm. When ACh production was inhibited, mice exhibited increased tissue inflammation and delayed recovery. Histologic examination revealed abnormal tissue repair when ACh was limited. Conclusion These findings point to a previously unrecognized role for ACh in the transition from active immunity to recovery and pulmonary repair following respiratory viral infection.
Collapse
Affiliation(s)
- Alexander P Horkowitz
- Donald P. Shiley Biosciences Center, San Diego State University, San Diego, California, USA.,Department of Biology, San Diego State University, San Diego, California, USA
| | - Ashley V Schwartz
- Department of Mathematics and Statistics, San Diego State University, San Diego, California, USA
| | - Carlos A Alvarez
- Donald P. Shiley Biosciences Center, San Diego State University, San Diego, California, USA.,Department of Biology, San Diego State University, San Diego, California, USA
| | - Edgar B Herrera
- Donald P. Shiley Biosciences Center, San Diego State University, San Diego, California, USA
| | - Marilyn L Thoman
- Donald P. Shiley Biosciences Center, San Diego State University, San Diego, California, USA
| | - Dale A Chatfield
- Department of Chemistry, San Diego State University, San Diego, California, USA
| | - Kent G Osborn
- Office of Animal Research, University of California San Diego, San Diego, California, USA
| | - Ralph Feuer
- Department of Biology, San Diego State University, San Diego, California, USA
| | - Uduak Z George
- Department of Mathematics and Statistics, San Diego State University, San Diego, California, USA
| | - Joy A Phillips
- Donald P. Shiley Biosciences Center, San Diego State University, San Diego, California, USA
| |
Collapse
|
4
|
Hoover DB, Poston MD, Brown S, Lawson SE, Bond CE, Downs AM, Williams DL, Ozment TR. Cholinergic leukocytes in sepsis and at the neuroimmune junction in the spleen. Int Immunopharmacol 2020; 81:106359. [PMID: 32143148 DOI: 10.1016/j.intimp.2020.106359] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 11/30/2022]
Abstract
The spleen is a key participant in the pathophysiology of sepsis and inflammatory disease. Many splenocytes exhibit a cholinergic phenotype, but our knowledge regarding their cholinergic biology and how they are affected by sepsis is incomplete. We evaluated effects of acute sepsis on the spleen using the cecal ligation and puncture (CLP) model in C57BL/6 and ChATBAC-eGFP mice. Quantification of cholinergic gene expression showed that choline acetyltransferase and vesicular acetylcholine transporter (VAChT) are present and that VAChT is upregulated in sepsis, suggesting increased capacity for release of acetylcholine (ACh). High affinity choline transporter is not expressed but organic acid transporters are, providing additional mechanisms for release. Flow cytometry studies identified subpopulations of cholinergic T and B cells as well as monocytes/macrophages. Neither abundance nor GFP intensity of cholinergic T cells changed in sepsis, suggesting that ACh synthetic capacity was not altered. Spleens have low acetylcholinesterase activity, and the enzyme is localized primarily in red pulp, characteristics expected to favor cholinergic signaling. For cellular studies, ACh was quantified by mass spectroscopy using d4-ACh internal standard. Isolated splenocytes from male mice contain more ACh than females, suggesting the potential for gender-dependent differences in cholinergic immune function. Isolated splenocytes exhibit basal ACh release, which can be increased by isoproterenol (4 and 24 h) or by T cell activation with antibodies to CD3 and CD28 (24 h). Collectively, these data support the concept that sepsis enhances cholinergic function in the spleen and that release of ACh can be triggered by stimuli via different mechanisms.
Collapse
Affiliation(s)
- Donald B Hoover
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN 37614, USA.
| | - Megan D Poston
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Stacy Brown
- Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA
| | - Sarah E Lawson
- Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, TN 37614, USA
| | - Cherie E Bond
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Anthony M Downs
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - David L Williams
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN 37614, USA
| | - Tammy R Ozment
- Department of Surgery, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA; Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
5
|
Hemicholinium-3 sensitive choline transport in human T lymphocytes: Evidence for use as a proxy for brain choline transporter (CHT) capacity. Neurochem Int 2017; 108:410-416. [PMID: 28577989 DOI: 10.1016/j.neuint.2017.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
The synaptic uptake of choline via the high-affinity, hemicholinium-3-dependent choline transporter (CHT) strongly influences the capacity of cholinergic neurons to sustain acetylcholine (ACh) synthesis and release. To advance research on the impact of CHT capacity in humans, we established the presence of the neuronal CHT protein in human T lymphocytes. Next, we demonstrated CHT-mediated choline transport in human T cells. To address the validity of T cell-based choline uptake as a proxy for brain CHT capacity, we isolated T cells from the spleen, and synaptosomes from cortex and striatum, of wild type and CHT-overexpressing mice (CHT-OXP). Choline uptake capacity in T cells from CHT-OXP mice was two-fold higher than in wild type mice, mirroring the impact of CHT over-expression on synaptosomal CHT-mediated choline uptake. Monitoring T lymphocyte CHT protein and activity may be useful for estimating human CNS cholinergic capacity and for testing hypotheses concerning the contribution of CHT and, more generally, ACh signaling in cognition, neuroinflammation and disease.
Collapse
|
6
|
Activity of cholinesterases, pyruvate kinase and adenosine deaminase in rats experimentally infected by Fasciola hepatica: Influences of these enzymes on inflammatory response and pathological findings. Pathol Res Pract 2015; 211:871-6. [PMID: 26452485 DOI: 10.1016/j.prp.2015.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 08/14/2015] [Accepted: 09/02/2015] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate acetylcholinesterase (AChE) in total blood and liver tissue; butyrylcholinesterase (BChE) in serum and liver tissue; adenosine deaminase (ADA) in serum and liver tissue; and pyruvate kinase (PK) in liver tissue of rats experimentally infected by Fasciola hepatica. Animals were divided into two groups with 12 animals each, as follows: group A (uninfected) and group B (infected). Samples were collected at 20 (A1 and B1;n=6 each) and 150 (A2 and B2; n=6 each) days post-infection (PI). Infected animals showed an increase in AChE activity in whole blood and a decrease in AChE activity in liver homogenates (P<0.05) at 20 and 150 days PI. BChE and PK activities were decreased (P<0.05) in serum and liver homogenates of infected animals at 150 days PI. ADA activity was decreased in serum at 20 and 150 days PI, while in liver homogenates it was only decreased at 150 days PI (P<0.05). Aspartate aminotransferase and alanine aminotransferase activities in serum were increased (P<0.05), while concentrations of total protein and albumin were decreased (P<0.05) when compared to control. The histological analysis revealed fibrous perihepatitis and necrosis. Therefore, we conclude that the liver fluke is associated with cholinergic and purinergic dysfunctions, which in turn may influence the pathogenesis of the disease.
Collapse
|
7
|
Abstract
This article summarizes molecular properties of the high-affinity choline transporter (CHT1) with reference to the historical background focusing studies performed in laboratories of the author. CHT1 is present on the presynaptic terminal of cholinergic neurons, and takes up choline which is the precursor of acetylcholine. The Na(+)-dependent uptake of choline by CHT1 is the rate-limiting step for synthesis of acetylcholine. CHT1 is the integral membrane protein with 13 transmembrane segments, belongs to the Na(+)/glucose co-transporter family (SLC5), and has 20-25% homology with members of this family. A single nucleotide polymorphism (SNP) for human CHT1 has been identified, which has a replacement from isoleucine to valine in the third transmembrane segment and shows the choline uptake activity of 50-60% as much as that of wild-type CHT1. The proportion of this SNP is high among Asians. Possible importance of choline diet for those with this SNP was discussed.
Collapse
Affiliation(s)
- Tatsuya Haga
- Tokyo University, 7-3-1 Hongo, Tokyo 113-8654, Japan
| |
Collapse
|
8
|
Tonin AA, Da Silva AS, Schafer AS, Aires AR, Oliveira CB, Zanini D, Schetinger MR, Morsch VM, Lopes ST, Monteiro SG, Leal ML. Influence of experimental infection by Haemonchus contortus on acetylcholinesterase activity in lymphocytes of lambs. Exp Parasitol 2014; 139:19-23. [DOI: 10.1016/j.exppara.2014.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 02/06/2014] [Accepted: 02/09/2014] [Indexed: 11/16/2022]
|
9
|
Inazu M. Choline transporter-like proteins CTLs/SLC44 family as a novel molecular target for cancer therapy. Biopharm Drug Dispos 2014; 35:431-49. [PMID: 24532461 DOI: 10.1002/bdd.1892] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/31/2014] [Accepted: 02/07/2014] [Indexed: 12/13/2022]
Abstract
Choline is essential for the synthesis of the major membrane phospholipid phosphatidylcholine (PC), the methyl donor betaine and the neurotransmitter acetylcholine (ACh). Elevated levels of choline and up-regulated choline kinase activity have been detected in various cancers. Thus, the intracellular accumulation of choline through choline transporters is the rate-limiting step in phospholipid metabolism and a prerequisite for cancer cell proliferation. Previous studies have demonstrated abnormalities in choline uptake and choline phospholipid metabolism in cancer cells using the imaging of cancer with positron emission tomography (PET) and magnetic resonance spectroscopy (MRS). The aberrant choline metabolism in cancer cells is strongly correlated with their malignant progression. Using quantitative real-time PCR, the mRNA expression of choline transporters was measured, and it was found that choline transporter-like proteins CTLs/SLC44 family are highly expressed in various cancer cell lines. Choline uptake through CTLs is associated with cell viability, and the functional inhibition of CTLs could promote apoptotic cell death. Furthermore, non-neuronal cholinergic systems that include CTLs-mediated choline transport are associated with cell proliferation and their inhibition promotes apoptotic cell death in colon cancer, small cell lung cancer and human leukemic T-cells. The identification of this new CTLs-mediated choline transport system provides a potential new target for cancer therapy.
Collapse
Affiliation(s)
- Masato Inazu
- Institute of Medical Science, Department of Molecular Preventive Medicine, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
10
|
Olofsson PS, Rosas-Ballina M, Levine YA, Tracey KJ. Rethinking inflammation: neural circuits in the regulation of immunity. Immunol Rev 2012; 248:188-204. [PMID: 22725962 DOI: 10.1111/j.1600-065x.2012.01138.x] [Citation(s) in RCA: 283] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neural reflex circuits regulate cytokine release to prevent potentially damaging inflammation and maintain homeostasis. In the inflammatory reflex, sensory input elicited by infection or injury travels through the afferent vagus nerve to integrative regions in the brainstem, and efferent nerves carry outbound signals that terminate in the spleen and other tissues. Neurotransmitters from peripheral autonomic nerves subsequently promote acetylcholine-release from a subset of CD4(+) T cells that relay the neural signal to other immune cells, e.g. through activation of α7 nicotinic acetylcholine receptors on macrophages. Here, we review recent progress in the understanding of the inflammatory reflex and discuss potential therapeutic implications of current findings in this evolving field.
Collapse
Affiliation(s)
- Peder S Olofsson
- Laboratory of Biomedical Science, The Feinstein Institute for Medical Research, Manhasset, New York 11030, USA
| | | | | | | |
Collapse
|
11
|
Chávez J, Vargas MH, Cruz-Valderrama JE, Montaño LM. Non-quantal release of acetylcholine in guinea-pig airways: role of choline transporter. Exp Physiol 2011; 96:460-7. [DOI: 10.1113/expphysiol.2010.056440] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Da Silva AS, Monteiro SG, Gonçalves JF, Spanevello R, Schmatz R, Oliveira CB, Costa MM, França RT, Jaques JA, Schetinger MRC, Mazzanti CM, Lopes ST. Trypanosoma evansi: Immune response and acetylcholinesterase activity in lymphocytes from infected rats. Exp Parasitol 2011; 127:475-80. [DOI: 10.1016/j.exppara.2010.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/20/2010] [Accepted: 10/20/2010] [Indexed: 10/18/2022]
|
13
|
Matsuo A, Bellier JP, Nishimura M, Yasuhara O, Saito N, Kimura H. Nuclear choline acetyltransferase activates transcription of a high-affinity choline transporter. J Biol Chem 2010; 286:5836-45. [PMID: 21163949 DOI: 10.1074/jbc.m110.147611] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Choline acetyltransferase (ChAT) synthesizes the neurotransmitter, acetylcholine, at cholinergic nerve terminals. ChAT contains nuclear localization signals and is also localized in the nuclei of neural and non-neuronal cells. Nuclear ChAT might have an as yet unidentified function, such as transcriptional regulation. In this study, we investigated the alteration of candidate gene transcription by ChAT. We chose high affinity choline transporter (CHT1) and vesicular acetylcholine transporter (VACHT) as candidate genes, which function together with ChAT in acetylcholine production. Using SH-SY5Y human neuroblastoma cells stably expressing wild-type human ChAT, we found that overexpressed ChAT enhanced transcription of the CHT1 gene but not the VACHT gene. In contrast, nuclear localization signal disrupted, and catalytically inactive mutant ChATs could not induce, CHT1 expression. Additionally, ChAT did not alter CHT1 expression in non-neuronal HEK293 cells. Our results suggest that ChAT activates the transcription of selected target genes in neuronal cells. Both enzymatic activity and nuclear translocation of ChAT are required for its transcriptional enhancement.
Collapse
Affiliation(s)
- Akinori Matsuo
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
The M5 muscarinic acetylcholine receptor third intracellular loop regulates receptor function and oligomerization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:813-25. [DOI: 10.1016/j.bbamcr.2010.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 04/01/2010] [Accepted: 04/05/2010] [Indexed: 11/15/2022]
|
15
|
Fujii T, Masai M, Misawa H, Okuda T, Takada-Takatori Y, Moriwaki Y, Haga T, Kawashima K. Acetylcholine synthesis and release in NIH3T3 cells coexpressing the high-affinity choline transporter and choline acetyltransferase. J Neurosci Res 2010; 87:3024-32. [PMID: 19405101 DOI: 10.1002/jnr.22117] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Acetylcholine (ACh) is known to be a key neurotransmitter in the central and peripheral nervous systems, but it is also produced in a variety of non-neuronal tissues and cells, including lymphocytes, placenta, amniotic membrane, vascular endothelial cells, keratinocytes, and epithelial cells in the digestive and respiratory tracts. To investigate contribution made by the high-affinity choline transporter (CHT1) to ACh synthesis in both cholinergic neurons and nonneuronal cells, we transfected rat CHT1 cDNA into NIH3T3ChAT cells, a mouse fibroblast line expressing mouse choline acetyltransferase (ChAT), to establish the NIH3T3ChAT 112-1 cell line, which stably expresses both CHT1 and ChAT. NIH3T3ChAT 112-1 cells showed increased binding of the CHT1 inhibitor [(3)H]hemicholinium-3 (HC-3) and greater [(3)H]choline uptake and ACh synthesis than NIH3T3ChAT 103-1 cells, a CHT1-negative control cell line. HC-3 significantly inhibited ACh synthesis in NIH3T3ChAT 112-1 cells but did not affect synthesis in NIH3T3ChAT 103-1 cells. ACh synthesis in NIH3T3ChAT 112-1 cells was also reduced by amiloride, an inhibitor of organic cation transporters (OCTs) involved in low-affinity choline uptake, and by procaine and lidocaine, two local anesthetics that inhibit plasma membrane phospholipid metabolism. These results suggest that CHT1 plays a key role in ACh synthesis in NIH3T3ChAT 112-1 cells and that choline taken up by OCTs or derived from the plasma membrane is also utilized for ACh synthesis in both cholinergic neurons and nonneuronal cholinergic cells, such as lymphocytes.
Collapse
Affiliation(s)
- Takeshi Fujii
- Department of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, Japan. tfujii-dwc.doshisha.ac.jp
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Horiguchi K, Horiguchi S, Yamashita N, Irie K, Masuda J, Takano-Ohmuro H, Himi T, Miyazawa M, Moriwaki Y, Okuda T, Misawa H, Ozaki H, Kawashima K. Expression of SLURP-1, an endogenous α7 nicotinic acetylcholine receptor allosteric ligand, in murine bronchial epithelial cells. J Neurosci Res 2009; 87:2740-7. [DOI: 10.1002/jnr.22102] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Kawashima K, Fujii T. Basic and clinical aspects of non-neuronal acetylcholine: overview of non-neuronal cholinergic systems and their biological significance. J Pharmacol Sci 2008; 106:167-73. [PMID: 18285657 DOI: 10.1254/jphs.fm0070073] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Acetylcholine (ACh) is a phylogenetically ancient molecule involved in cell-to-cell signaling in almost all life-forms on earth. Cholinergic components, including ACh, choline acetyltransferase, acetylcholinesterase, and muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively) have been identified in numerous non-neuronal cells and tissues, including keratinocytes, cancer cells, immune cells, urinary bladder, airway epithelial cells, vascular endothelial cells, and reproductive organs, among many others. Stimulation of the mAChRs and nAChRs elicits cell-specific functional and biochemical effects. These findings support the notion that non-neuronal cholinergic systems are expressed in certain cells and tissues and are involved in the regulation of their function and that cholinergic dysfunction is related to the pathophysiology of certain diseases. They also provide clues for development of drugs with novel mechanisms of action.
Collapse
Affiliation(s)
- Koichiro Kawashima
- Department of Pharmacology, Kyoritsu College of Pharmacy, Minato-ku, Tokyo, Japan.
| | | |
Collapse
|
18
|
Fujii T, Takada-Takatori Y, Kawashima K. Basic and clinical aspects of non-neuronal acetylcholine: expression of an independent, non-neuronal cholinergic system in lymphocytes and its clinical significance in immunotherapy. J Pharmacol Sci 2008; 106:186-92. [PMID: 18285654 DOI: 10.1254/jphs.fm0070109] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Lymphocytes possess all the components required to constitute an independent, non-neuronal cholinergic system. These include acetylcholine (ACh); choline acetyltransferase (ChAT), its synthesizing enzyme; and both muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively). ACh modifies T and B cell function via both mAChR- and nAChR-mediated pathways. Stimulation of lymphocytes with the T cell activator phytohemagglutinin, protein kinase C activator phorbol ester, or cell surface molecules enhances the synthesis and release of ACh and up-regulates ChAT and/or M(5) mAChR gene expression. Furthermore, animal models of immune disorders exhibit abnormal lymphocytic cholinergic activity. The cholesterol-lowering drug simvastatin attenuates the lymphocytic cholinergic activity of T cells by inhibiting LFA-1 signaling in a manner independent of its cholesterol-lowering activity. This suggests that simvastatin exerts its immunosuppressive effects in part by modifying lymphocytic cholinergic activity. Nicotine, an active ingredient of tobacco, ameliorates ulcerative colitis but exacerbates Crohn's disease. Expression of mRNAs encoding the nAChR alpha7 and alpha5 subunits are significantly diminished in peripheral mononuclear leukocytes from smokers, as compared with those from nonsmokers. In addition, long-term exposure of lymphocytes to nicotine reduces intracellular Ca(2+) signaling via alpha7 nAChR-mediated pathways. In fact, studies of humoral antibody production in M(1)/M(5) mAChR-deficient and alpha7 nAChR-deficient animals revealed the role of lymphocytic cholinergic activity in the regulation of immune function. These results provide clues to understanding the mechanisms underlying immune system regulation and could serve as the basis for the development of new immunomodulatory drugs.
Collapse
Affiliation(s)
- Takeshi Fujii
- Department of Pharmacology, Kyoritsu College of Pharmacy, Minato-ku, Tokyo, Japan.
| | | | | |
Collapse
|
19
|
Moriwaki Y, Yoshikawa K, Fukuda H, Fujii YX, Misawa H, Kawashima K. Immune system expression of SLURP-1 and SLURP-2, two endogenous nicotinic acetylcholine receptor ligands. Life Sci 2007; 80:2365-8. [PMID: 17286989 DOI: 10.1016/j.lfs.2006.12.028] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 11/30/2006] [Accepted: 12/26/2006] [Indexed: 11/25/2022]
Abstract
A novel transduction pathway via which apoptosis of keratinocytes is regulated through nicotinic acetylcholine (ACh) receptors (nAChRs) has emerged in studies of secreted mammalian Ly6/urokinase plasminogen-type activator receptor-related protein-1 and-2 (SLURP-1 and SLURP-2, respectively). SLURP-1 reportedly binds to alpha7 nAChRs and enhances the amplitude of macroscopic currents induced by ACh, leading to facilitation of apoptosis, whereas SLURP-2 binds to alpha3 nAChRs and prevents apoptosis. These observations prompted us to test whether SLURPs are expressed in immune cells and are involved in the regulation of immune function. We initially used reverse transcription-polymerase chain reaction analysis to characterize the expression profiles of SLURP mRNAs in several murine tissues and organs. Although SLURP-1 mRNA was not expressed in the pancreas, all other tissues and organs tested, including spleen and thymus, expressed both SLURP-1 and SLURP-2 mRNAs. Expression of both mRNAs also was detected in T and B cells, bone marrow-derived dendritic cells (DCs) and macrophages. Moreover, as in keratinocytes, stimulation of MOLT-3 human leukemic T cells with recombinant human SLURP-1 evoked intracellular Ca(2+) signaling. These results suggest that both SLURP-1 and SLURP-2 are expressed in various immune cells and organs, and that not only ACh but also SLURPs may be involved in regulating lymphocyte function via nAChR-mediated pathways.
Collapse
Affiliation(s)
- Yasuhiro Moriwaki
- Department of Pharmacology, Kyoritsu College of Pharmacy, 1-5-30 Shibakoen, Tokyo 105-8512, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Vezys V, Masopust D, Desmarets M, Wess J, Zimring JC. Analysis of CD8+ T cell-mediated anti-viral responses in mice with targeted deletions of the M1 or M5 muscarinic cholinergic receptors. Life Sci 2007; 80:2330-3. [PMID: 17286988 PMCID: PMC2034436 DOI: 10.1016/j.lfs.2007.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 11/29/2006] [Accepted: 01/05/2007] [Indexed: 11/28/2022]
Abstract
A number of studies have demonstrated that non-neuronal acetylcholine can play a role in the regulation of T cell function. Recently, we reported that CD8(+) T cells, from mice with a targeted deletion of the M(1) muscarinic receptor, had a defect in differentiating into cytolytic T lymphocytes when stimulated in vitro. In the current report, we analyze the in vivo function of CD8(+) T cells from mice with targeted deletions of either M(1) or M(5) muscarinic receptors. M(1) or M(5) knockout mice were infected with either lymphocytic choriomeningitis virus or vesicular stomatitis virus. Expansion of anti-viral CD8(+) T cells was monitored by staining with tetramer reagents specific for the immunodominant peptides of the viruses. No defect in expansion of CD8(+) T cells was observed in either M(1) or M(5) knockout mice. The extent to which one can draw a generalized conclusion that M(1) and M(5) are not involved in anti-viral immunity depends upon issues of antigen strength, genetic background, induction of redundant receptors, and the potential for qualitative defects in the expanded CD8(+) T cells.
Collapse
Affiliation(s)
- Vaiva Vezys
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - David Masopust
- Emory Vaccine Center and the Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Maxime Desmarets
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
| | - Jürgen Wess
- Laboratory of Bioorganic Chemistry, NIH-NIDDK, DHHS, 8 Center Drive MSC 0810, Bethesda, Maryland, MD 20892-0810
| | - James C. Zimring
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322
- * To whom all correspondence should be addressed: Please address correspondence to: James C. Zimring, M.D., Ph.D., Department of Pathology, Emory University, School of Medicine, Woodruff Memorial Research Building, Room 7301, 101 Woodruff Circle, Atlanta, GA 30322, USA (Telephone 404-712-2174, Fax 404-727-5764) Email
| |
Collapse
|
21
|
Bazalakova MH, Blakely RD. The high-affinity choline transporter: a critical protein for sustaining cholinergic signaling as revealed in studies of genetically altered mice. Handb Exp Pharmacol 2006:525-44. [PMID: 16722248 DOI: 10.1007/3-540-29784-7_21] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In cholinergic neurons, the presynaptic choline transporter (CHT) mediates high-affinity choline uptake (HACU) as the rate-limiting step in acetylcholine (ACh) synthesis. It has previously been shown that HACU is increased by behaviorally and pharmacologically-induced activity of cholinergic neurons in vivo, but the molecular mechanisms of this change in CHT function and regulation have only recently begun to be elucidated. The recent cloning of CHT has led to the generation of new valuable tools, including specific anti-CHT antibodies and a CHT knockout mouse. These new reagents have allowed researchers to investigate the possibility of a presynaptic, CHT-mediated, molecular plasticity mechanism, regulated by and necessary for sustained in vivo cholinergic activity. Studies in various mouse models of cholinergic dysfunction, including acetylcholinesterase (AChE) transgenic and knockout mice, choline acetyltransferase (ChAT) heterozygote mice, muscarinic (mAChR) and nicotinic (mAChR) receptor knockout mice, as well as CHT knockout and heterozygote mice, have revealed new information about the role of CHT expression and regulation in response to long-term alterations in cholinergic neurotransmission. These mouse models highlight the capacity of CHT to provide for functional compensation in states of cholinergic dysfunction. A better understanding of modes of CHT regulation should allow for experimental manipulation of cholinergic signaling in vivo with potential utility in human disorders of known cholinergic dysfunction such as Alzheimer's disease, Parkinson's disease, schizophrenia, Huntington's disease, and dysautonomia.
Collapse
Affiliation(s)
- M H Bazalakova
- Vanderbilt School of Medicine, Suite 7140, MRB III, Nashville, TN 37232-8548, USA
| | | |
Collapse
|
22
|
Fullerton MD, Wagner L, Yuan Z, Bakovic M. Impaired trafficking of choline transporter-like protein-1 at plasma membrane and inhibition of choline transport in THP-1 monocyte-derived macrophages. Am J Physiol Cell Physiol 2006; 290:C1230-8. [PMID: 16319125 DOI: 10.1152/ajpcell.00255.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study investigates choline transport processes and regulation of choline transporter-like protein-1 (CTL1) in human THP-1 monocytic cells and phorbol myristate 13-acetate (PMA)-differentiated macrophages. Choline uptake is saturable and therefore protein-mediated in both cell types, but its transport characteristics change soon after treatments with PMA. The maximal rate of choline uptake intrinsic to monocytic cells is greatly diminished in differentiated macrophages as demonstrated by alterations in Vmax values from 1,973 ± 118 to 380 ± 18 nmol·mg−1·min−1, when the binding affinity did not change significantly ( Km values 56 ± 8 and 53 ± 6 μM, respectively). Treatments with hemicholinim-3 effectively inhibit most of the choline uptake, establishing that a choline-specific transport protein rather than a general transporter is responsible for the observed kinetic parameters. mRNA screening for the expression of various transporters reveals that CTL1 is the most plausible candidate that possesses the described kinetic and inhibitory properties. Fluorescence-activated cell sorting analyses at various times after PMA treatments further demonstrate that the disappearance of CTL1 protein from the cell surface follows the same trend as the reduction in choline uptake. Importantly, the loss of functional CTL1 from the cell surface occurs without significant changes in total CTL1 protein or its mRNA level indicating that an impaired CTL1 trafficking is the key contributing factor to the reduced choline uptake, subsequent to the PMA-induced THP-1 differentiation to macrophages.
Collapse
Affiliation(s)
- Morgan D Fullerton
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | |
Collapse
|
23
|
Lecomte MJ, De Gois S, Guerci A, Ravassard P, Faucon Biguet N, Mallet J, Berrard S. Differential expression and regulation of the high-affinity choline transporter CHT1 and choline acetyltransferase in neurons of superior cervical ganglia. Mol Cell Neurosci 2005; 28:303-13. [PMID: 15691711 DOI: 10.1016/j.mcn.2004.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Revised: 09/17/2004] [Accepted: 09/22/2004] [Indexed: 11/21/2022] Open
Abstract
Previous studies revealed that leukemia inhibitory factor (LIF) and retinoic acid (RA) induce a noradrenergic to cholinergic switch in cultured sympathetic neurons of superior cervical ganglia (SCG) by up-regulating the coordinate expression of choline acetyltransferase (ChAT) and the vesicular acetylcholine transporter. Here, we examined the effect of both factors on high-affinity choline uptake (HACU) and on expression of the high-affinity choline transporter CHT1. We found that HACU and CHT1-mRNA levels are up-regulated by LIF and down-regulated by RA in these neurons. Thus, in contrast to LIF, RA differentially regulates the expression of the presynaptic cholinergic proteins. Moreover, we showed that untreated SCG neurons express HACU and CHT1-mRNAs at much higher levels than ChAT activity and transcripts. In intact SCG, CHT1-mRNAs are abundant and synthesized by the noradrenergic neurons themselves. This study provides the first example of CHT1 expression in neurons which do not use acetylcholine as neurotransmitter.
Collapse
Affiliation(s)
- Marie-José Lecomte
- Laboratoire de la Neurotransmission et des Processus Neurodégénératifs, CNRS, UMR 7091, Bâtiment CERVI, Hôpital de la Pitié-Salpêtrière, 83 boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | | | | | | | |
Collapse
|
24
|
Xie J, Guo Q. Par-4 Inhibits Choline Uptake by Interacting with CHT1 and Reducing Its Incorporation on the Plasma Membrane. J Biol Chem 2004; 279:28266-75. [PMID: 15090548 DOI: 10.1074/jbc.m401495200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CHT1 is a Na(+)- and Cl(-)-dependent, hemicholinium-3 (HC-3)-sensitive, high affinity choline transporter. Par-4 (prostate apoptosis response-4) is a leucine zipper protein involved in neuronal degeneration and cholinergic signaling in Alzheimer's disease. We now report that Par-4 is a negative regulator of CHT1 choline uptake activity. Transfection of neural IMR-32 cells with human CHT1 conferred Na(+)-dependent, HC-3-sensitive choline uptake that was effectively inhibited by cotransfection of Par-4. Mapping studies indicated that the C-terminal half of Par-4 was physically involved in interacting with CHT1, and the absence of Par-4.CHT1 complex formation precluded the loss of CHT1-mediated choline uptake induced by Par-4, indicating that Par-4.CHT1 complex formation is essential. Kinetic and cell-surface biotinylation assays showed that Par-4 inhibited CHT1-mediated choline uptake by reducing CHT1 expression in the plasma membrane without significantly altering the affinity of CHT1 for choline or HC-3. These results suggest that Par-4 is directly involved in regulating choline uptake by interacting with CHT1 and by reducing its incorporation on the cell surface.
Collapse
Affiliation(s)
- Jun Xie
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
25
|
Horiuchi Y, Fujii T, Kamimura Y, Kawashima K. The endogenous, immunologically active peptide apelin inhibits lymphocytic cholinergic activity during immunological responses. J Neuroimmunol 2004; 144:46-52. [PMID: 14597097 DOI: 10.1016/j.jneuroim.2003.08.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated the effects of apelin, an immunologically active peptide ligand for orphan receptor APJ, on acetylcholine (ACh) synthesis in MOLT-3 human leukemic T cells. We initially confirmed expression of APJ mRNA in several human T- and B-cell lines by reverse transcription-polymerase chain reaction (RT-PCR). We also found that in phytohemagglutinin (PHA)-stimulated MOLT-3 cells, an active apelin fragment, apelin-13, down-regulates expression of choline acetyltransferase (ChAT) mRNA and significantly reduces ChAT activity and cellular ACh content and release. It thus appears that apelin inhibits lymphocytic cholinergic activity via APJ during immunological responses.
Collapse
Affiliation(s)
- Yoko Horiuchi
- Department of Pharmacology, Kyoritsu College of Pharmacy, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan
| | | | | | | |
Collapse
|
26
|
Fujii T. [An independent, non-neuronal cholinergic system in lymphocytes and its roles in regulation of immune function]. Nihon Yakurigaku Zasshi 2004; 123:179-88. [PMID: 14993730 DOI: 10.1254/fpj.123.179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Acetylcholine (ACh) is classically thought of as a neurotransmitter in mammalian species. However, lymphocytes express most of the cholinergic components found in the nervous system, including ACh, choline acetyltransferase (ChAT), high-affinity choline transporter, and acetylcholinesterase as well as both muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively). Activation of T cells via the T cell receptor/CD3 complex, contact of T cells with antigen presenting cells, or activation of the adenylyl cyclase pathway in T cells modulates cholinergic activity, as evidenced by up-regulation of ChAT and M(5) mAChR mRNA expression. Stimulation of mAChRs on T and B cells with ACh or another mAChR agonists elicits intracellular Ca(2+) signaling, up-regulation of c-fos expression, increased nitric oxide synthesis and interleukin-2-induced signal transduction via M(3) and M(5) mAChR-mediated pathways. Acute stimulation of nAChRs with ACh or nicotine causes rapid and transient Ca(2+) signaling in T and B cells, probably via alpha7 nAChRs subunit-mediated pathways. Chronic nicotine stimulation, by contrast, down-regulates nAChR expression and suppresses T cell activity. Abnormalities in lymphocytic cholinergic system have been seen in animal models of immune deficiency and immune acceleration. Collectively, these data provided a compelling picture in which immune function is, at least partly, under the control of an independent, non-neuronal cholinergic system in lymphocytes.
Collapse
Affiliation(s)
- Takeshi Fujii
- Department of Pharmacology, Kyoritsu College of Pharmacy, Tokyo, Japan.
| |
Collapse
|
27
|
Kawashima K, Fujii T. The lymphocytic cholinergic system and its contribution to the regulation of immune activity. Life Sci 2003; 74:675-96. [PMID: 14654162 DOI: 10.1016/j.lfs.2003.09.037] [Citation(s) in RCA: 226] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lymphocytes express most of the cholinergic components found in the nervous system, including acetylcholine (ACh), choline acetyltransferase (ChAT), high affinity choline transporter, muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively), and acetylcholinesterase. Stimulation of T and B cells with ACh or another mAChR agonist elicits intracellular Ca2+ signaling, up-regulation of c-fos expression, increased nitric oxide synthesis and IL-2-induced signal transduction, probably via M3 and M5 mAChR-mediated pathways. Acute stimulation of nAChRs with ACh or nicotine causes rapid and transient Ca2+ signaling in T and B cells, probably via alpha7 nAChR subunit-mediated pathways. Chronic nicotine stimulation, by contrast, down-regulates nAChR expression and suppresses T cell activity. Activation of T cells with phytohemagglutinin or antibodies against cell surface molecules enhances lymphocytic cholinergic transmission by activating expression of ChAT and M5 mAChR, which is suggestive of local cholinergic regulation of immune system activity. This idea is supported by the facts that lymphocytic cholinergic activity reflects well the changes in immune system function seen in animal models of immune deficiency and immune acceleration. Collectively, these data provide a compelling picture in which lymphocytes constitute a cholinergic system that is independent of cholinergic nerves, and which is involved in the regulation of immune function.
Collapse
Affiliation(s)
- Koichiro Kawashima
- Department of Pharmacology, Kyoritsu College of Pharmacy, 1-5-30 Shibakoen, Minato, Tokyo 105-8512, Japan.
| | | |
Collapse
|
28
|
Abstract
Lymphocytes are now known to possess the essential components for a non-neuronal cholinergic system. These include acetylcholine (ACh); choline acetyltransferase (ChAT), its synthesizing enzyme; and both muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively). Stimulating lymphocytes with phytohemagglutinin, a T-cell activator; Staphylococcus aureus Cowan I, a B-cell activator; or cell surface molecules enhances the synthesis and release of ACh and up-regulates expression of ChAT and M(5) mAChR mRNAs. Activation of mAChRs and nAChRs on lymphocytes elicits increases in the intracellular Ca(2+) concentration and stimulates c-fos gene expression and nitric oxide synthesis. On the other hand, long-term exposure to nicotine down-regulates expression of nAChR mRNA. Abnormalities in the lymphocytic cholinergic system have been detected in spontaneously hypertensive rats and MRL-lpr mice, two animal models of immune disorders. Taken together, these data present a compelling picture in which immune function is, at least in part, under the control of an independent non-neuronal lymphocytic cholinergic system.
Collapse
Affiliation(s)
- Koichiro Kawashima
- Department of Pharmacology, Kyoritsu College of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan.
| | | |
Collapse
|