1
|
Žaloudíková M, Eckhardt A, Vytášek R, Uhlík J, Novotný T, Bačáková L, Musílková J, Hampl V. Decreased collagen VI in the tunica media of pulmonary vessels during exposure to hypoxia: a novel step in pulmonary arterial remodeling. Pulm Circ 2019; 9:2045894019860747. [PMID: 31187694 PMCID: PMC6625215 DOI: 10.1177/2045894019860747] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The development of hypoxic pulmonary hypertension is characterized by the
structural remodeling of pulmonary arteries. However, the relationship between
changes of arterial cells and the extracellular matrix remains unclear. We
focused on the evaluation of the non-fibrillar collagen changes in tunica media
induced by a four-day exposure to hypoxia and the correlation of these changes
with the pulmonary arterial wall structure modifications. We used 20 adult male
Wistar rats. The amount and localization of collagen VI, collagen IV, matrix
metalloproteinase (MMP) 2, and MMP9 were tested in pulmonary arteries
immunohistochemically. Two-dimensional electrophoresis and messenger RNA (mRNA)
expression were used for the subsequent comparison of protein changes in
arterial tunica media cells (normoxia/hypoxia). Collagen VI was significantly
reduced strictly in the tunica media of conduit arteries of hypoxia-exposed
rats; however, its mRNA increased. The amount of collagen IV and its mRNA were
not altered. We detected a significant increase of MMP9 strictly in the tunica
media. In addition, a significantly increased number of MMP9-positive cells
surrounded the arteries. MMP2 and the expression of its mRNA were decreased in
tunica media. We conclude that the loss of collagen VI is an important step
characterizing the remodeling of pulmonary arteries. It could influence the
phenotypic status and behavior of smooth muscle cells and modify their
proliferation and migration.
Collapse
Affiliation(s)
- Marie Žaloudíková
- 1 Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Adam Eckhardt
- 2 Institute of Physiology of the Czech Academy of Sciences v.v.i., Prague, Czech Republic
| | - Richard Vytášek
- 1 Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiří Uhlík
- 3 Department of Histology and Embryology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomáš Novotný
- 3 Department of Histology and Embryology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic.,4 Department of Orthopedics, Masaryk Hospital, Ústí nad Labem, Czech Republic.,5 Faculty of Health Studies, Jan Evangelista Purkyně University in Ústí nad Labem, Czech Republic
| | - Lucie Bačáková
- 2 Institute of Physiology of the Czech Academy of Sciences v.v.i., Prague, Czech Republic
| | - Jana Musílková
- 2 Institute of Physiology of the Czech Academy of Sciences v.v.i., Prague, Czech Republic
| | - Václav Hampl
- 1 Department of Physiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Vajnerova O, Kafka P, Kratzerova T, Chalupsky K, Hampl V. Pregestational diabetes increases fetoplacental vascular resistance in rats. Placenta 2018; 63:32-38. [PMID: 29486854 DOI: 10.1016/j.placenta.2018.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 01/02/2018] [Accepted: 01/04/2018] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Diabetes is a well-known risk factor in pregnancy. Because maternal diabetes involves oxidative stress that is also induced by chronic hypoxia and can alter vascular function, we sought to determine the effects of chronic maternal hyperglycemia on the fetoplacental vasculature in rats and to compare it with the effects of chronic hypoxia. METHODS Diabetes was induced in female rats by a streptozotocin injection at a neonatal age. When these animals reached adulthood, their hyperglycemia was confirmed and they were inseminated. Half of them were exposed to hypoxia (10% O2) for the last week before the delivery. One day before the expected date of delivery, one of their placentae was isolated and perfused. RESULTS Fetoplacental vascular resistance was increased equally by experimental diabetes, chronic hypoxia, and their combination. Fetoplacental perfusion pressure-flow analysis suggested increased resistance in the small vessels in chronic hypoxia and in larger vessels in diabetes. Fetal plasma nitrotyrosine levels, measured as a marker of peroxynitrite (reaction product of superoxide and nitric oxide), mirrored the differences in fetoplacental resistance, suggesting a causative role. Fetoplacental vasoconstrictor reactivity to acute hypoxic stimuli was reduced similarly in all groups. Fasudil, a strong vasodilator agent, reduced fetoplacental vascular resistance similarly in all groups, suggesting that for the observed differences among the groups, the changes in vascular morphology were more important than variances in vascular tone. DISCUSSION Maternal diabetes increases fetoplacental vascular resistance to a similar extent as chronic hypoxia. These stimuli are not additive. Changes in vascular tone are not responsible for these effects.
Collapse
Affiliation(s)
- Olga Vajnerova
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Petr Kafka
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Anesthesiology and Intensive Care Medicine, Kralovske Vinohrady University Hospital, Prague, Czech Republic
| | - Tereza Kratzerova
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Karel Chalupsky
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vaclav Hampl
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Abstract
Hypoxic pulmonary hypertension (HPH) is a syndrome characterized by the increase of pulmonary vascular tone and the structural remodeling of peripheral pulmonary arteries. Mast cells have an important role in many inflammatory diseases and they are also involved in tissue remodeling. Tissue hypoxia is associated with mast cell activation and the release of proteolytic enzymes, angiogenic and growth factors which mediate tissue destruction and remodeling in a variety of physiological and pathological conditions. Here we focused on the role of mast cells in the pathogenesis of hypoxic pulmonary hypertension from the past to the present.
Collapse
Affiliation(s)
- H Maxová
- Department of Pathophysiology, Second Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | | | | |
Collapse
|
4
|
Maxová H, Hezinová A, Vízek M. Disodium cromoglycate attenuates hypoxia induced enlargement of end-expiratory lung volume in rats. Physiol Res 2011; 60:831-4. [PMID: 22106819 DOI: 10.33549/physiolres.932200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mechanism responsible for the enlargement of end-expiratory lung volume (EELV) induced by chronic hypoxia remains unclear. The fact that the increase in EELV persists after return to normoxia suggests involvement of morphological changes. Because hypoxia has been also shown to activate lung mast cells, we speculated that they could play in the mechanism increasing EELV similar role as in vessel remodeling in hypoxic pulmonary hypertension (HPH). We, therefore, tested an effect of mast cells degranulation blocker disodium cromoglycate (DSCG) on hypoxia induced EELV enlargement. Ventilatory parameters, EELV and right to left heart weight ratio (RV/LV+S) were measured in male Wistar rats. The experimental group (H+DSCG) was exposed to 3 weeks of normobaric hypoxia and treated with DSCG during the first four days of hypoxia, control group was exposed to hypoxia only (H), two others were kept in normoxia as non-treated (N) and treated (N+DSCG) groups. DSCG treatment significantly attenuated the EELV enlargement (H+DSCG = 6.1+/-0.8; H = 9.2+/-0.9; ml +/-SE) together with the increase in minute ventilation (H + DSCG = 190+/-8; H = 273 +/- 10; ml/min +/- SE) and RV/LV + S (H + DSCG = 0.39 +/- 0.03; H = 0.50 +/- 0.06).
Collapse
Affiliation(s)
- H Maxová
- Department of Pathophysiology, Second Faculty of Medicine, Charles University in Prague, Praha, Czech Republic.
| | | | | |
Collapse
|
5
|
Esteve JM, Launay JM, Kellermann O, Maroteaux L. Functions of serotonin in hypoxic pulmonary vascular remodeling. Cell Biochem Biophys 2008; 47:33-44. [PMID: 17406058 DOI: 10.1385/cbb:47:1:33] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
In lung vasculature, reversible constriction of smooth muscle cells exists in response to acute decrease in oxygen levels (hypoxia). Progressive and irreversible structural remodeling that reduces blood vessel lumen takes place in response to chronic hypoxia and results in pulmonary hypertension. Several studies have shown a role of serotonin in regulating acute and chronic hypoxic responses. In this review the contribution of serotonin, its receptors and transporter in lung hypoxic responses is discussed. Hypoxic conditions modify plasma levels of serotonin, serotonin transporter activity, and expression of 5-HT1B and 5-HT2B receptors. These appear to be required for pulmonary vascular cell proliferation, which depends on the ratio between reactive oxygen species and nitric oxide. A heterozygous mutation was identified in the 5-HT2B receptor gene of a patient who developed pulmonary hypertension after fenfluramines anorexigen treatment. This C-terminus truncated 5-HT2B mutant receptor presents lower nitric oxide coupling, and higher cell proliferation capacity than the wild-type receptor. Under low oxygen tension, cells increase the transcription of specific genes via stabilization of the transcription factor hypoxia-inducible factor (HIF)-1. Factors such as angiotensin II or thrombin that can also control HIF-1 pathway contribute to pulmonary vascular remodeling. The 5-HT2B receptor via phosphatidylinositol-3 kinase/Akt activates nuclear factor-kappaB, which is involved in the regulation of HIF-1 expression. Acontrol of HIF- 1 by 5-HT2B receptors explains why expression of pulmonary vascular remodeling factors, such as endothelin-1 or transforming growth factor-beta, which is HIF-1-alpha regulated, is not modified in hypoxic 5-HT2B receptor mutant mice. Understanding the detailed mechanisms involved in lung hypoxic responses may provide general insight into pulmonary hypertension pathogenesis.
Collapse
|
6
|
Baňasová A, Maxová H, Hampl V, Vízek M, Povýšilová V, Novotná J, Vajnerová O, Hniličková O, Herget J. Prevention of Mast Cell Degranulation by Disodium Cromoglycate Attenuates the Development of Hypoxic Pulmonary Hypertension in Rats Exposed to Chronic Hypoxia. Respiration 2008; 76:102-7. [DOI: 10.1159/000121410] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 01/09/2008] [Indexed: 01/04/2023] Open
|
7
|
Vajner L, Vytásek R, Lachmanová V, Uhlík J, Konrádová V, Novotná J, Hampl V, Herget J. Acute and chronic hypoxia as well as 7-day recovery from chronic hypoxia affects the distribution of pulmonary mast cells and their MMP-13 expression in rats. Int J Exp Pathol 2006; 87:383-91. [PMID: 16965566 PMCID: PMC2517379 DOI: 10.1111/j.1365-2613.2006.00493.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Chronic hypoxia results in pulmonary hypertension due to vasoconstriction and structural remodelling of peripheral lung blood vessels. We hypothesize that vascular remodelling is initiated in the walls of prealveolar pulmonary arteries by collagenolytic metalloproteinases (MMP) released from activated mast cells. Distribution of mast cells and their expression of interstitial collagenase, MMP-13, in lung conduit, small muscular, and prealveolar arteries was determined quantitatively in rats exposed for 4 and 20 days to hypoxia as well as after 7-day recovery from 20-day hypoxia (10% O2). Mast cells were identified using Toluidine Blue staining, and MMP-13 expression was detected using monoclonal antibody. After 4, but not after 20 days of hypoxia, a significant increase in the number of mast cells and their MMP-13 expression was found within walls of prealveolar arteries. In rats exposed for 20 days, MMP-13 positive mast cells accumulated within the walls of conduit arteries and subpleurally. In recovered rats, MMP-13 positive mast cells gathered at the prealveolar arterial level as well as in the walls of small muscular arteries; these mast cells stayed also in the conduit part of the pulmonary vasculature. These data support the hypothesis that perivascular pulmonary mast cells contribute to the vascular remodelling in hypoxic pulmonary hypertension in rats by releasing interstitial collagenase.
Collapse
Affiliation(s)
- Ludek Vajner
- Department of Histology and Embryology, Charles University, Prague.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Zhang G, Sun A, Li W, Liu T, Su Z. Mass spectrometric analysis of enzymatic digestion of denatured collagen for identification of collagen type. J Chromatogr A 2006; 1114:274-7. [PMID: 16600269 DOI: 10.1016/j.chroma.2006.03.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 03/14/2006] [Accepted: 03/14/2006] [Indexed: 11/20/2022]
Abstract
Collagen type II and I from bovine were thermally denatured and digested with trypsin. The digest mixture was analyzed with liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS). Peptides in the digest mixture were identified by mass spectrometry/mass spectrometry (MS/MS) sequencing. The results indicated that the digest mixtures of collagen type II and I contained lots of specific peptides and common peptides. Specific peptides could be used as index for identifying collagen type. Articular cartilage from bovine was pretreated and analyzed with the same method to determine the collagen types. The result indicated that the method developed was effective for identification of collagen types. The research provided a possible approach for collagen identification in particular tissues.
Collapse
Affiliation(s)
- Guifeng Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080, PR China
| | | | | | | | | |
Collapse
|
9
|
Uzun O, Balbay O, Comunoğlu NU, Yavuz O, Nihat Annakkaya A, Güler S, Silan C, Erbaş M, Arbak P. Hypobaric-hypoxia-induced pulmonary damage in rats ameliorated by antioxidant erdosteine. Acta Histochem 2006; 108:59-68. [PMID: 16537087 DOI: 10.1016/j.acthis.2006.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 11/24/2005] [Accepted: 01/05/2006] [Indexed: 11/17/2022]
Abstract
Free radical-mediated injury to lung and pulmonary vasculature is an important mechanism in hypoxia-induced lung damage. In this study, we aimed to investigate the potential protective effects of erdosteine as an antioxidant agent on hypobaric hypoxia-induced pulmonary hypertension. Adult male rats were assigned randomly to three groups. The first group of rats was exposed to hypobaric-hypoxia and the second group was treated with erdosteine (20mg/kg, daily) for 2 weeks, during which time they were in a hypoxic chamber. These groups were compared with normoxic controls. All rats were sacrificed after 2 weeks. The hypoxia-induced increase in right ventricle to left ventricle plus septum weight ratio (from 0.20+/-0.01 to 0.26+/-0.01) was reduced significantly in the erdosteine-treated group (0.23+/-0.01). Malondialdehyde levels were elevated (from 0.33+/-0.11 to 0.59+/-0.02) and total antioxidant status was not changed significantly (from 1.77+/-0.42 to 2.61+/-0.23) by hypoxia. In contrast to the hypoxia-exposed group, malondialdehyde levels were significantly decreased in the erdosteine-treated group (0.37+/-0.02). Total antioxidant status (4.03+/-0.22) was significantly higher in erdosteine-treated rats when compared to non-treated rats. Histopathological examination demonstrated that erdosteine prevented inflammation and protected lung parenchyma and pulmonary endothelium of hypoxia-exposed rats.
Collapse
Affiliation(s)
- Ozge Uzun
- Department of Pharmacology, Düzce School of Medicine, University of Abant Izzet Baysal, Düzce, 81620 Konuralp-Turkey.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang XL, Wang J. Smoking-gene interaction and disease development: relevance to pancreatic cancer and atherosclerosis. World J Surg 2005; 29:344-53. [PMID: 15696395 DOI: 10.1007/s00268-004-7819-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
There is little doubt that cigarette smoking remains a major environmental health risk that humans are facing in the twenty-first century. Cigarette smokers are more likely to develop many forms of diseases than nonsmokers, including cancers and vascular diseases. With the availability of the human genome sequence, we become more aware of the genetic contributions to these common diseases, especially the interactive relations between environmental factors (e.g., smoking) and genes on disease susceptibility, development, and prognosis. Although smoking is responsible for up to 30% of pancreatic cancers and about 10% of cases are ascribed to genetic reasons, some genetic variants do not predispose carriers to disease development unless they are exposed to a specific adverse environment such as smoking. This smoke-gene interaction could potentially be responsible for most of the cases. Certain polymorphisms in genes such as CYP1A1 have been shown particularly sensitive to smoking-induced pathogenesis, including pancreatic cancer and atherosclerosis. We found that individuals with CYP1A1 CC genotype had a more than three fold increase in risk for severe coronary atherosclerosis when they smoked. Patients with endothelial nitric oxide synthase (eNOS) intron 4 27 repeat homozygotes were more likely to develop severe coronary stenosis when they smoked. On the other hand, DNA variants at the eNOS gene also dictate how smoking affects the expression of eNOS. We showed that GSTM1 deficiency was not involved in smoking-induced vascular diseases, but p53 polymorphisms tended to modify the disease severity in smokers. We are still at an early stage of defining the pairs and mechanisms of smoke-gene interaction, and this etiologic mechanism may hold great potential for risk assessment, treatment strategy, and prognostic predictions.
Collapse
Affiliation(s)
- Xing Li Wang
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, MS NAB 2010, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
| | | |
Collapse
|
11
|
Vanecková I, Kramer HJ, Novotná J, Kazdová L, Opocenský M, Bader M, Ganten D, Cervenka L. Roles of Nitric Oxide and Oxidative Stress in the Regulation of Blood Pressure and Renal Function in Prehypertensive Ren-2 Transgenic Rats. Kidney Blood Press Res 2005; 28:117-26. [PMID: 15795515 DOI: 10.1159/000084649] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2004] [Indexed: 11/19/2022] Open
Abstract
AIMS The present study was performed to evaluate the role of nitric oxide (NO) and its interaction with superoxide anion (O2-) in the regulation of blood pressure (BP) and renal function during the developmental phase of hypertension in Ren-2 transgenic rats (TGR). The first aim was to compare BP and renal functional responses to acute NO synthase (NOS) inhibition achieved by intravenous (i.v.) infusion of Nomega-nitro-L-arginine-methyl ester (L-NAME) in prehypertensive heterozygous TGR and in transgene-negative Hannover Sprague-Dawley (HanSD) rats. The second aim was to evaluate whether scavenging of O2- by infusion of the superoxide dismutase mimetic tempol increases NO bioavailability which therefore should augment BP and renal functional responses to L-NAME. METHODS Rats were anesthetized, prepared for clearance experiments and BP and renal functional responses were evaluated in response to i.v. L-NAME administration (20 microg.100 g(-1).min(-1)) without or with tempol pretreatment (i.v., 300 microg.100 g(-1).min(-1)). In renal cortical tissue, nitrotyrosine protein expression was assessed by immunoblotting as marker of O2- production and urinary 8-epi-PGF(2alpha) excretion as marker of intrarenal oxidative stress was assessed by enzyme immunoassay. RESULTS BP, glomerular filtration rate (GFR), renal plasma flow (RPF) and sodium excretion were similar in TGR and HanSD. L-NAME infusion induced greater increases in BP in TGR than in HanSD (+42 +/- 4 vs. +25 +/- 3 mmHg, p < 0.05). In the absence of a significant change in GFR, L-NAME caused similar decreases in RPF (-32 +/- 6 and -25 +/- 4%, p < 0.05) in TGR and HanSD. Despite significantly higher renocortical expression of nitrotyrosine and urinary 8-epi-PGF2alpha excretion in TGR than in HanSD, pretreatment with tempol did not augment the rise in BP and the decrease in RPF induced by L-NAME. CONCLUSIONS The greater BP response to L-NAME in TGR suggests that prehypertensive TGR exhibit an enhanced NO activity in the systemic vasculature as compared with HanSD. Despite increased intrarenal oxidative stress in TGR, the dependency of the intrarenal vascular tone on NO appears to be similar in TGR and HanSD. The lack of a compensatory increase in renal NO activity may partially account for the enhanced renal vascular response to ANG II present in TGR.
Collapse
Affiliation(s)
- Ivana Vanecková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Lachmanová V, Hnilicková O, Povýsilová V, Hampl V, Herget J. N-acetylcysteine inhibits hypoxic pulmonary hypertension most effectively in the initial phase of chronic hypoxia. Life Sci 2005; 77:175-82. [PMID: 15862602 DOI: 10.1016/j.lfs.2004.11.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Accepted: 11/04/2004] [Indexed: 11/29/2022]
Abstract
Exposure to chronic hypoxia results in hypoxic pulmonary hypertension (HPH). In rats HPH develops during the first two weeks of exposure to hypoxia, then it stabilizes and does not increase in severity. We hypothesize that free radical injury to pulmonary vascular wall is an important mechanism in the early days of the hypoxic exposure. Thus antioxidant treatment just before and at the beginning of hypoxia should be more effective in reducing HPH than antioxidant therapy of developed pulmonary hypertension. We studied adult male rats exposed for 4 weeks to isobaric hypoxia (F(iO2) = 0.1) and treated with the antioxidant, N-acetylcysteine (NAC, 20 g/l in drinking water). NAC was given "early" (7 days before and the first 7 days of hypoxia) or "late" (last two weeks of hypoxic exposure). These experimental groups were compared with normoxic controls and untreated hypoxic rats (3-4 weeks hypoxia). All animals kept in hypoxia had significantly higher mean pulmonary arterial blood pressure (PAP) than normoxic animals. PAP was significantly lower in hypoxic animals with early (27.1 +/- 0.9 mmHg) than late NAC treatment (30.5 +/- 1.0 mmHg, P < 0.05; hypoxic without NAC 32.6 +/- 1.2 mmHg, normoxic controls 14.9 +/- 0.7 mmHg). Early but not late NAC treatment inhibited hypoxia-induced increase in right ventricle weight and muscularization of distal pulmonary arteries assessed by quantitative histology. We conclude that release of free oxygen radicals in early phases of exposure to hypoxia induces injury to pulmonary vessels that contributes to their structural remodeling and development of HPH.
Collapse
Affiliation(s)
- Vera Lachmanová
- Department of Physiology, 2nd Medical School, Charles University and Center for Experimental Cardiovascular Research, Plzenská 221, Prague 5, Czech Republic
| | | | | | | | | |
Collapse
|
13
|
Bonnet P, Bonnet S, Boissière J, Le Net JL, Gautier M, Dumas de la Roque E, Eder V. Chronic hypoxia induces nonreversible right ventricle dysfunction and dysplasia in rats. Am J Physiol Heart Circ Physiol 2004; 287:H1023-8. [PMID: 15317673 DOI: 10.1152/ajpheart.00802.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to evaluate the reversibility of right ventricular (RV) remodelling after pulmonary artery hypertension (PAHT) secondary to 3 wk of hypobaric hypoxia. A group of 10 adult male Wistar rats were studied and were the following: control normoxic (C), after 3 wk of chronic hypoxia (CH), and after 3 wk of exposure to hypoxia followed by 3 wk of normoxia recovery (N-RE). Mean pulmonary artery pressure was 11 ± 2 mmHg in the C group, 35 ± 2 mmHg in the CH group, and 14 ± 3 mmHg in the N-RE group. RV function was assessed by echocardiography. In the CH group, the pulmonary flow measured in Doppler mode depicted a midsystolic notch and a decrease of the pulmonary acceleration time compared with control [17 ± 1 vs. 34 ± 1 ms ( n = 10), respectively; P < 0.05]. RV thickening measured in M-mode was apparent in the CH group compared with the control group [2.84 ± 0.40 vs. 1.73 ± 0.26 mm ( n = 10), P < 0.05]. In the N-RE group, the RV wall was significantly thinner compared with the CH group [1.56 ± 0.08 vs. 1.73 ± 0.26 mm ( n = 10), P < 0.05]. The calculated RV diameter shortness fraction was not different between the CH group and C group (34 ± 4.2% vs. 36 ± 2.8%) but decreased in the N-RE group [20 ± 2.4% ( n = 10), P < 0.01]. The E-to-A wave ratio on the tricuspid Doppler inflow was significantly lower in the CH group and N-RE group compared with the C group [0.70 ± 0.8 and 0.72 ± 0.1 vs. 0.88 ± 0.2 ( n = 10), respectively; P < 0.05]. In the isolated perfused heart using the Langendorff method, RV compliance was increased in the CH group and decreased in the N-RE group. In the N-RE group, fibrous bands with metaplasia were observed on histological sections of the RV free wall. We conclude that PAHT induces nonreversible RV dysfunction with dysplasia.
Collapse
Affiliation(s)
- Pierre Bonnet
- Laboratoire de Physiopathologie de la Paroi Artérielle, Faculté de Médecine, 37032 Tours, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Herget J, Novotna J, Bibova J, Povysilova V, Vankova M, Hampl V. Metalloproteinase inhibition by Batimastat attenuates pulmonary hypertension in chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol 2003; 285:L199-208. [PMID: 12665462 DOI: 10.1152/ajplung.00167.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Chronic hypoxia induces lung vascular remodeling, which results in pulmonary hypertension. We hypothesized that a previously found increase in collagenolytic activity of matrix metalloproteinases during hypoxia promotes pulmonary vascular remodeling and hypertension. To test this hypothesis, we exposed rats to hypoxia (fraction of inspired oxygen = 0.1, 3 wk) and treated them with a metalloproteinase inhibitor, Batimastat (30 mg/kg body wt, daily ip injection). Hypoxia-induced increases in concentration of collagen breakdown products and in collagenolytic activity in pulmonary vessels were inhibited by Batimastat, attesting to the effectiveness of Batimastat administration. Batimastat markedly reduced hypoxic pulmonary hypertension: pulmonary arterial blood pressure was 32 +/- 3 mmHg in hypoxic controls, 24 +/- 1 mmHg in Batimastat-treated hypoxic rats, and 16 +/- 1 mmHg in normoxic controls. Right ventricular hypertrophy and muscularization of peripheral lung vessels were also diminished. Batimastat had no influence on systemic arterial pressure or cardiac output and was without any effect in rats kept in normoxia. We conclude that stimulation of collagenolytic activity in chronic hypoxia is a substantial causative factor in the pathogenesis of pulmonary vascular remodeling and hypertension.
Collapse
Affiliation(s)
- Jan Herget
- Department of Physiology, Charles Univ. Second Medical School, Plzenská 130/221, 15000 Praha 5, Czech Republic.
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Cigarette smoking as an addictive habit has accompanied human beings for more than 4 centuries. It is also one of the most potent and prevalent environmental health risks human beings are exposed to, and it is responsible for more than 1000 deaths each day in the United States. With recent research progress, it becomes clear that cigarette smoking can cause almost all major diseases prevalent today, such as cancer or heart disease. These detrimental effects are not only present in active smokers who choose the risk, but also to innocent bystanders, as passive smokers, who are exposed to cigarettes not-by-choice. While the cigarette-induced harm to human health is indiscriminate and severe, the degree of damage also varies from individual to individual. This intersubject variability in cigarette-induced pathologies is partly mediated by genetic variants of genes that may participate in detoxification process, eg, cytochrome P450 (CYP), cellular susceptibility to toxins, such as p53, or disease development. Through population studies, we have learned that certain CYP1A1 variants, such as Mspl polymorphism, may render the carriers more susceptible to cigarette-induced lung cancer or severe coronary atherosclerosis. The endothelial nitric oxide synthase intron 4 rare allele homozygotes are more likely to have myocardial infarction if they also smoke. In vitro experimental approach has further demonstrated that cigarettes may specifically regulate these genes in genotype-dependent fashion. While we still know little about genetic basis and molecular pathways for cigarette-induced pathological changes, understanding these mechanisms will be of great value in designing strategies to further reduce smoking in targeted populations, and to implement more effective measures in prevention and treatment of cigarette-induced diseases.
Collapse
Affiliation(s)
- Xing Li Wang
- Vascular Genetics Laboratory, Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX 78227, USA.
| | | | | |
Collapse
|
16
|
Abstract
Chronic pulmonary hypertension is a serious complication of a number of chronic lung and heart diseases. In addition to vasoconstriction, its pathogenesis includes injury to the peripheral pulmonary arteries leading to their structural remodeling. Increased pulmonary vascular synthesis of an endogenous vasodilator, nitric oxide (NO), opposes excessive increases of intravascular pressure during acute pulmonary vasoconstriction and chronic pulmonary hypertension, although evidence for reduced NO activity in pulmonary hypertension has also been presented. NO can modulate the degree of vascular injury and subsequent fibroproduction, which both underlie the development of chronic pulmonary hypertension. On one hand, NO can interrupt vascular wall injury by oxygen radicals produced in increased amounts in pulmonary hypertension. NO can also inhibit pulmonary vascular smooth muscle and fibroblast proliferative response to the injury. On the other hand, NO may combine with oxygen radicals to yield peroxynitrite and other related, highly reactive compounds. The oxidants formed in this manner may exert cytotoxic and collagenolytic effects and, therefore, promote the process of reparative vascular remodeling. The balance between the protective and adverse effects of NO is determined by the relative amounts of NO and reactive oxygen species. We speculate that this balance may be shifted toward more severe injury especially during exacerbations of chronic diseases associated with pulmonary hypertension. Targeting these adverse effects of NO-derived radicals on vascular structure represents a potential novel therapeutic approach to pulmonary hypertension in chronic lung diseases.
Collapse
Affiliation(s)
- V Hampl
- Department of Physiology, Charles University Second Medical School, Prague, Czech Republic
| | | |
Collapse
|
17
|
Deyl Z, Miksík I. Advanced separation methods for collagen parent alpha-chains, their polymers and fragments. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2000; 739:3-31. [PMID: 10744310 DOI: 10.1016/s0378-4347(99)00515-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Current techniques used for collagen alpha-chains and their CNBr fragments are reviewed. Ion exchange, gel permeation, reversed-phase and affinity chromatography are discussed mainly from the preparative aspects as these are both the techniques of choice to remove biological matrix contaminants always present in collagen preparations and techniques routinely used for preparative purposes. Among electromigration procedures gel electrophoresis is widely used both for intact collagen alpha-chains and their fragments. Recently this technique was applied also for miniaturised preparations. Immunoblotting techniques serve more specific detection of otherwise hard to distinguish different collagen polypeptide chains. Capillary electromigration techniques brought recently new aspects of understanding the behaviour of collagen proteins upon different separation modes and seem to represent a smart perspective for better quantitation of individual collagen species.
Collapse
Affiliation(s)
- Z Deyl
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague.
| | | |
Collapse
|