1
|
Fischer J, Aulmann A, Dexheimer V, Grossner T, Richter W. Intermittent PTHrP(1-34) exposure augments chondrogenesis and reduces hypertrophy of mesenchymal stromal cells. Stem Cells Dev 2014; 23:2513-23. [PMID: 24836507 DOI: 10.1089/scd.2014.0101] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phenotype instability and premature hypertrophy prevent the use of human mesenchymal stromal cells (MSCs) for cartilage regeneration. Aim of this study was to investigate whether intermittent supplementation of parathyroid hormone-related protein (PTHrP), as opposed to constant treatment, can beneficially influence MSC chondrogenesis and to explore molecular mechanisms below catabolic and anabolic responses. Human MSCs subjected to chondrogenic induction in high-density culture received PTHrP(1-34), forskolin, dbcAMP, or PTHrP(7-34) either constantly or via 6-h pulses (three times weekly), before proteoglycan, collagen type II, and X deposition; gene expression; and alkaline phosphatase (ALP) activity were assessed. While constant application of PTHrP(1-34) suppressed chondrogenesis of MSCs, pulsed application significantly increased collagen type 2 (COL2A1) gene expression and the collagen type II, proteoglycan, and DNA content of pellets after 6 weeks. Collagen type 10 (COL10A1) gene expression was little affected but Indian hedgehog (IHH) expression and ALP activity were significantly downregulated by pulsed PTHrP. A faster response to PTHrP exposure was recorded for ALP activity over COL2A1 regulation, suggesting that signal duration is critical for catabolic versus anabolic reactions. Stimulation of cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) signaling by forskolin reproduced major effects of both treatment modes, whereas application of PTHrP(7-34) capable of protein kinase C (PKC) signaling was ineffective. Pulsed PTHrP exposure of MSCs stimulated chondrogenesis and reduced endochondral differentiation apparently uncoupling chondrogenic matrix deposition from hypertrophic marker expression. cAMP/PKA was the major signaling pathway triggering the opposing effects of both treatment modes. Intermittent application of PTHrP represents an important novel means to improve chondrogenesis of MSCs and may be considered as a supporting clinical-treatment mode for MSC-based cartilage defect regeneration.
Collapse
Affiliation(s)
- Jennifer Fischer
- Research Center for Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg , Heidelberg, Germany
| | | | | | | | | |
Collapse
|
2
|
Bohinc BN, Gesty-Palmer D. Arrestins in Bone. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:335-58. [DOI: 10.1016/b978-0-12-394440-5.00013-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
3
|
Gesty-Palmer D, Luttrell LM. 'Biasing' the parathyroid hormone receptor: a novel anabolic approach to increasing bone mass? Br J Pharmacol 2011; 164:59-67. [PMID: 21506957 PMCID: PMC3171860 DOI: 10.1111/j.1476-5381.2011.01450.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 03/10/2011] [Indexed: 01/14/2023] Open
Abstract
'Functional selectivity' refers to the ability of a ligand to activate and/or inhibit only a subset of the signals capable of emanating from its cognate G-protein-coupled receptor (GPCR). Whereas conventional GPCR agonism and antagonism can be viewed as modulating the quantity of efficacy, functionally selective or 'biased' ligands qualitatively change the nature of information flow across the plasma membrane, raising the prospect of drugs with improved therapeutic efficacy or reduced side effects. Nonetheless, there is little experimental evidence that biased ligands offer advantages over conventional agonists/antagonists in vivo. Recent work with the type I parathyroid hormone receptor (PTH(1) R) suggests that biased ligands that selectively activate G-protein-independent arrestin-mediated signalling pathways may hold promise in the treatment of osteoporosis. Parathyroid hormone (PTH) is a principle regulator of bone and calcium metabolism. In bone, PTH exerts complex effects; promoting new bone formation through direct actions on osteoblasts while simultaneously stimulating bone loss through indirect activation of osteoclastic bone resorption. Although the conventional PTH(1) R agonist teriparatide, PTH(1-34), is effective in the treatment of osteoporosis, its utility is limited by its bone-resorptive effects and propensity to promote hypercalcaemia/hypercalcuria. In contrast, d-Trp(12) ,Tyr(34) -bPTH(7-34) (PTH-βarr), an arrestin pathway-selective agonist for the PTH(1) R, induces anabolic bone formation independent of classic G-protein-coupled signalling mechanisms. Unlike PTH(1-34), PTH-βarr appears to 'uncouple' the anabolic effects of PTH(1) R activation from its catabolic and calcitropic effects. Such findings offer evidence that arrestin pathway-selective GPCR agonists can elicit potentially beneficial effects in vivo that cannot be achieved using conventional agonist or antagonist ligands.
Collapse
Affiliation(s)
- Diane Gesty-Palmer
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | | |
Collapse
|
4
|
Guo Y, Yuan W, Wang L, Shang M, Peng Y. Parathyroid hormone-potentiated connective tissue growth factor expression in human renal proximal tubular cells through activating the MAPK and NF-kappaB signalling pathways. Nephrol Dial Transplant 2010; 26:839-47. [PMID: 20810452 DOI: 10.1093/ndt/gfq521] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Secondary hyperparathyroidism is a universal complication of chronic renal diseases. One of the pathological consequences of hyperparathyroidism is impairment of the renal interstitium and tubules. However, the molecular mechanism of renal tubular interstitial impairment induced by parathyroid hormone (PTH) remains unclear. Enhanced and prolonged expression of connective tissue growth factor (CTGF) has been associated with fibrosis and inflammation in the kidney. The purpose of this study was to investigate the effects of PTH on CTGF expression patterns in human proximal tubular cell line-HK-2 cells. METHODS We treated cells with various concentrations of PTH for the indicated periods of time in the presence or absence of the mitogen-activated protein kinase (MAPK) inhibitor (PD98059) or the NF-κB inhibitor (PDTC). RESULTS Quantitative real-time RT-PCR analysis revealed that PTH at a concentration of 10(-12)-10(-10) M increased the mRNA levels of CTGF, which was similar to the trends of CTGF protein levels detected by immunoblotting assay. Our data clearly show the ability of human proximal tubular HK-2 cells to produce CTGF after the treatment with PTH. In addition, we showed that PTH induced the phosphorylation of MAPK p42 and p44, and increased NF-κB-binding activities in the PTH-treated cells. Moreover, both PD98059 and PDTC inhibited the effect of PTH on the expression of CTGF, which strongly suggests that these pathways play important roles in the PTH-induced CTGF upregulation in renal tubular cells. CONCLUSIONS Our results indicated for the first time that PTH may enhance the expression of CTGF in human kidney proximal tubular cells, suggesting that PTH may play an important role in the fibrotic and inflammatory process that is a hallmark for progression of chronic kidney disease.
Collapse
Affiliation(s)
- Yunshan Guo
- Department of Nephrology, General Hospital of Jinan Military Jinan, Shandong, China
| | | | | | | | | |
Collapse
|
5
|
Izquierdo A, López-Luna P, Ortega A, Romero M, Guitiérrez-Tarrés MA, Arribas I, Alvarez MJR, Esbrit P, Bosch RJ. The parathyroid hormone-related protein system and diabetic nephropathy outcome in streptozotocin-induced diabetes. Kidney Int 2006; 69:2171-7. [PMID: 16783882 DOI: 10.1038/sj.ki.5000195] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pathophysiology of the diabetic kidney (e.g., hypertrophy, increase urinary albumin excretion (UAE) is still ill-defined. Parathyroid hormone-related protein (PTHrP) is overexpressed in several nephropathies, but its role remains unclear. We evaluated the effect of high glucose on PTHrP and the PTH1 receptor (PTH1R) protein (by Western blot and immunohistochemistry) in the kidney of mice ith streptozotocin-induced diabetes, and in several mouse renal cells in vitro. Diabetic mice showed a significantly increased renal expression of PTHrP and PTH1R proteins with 2-8 weeks from the onset of diabetes. These animals exhibited an intense immunostaining for both proteins in the renal tubules and glomeruli. Using transgenic mice overexpressing PTHrP targeted to the renal proximal tubule, we found a significant increase in the renal hypertrophy index and in UAE in these diabetic mice relative to their control littermates. Moreover, logistic regression analysis showed a significant association between both PTHrP and PTH1R protein levels and UAE in all diabetic mice throughout the study. High-glucose (25 mm) medium was found to increase PTHrP and PTH1R in tubuloepithelial cells, mesangial cells and podocytes in vitro. Moreover, this increase in PTHrP (but not that of PTH1R) was inhibited by the AT1 receptor antagonist losartan. Collectively, these results indicate that the renal PTHrP/PTH1R system is upregulated in streptozotozin-induced diabetes in mice, and appears to adversely affect the outcome of diabetic renal disease. Our findings also suggest that angiotensin II might have a role in the PTHrP upregulation in this condition.
Collapse
MESH Headings
- Angiotensin II/physiology
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Blood Glucose/physiology
- Blotting, Western
- Cell Line
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/physiopathology
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/physiopathology
- Epithelial Cells/chemistry
- Epithelial Cells/pathology
- Epithelial Cells/physiology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Hypertrophy/pathology
- Hypertrophy/physiopathology
- Immunohistochemistry
- Kidney Tubules/chemistry
- Kidney Tubules/pathology
- Kidney Tubules/physiopathology
- Losartan/pharmacology
- Mesangial Cells/chemistry
- Mesangial Cells/pathology
- Mesangial Cells/physiology
- Mice
- Mice, Transgenic
- Parathyroid Hormone-Related Protein/analysis
- Parathyroid Hormone-Related Protein/drug effects
- Parathyroid Hormone-Related Protein/genetics
- Parathyroid Hormone-Related Protein/physiology
- Podocytes/chemistry
- Podocytes/pathology
- Podocytes/physiology
- Receptor, Parathyroid Hormone, Type 1/analysis
- Receptor, Parathyroid Hormone, Type 1/drug effects
- Receptor, Parathyroid Hormone, Type 1/genetics
- Receptor, Parathyroid Hormone, Type 1/physiology
Collapse
Affiliation(s)
- A Izquierdo
- Laboratory of Renal Physiology and Experimental Nephrology, Department of Physiology, University of Alcalá, Alcalá de Henares, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Ortega A, Rámila D, Ardura JA, Esteban V, Ruiz-Ortega M, Barat A, Gazapo R, Bosch RJ, Esbrit P. Role of parathyroid hormone-related protein in tubulointerstitial apoptosis and fibrosis after folic acid-induced nephrotoxicity. J Am Soc Nephrol 2006; 17:1594-603. [PMID: 16672315 DOI: 10.1681/asn.2005070690] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Parathyroid hormone-related protein (PTHrP) is shortly upregulated in acute renal injury, but its pathophysiologic role is unclear. Investigated was whether PTHrP might act as a profibrogenic factor in mice that do or do not overexpress PTHrP in the proximal tubule after folic acid (FA) nephrotoxicity, a model of acute renal damage followed by partial regeneration and patchy tubulointerstitial fibrosis. It was found that constitutive PTHrP overexpression in these animals conveyed a significant increase in tubulointerstitial fibrosis, associated with both fibroblast activation (as alpha-smooth muscle actin staining) and macrophage influx, compared with control littermates at 2 to 3 wk after FA damage. Cell proliferation and survival was higher (P<0.01) in the renal interstitium of PTHrP-overexpressing mice than in control littermates within this period after injury. Moreover, the former mice had a constitutive Bcl-XL protein overexpression. In vitro studies in renal tubulointerstitial and fibroblastic cells strongly suggest that PTHrP (1-36) (100 nM) reduced FA-induced apoptosis through a dual mechanism involving Bcl-XL upregulation and Akt and Bad phosphorylation. PTHrP (1-36) also stimulated monocyte chemoattractant protein-1 expression in tubuloepithelial cells, as well as type-1 procollagen gene expression and fibronectin (mRNA levels and protein secretion) in these cells and renal fibroblastic cells. Our findings indicate that this peptide, by interaction with the PTH1 receptor, can increase tubulointerstitial cell survival and seems to act as a proinflammatory and profibrogenic factor in the FA-damaged kidney.
Collapse
Affiliation(s)
- Arantxa Ortega
- Laboratorio de Metabolismo Mineral y Oseo, Pathology Department, Fundación Jiménez and Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Gesty-Palmer D, Chen M, Reiter E, Ahn S, Nelson CD, Wang S, Eckhardt AE, Cowan CL, Spurney RF, Luttrell LM, Lefkowitz RJ. Distinct beta-arrestin- and G protein-dependent pathways for parathyroid hormone receptor-stimulated ERK1/2 activation. J Biol Chem 2006; 281:10856-64. [PMID: 16492667 DOI: 10.1074/jbc.m513380200] [Citation(s) in RCA: 357] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Parathyroid hormone (PTH) regulates calcium homeostasis via the type I PTH/PTH-related peptide (PTH/PTHrP) receptor (PTH1R). The purpose of the present study was to identify the contributions of distinct signaling mechanisms to PTH-stimulated activation of the mitogen-activated protein kinases (MAPK) ERK1/2. In Human embryonic kidney 293 (HEK293) cells transiently transfected with hPTH1R, PTH stimulated a robust increase in ERK activity. The time course of ERK1/2 activation was biphasic with an early peak at 10 min and a later sustained ERK1/2 activation persisting for greater than 60 min. Pretreatment of HEK293 cells with the PKA inhibitor H89 or the PKC inhibitor GF109203X, individually or in combination reduced the early component of PTH-stimulated ERK activity. However, these inhibitors of second messenger dependent kinases had little effect on the later phase of PTH-stimulated ERK1/2 phosphorylation. This later phase of ERK1/2 activation at 30-60 min was blocked by depletion of cellular beta-arrestin 2 and beta-arrestin 1 by small interfering RNA. Furthermore, stimulation of hPTH1R with PTH analogues, [Trp1]PTHrp-(1-36) and [d-Trp12,Tyr34]PTH-(7-34), selectively activated G(s)/PKA-mediated ERK1/2 activation or G protein-independent/beta-arrestin-dependent ERK1/2 activation, respectively. It is concluded that PTH stimulates ERK1/2 through several distinct signal transduction pathways: an early G protein-dependent pathway meditated by PKA and PKC and a late pathway independent of G proteins mediated through beta-arrestins. These findings imply the existence of distinct active conformations of the hPTH1R responsible for the two pathways, which can be stimulated by unique ligands. Such ligands may have distinct and valuable therapeutic properties.
Collapse
Affiliation(s)
- Diane Gesty-Palmer
- Department of Medicine, Howard Hughes Medical Institute, Duke University, Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Talon I, Lindner V, Sourbier C, Schordan E, Rothhut S, Barthelmebs M, Lang H, Helwig JJ, Massfelder T. Antitumor effect of parathyroid hormone-related protein neutralizing antibody in human renal cell carcinoma in vitro and in vivo. Carcinogenesis 2005; 27:73-83. [PMID: 16081513 DOI: 10.1093/carcin/bgi203] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Functional inactivation of the von Hippel-Lindau (VHL) tumor suppressor gene occurs in 40-80% of human conventional renal cell carcinomas (RCCs). We showed recently that VHL-deficient RCCs expressed large amounts of parathyroid hormone-related protein (PTHrP), and that PTHrP, acting through the PTH1 receptor (PTH1R), plays an essential role in tumor growth. We also showed that PTHrP expression is negatively regulated by the VHL gene products (pVHL). Our goal was to determine whether blocking the PTHrP/PTH1R system might be of therapeutic value against RCC, independent of VHL status and PTHrP expression levels. The antitumor activity of PTHrP neutralizing antibody and of PTH1R antagonist were evaluated in vitro and in vivo in a panel of human RCC lines expressing or not pVHL. PTHrP is upregulated compared with normal tubular cells. In vitro, tumor cell growth and viability was decreased by up to 80% by the antibody in all cell lines. These effects resulted from apoptosis. Exogenously added PTHrP had no effect on cell growth and viability, but reversed the inhibitory effects of the antibody. The growth inhibition was reproduced by a specific PTH1R antagonist in all cell lines. In vivo, the treatment of nude mice bearing the Caki-1 RCC tumor with the PTHrP antibody inhibited tumor growth by 80%, by inducing apoptosis. Proliferation and neovascularization were not affected by the antiserum. Anti-PTHrP treatment induced no side effects as assessed by animal weight and blood chemistries. Current therapeutic strategies are only marginally effective against metastatic RCC, and adverse effects are common. This study provides a rationale for evaluating the blockade of PTHrP signaling as therapy for human RCC in a clinical setting.
Collapse
Affiliation(s)
- Isabelle Talon
- INSERM U727, Section of Renal Pharmacology and Physiopathology, University Louis Pasteur, School of Medicine, and Department of Pathology, Hôpitaux Universitaires de Strasbourg, Strasbourg, 67091 France
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lorenzo O, Ruiz-Ortega M, Esbrit P, Rupérez M, Ortega A, Santos S, Blanco J, Ortega L, Egido J. Angiotensin II increases parathyroid hormone-related protein (PTHrP) and the type 1 PTH/PTHrP receptor in the kidney. J Am Soc Nephrol 2002; 13:1595-607. [PMID: 12039989 DOI: 10.1097/01.asn.0000015622.33198.bf] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Angiotensin II (AngII) participates in the pathogenesis of kidney damage. Parathyroid hormone (PTH)-related protein (PTHrP), a vasodilator and mitogenic agent, is upregulated during renal injury. The aim of this study was to investigate the potential relation between AngII and PTHrP system in the kidney. Different methods were used to find that both rat mesangial and mouse tubuloepithelial cells express PTHrP and the type 1 PTH/PTHrP receptor (PTH1R). In these cells, AngII increased PTHrP mRNA and protein production. In contrast, PTH1R mRNA was increased in mesangial cells and downregulated in tubular cells, but its protein levels were unmodified in both cells. AT(1) antagonist, but not AT(2), abolished AngII effects on PTHrP/PTH1R. The in vivo effect of AngII was further investigated by systemic infusion (a low dose of 50 ng/kg per min) into normal rats. In controls, PTHrP immunostaining was mainly detected in renal tubules. In AngII-infused rats, PTHrP staining increased in renal tubules and appeared in the glomerulus and the renal vessels. After AngII infusion, PTHR1 staining was markedly increased in all these renal structures at day 3 but remained elevated only in tubules at day 7. The AT(1) antagonist, but not the AT(2), significantly diminished AngII-induced PTHrP and PTHR1 overexpression in the renal tissue, associated with a decrease in tubular damage and fibrosis. The results indicate that AngII regulates renal PTHrP/PTH1R system via AT(1) receptors. These findings demonstrate that PTHrP upregulation occurs in association with the mechanisms of AngII-induced kidney injury.
Collapse
Affiliation(s)
- Oscar Lorenzo
- Laboratory of Vascular and Renal Research, and Laboratory of Bone and Mineral Metabolism, Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Otsuki T, Yamada O, Kurebayashi J, Sakaguchi H, Yata K, Uno M, Oka T, Yawata Y, Ueki A. Expression and in vitro modification of parathyroid hormone-related protein (PTHrP) and PTH/PTHrP-receptor in human myeloma cells. Leuk Lymphoma 2001; 41:397-409. [PMID: 11378553 DOI: 10.3109/10428190109057995] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To elucidate the role of PTHrP in myeloma, we examined the expression levels of PTHrP and its receptor in human myeloma cell lines and clinical specimens from 13 myeloma cases. In vitro modification of PTHrP expression and production induced by TGF-beta and PMA in PTHrP expressing myeloma cell lines was also investigated. PTHrP expression was detected in six out of seven myeloma cell lines with an inverse correlation with the expression of its receptor, and in 10 out of 13 clinical specimens in varying degrees. The PTHrP expression and secretion into culture medium were enhanced by supplemental TGF-beta and PMA. PMA also seemed to affect PTHrP upregulation via TGF-beta activation. The fundamental role of PTHrP in bone lesions and hypercalcemia in myeloma may be important to consider even during the initial phase of the disease and particularly in the progression of bone complications with hypercalcemia.
Collapse
Affiliation(s)
- T Otsuki
- Department of Hygiene; Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Swarthout JT, Doggett TA, Lemker JL, Partridge NC. Stimulation of extracellular signal-regulated kinases and proliferation in rat osteoblastic cells by parathyroid hormone is protein kinase C-dependent. J Biol Chem 2001; 276:7586-92. [PMID: 11108712 DOI: 10.1074/jbc.m007400200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Parathyroid hormone (PTH) is known to have both catabolic and anabolic effects on bone. The dual functionality of PTH may stem from its ability to activate two signal transduction mechanisms: adenylate cyclase and phospholipase C. Here, we demonstrate that continuous treatment of UMR 106-01 and primary osteoblasts with PTH peptides, which selectively activate protein kinase C, results in significant increases in DNA synthesis. Given that ERKs are involved in cellular proliferation, we examined the regulation of ERKs in UMR 106-01 and primary rat osteoblasts following PTH treatment. We demonstrate that treatment of osteoblastic cells with very low concentrations of PTH (10(-12) to 10(-11) m) is sufficient for substantial increases in ERK activity. Treatment with PTH-(1-34) (10(-8) m), PTH-(1-31), or 8-bromo-cAMP failed to stimulate ERKs, whereas treatment with phorbol 12-myristate 13-acetate, serum, or PTH peptides lacking the N-terminal amino acids stimulated activity. Furthermore, the activation of ERKs was prevented by pretreatment of osteoblastic cells with inhibitors of protein kinase C (GF 109203X) and MEK (PD 98059). Treatment of UMR cells with epidermal growth factor (EGF), but not PTH, promoted tyrosine phosphorylation of the EGF receptor. Transient transfection of UMR cells with p21(N17Ras) did not block activation of ERKs following treatment with low concentrations of PTH. Thus, activation of ERKs and proliferation by PTH is protein kinase C-dependent, but stimulation occurs independently of the EGF receptor and Ras activation.
Collapse
Affiliation(s)
- J T Swarthout
- Cell and Molecular Biology Program and the Departments of Pharmacological and Physiological Science and Orthopedic Surgery, Saint Louis University School of Medicine, St. Louis, Missouri , USA
| | | | | | | |
Collapse
|
12
|
Esbrit P, Egido J. The emerging role of parathyroid hormone-related protein as a renal regulating factor. Nephrol Dial Transplant 2000; 15:1109-11. [PMID: 10910428 DOI: 10.1093/ndt/15.8.1109] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Abstract
Many G protein-coupled receptor agonists activate p42/p44 mitogen-activated protein kinase (MAPK), using signaling pathways that are a function of receptor, G protein-coupled, and effector complement. In opossum kidney (OK) cells, activation of endogenous PTH receptors caused a time- (peak within 15-30 min, sustained for approximately 2 h) and dose-dependent (EC50 approximately 3 x 10(-10) M) activation of MAPK. Immunoblot analysis with an activation- specific MAPK antibody indicated that PTH activated both p42 and p44 MAPK. Epidermal growth factor (EGF) also activated p42 and p44MAPK in a time- (peak at 5 min, return to basal within 2 h) and dose-dependent (EC50 approximately 3 ng/ml) fashion. PTH-dependent MAPK activation was mimicked by the protein kinase C activator (PKC) phorbol myristate acetate (PMA), and the protein kinase A activators 8 bromo-cAMP (8-Br-cAMP) and forskolin but was not affected by pertussis toxin pretreatment. PMA or 8-Br-cAMP pretreatment blocked MAPK activation by reexposure to each kinase activator but caused no significant reduction in MAPK activation by PTH. MAPK activation by PTH, EGF, and 8-Br-cAMP was inhibited by the MAPK kinase inhibitor PD98059 and an EGF receptor (EGFR)-selective inhibitor tyrphostin AG1478. AG1478 also blocked MAPK activation by insulin-like growth factor-1 and platelet-derived growth factor. EGF and PTH caused time- and AG1478-sensitive phosphorylation of the EGFR, but EGFR desensitization did not affect MAPK activation by PTH. EGF, PMA, and low doses of PTH (10(12) to 10(-9) M) stimulated while 8-Br-cAMP and high doses of PTH (10(-8) to 10(-6) M) inhibited [3H]thymidine uptake. These data demonstrate that PTH activates MAPK and suggest that PKC, protein kinase A, and the EGFR play roles in PTH signaling. The biphasic effect of PTH on DNA synthesis suggests that MAPK activation by the hormone leads to distinct cellular responses.
Collapse
Affiliation(s)
- J A Cole
- The Department of Pharmacology, The University of Missouri School of Medicine, Columbia 65212, USA.
| |
Collapse
|