1
|
Yazdanimoghaddam F, Rezazadeh H, Soltani N, Mehranfard N, Dastgerdi AH, Rad MG, Ghasemi M. Long-term GABA Supplementation Regulates Diabetic Gastroenteropathy through GABA Receptor/trypsin-1/PARs/Akt/COX-2 Axis. DOKL BIOCHEM BIOPHYS 2024; 518:452-462. [PMID: 39196532 DOI: 10.1134/s1607672924600386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 08/29/2024]
Abstract
AIM Molecular alterations of diabetic gastroenteropathy are poorly identified. This study investigates the effects of prolonged GABA supplementation on key protein expression levels of trypsin-1, PAR-1, PAR-2, PAR-3, PI3K, Akt, COX-2, GABAA, and GABAB receptors in the gastric tissue of type 2 diabetic rats (T2DM). METHOD To induce T2DM, a 3-month high-fat diet and 35 mg/kg of streptozotocin was used. Twenty-four male Wistar rats were divided into 4 groups: (1) control, (2) T2DM, (3) insulin-treated (2.5 U/kg), and (4) GABA-treated (1.5 g/kg GABA). Blood glucose was measured weekly. The protein expressions were assessed using western blotting. Histopathological changes were examined by H&E and Masson's staining. RESULTS Diabetic rats show reduced NOS1 and elevated COX-2 and trypsin-1 protein expression levels in gastric tissue. Insulin and GABA therapy restored the NOS1 and COX-2 levels to control values. Insulin treatment increased PI3K, Akt, and p-Akt and, decreased trypsin-1, PAR-1, PAR-2, and PAR-3 levels in the diabetic rats. Levels of GABAA and GABAB receptors normalized following insulin and GABA therapy. H&E staining indicated an increase in mucin secretion following GABA treatment. CONCLUSION These results suggest that GABA by acting on GABA receptors may regulate the trypsin-1/PARs/Akt/COX-2 pathway and thereby improve complications of diabetic gastroenteropathy.
Collapse
Affiliation(s)
- Farzaneh Yazdanimoghaddam
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, 4631-19395, Tehran, Iran
| | - Hossein Rezazadeh
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nepton Soltani
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasrin Mehranfard
- Nanokadeh Darooee Samen, Private Joint Stock Company, 5715793731, Urmia, Iran
| | | | - Mahtab Ghanbari Rad
- Gerash Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Kumrungsee T. Is hepatic GABA transaminase a promising target for obesity and epilepsy treatments? Biosci Biotechnol Biochem 2024; 88:839-849. [PMID: 38749549 DOI: 10.1093/bbb/zbae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/05/2024] [Indexed: 07/23/2024]
Abstract
γ-Aminobutyric acid (GABA) transaminase (GABA-T) is a GABA-degrading enzyme that plays an essential role in regulating GABA levels and maintaining supplies of GABA. Although GABA in the mammalian brain was discovered 70 years ago, research on GABA and GABA-T has predominantly focused on the brain. Notwithstanding the high activity and expression of GABA-T in the liver, the exact functions of GABA-T in the liver remain unknown. This article reviews the up-to-date information on GABA-T in the liver. It presents recent findings on the role of liver GABA-T in food intake suppression and appetite regulation. Finally, the potential functions of liver GABA-T in other neurological diseases, natural GABA-T inhibitors, and future perspectives in this research area are discussed.
Collapse
Affiliation(s)
- Thanutchaporn Kumrungsee
- Program of Food and AgriLife Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Smart Agriculture, Graduate School of Innovation and Practice for Smart Society, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
3
|
Laroute V, Beaufrand C, Gomes P, Nouaille S, Tondereau V, Daveran-Mingot ML, Theodorou V, Eutamene H, Mercier-Bonin M, Cocaign-Bousquet M. Lactococcus lactis NCDO2118 exerts visceral antinociceptive properties in rat via GABA production in the gastro-intestinal tract. eLife 2022; 11:77100. [PMID: 35727704 PMCID: PMC9213000 DOI: 10.7554/elife.77100] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022] Open
Abstract
Gut disorders associated to irritable bowel syndrome (IBS) are combined with anxiety and depression. Evidence suggests that microbially produced neuroactive molecules, like γ-aminobutyric acid (GABA), can modulate the gut-brain axis. Two natural strains of Lactococcus lactis and one mutant were characterized in vitro for their GABA production and tested in vivo in rat by oral gavage for their antinociceptive properties. L. lactis NCDO2118 significantly reduced visceral hypersensitivity induced by stress due to its glutamate decarboxylase (GAD) activity. L. lactis NCDO2727 with similar genes for GABA metabolism but no detectable GAD activity had no in vivo effect, as well as the NCDO2118 ΔgadB mutant. The antinociceptive effect observed for the NCDO2118 strain was mediated by the production of GABA in the gastro-intestinal tract and blocked by GABAB receptor antagonist. Only minor changes in the faecal microbiota composition were observed after the L. lactis NCDO2118 treatment. These findings reveal the crucial role of the microbial GAD activity of L. lactis NCDO2118 to deliver GABA into the gastro-intestinal tract for exerting antinociceptive properties in vivo and open avenues for this GRAS (Generally Recognized As safe) bacterium in the management of visceral pain and anxious profile of IBS patients.
Collapse
Affiliation(s)
- Valérie Laroute
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Catherine Beaufrand
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Pedro Gomes
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.,Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Sébastien Nouaille
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Valérie Tondereau
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | - Vassilia Theodorou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Hélène Eutamene
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Muriel Mercier-Bonin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Muriel Cocaign-Bousquet
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
4
|
Zizzo MG, Cicio A, Raimondo S, Alessandro R, Serio R. Age-related differences of γ-aminobutyric acid (GABA)ergic transmission in human colonic smooth muscle. Neurogastroenterol Motil 2022; 34:e14248. [PMID: 34432349 PMCID: PMC9285353 DOI: 10.1111/nmo.14248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/10/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Enteric neurons undergo to functional changes during aging. We investigated the possible age-associated differences in enteric γ-aminobutyric acid (GABA)ergic transmission evaluating function and distribution of GABAergic receptors in human colon. METHODS Mechanical responses to GABA and GABA receptor agonists on slow phasic contractions were examined in vitro as changes in isometric tension in colonic muscle strips from young (<65 years old) and aged patients (>65 years old). GABAergic receptor expression was assessed by quantitative RT-PCR. KEY RESULTS In both preparations GABA induced an excitatory effect, consisting in an increase in the basal tone, antagonized by the GABAA receptor antagonist, bicuculline, and potentiated by phaclofen, GABAB receptor antagonist.Tetrodotoxin (TTX) and atropine-sensitive contractile responses to GABA and GABAA receptor agonist, muscimol, were more pronounced in old compared to young subjects. Baclofen, GABAB receptor agonist, induced a TTX-sensitive reduction of the amplitude of the spontaneous. Nω-nitro-l-arginine methyl ester (L-NAME), nitric oxide (NO) synthase inhibitor abolished the inhibitory responses in old preparations, but a residual responses persisted in young preparations, which in turn was abolished by suramin, purinergic receptor antagonist. α3-GABAA receptor subunit expression tends to change in an age-dependent manner. CONCLUSIONS AND INFERENCES Our results reveal age-related differences in GABAergic transmission in human colon. At all the age tested GABA regulates muscular contractility modulating the activity of the intrinsic neurons. Activation of GABAA receptor, through acetylcholine release, induces contraction, which increases in amplitude with age. GABAB receptor activation leads to neural release of NO and purines, being a loss of purinergic-component in aged group.
Collapse
Affiliation(s)
- Maria Grazia Zizzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoViale delle Scienze,ed 16Palermo90128Italy,ATeN (Advanced Technologies Network) CenterUniversity of PalermoViale delle Scienze, ed 18Palermo90128Italy
| | - Adele Cicio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoViale delle Scienze,ed 16Palermo90128Italy
| | - Stefania Raimondo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D)University of PalermoSection of Biology and GeneticsPalermo90133Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D)University of PalermoSection of Biology and GeneticsPalermo90133Italy
| | - Rosa Serio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF)University of PalermoViale delle Scienze,ed 16Palermo90128Italy
| |
Collapse
|
5
|
Maccioni P, Kaczanowska K, Lawrence H, Yun S, Bratzu J, Gessa GL, McDonald P, Colombo G. The Novel Positive Allosteric Modulator of the GABA B Receptor, KK-92A, Suppresses Alcohol Self-Administration and Cue-Induced Reinstatement of Alcohol Seeking in Rats. Front Cell Dev Biol 2021; 9:727576. [PMID: 34778249 PMCID: PMC8585307 DOI: 10.3389/fcell.2021.727576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
Positive allosteric modulators (PAMs) of the GABAB receptor (GABAB PAMs) are of interest in the addiction field due to their ability to suppress several behaviors motivated by drugs of abuse. KK-92A is a novel GABAB PAM found to attenuate intravenous self-administration of nicotine and reinstatement of nicotine seeking in rats. This present study was aimed at extending to alcohol the anti-addictive properties of KK-92A. To this end, Sardinian alcohol-preferring rats were trained to lever-respond for oral alcohol (15% v/v) or sucrose (0.7% w/v) under the fixed ratio (FR) 5 (FR5) schedule of reinforcement. Once lever-responding behavior had stabilized, rats were exposed to tests with acutely administered KK-92A under FR5 and progressive ratio schedules of reinforcement and cue-induced reinstatement of previously extinguished alcohol seeking. KK-92A effect on spontaneous locomotor activity was also evaluated. Treatment with 10 and 20 mg/kg KK-92A suppressed lever-responding for alcohol, amount of self-administered alcohol, and breakpoint for alcohol. Treatment with 20 mg/kg KK-92A reduced sucrose self-administration. Combination of per se ineffective doses of KK-92A (2.5 mg/kg) and the GABAB receptor agonist, baclofen (1 mg/kg), reduced alcohol self-administration. Treatment with 5, 10, and 20 mg/kg KK-92A suppressed reinstatement of alcohol seeking. Only treatment with 80 mg/kg KK-92A affected spontaneous locomotor activity. These results demonstrate the ability of KK-92A to inhibit alcohol-motivated behaviors in rodents and confirm that these effects are common to the entire class of GABAB PAMs. The remarkable efficacy of KK-92A is discussed in terms of its ago-allosteric properties.
Collapse
Affiliation(s)
- Paola Maccioni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, Italy
| | - Katarzyna Kaczanowska
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, United States
| | - Harshani Lawrence
- Chemical Biology Core, Moffitt Cancer Center, Tampa, FL, United States
| | - Sang Yun
- Chemical Biology Core, Moffitt Cancer Center, Tampa, FL, United States
| | - Jessica Bratzu
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, Italy
| | - Gian Luigi Gessa
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, Italy
| | - Patricia McDonald
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL, United States
| | - Giancarlo Colombo
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Monserrato, Italy
| |
Collapse
|
6
|
Suleiman S, Klassen S, Katz I, Balakirski G, Krabbe J, von Stillfried S, Kintsler S, Braunschweig T, Babendreyer A, Spillner J, Kalverkamp S, Schröder T, Moeller M, Coburn M, Uhlig S, Martin C, Rieg AD. Argon reduces the pulmonary vascular tone in rats and humans by GABA-receptor activation. Sci Rep 2019; 9:1902. [PMID: 30760775 PMCID: PMC6374423 DOI: 10.1038/s41598-018-38267-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022] Open
Abstract
Argon exerts neuroprotection. Thus, it might improve patients' neurological outcome after cerebral disorders or cardiopulmonary resuscitation. However, limited data are available concerning its effect on pulmonary vessel and airways. We used rat isolated perfused lungs (IPL) and precision-cut lung slices (PCLS) of rats and humans to assess this topic. IPL: Airway and perfusion parameters, oedema formation and the pulmonary capillary pressure (Pcap) were measured and the precapillary and postcapillary resistance (Rpost) was calculated. In IPLs and PCLS, the pulmonary vessel tone was enhanced with ET-1 or remained unchanged. IPLs were ventilated and PCLS were gassed with argon-mixture or room-air. IPL: Argon reduced the ET-1-induced increase of Pcap, Rpost and oedema formation (p < 0.05). PCLS (rat): Argon relaxed naïve pulmonary arteries (PAs) (p < 0.05). PCLS (rat/human): Argon attenuated the ET-1-induced contraction in PAs (p < 0.05). Inhibition of GABAB-receptors abolished argon-induced relaxation (p < 0.05) in naïve or ET-1-pre-contracted PAs; whereas inhibition of GABAA-receptors only affected ET-1-pre-contracted PAs (p < 0.01). GABAA/B-receptor agonists attenuated ET-1-induced contraction in PAs and baclofen (GABAB-agonist) even in pulmonary veins (p < 0.001). PLCS (rat): Argon did not affect the airways. Finally, argon decreases the pulmonary vessel tone by activation of GABA-receptors. Hence, argon might be applicable in patients with pulmonary hypertension and right ventricular failure.
Collapse
Affiliation(s)
- Said Suleiman
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, 52074, Aachen, Germany
| | - Sergej Klassen
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, 52074, Aachen, Germany
| | - Ira Katz
- Medical Research & Development, Air Liquide Santé Internationale, Centre de Recherche Paris-Saclay, 78354, Jouy-en-Josas, France
| | - Galina Balakirski
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, 52074, Aachen, Germany
| | - Julia Krabbe
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, 52074, Aachen, Germany
| | | | - Svetlana Kintsler
- Institute of Pathology, Medical Faculty RWTH Aachen, 52074, Aachen, Germany
| | - Till Braunschweig
- Institute of Pathology, Medical Faculty RWTH Aachen, 52074, Aachen, Germany
| | - Aaron Babendreyer
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, 52074, Aachen, Germany
| | - Jan Spillner
- Department of Cardiac and Thoracic Surgery, Medical Faculty RWTH Aachen, 52074, Aachen, Germany
| | - Sebastian Kalverkamp
- Department of Cardiac and Thoracic Surgery, Medical Faculty RWTH Aachen, 52074, Aachen, Germany
| | - Thomas Schröder
- Department of Surgery, Luisenhospital Aachen, 52064, Aachen, Germany
| | - Manfred Moeller
- Institute for Occupational, Social and Environmental Medicine, Medical Faculty RWTH Aachen, 52074, Aachen, Germany
| | - Mark Coburn
- Department of Anaesthesiology, Medical Faculty RWTH Aachen, 52074, Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, 52074, Aachen, Germany
| | - Christian Martin
- Institute of Pharmacology and Toxicology, Medical Faculty RWTH-Aachen, 52074, Aachen, Germany
| | - Annette D Rieg
- Department of Anaesthesiology, Medical Faculty RWTH Aachen, 52074, Aachen, Germany.
| |
Collapse
|
7
|
Wallace E, Twomey M, Victory R, O'Reilly M. Intravesical Baclofen, Bupivacaine, and Oxycodone for the relief of Bladder Spasm. J Palliat Care 2018. [DOI: 10.1177/082585971302900108] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Elaine Wallace
- E Wallace (corresponding author) Department of Palliative Medicine, St. Luke's Hospital, Rathgar, Dublin 6, Ireland
| | - Marie Twomey
- Department of Palliative Medicine, St. Luke's Hospital, Rathgar, Dublin 6, Ireland
| | - Ray Victory
- R Victory: Department of Anaesthetics, St. Luke's Hospital, Rathgar, Dublin 6, Ireland, and Department of Anaesthetics, St. Vincent's Hospital, Elm Park, Dublin 4, Ireland
| | - Maeve O'Reilly
- R Victory: Department of Anaesthetics, St. Luke's Hospital, Rathgar, Dublin 6, Ireland, and Department of Anaesthetics, St. Vincent's Hospital, Elm Park, Dublin 4, Ireland
| |
Collapse
|
8
|
Naik R, Valentine H, Dannals RF, Wong DF, Horti AG. Synthesis and Evaluation of a New 18F-Labeled Radiotracer for Studying the GABA B Receptor in the Mouse Brain. ACS Chem Neurosci 2018; 9:1453-1461. [PMID: 29498831 DOI: 10.1021/acschemneuro.8b00038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
New GABAB agonists, fluoropyridyl ether analogues of baclofen, have been synthesized as potential PET radiotracers. The compound with highest inhibition binding affinity as well as greatest agonist response, ( R)-4-amino-3-(4-chloro-3-((2-fluoropyridin-4-yl)methoxy)phenyl)butanoic acid (1b), was radiolabeled with 18F with good radiochemical yield, high radiochemical purity, and high molar radioactivity. The regional brain distribution of the radiolabeled ( R)-4-amino-3-(4-chloro-3-((2-[18F]fluoropyridin-4-yl)methoxy)phenyl)butanoic acid, [18F]1b, was studied in CD-1 male mice. The study demonstrated that [18F]1b enters the mouse brain (1% ID/g tissue). The accumulation of [18F]1b in the mouse brain was inhibited (35%) by preinjection of GABAB agonist 1a, suggesting that the radiotracer brain uptake is partially mediated by GABAB receptors. The presented data demonstrate a feasibility of imaging of GABAB receptors in rodents and justify further development of GABAB PET tracers with improved specific binding and greater blood-brain barrier permeability.
Collapse
Affiliation(s)
- Ravi Naik
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287 United States
| | - Heather Valentine
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287 United States
| | - Robert F. Dannals
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287 United States
| | - Dean F. Wong
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287 United States
| | - Andrew G. Horti
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287 United States
| |
Collapse
|
9
|
Kaewsaro K, Nualplub S, Bumrungsri S, Khuituan P. Furosemide suppresses ileal and colonic contractility via interactions with GABA-A receptor in mice. Clin Exp Pharmacol Physiol 2017; 44:1155-1165. [DOI: 10.1111/1440-1681.12824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/28/2017] [Accepted: 07/19/2017] [Indexed: 11/28/2022]
Affiliation(s)
- Kannaree Kaewsaro
- Department of Physiology; Faculty of Science; Prince of Songkla University; Hat Yai Songkhla Thailand
- Department of Biology, Faculty of Science; Prince of Songkla University; Hat Yai Songkhla Thailand
| | - Suparp Nualplub
- Department of Physiology; Faculty of Science; Prince of Songkla University; Hat Yai Songkhla Thailand
| | - Sara Bumrungsri
- Department of Biology, Faculty of Science; Prince of Songkla University; Hat Yai Songkhla Thailand
| | - Pissared Khuituan
- Department of Physiology; Faculty of Science; Prince of Songkla University; Hat Yai Songkhla Thailand
| |
Collapse
|
10
|
Leach K, Gregory KJ. Molecular insights into allosteric modulation of Class C G protein-coupled receptors. Pharmacol Res 2017; 116:105-118. [DOI: 10.1016/j.phrs.2016.12.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/18/2016] [Accepted: 12/07/2016] [Indexed: 12/23/2022]
|
11
|
Hong AR, Kim YA, Bae JH, Min HS, Kim JH, Shin CS, Kim SY, Kim SW. A Possible Link Between Parathyroid Hormone Secretion and Local Regulation of GABA in Human Parathyroid Adenomas. J Clin Endocrinol Metab 2016; 101:2594-601. [PMID: 27070188 DOI: 10.1210/jc.2015-4329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CONTEXT γ-Aminobutyric acid-B receptor 1 (GABABR1) forms a heterodimeric complex with calcium-sensing receptor (CaSR) in human brain tissue. However, the expression and implication of GABABR1 in human parathyroid adenoma has not yet been examined. OBJECTIVE The objective of the study was to examine a possible link between GABABR1 and PTH secretion in human parathyroid adenoma Design and Methods: Sixty-five patients who underwent parathyroidectomy for primary hyperparathyroidism (PHPT) and 29 control patients with normal parathyroid glands were retrospectively included. All patients diagnosed with PHPT had parathyroid adenomas. We evaluated the protein expression of GABABR1, glutamic acid decarboxylase 65/67 (GAD65/67), and various factors proposed as regulators of PTH secretion including CaSR, vitamin D receptor (VDR), CYP24A1, CYP27B1, fibroblast growth factor, and α-klotho in parathyroid tissues from patients with parathyroid adenomas using immunohistochemistry. RESULTS Expressions of CaSR, GABABR1, and VDR were significantly lower in PHPT patients than in control subjects (P < .001 for CaSR and GABABR1; P = .006 for VDR). Protein expression of GAD65/67, which indicates local production and regulation of GABAergic pathway, was significantly increased in PHPT (P < .001). There were no significant differences in CYP24A1, CYP27B1, fibroblast growth factor, and α-klotho expression between the two groups. Expression of GAD65/67 was significantly correlated with VDR, CYP24A1, CYP27B1, and α-klotho in PHPT (all P < .01) but not in the control groups. CaSR expression was positively associated with serum phosphorus level (r = 0.274, P = .029) and GAD65/67 was negatively correlated with serum PTH level (r = -0.342, P = .005). CONCLUSIONS Local production and action of GABA may be regulated in human parathyroid adenomas. This suggests a possible link between PTH secretion and local regulation of GABA in parathyroid adenomas.
Collapse
Affiliation(s)
- A Ram Hong
- Departments of Internal Medicine (A.R.H., J.H.B., J.H.K., C.S.S., S.Y.K., S.W.K.) and Pathology (Y.A.K., H.S.M.), Seoul National University College of Medicine, and Departments of Pathology (Y.A.K.) and Internal Medicine (S.W.K.), Seoul Metropolitan Government Boramae Medical Center, Seoul 156-707, Republic of Korea
| | - Young A Kim
- Departments of Internal Medicine (A.R.H., J.H.B., J.H.K., C.S.S., S.Y.K., S.W.K.) and Pathology (Y.A.K., H.S.M.), Seoul National University College of Medicine, and Departments of Pathology (Y.A.K.) and Internal Medicine (S.W.K.), Seoul Metropolitan Government Boramae Medical Center, Seoul 156-707, Republic of Korea
| | - Jae Hyun Bae
- Departments of Internal Medicine (A.R.H., J.H.B., J.H.K., C.S.S., S.Y.K., S.W.K.) and Pathology (Y.A.K., H.S.M.), Seoul National University College of Medicine, and Departments of Pathology (Y.A.K.) and Internal Medicine (S.W.K.), Seoul Metropolitan Government Boramae Medical Center, Seoul 156-707, Republic of Korea
| | - Hye Sook Min
- Departments of Internal Medicine (A.R.H., J.H.B., J.H.K., C.S.S., S.Y.K., S.W.K.) and Pathology (Y.A.K., H.S.M.), Seoul National University College of Medicine, and Departments of Pathology (Y.A.K.) and Internal Medicine (S.W.K.), Seoul Metropolitan Government Boramae Medical Center, Seoul 156-707, Republic of Korea
| | - Jung Hee Kim
- Departments of Internal Medicine (A.R.H., J.H.B., J.H.K., C.S.S., S.Y.K., S.W.K.) and Pathology (Y.A.K., H.S.M.), Seoul National University College of Medicine, and Departments of Pathology (Y.A.K.) and Internal Medicine (S.W.K.), Seoul Metropolitan Government Boramae Medical Center, Seoul 156-707, Republic of Korea
| | - Chan Soo Shin
- Departments of Internal Medicine (A.R.H., J.H.B., J.H.K., C.S.S., S.Y.K., S.W.K.) and Pathology (Y.A.K., H.S.M.), Seoul National University College of Medicine, and Departments of Pathology (Y.A.K.) and Internal Medicine (S.W.K.), Seoul Metropolitan Government Boramae Medical Center, Seoul 156-707, Republic of Korea
| | - Seong Yeon Kim
- Departments of Internal Medicine (A.R.H., J.H.B., J.H.K., C.S.S., S.Y.K., S.W.K.) and Pathology (Y.A.K., H.S.M.), Seoul National University College of Medicine, and Departments of Pathology (Y.A.K.) and Internal Medicine (S.W.K.), Seoul Metropolitan Government Boramae Medical Center, Seoul 156-707, Republic of Korea
| | - Sang Wan Kim
- Departments of Internal Medicine (A.R.H., J.H.B., J.H.K., C.S.S., S.Y.K., S.W.K.) and Pathology (Y.A.K., H.S.M.), Seoul National University College of Medicine, and Departments of Pathology (Y.A.K.) and Internal Medicine (S.W.K.), Seoul Metropolitan Government Boramae Medical Center, Seoul 156-707, Republic of Korea
| |
Collapse
|
12
|
Abstract
This review compares the biological and physiological function of Sigma receptors [σRs] and their potential therapeutic roles. Sigma receptors are widespread in the central nervous system and across multiple peripheral tissues. σRs consist of sigma receptor one (σ1R) and sigma receptor two (σ2R) and are expressed in numerous regions of the brain. The sigma receptor was originally proposed as a subtype of opioid receptors and was suggested to contribute to the delusions and psychoses induced by benzomorphans such as SKF-10047 and pentazocine. Later studies confirmed that σRs are non-opioid receptors (not an µ opioid receptor) and play a more diverse role in intracellular signaling, apoptosis and metabolic regulation. σ1Rs are intracellular receptors acting as chaperone proteins that modulate Ca2+ signaling through the IP3 receptor. They dynamically translocate inside cells, hence are transmembrane proteins. The σ1R receptor, at the mitochondrial-associated endoplasmic reticulum membrane, is responsible for mitochondrial metabolic regulation and promotes mitochondrial energy depletion and apoptosis. Studies have demonstrated that they play a role as a modulator of ion channels (K+ channels; N-methyl-d-aspartate receptors [NMDAR]; inositol 1,3,5 triphosphate receptors) and regulate lipid transport and metabolism, neuritogenesis, cellular differentiation and myelination in the brain. σ1R modulation of Ca2+ release, modulation of cardiac myocyte contractility and may have links to G-proteins. It has been proposed that σ1Rs are intracellular signal transduction amplifiers. This review of the literature examines the mechanism of action of the σRs, their interaction with neurotransmitters, pharmacology, location and adverse effects mediated through them.
Collapse
Affiliation(s)
- Colin G Rousseaux
- a Department of Pathology and Laboratory Medicine , University of Ottawa , Ottawa , ON , Canada and
| | | |
Collapse
|
13
|
Auteri M, Zizzo MG, Mastropaolo M, Serio R. Opposite role played by GABAA and GABAB receptors in the modulation of peristaltic activity in mouse distal colon. Eur J Pharmacol 2014; 731:93-9. [PMID: 24642362 DOI: 10.1016/j.ejphar.2014.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/06/2014] [Indexed: 12/26/2022]
Abstract
We investigated the role of GABA on intestinal motility using as model the murine distal colon. Effects induced by GABA receptors recruitment were examined in whole colonic segments and isolated circular muscle preparations to analyze their influence on peristaltic reflex and on spontaneous and neurally-evoked contractions. Using a modified Trendelenburg set-up, rhythmic peristaltic contractions were evoked by gradual distension of the colonic segments. Spontaneous and neurally-evoked mechanical activity of circular muscle strips were recorded in vitro as changes in isometric tension. GABA, at low concentrations (10-50 µM), potentiated peristaltic activity and the neural cholinergic contractions, whilst it, at higher concentrations (500 µM-1mM), had inhibitory effects. GABA excitatory effects were mimicked by muscimol, GABAA-receptor agonist, and prevented by bicuculline, GABAA-receptor antagonist, which per se reduced peristaltic activity and the cholinergic contractile responses. Inhibitory effects were mimicked by baclofen, GABAB-receptor agonist, and antagonized by phaclofen, GABAB-receptor antagonist and by hexamethonium, neural nicotinic receptor antagonist. Guanethidine was ineffective on GABA effects. Non-cholinergic responses were not affected by GABA agents. All drugs failed to affect the response to carbachol. Lastly, GABAC receptor agonist/antagonist had any effect on colonic motility. In conclusion, GABA in mouse distal colon is a modulator of peristaltic activity via the regulation of acetylcholine release from cholinergic neurons through interaction with GABAA or GABAB receptors. GABAA receptors are recruited at low GABA concentrations, increasing acetylcholine release and propulsive activity. At high GABA concentrations the activation of GABAB receptors overrides GABAA receptor effects, decreasing acetylcholine release and peristaltic activity.
Collapse
Affiliation(s)
- Michelangelo Auteri
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Laboratorio di Fisiologia generale, Viale delle Scienze, I-90128 Palermo, Università di Palermo, Italy
| | - Maria Grazia Zizzo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Laboratorio di Fisiologia generale, Viale delle Scienze, I-90128 Palermo, Università di Palermo, Italy
| | - Mariangela Mastropaolo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Laboratorio di Fisiologia generale, Viale delle Scienze, I-90128 Palermo, Università di Palermo, Italy
| | - Rosa Serio
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Laboratorio di Fisiologia generale, Viale delle Scienze, I-90128 Palermo, Università di Palermo, Italy.
| |
Collapse
|
14
|
Harris KD, Zahavi A. The evolution of ACh and GABA as neurotransmitters: a hypothesis. Med Hypotheses 2013; 81:760-2. [PMID: 23942033 DOI: 10.1016/j.mehy.2013.07.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Revised: 07/17/2013] [Accepted: 07/22/2013] [Indexed: 11/16/2022]
Abstract
The development of a signaling system requires the evolution of a mechanism for producing signals, receptors and adaptive reactions to the signal. It is reasonable to assume that the evolution of such a system cannot be the consequence of a coordinated set of mutations resulting in a complete signaling system. It is more likely that each component evolved due to an advantage that was independent of its role in the signaling system. We hypothesize how the neurotransmitters acetylcholine (ACh) and gamma-aminobutyric acid (GABA) evolved gradually, from an initial stage in which the efflux of these molecules from the cell was an inevitable consequence of specific metabolic activities of the cell. The efflux later served as a cue that reflects the activity of the cell that released the molecules. These cues can later evolve into paracrine signals. We further suggest that the signals used in paracrine signaling were adopted by the central nervous system, as peripheral cells were already attentive to these signals. Signaling molecules released by the target cells of neurons, as an inevitable consequence of the activities of the target cells, could function as retrograde signals of the activity of the target cell. We hypothesize that ACh released by innervated myocytes functions as a retrograde signal of myocyte response to neuronal stimulation.
Collapse
Affiliation(s)
- K D Harris
- Tel-Aviv University, Department of Zoology, Tel Aviv, Israel
| | | |
Collapse
|
15
|
Fan W, Shi B, Wei H, Ma X, He X, Feng K. Γ-aminobutyric acid B receptor improves carbon tetrachloride-induced liver fibrosis in rats. Dig Dis Sci 2013; 58:1909-15. [PMID: 23508979 DOI: 10.1007/s10620-013-2623-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 02/26/2013] [Indexed: 01/14/2023]
Abstract
BACKGROUND It was well known that angiotension II can inhibit hepatic stellate cell activation. The GABAB receptor was upregulated when the hepatic stellate cell line was stimulated by angiotension II in our previous study. But the role of the GABAB receptor in liver fibrosis has never been reported. AIM In the present study, we investigated the effects of this receptor on carbon tetrachloride-induced liver fibrosis in rats. METHODS The rats were divided into four groups including GABAB receptor agonist, antangonist, model and control group. α-smooth muscle actin (α-SMA) and GABAB receptor expression levels were detected by immunohistochemistry and real-time polymerase chain reaction. Liver function tests were performed once blood samples was taken; Western blot analysis was used to detect protein expression level of α-SMA and TGF-β1. RESULTS We found baclofen ameliorated the CCl4-induced rats's liver fibrosis. The highest liver enzymes and α-SMA protein levels were found in the CGP35348 group. CONCLUSION The GABAB receptor may have a protective role in the liver.
Collapse
Affiliation(s)
- Wenmei Fan
- Institute of Organ Transplantation, 309th Hospital of Chinese People's Liberation Army, A17, Heishanhu Road, Haidian District, 100091 Beijing, China.
| | | | | | | | | | | |
Collapse
|
16
|
Determination of GABA(Aα1) and GABA (B1) receptor subunits expression in tissues of gilts during the late gestation. Mol Biol Rep 2012; 40:1377-84. [PMID: 23086273 DOI: 10.1007/s11033-012-2181-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 10/08/2012] [Indexed: 10/27/2022]
Abstract
GABA(Aα1) and GABA(B1) receptor subunits are responsible for most behavioral, physiological and pharmacological effects of GABA receptors. We investigated the expression of GABA(Aα1) and GABA(B1) receptor subunits in different tissues of gilts during late pregnancy in hot summer. The mRNA abundance of GABA(Aα1) receptor subunit in different tissues of gilts at d 90 and d 110 of gestation was as follows: d 90: brain > lung > liver > ovary > spleen > kidney > heart; d 110: brain > lung > spleen > liver > ovary > kidney > heart. And, the mRNA abundance of GABA(B1) receptor subunit was as follows: d 90: spleen > lung > brain > kidney > ovary > liver > heart; d 110: spleen > lung > kidney > brain > ovary > liver > heart. The results in this trial indicated that the GABA(Aα1) receptor subunit was abundantly expressed in brain, while GABA(B1) receptor subunit was abundant in spleen and lung of gilts during late gestation. There were no gestation stage-dependent effects on GABA(Aα1) and GABA(B1) receptor subunits expression in all tissues.
Collapse
|
17
|
Takahata Y, Hinoi E, Takarada T, Nakamura Y, Ogawa S, Yoneda Y. Positive regulation by γ-aminobutyric acid B receptor subunit-1 of chondrogenesis through acceleration of nuclear translocation of activating transcription factor-4. J Biol Chem 2012; 287:33293-303. [PMID: 22879594 DOI: 10.1074/jbc.m112.344051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A view that signaling machineries for the neurotransmitter γ-aminobutyric acid (GABA) are functionally expressed by cells outside the central nervous system is now prevailing. In this study, we attempted to demonstrate functional expression of GABAergic signaling molecules by chondrocytes. In cultured murine costal chondrocytes, mRNA was constitutively expressed for metabotropic GABA(B) receptor subunit-1 (GABA(B)R1), but not for GABA(B)R2. Immunohistochemical analysis revealed the predominant expression of GABA(B)R1 by prehypertrophic to hypertrophic chondrocytes in tibial sections of newborn mice. The GABA(B)R agonist baclofen failed to significantly affect chondrocytic differentiation determined by Alcian blue staining and alkaline phosphatase activity in cultured chondrocytes, whereas newborn mice knocked out of GABA(B)R1 (KO) showed a decreased body size and delayed calcification in hyoid bone and forelimb and hindlimb digits. Delayed calcification was also seen in cultured metatarsals from KO mice with a marked reduction of Indian hedgehog gene (Ihh) expression. Introduction of GABA(B)R1 led to synergistic promotion of the transcriptional activity of activating transcription factor-4 (ATF4) essential for normal chondrogenesis, in addition to facilitating ATF4-dependent Ihh promoter activation. Although immunoreactive ATF4 was negligibly detected in the nucleus of chondrocytes from KO mice, ATF4 expression was again seen in the nucleus and cytoplasm after the retroviral introduction of GABA(B)R1 into cultured chondrocytes from KO mice. In nuclear extracts of KO chondrocytes, a marked decrease was seen in ATF4 DNA binding. These results suggest that GABA(B)R1 positively regulates chondrogenesis through a mechanism relevant to the acceleration of nuclear translocation of ATF4 for Ihh expression in chondrocytes.
Collapse
Affiliation(s)
- Yoshifumi Takahata
- Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Terán Y, Ponce O, Betancourt L, Hernández L, Rada P. Amino acid profile of plasma and cerebrospinal fluid in preeclampsia. Pregnancy Hypertens 2012; 2:416-22. [PMID: 26105613 DOI: 10.1016/j.preghy.2012.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 03/26/2012] [Accepted: 05/06/2012] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To determine patterns in amino acids (arginine, GABA, glutamate and glutamine) and the diamine (agmatine) in plasma and cerebrospinal fluid (CSF) of mild and severe preeclampsia compared to control patients, using capillary zone electrophoresis to generate methods for refining diagnosis and prognosis and shed light on the pathophysiological mechanisms of preeclampsia. STUDY DESIGN This is an observational case-control study in pregnant women that attended the emergency ward of the University Hospital, Mérida, Venezuela, during the period April, 2009-April 2010. MAIN OUTCOME MEASURES Molar concentration of amino acids and diamine in plasma and CSF in control, mild and severe preeclampsia patients. RESULTS An increase in glutamate plasma levels was observed in mild preeclampsia and even higher in severe patients, while a biphasic response occurred in the CSF samples with a significant increment in mild preeclampsia patients and a decrease in severe preeclampsia patients. GABA significantly decreased both in plasma and CSF in mild preeclampsia with a tendency to return to normal levels in severe preeclampsia patients. Arginine CSF and plasma levels decreased in mild preeclampsia patients and even more in severe preeclampsia while agmatine significantly increased in plasma levels with no changes in CSF. CONCLUSIONS The results are discussed in terms of molecules that could be used as biomarkers of the severity of the disease and the possible involvement of these substances in the pathophysiology of preeclampsia.
Collapse
Affiliation(s)
- Yurbi Terán
- Obstetrics and Gynecology Unit, University of Los Andes Hospital, Mérida, Venezuela
| | - Ormelys Ponce
- Laboratory of Behavioral Physiology, School of Medicine, University of Los Andes, Mérida, Venezuela
| | - Luis Betancourt
- Laboratory of Behavioral Physiology, School of Medicine, University of Los Andes, Mérida, Venezuela
| | - Luis Hernández
- Laboratory of Behavioral Physiology, School of Medicine, University of Los Andes, Mérida, Venezuela
| | - Pedro Rada
- Laboratory of Behavioral Physiology, School of Medicine, University of Los Andes, Mérida, Venezuela.
| |
Collapse
|
19
|
Shi Y, Wang SH, Zhang FM. Role of γ-aminobutyric acid and its receptors in carcinogenesis. Shijie Huaren Xiaohua Zazhi 2012; 20:399-404. [DOI: 10.11569/wcjd.v20.i5.399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the adult mammalian brain and it is also expressed in the central nervous system, peripheral nerves and peripheral non-neural tissues. Recent studies have shown that GABA is involved in the proliferation and migration of tumor cells and other processes of tumor development. According to different sensitivity to agonists and antagonists, GABA receptors have been classified into three types: A, B and C. GABA receptors and their receptor subunits are involved in complicated regulation of tumor cells. Many studies have demonstrated that GABA binding to its receptors can activate or inhibit the cAMP signaling pathway and the MAPK/ERK pathway, and regulate cancer cell proliferation and migration. The potential value of GABA in cancer diagnosis, prognostic prediction and biotherapy has been gradually revealed. In the present article, we reviewed the recent progress in understanding the role of GABA and its receptors in carcinogenesis.
Collapse
|
20
|
Takahata Y, Takarada T, Hinoi E, Nakamura Y, Fujita H, Yoneda Y. Osteoblastic γ-aminobutyric acid, type B receptors negatively regulate osteoblastogenesis toward disturbance of osteoclastogenesis mediated by receptor activator of nuclear factor κB ligand in mouse bone. J Biol Chem 2011; 286:32906-17. [PMID: 21828041 PMCID: PMC3190880 DOI: 10.1074/jbc.m111.253526] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/11/2011] [Indexed: 11/06/2022] Open
Abstract
The prevailing view is that signaling machineries for the neurotransmitter GABA are also expressed by cells outside the CNS. In cultured murine calvarial osteoblasts, mRNA was constitutively expressed for both subunits 1 and 2 of metabotropic GABA(B) receptor (GABA(B)R), along with inhibition by the GABA(B)R agonist baclofen of cAMP formation, alkaline phosphatase (ALP) activity, and Ca(2+) accumulation. Moreover, baclofen significantly inhibited the transactivation of receptor activator of nuclear factor-κB ligand (RANKL) gene in a manner sensitive to a GABA(B)R antagonist, in addition to decreasing mRNA expression of bone morphogenetic protein-2 (BMP2), osteocalcin, and osterix. In osteoblastic MC3T3-E1 cells stably transfected with GABA(B)R1 subunit, significant reductions were seen in ALP activity and Ca(2+) accumulation, as well as mRNA expression of osteocalcin, osteopontin, and osterix. In cultured calvarial osteoblasts from GABA(B)R1-null mice exhibiting low bone mineral density in tibia and femur, by contrast, both ALP activity and Ca(2+) accumulation were significantly increased together with promoted expression of both mRNA and proteins for BMP2 and osterix. No significant change was seen in the number of multinucleated cells stained for tartrate-resistant acid phosphatase during the culture of osteoclasts prepared from GABA(B)R1-null mice, whereas a significant increase was seen in the number of tartrate-resistant acid phosphatase-positive multinucleated cells in co-culture of osteoclasts with osteoblasts isolated from GABA(B)R1-null mice. These results suggest that GABA(B)R is predominantly expressed by osteoblasts to negatively regulate osteoblastogenesis through down-regulation of BMP2 expression toward disturbance of osteoclastogenesis after down-regulation of RANKL expression in mouse bone.
Collapse
Affiliation(s)
- Yoshifumi Takahata
- From the Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa 920-1192, Japan
| | - Takeshi Takarada
- From the Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa 920-1192, Japan
| | - Eiichi Hinoi
- From the Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa 920-1192, Japan
| | - Yukari Nakamura
- From the Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroyuki Fujita
- From the Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa 920-1192, Japan
| | - Yukio Yoneda
- From the Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
21
|
Nakamura Y, Hinoi E, Takarada T, Takahata Y, Yamamoto T, Fujita H, Takada S, Hashizume S, Yoneda Y. Positive regulation by GABA(B)R1 subunit of leptin expression through gene transactivation in adipocytes. PLoS One 2011; 6:e20167. [PMID: 21655283 PMCID: PMC3105007 DOI: 10.1371/journal.pone.0020167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 04/14/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The view that γ-aminobutyric acid (GABA) plays a functional role in non-neuronal tissues, in addition to an inhibitory neurotransmitter role in the mammalian central nervous system, is prevailing, while little attention has been paid to GABAergic signaling machineries expressed by adipocytes to date. In this study, we attempted to demonstrate the possible functional expression of GABAergic signaling machineries by adipocytes. METHODOLOGY/PRINCIPAL FINDINGS GABA(B) receptor 1 (GABA(B)R1) subunit was constitutively expressed by mouse embryonic fibroblasts differentiated into adipocytes and adipocytic 3T3-L1 cells in culture, as well as mouse white adipose tissue, with no responsiveness to GABA(B)R ligands. However, no prominent expression was seen with mRNA for GABA(B)R2 subunit required for heteromeric orchestration of the functional GABA(B)R by any adipocytic cells and tissues. Leptin mRNA expression was significantly and selectively decreased in adipose tissue and embryonic fibroblasts, along with drastically reduced plasma leptin levels, in GABA(B)R1-null mice than in wild-type mice. Knockdown by siRNA of GABA(B)R1 subunit led to significant decreases in leptin promoter activity and leptin mRNA levels in 3T3-L1 cells. CONCLUSIONS/SIGNIFICANCE Our results indicate that GABA(B)R1 subunit is constitutively expressed by adipocytes to primarily regulate leptin expression at the transcriptional level through a mechanism not relevant to the function as a partner of heterodimeric assembly to the functional GABA(B)R.
Collapse
Affiliation(s)
- Yukari Nakamura
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | - Takeshi Takarada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | - Yoshifumi Takahata
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | - Tomomi Yamamoto
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | - Hiroyuki Fujita
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | - Saya Takada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | - Syota Hashizume
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | - Yukio Yoneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| |
Collapse
|
22
|
Hyland NP, Cryan JF. A Gut Feeling about GABA: Focus on GABA(B) Receptors. Front Pharmacol 2010; 1:124. [PMID: 21833169 PMCID: PMC3153004 DOI: 10.3389/fphar.2010.00124] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Accepted: 09/07/2010] [Indexed: 12/15/2022] Open
Abstract
γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the body and hence GABA-mediated neurotransmission regulates many physiological functions, including those in the gastrointestinal (GI) tract. GABA is located throughout the GI tract and is found in enteric nerves as well as in endocrine-like cells, implicating GABA as both a neurotransmitter and an endocrine mediator influencing GI function. GABA mediates its effects via GABA receptors which are either ionotropic GABA(A) or metabotropic GABA(B). The latter which respond to the agonist baclofen have been least characterized, however accumulating data suggest that they play a key role in GI function in health and disease. Like GABA, GABA(B) receptors have been detected throughout the gut of several species in the enteric nervous system, muscle, epithelial layers as well as on endocrine-like cells. Such widespread distribution of this metabotropic GABA receptor is consistent with its significant modulatory role over intestinal motility, gastric emptying, gastric acid secretion, transient lower esophageal sphincter relaxation and visceral sensation of painful colonic stimuli. More intriguing findings, the mechanisms underlying which have yet to be determined, suggest GABA(B) receptors inhibit GI carcinogenesis and tumor growth. Therefore, the diversity of GI functions regulated by GABA(B) receptors makes it a potentially useful target in the treatment of several GI disorders. In light of the development of novel compounds such as peripherally acting GABA(B) receptor agonists, positive allosteric modulators of the GABA(B) receptor and GABA producing enteric bacteria, we review and summarize current knowledge on the function of GABA(B) receptors within the GI tract.
Collapse
Affiliation(s)
- Niall P Hyland
- Alimentary Pharmabiotic Centre and Department of Pharmacology and Therapeutics, University College Cork Cork, Ireland
| | | |
Collapse
|
23
|
Kaneko K, Iwasaki M, Yoshikawa M, Ohinata K. Orally administered soymorphins, soy-derived opioid peptides, suppress feeding and intestinal transit via gut mu(1)-receptor coupled to 5-HT(1A), D(2), and GABA(B) systems. Am J Physiol Gastrointest Liver Physiol 2010; 299:G799-805. [PMID: 20616303 DOI: 10.1152/ajpgi.00081.2010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We previously reported that soymorphins, mu-opioid agonist peptides derived from soy beta-conglycinin beta-subunit, have anxiolytic-like activity. The aim of this study was to investigate the effects of soymorphins on food intake and gut motility, along with their mechanism. We found that soymorphins decreases food intake after oral administration in fasted mice. Orally administered soymorphins suppressed small intestinal transit at lower dose than that of anorexigenic activity. Suppression of food intake and small intestinal transit after oral administration of soymorphins was inhibited by naloxone or naloxonazine, antagonists of mu- or mu(1)-opioid receptor, respectively, after oral but not intraperitoneal administration. The inhibitory activities of small intestinal transit by soymorphins were also inhibited by WAY100135, raclopride, or saclofen, antagonists for serotonin 5-HT(1A), dopamine D(2), or GABA(B) receptor, respectively. We then examined the order of activation of 5-HT(1A), D(2), and GABA(B) receptors, using their agonists and antagonists. The inhibitory effect of 8-hydroxy-2-dipropylaminotetralin hydrobromide, a 5-HT(1A) agonist, after oral administration on small intestinal transit was blocked by raclopride or saclofen. Bromocriptine, a D(2) agonist-induced small intestinal transit suppression, was inhibited by saclofen, but not by WAY100135. Baclofen, a GABA(B) agonist-induced small intestinal transit suppression, was not blocked by WAY100135 or raclopride. These results suggest that 5-HT(1A) activation elicits D(2) followed by GABA(B) activations in small intestinal motility. We conclude that orally administered soymorphins suppress food intake and small intestinal transit via mu(1)-opioid receptor coupled to 5-HT(1A), D(2), and GABA(B) systems.
Collapse
|
24
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 3: developmental changes in spermatid flagellum and cytoplasmic droplet and interaction of sperm with the zona pellucida and egg plasma membrane. Microsc Res Tech 2010; 73:320-63. [PMID: 19941287 DOI: 10.1002/jemt.20784] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spermiogenesis constitutes the steps involved in the metamorphosis of spermatids into spermatozoa. It involves modification of several organelles in addition to the formation of several structures including the flagellum and cytoplasmic droplet. The flagellum is composed of a neck region and middle, principal, and end pieces. The axoneme composed of nine outer microtubular doublets circularly arranged to form a cylinder around a central pair of microtubules is present throughout the flagellum. The middle and principal pieces each contain specific components such as the mitochondrial sheath and fibrous sheath, respectively, while outer dense fibers are common to both. A plethora of proteins are constituents of each of these structures, with each playing key roles in functions related to the fertility of spermatozoa. At the end of spermiogenesis, a portion of spermatid cytoplasm remains associated with the released spermatozoa, referred to as the cytoplasmic droplet. The latter has as its main feature Golgi saccules, which appear to modify the plasma membrane of spermatozoa as they move down the epididymal duct and hence may be partly involved in male gamete maturation. The end product of spermatogenesis is highly streamlined and motile spermatozoa having a condensed nucleus equipped with an acrosome. Spermatozoa move through the female reproductive tract and eventually penetrate the zona pellucida and bind to the egg plasma membrane. Many proteins have been implicated in the process of fertilization as well as a plethora of proteins involved in the development of spermatids and sperm, and these are high lighted in this review.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
25
|
Catalano PN, Di Giorgio N, Bonaventura MM, Bettler B, Libertun C, Lux-Lantos VA. Lack of functional GABA(B) receptors alters GnRH physiology and sexual dimorphic expression of GnRH and GAD-67 in the brain. Am J Physiol Endocrinol Metab 2010; 298:E683-96. [PMID: 20009027 DOI: 10.1152/ajpendo.00532.2009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
GABA, the main inhibitory neurotransmitter, acts through GABA(A/C) and GABA(B) receptors (GABA(B)Rs); it is critical for gonadotropin regulation. We studied whether the lack of functional GABA(B)Rs in GABA(B1) knockout (GABA(B1)KO) mice affected the gonadotropin axis physiology. Adult male and female GABA(B1)KO and wild-type (WT) mice were killed to collect blood and tissue samples. Gonadotropin-releasing hormone (GnRH) content in whole hypothalami (HT), olfactory bulbs (OB), and frontoparietal cortexes (CT) were determined (RIA). GnRH expression by quantitative real-time PCR (qRT-PCR) was evaluated in preoptic area-anterior hypothalamus (POA-AH), medial basal-posterior hypothalamus (MBH-PH), OB, and CT. Pulsatile GnRH secretion from hypothalamic explants was measured by RIA. GABA, glutamate, and taurine contents in HT and CT were determined by HPLC. Glutamic acid decarboxylase-67 (GAD-67) mRNA was measured by qRT-PCR in POA-AH, MBH-PH, and CT. Gonadotropin content, serum levels, and secretion from adenohypophyseal cell cultures (ACC) were measured by RIA. GnRH mRNA expression was increased in POA-AH of WT males compared with females; this pattern of expression was inversed in GABA(B1)KO mice. MBH-PH, OB, and CT did not follow this pattern. In GABA(B1)KO females, GnRH pulse frequency was increased and GABA and glutamate contents were augmented. POA-AH GAD-67 mRNA showed the same expression pattern as GnRH mRNA in this area. Gonadotropin pituitary contents and serum levels showed no differences between genotypes. Increased basal LH secretion and decreased GnRH-stimulated gonadotropin response were observed in GABA(B1)KO female ACCs. These results support the hypothesis that the absence of functional GABA(B)Rs alters GnRH physiology and critically affects sexual dimorphic expression of GnRH and GAD-67 in POA-AH.
Collapse
Affiliation(s)
- Paolo N Catalano
- Instituto de Biología y Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
26
|
Zhang J, Gui Y, Yuan T, Bian C, Guo L. Expression of GAT1 in male reproductive system and its effects on reproduction in mice. Syst Biol Reprod Med 2010; 55:175-80. [PMID: 19938951 DOI: 10.3109/19396360903030500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The present study was carried out to identify GABA (gamma-aminobutyric acid) transport protein I (GAT1) in male reproductive organs and to study the effect of GAT1 overexpression on the male reproductive system in GAT1 transgenic mice (TG). Expression and location of GAT1 in testes, epididymis, and sperm of wild-type (WT) mice were identified by immunohistochemistry and western-blot. Histological changes of testes, epididymis, and sperm of transgenic mice overexpressing GAT1 were detected by immunofluorenscent staining and haematoxylin and eosin (HE) staining. GAT1 expression was detected in the testes, epididymis, and sperm of non-transgenic mice. Vacuolization and deformity of spermatogenic cells were observed in the transgenic mice, but the epididymis was unremarkable. Immunofluorenscent staining showed that the number of diastrophic and decapitated sperm increased significantly in transgenic mice to 46.9% from 7.3% in nontransgenic mice. These results suggest that abnormal expression of GAT1 could result in spermiogenesis function injury, sperm paramorphia and dysgenesis.
Collapse
Affiliation(s)
- JinFu Zhang
- Department of Urology, Tongji Hospital of Tongji University, Shanghai, 200065, P. R. China.
| | | | | | | | | |
Collapse
|
27
|
Fan WM, Shi BY, Ma XH, Wei HS, Li L, Han Y, He XY. Expression of γ-aminobutyric acid B receptor in carbon tetrachloride-induced liver fibrosis in rats. Shijie Huaren Xiaohua Zazhi 2009; 17:2555-2560. [DOI: 10.11569/wcjd.v17.i25.2555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of γ-aminobutyric acid (GABA) B receptor in carbon tetrachloride-induced liver fibrosis in rats.
METHODS: Male Sprague-Dawley rats were intraperitoneally injected with 50% carbon tetrachloride to induce liver fibrosis. Six weeks after induction, liver tissue samples were taken once a week. Each sample was divided into two parts: one was used for hematoxylin and eosin and Masson's trichrome staining to assess the degree of liver fibrosis and immunohistochemistry to determine the level of α-smooth muscle actin (α-SMA), the other was used for real-time reverse transcription-polymerase chain reaction to detect the expression of GABA B receptor, α-SMA, transforming growth factor-β (TGF-β), collagen I and collagen III mRNAs.
RESULTS: The expression levels of α-SMA, TGF-β, collagen I, collagen III and GABA(B) receptor mRNAs in liver fibrosis at week 7 increased 19.2, 2.1, 37.5, 183.5 and 116.2 times as much as those at week 6, respectively. At week 6, the expression level of GABA(B) receptor in the liver in rats with liver fibrosis was reduced by two times when compared with that in normal control rats. At week 12 when pseudolobule formed, the expression levels of α-SMA and collagen I mRNAs increased 21.6 and 20.6 times as much as those at week 6, respectively, while those of TGF-β and collagen III mRNAs showed no obvious changes. The expression levels of these genes at other time points were almost unchanged when compared with those at week 6.
CONCLUSION: GABA(B) receptor may be involved in the progression of liver fibrosis. In advanced liver fibrosis, the extracellular matrix synthesized is mainly collagen I. The expression of α-SMA is positively correlated with the degree of liver fibrosis.
Collapse
|
28
|
Hoover JM, Kaye AD, Ibrahim IN, Fields AM, Richards TA. Analysis of Responses to St. John’s Wort in the Feline Pulmonary Vascular Bed. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/j157v04n03_05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Saber-Tehrani A, Naderi N, Hosseini Najarkolaei A, Haghparast A, Motamedi F. Cannabinoids and their interactions with diazepam on modulation of serum corticosterone concentration in male mice. Neurochem Res 2009; 35:60-6. [PMID: 19590959 DOI: 10.1007/s11064-009-0030-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 06/24/2009] [Indexed: 11/24/2022]
Abstract
Experimental results indicate a mutual interaction between cannabinoidergic and GABAergic systems; however, the interaction between these systems on corticosterone release has not been fully investigated. In this study, we treated male mice with either cannabinoid compounds alone or in combination with diazepam. Blood samples were collected at 60 min post-injection. The serum corticosterone (CORT) level was measured using ELISA technique. Acute treatment of mice by cannabinoid receptor agonist WIN55212-2 (2.5 mg/kg; i.p.) resulted in a significant reduction of CORT, while treatment with either endocannabinoid reuptake inhibitor AM404 or endocannabinoid degradation enzyme inhibitor URB597 increased CORT compared to control group. Co-administration of AM404 or URB597 with cannabinoid CB1 receptor antagonist AM251 blocked the effect of these compounds on CORT. Treatment of mice with different doses of diazepam alone did not alter CORT compared to control group. However, co-administration of diazepam and either AM404 or WIN55212-2 significantly reduced CORT compared to the respective group treated with cannabinoid compound alone. Co-administration of ineffective dose of URB597 and ineffective dose of diazepam increased CORT level compared to groups treated with each compound alone. In conclusion, our findings suggest that the endogenous cannabinoid system is active as a modulator of CORT in mice and diazepam can alter the effect of cannabinoid system in the modulation of neuroendocrine functions.
Collapse
Affiliation(s)
- Ali Saber-Tehrani
- Neuroscience Research Center, Shahid Beheshti University (MC), P.O. Box 19615-1178, Tehran, Iran
| | | | | | | | | |
Collapse
|
30
|
Mizuta K, Osawa Y, Mizuta F, Xu D, Emala CW. Functional expression of GABAB receptors in airway epithelium. Am J Respir Cell Mol Biol 2008; 39:296-304. [PMID: 18403780 DOI: 10.1165/rcmb.2007-0414oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system and exerts its actions via both ionotropic (GABA(A)) and metabotropic (GABA(B)) receptors. The GABA(B) receptor is a dimer composed of R1 and R2 components and classically couples to the heterotrimeric G(i) protein. In addition to their location on neurons, GABA and functional GABA(B) receptors have been detected in peripheral tissue such as airway smooth muscle. We questioned whether airway epithelium expresses receptors that could respond to GABA. We detected the mRNA encoding multiple-splice variants of the GABA(B)R1 and GABA(B)R2 in total RNA isolated from native human and guinea pig airway epithelium and human airway epithelial cell lines (BEAS-2B and H441). Immunoblots identified the GABA(B)R1 and GABA(B)R2 proteins in both guinea pig airway epithelium and BEAS-2B cells. The expression of GABA(B)R1 protein was immunohistochemically localized to basal mucin-secreting and ciliated columnar epithelial cells in guinea pig trachea. Baclofen inhibited adenylyl cyclase activity, induced ERK phosphorylation and cross-regulated phospholipase C, leading to increased inositol phosphates in BEAS-2B cells in a pertussis toxin-sensitive manner, implicating G(i) protein coupling. Thus, these receptors couple to G(i) and cross-regulate the phospholipase C/inositol phosphate pathway. The second messengers of these pathways, cyclic AMP and calcium, play pivotal roles in airway epithelial cell primary functions of mucus clearance. Furthermore, the enzyme that synthesizes GABA, glutamic acid decarboxylase (GAD65/67), was also localized to airway epithelium. GABA may modulate an uncharacterized signaling cascade via GABA(B) receptors coupled to G(i) protein in airway epithelium.
Collapse
Affiliation(s)
- Kentaro Mizuta
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
31
|
Magnaghi V, Ballabio M, Camozzi F, Colleoni M, Consoli A, Gassmann M, Lauria G, Motta M, Procacci P, Trovato AE, Bettler B. Altered peripheral myelination in mice lacking GABAB receptors. Mol Cell Neurosci 2008; 37:599-609. [DOI: 10.1016/j.mcn.2007.12.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 11/20/2007] [Accepted: 12/06/2007] [Indexed: 01/11/2023] Open
|
32
|
Rousseaux CG. A Review of Glutamate Receptors I: Current Understanding of Their Biology. J Toxicol Pathol 2008. [DOI: 10.1293/tox.21.25] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Colin G. Rousseaux
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa
| |
Collapse
|
33
|
Rousseaux CG. A Review of Glutamate Receptors II: Pathophysiology and Pathology. J Toxicol Pathol 2008. [DOI: 10.1293/tox.21.133] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Colin G. Rousseaux
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa
| |
Collapse
|
34
|
Cheng Z, Tu C, Rodriguez L, Chen TH, Dvorak MM, Margeta M, Gassmann M, Bettler B, Shoback D, Chang W. Type B gamma-aminobutyric acid receptors modulate the function of the extracellular Ca2+-sensing receptor and cell differentiation in murine growth plate chondrocytes. Endocrinology 2007; 148:4984-92. [PMID: 17615148 DOI: 10.1210/en.2007-0653] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular calcium-sensing receptors (CaRs) and metabotropic or type B gamma-aminobutyric acid receptors (GABA-B-Rs), two closely related members of family C of the G protein-coupled receptor superfamily, dimerize in the formation of signaling and membrane-anchored receptor complexes. We tested whether CaRs and two GABA-B-R subunits (R1 and R2) are expressed in mouse growth plate chondrocytes (GPCs) by PCR and immunocytochemistry and whether interactions between these receptors influence the expression and function of the CaR and extracellular Ca(2+)-mediated cell differentiation. Both CaRs and the GABA-B-R1 and -R2 were expressed in the same zones of the growth plate and extensively colocalized in intracellular compartments and on the membranes of cultured GPCs. The GABA-B-R1 co-immunoprecipitated with the CaR, confirming a physical interaction between the two receptors in GPCs. In vitro knockout of GABA-B-R1 genes, using a Cre-lox recombination strategy, blunted the ability of high extracellular Ca(2+) concentration to activate phospholipase C and ERK1/2, suppressed cell proliferation, and enhanced apoptosis in cultured GPCs. In GPCs, in which the GABA-B-R1 was acutely knocked down, there was reduced expression of early chondrocyte markers, aggrecan and type II collagen, and increased expression of the late differentiation markers, type X collagen and osteopontin. These results support the idea that physical interactions between CaRs and GABA-B-R1s modulate the growth and differentiation of GPCs, potentially by altering the function of CaRs.
Collapse
Affiliation(s)
- Zhiqiang Cheng
- Endocrine Research Unit, Department of Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chang W, Tu C, Cheng Z, Rodriguez L, Chen TH, Gassmann M, Bettler B, Margeta M, Jan LY, Shoback D. Complex Formation with the Type B γ-Aminobutyric Acid Receptor Affects the Expression and Signal Transduction of the Extracellular Calcium-sensing Receptor. J Biol Chem 2007; 282:25030-40. [PMID: 17591780 DOI: 10.1074/jbc.m700924200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We co-immunoprecipitated the Ca(2+)-sensing receptor (CaR) and type B gamma-aminobutyric acid receptor (GABA-B-R) from human embryonic kidney (HEK)-293 cells expressing these receptors and from brain lysates where both receptors are present. CaRs extensively co-localized with the two subunits of the GABA-B-R (R1 and R2) in HEK-293 cell membranes and intracellular organelles. Coexpressing CaRs and GABA-B-R1s in HEK-293 cells suppressed the total cellular and cell surface expression of CaRs and inhibited phospholipase C activation in response to high extracellular [Ca(2+)] ([Ca(2+)](e)). In contrast, coexpressing CaRs and GABA-B-R2s enhanced CaR expression and signaling responses to raising [Ca(2+)](e). The latter effects of the GABA-B-R2 on the CaR were blunted by coexpressing the GABA-B-R1. Coexpressing the CaR with GABA-B-R1 or R2 enhanced the total cellular and cell surface expression of the GABA-B-R1 or R2, respectively. Studies with truncated CaRs indicated that the N-terminal extracellular domain of the CaR participated in the interaction of the CaR with the GABA-B-R1 and R2. In cultured mouse hippocampal neurons, CaRs co-localized with the GABA-B-R1 and R2. CaRs and GABA-B-R1s also co-immunoprecipitated from brain lysates. The expression of the CaR was increased in lysates from GABA-B-R1 knock-out mouse brains and in cultured hippocampal neurons with their GABA-B-R1 genes deleted in vitro. Thus, CaRs and GABA-B-R subunits can form heteromeric complexes in cells, and their interactions affect cell surface expression and signaling of CaR, which may contribute to extracellular Ca(2+)-dependent receptor activation in target tissues.
Collapse
Affiliation(s)
- Wenhan Chang
- Endocrine Research Unit, Department of Veterans Affairs Medical Center, Department of Medicine, University of California, San Francisco, California 94121, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zizzo MG, Mulè F, Serio R. Functional evidence for GABA as modulator of the contractility of the longitudinal muscle in mouse duodenum: Role of GABAA and GABAC receptors. Neuropharmacology 2007; 52:1685-90. [PMID: 17517423 DOI: 10.1016/j.neuropharm.2007.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 03/19/2007] [Accepted: 03/28/2007] [Indexed: 11/23/2022]
Abstract
We investigated, in vitro, the effects of gamma-aminobutyric acid (GABA) on the spontaneous mechanical activity of the longitudinal smooth muscle in mouse duodenum. GABA induced an excitatory effect, consisting in an increase in the basal tone, which was antagonized by the GABA(A)-receptor antagonist, bicuculline, potentiated by (1,2,5,6-Tetrahydropyridin-4-yl)methylphosphinic acid hydrate (TPMPA), a GABA(C)-receptor antagonist and it was not affected by phaclofen, a GABA(B)-receptor antagonist. Muscimol, GABA(A) receptor agonist, induced a contractile effect markedly reduced by bicuculline, tetrodotoxin (TTX), hexamethonium and atropine. Cis-4-aminocrotonic acid (CACA), a specific GABA(C) receptor agonist, induced an inhibitory effect, consisting in the reduction of the amplitude of the spontaneous contractions and muscular relaxation, which was antagonised by TPMPA, GABA(C)-receptor antagonist, TTX or N(omega)-nitro-l-arginine methyl ester (L-NAME), nitric oxide (NO) synthase inhibitor, but not affected by hexamethonium. In conclusion, our study indicates that GABA is a modulator of mechanical activity of longitudinal muscle in mouse duodenum. GABA may act through neuronal presynaptic receptors, namely GABA(A) receptors, leading to the release of ACh from excitatory cholinergic neurons, and GABA(C) receptors increasing the release of NO from non-adrenergic, non-cholinergic inhibitory neurons.
Collapse
Affiliation(s)
- Maria Grazia Zizzo
- Dipartimento di Biologia Cellulare e dello Sviluppo, Laboratorio di Fisiologia generale, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | | | | |
Collapse
|
37
|
Osawa Y, Xu D, Sternberg D, Sonett JR, D'Armiento J, Panettieri RA, Emala CW. Functional expression of the GABAB receptor in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 2006; 291:L923-31. [PMID: 16829628 DOI: 10.1152/ajplung.00185.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
gamma-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system and exerts its actions via both ionotropic (GABA(A)/GABA(C)) and metabotropic (GABA(B)) receptors (R). In addition to their location on neurons, GABA and functional GABA(B) receptors have been detected in nonneuronal cells in peripheral tissue. Although the GABA(B)R has been shown to function as a prejunctional inhibitory receptor on parasympathetic nerves in the lung, the expression and functional coupling of GABA(B) receptors to G(i) in airway smooth muscle itself have never been described. We detected the mRNA encoding multiple-splice variants of the GABA(B)R1 and GABA(B)R2 in total RNA isolated from native human and guinea pig airway smooth muscle and from RNA isolated from cultured human airway smooth muscle (HASM) cells. Immunoblots identified the GABA(B)R1 and GABA(B)R2 proteins in human native and cultured airway smooth muscle. The GABA(B)R1 protein was immunohistochemically localized to airway smooth muscle in guinea pig tracheal rings. Baclofen, a GABA(B)R agonist, elicited a concentration-dependent stimulation of [(35)S]GTPgammaS binding in HASM homogenates that was abrogated by the GABA(B)R antagonist CGP-35348. Baclofen also inhibited adenylyl cyclase activity and induced ERK phosphorylation in HASM. Another GABA(B)R agonist, SKF-97541, mimicked while pertussis toxin blocked baclofen's effect on ERK phosphorylation, implicating G(i) protein coupling. Functional GABA(B) receptors are expressed in HASM. GABA may modulate an uncharacterized signaling cascade via GABA(B) receptors coupled to the G(i) protein in airway smooth muscle.
Collapse
Affiliation(s)
- Yoko Osawa
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, 630 W. 168th St., P&S Box 46, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Asay MJ, Boyd SK. Characterization of the binding of [3H]CGP54626 to GABAB receptors in the male bullfrog (Rana catesbeiana). Brain Res 2006; 1094:76-85. [PMID: 16725130 DOI: 10.1016/j.brainres.2006.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 03/06/2006] [Accepted: 03/07/2006] [Indexed: 10/24/2022]
Abstract
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the vertebrate brain. GABA activates both ionotropic (GABA(A)) and metabotropic (GABA(B)) receptors in mammals. Whether non-mammalian vertebrates possess receptors with similar characteristics is not well understood. We used a mammalian GABA(B)-specific antagonist to determine the pharmacology of putative receptors in the brain of an anuran amphibian, the male bullfrog (Rana catesbeiana). Receptor binding assays with the antagonist [(3)H]CGP54626 revealed a single class of high affinity binding sites (with a K(D) of 2.97 nM and a B(max) of 2619 fmol/mg protein). Binding was time- and temperature-dependent, saturable and specific. Specific binding of [(3)H]CGP54626 was inhibited by several mammalian GABA(B) receptor agonists and antagonists. The rank order potency of agonists was: GABA = SKF97541 > (R)-Baclofen > 3-APPA. The rank order for antagonists was: CGP54626 = CGP55845 > CGP52432 > CGP35348. The GABA(A) receptor ligands muscimol and SR95531 had very low affinity for [(3)H]CGP54626 binding sites, while bicuculline compounds had no affinity. Binding of GABA was positively modulated by CGP7930. Taurine did not allosterically modulate GABA binding but did inhibit [(3)H]CGP54626 binding in a linear fashion. Bullfrog brain thus possesses binding sites with significant similarity to mammalian GABA(B) receptors. These receptors differ from mammalian receptors, however, in dissociation kinetics, ligand specificity and allosteric modulation.
Collapse
Affiliation(s)
- Matthew J Asay
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | |
Collapse
|
39
|
Hoover JM, Kaye AD, Ibrahim IN, Fields AM, Richards TA. Analysis of Responses to Kava Kava in the Feline Pulmonary Vascular Bed. J Med Food 2006; 9:62-71. [PMID: 16579730 DOI: 10.1089/jmf.2006.9.62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was designed to test the hypothesis that kava kava induces a depressor response in the pulmonary vascular bed of the cat and to identify the pathways involved in the mediation or modulation of these effects. In separate experiments, the effects of L-N5-(1-iminoethyl)ornithine hydrochloride (L-NIO), a nitric oxide synthase inhibitor, glibenclamide, an ATP-sensitive K+ channel blocker, meclofenamate, a nonselective cyclooxygenase inhibitor, nicardipine, a calcium channel blocker, bicuculline, a gamma-aminobutyric acid (GABA)A receptor antagonist, and saclofen, a GABAB antagonist, were investigated on pulmonary arterial responses to kava kava (kava), pinacidil, an ATP-sensitive K+ channel activator, bradykinin, an inducer of nitric oxide synthase, 3-aminopropyl(methyl)phosphinic acid hydrochloride (SKF-97541), a GABAB receptor agonist, and muscimol, a GABAA receptor agonist. Lobar arterial perfusion pressure and systemic pressure were continuously monitored, electronically averaged, and recorded. Under elevated tone conditions in the isolated left lower lobe of the feline vascular bed, kava induced a dose-dependent vasodepressor response that was not significantly altered after administration of L-NIO, glibenclamide, meclofenamate, or saclofen. Responses to kava were significantly reduced after administration of either nicardipine or bicuculline. When the calcium channel blocker nicardipine was administered in addition to the GABA blocker bicuculline, there was near complete attenuation of the kava-induced vasodepressor responses. The results of this investigation suggest that kava has potent vasodepressor activity in the feline lung bed and that this response is mediated or modulated by both a calcium channel- and GABA receptor-sensitive pathway.
Collapse
Affiliation(s)
- Jason M Hoover
- Department of Anesthesiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
40
|
Fava G, Marucci L, Glaser S, Francis H, De Morrow S, Benedetti A, Alvaro D, Venter J, Meininger C, Patel T, Taffetani S, Marzioni M, Summers R, Reichenbach R, Alpini G. gamma-Aminobutyric acid inhibits cholangiocarcinoma growth by cyclic AMP-dependent regulation of the protein kinase A/extracellular signal-regulated kinase 1/2 pathway. Cancer Res 2006; 65:11437-46. [PMID: 16357152 DOI: 10.1158/0008-5472.can-05-1470] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We studied the effect of the inhibitory neurotransmitter, gamma-aminobutyric acid (GABA), in the regulation of cholangiocarcinoma growth. We determined the in vitro effect of GABA on the proliferation of the cholangiocarcinoma cell lines (Mz-ChA-1, HuH-28, and TFK-1) and evaluated the intracellular pathways involved. The effect of GABA on migration of Mz-ChA-1 cells was also evaluated. In vivo, Mz-ChA-1 cells were s.c. injected in athymic mice, and the effects of GABA on tumor size, tumor cell proliferation, apoptosis, collagen quantity, and the expression of vascular endothelial growth factor-A (VEGF-A) and VEGF-C (cancer growth regulators) were measured after 82 days. GABA decreased in vitro cholangiocarcinoma growth in a time-dependent and dose-dependent manner, by both cyclic AMP/protein kinase A- and D-myo-inositol-1,4,5-thriphosphate/Ca(2+)-dependent pathways, leading to down-regulation of extracellular signal-regulated kinase 1/2 phosphorylation. Blocking of GABA(A), GABA(B), and GABA(C) receptors prevented GABA inhibition of cholangiocarcinoma proliferation. GABA inhibited Mz-ChA-1 cell migration and, in vivo, significantly decreased tumor volume, tumor cell proliferation, and VEGF-A/C expression whereas increasing apoptosis compared with controls. An increase in collagen was evident in GABA-treated tumors. GABA decreases biliary cancer proliferation and reduces the metastatic potential of cholangiocarcinoma. GABA may represent a therapeutic agent for patients affected by malignancies of the biliary tract.
Collapse
Affiliation(s)
- Giammarco Fava
- Central Texas Veterans Health Care System, Research Service, College of Medicine, Temple, 76504, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Page AJ, O'Donnell TA, Blackshaw LA. Inhibition of mechanosensitivity in visceral primary afferents by GABAB receptors involves calcium and potassium channels. Neuroscience 2006; 137:627-36. [PMID: 16289839 DOI: 10.1016/j.neuroscience.2005.09.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 08/25/2005] [Accepted: 09/09/2005] [Indexed: 11/16/2022]
Abstract
GABA(B) receptors inhibit mechanosensitivity of visceral afferents. This is associated with reduced triggering of events that lead to gastro-esophageal reflux, with important therapeutic consequences. In other neuronal systems, GABA(B) receptor activation may be linked via G-proteins to reduced N-type Ca(2+) channel opening, increased inward rectifier K(+) channel opening, plus effects on a number of intracellular messengers. Here we aimed to determine the role of Ca(2+) and K(+) channels in the inhibition of vagal afferent mechanoreceptor function by the GABA(B) receptor agonist baclofen. The responses of three types of ferret gastro-esophageal vagal afferents (mucosal, tension and tension mucosal receptors) to graded mechanical stimuli were investigated in vitro. The effects of baclofen (200 microM) alone on these responses were quantified, and the effects of baclofen in the presence of the G-protein-coupled inward rectifier potassium channel blocker Rb(+) (4.7 mM) and/or the N-type calcium channel blocker omega-conotoxin GVIA (0.1 microM). Baclofen inhibition of mucosal receptor mechanosensitivity was abolished by both blockers. Its inhibitory effect on tension mucosal receptors was partly reduced by both. The inhibitory effect of baclofen on tension receptors was unaffected. The data indicate that the inhibitory action of GABA(B) receptors is mediated via different pathways in mucosal, tension and tension mucosal receptors via mechanisms involving both N-type Ca(2+) channels and inwardly rectifying K(+) channels and others.
Collapse
Affiliation(s)
- A J Page
- Nerve-Gut Research Laboratory, Hanson Institute, Department of Gastroenterology, Hepatology and General Medicine, Royal Adelaide Hospital, Frome Road, Adelaide SA5000, Australia
| | | | | |
Collapse
|
42
|
Gladkevich A, Korf J, Hakobyan VP, Melkonyan KV. The peripheral GABAergic system as a target in endocrine disorders. Auton Neurosci 2005; 124:1-8. [PMID: 16338174 DOI: 10.1016/j.autneu.2005.11.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Revised: 10/19/2005] [Accepted: 11/01/2005] [Indexed: 12/01/2022]
Abstract
In addition to its well-recognized function as a cerebral inhibitory transmitter, less well established is the role of GABA in peripheral nervous and endocrine systems. We summarize current evidence that GABA serves as a neurotransmitter or neuromodulator in the autonomic nervous system and as a hormone or trophic factor in non-neuronal peripheral tissue as well. GABA is widely distributed in endocrine tissues including the pituitary, pancreas, adrenal glands, uterus, ovaries, placenta and testis. Moreover, GABA is involved in the pathophysiology of endocrine disorders such as diabetes mellitus, diseases of adrenal glands and reproductive tracts. Current literature indicates that the peripheral GABA system in the autonomic nervous system, endocrine and immune systems is as yet nearly an unexplored target for diagnosis and drug treatment.
Collapse
Affiliation(s)
- A Gladkevich
- Department of Psychiatry, University Medical Center Groningen, University Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB Groningen, The Netherlands.
| | | | | | | |
Collapse
|
43
|
Andersson KE, Wein AJ. Pharmacology of the lower urinary tract: basis for current and future treatments of urinary incontinence. Pharmacol Rev 2005; 56:581-631. [PMID: 15602011 DOI: 10.1124/pr.56.4.4] [Citation(s) in RCA: 394] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The lower urinary tract constitutes a functional unit controlled by a complex interplay between the central and peripheral nervous systems and local regulatory factors. In the adult, micturition is controlled by a spinobulbospinal reflex, which is under suprapontine control. Several central nervous system transmitters can modulate voiding, as well as, potentially, drugs affecting voiding; for example, noradrenaline, GABA, or dopamine receptors and mechanisms may be therapeutically useful. Peripherally, lower urinary tract function is dependent on the concerted action of the smooth and striated muscles of the urinary bladder, urethra, and periurethral region. Various neurotransmitters, including acetylcholine, noradrenaline, adenosine triphosphate, nitric oxide, and neuropeptides, have been implicated in this neural regulation. Muscarinic receptors mediate normal bladder contraction as well as at least the main part of contraction in the overactive bladder. Disorders of micturition can roughly be classified as disturbances of storage or disturbances of emptying. Failure to store urine may lead to various forms of incontinence, the main forms of which are urge and stress incontinence. The etiology and pathophysiology of these disorders remain incompletely known, which is reflected in the fact that current drug treatment includes a relatively small number of more or less well-documented alternatives. Antimuscarinics are the main-stay of pharmacological treatment of the overactive bladder syndrome, which is characterized by urgency, frequency, and urge incontinence. Accepted drug treatments of stress incontinence are currently scarce, but new alternatives are emerging. New targets for control of micturition are being defined, but further research is needed to advance the pharmacological treatment of micturition disorders.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Department of Clinical Pharmacology, Lund University Hospital, S-221 85 Lund, Sweden.
| | | |
Collapse
|
44
|
Tamayama T, Maemura K, Kanbara K, Hayasaki H, Yabumoto Y, Yuasa M, Watanabe M. Expression of GABAA and GABAB receptors in rat growth plate chondrocytes: Activation of the GABA receptors promotes proliferation of mouse chondrogenic ATDC5 cells. Mol Cell Biochem 2005; 273:117-26. [PMID: 16013446 DOI: 10.1007/s11010-005-8159-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Our previous study showed the local production of gamma-aminobutyrate (GABA) in hypertrophic-zone chondrocytes of the rat tibial growth plate, an important long bone growth site. The aim of this study was to identify the presence of GABA receptors in growth plate chondrocytes by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Chondrocytes expressed both GABA(A) and GABA(B) receptor subunit mRNAs as well as the corresponding proteins necessary for the assembly of functional receptors. The GABA(A) receptor subunits detected included alpha1-alpha4, alpha6, beta1-beta3, and delta, and both R1 and R2 subunits of GABA(B) receptors were detected. All receptor subunits were expressed in chondrocytes of the proliferative and hypertrophic zones. These results suggest that GABA is an autocrine/paracrine factor that regulates the physiological state of the growth plate. Subsequent studies with the mouse chondrogenic cell line ATDC5 showed the presence of mRNAs and the corresponding proteins for GABA(A) receptor alpha1, beta2, and beta3 subunits and GABA(B) receptor R1 and R2 subunits. GABA, muscimol (a GABA(A) receptor agonist), and baclofen (a GABA(B) receptor agonist) increased 5-bromodeoxyuridine (BrdU) incorporation into ATDC5 cells. The effect of muscimol was blocked by bicuculline (a GABA(A) receptor antagonist), and the effect of baclofen was blocked by CGP 35348 (a GABA(B) receptor antagonist). These results suggest that GABA contributes to the ATDC5 cell proliferation via GABA(A) and GABA(B) receptors and these mechanisms may be involved in cartilaginous cell growth.
Collapse
Affiliation(s)
- Takumi Tamayama
- Department of Anatomy, Osaka Medical College, Takatsuki, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Steiger JL, Bandyopadhyay S, Farb DH, Russek SJ. cAMP response element-binding protein, activating transcription factor-4, and upstream stimulatory factor differentially control hippocampal GABABR1a and GABABR1b subunit gene expression through alternative promoters. J Neurosci 2005; 24:6115-26. [PMID: 15240803 PMCID: PMC6729677 DOI: 10.1523/jneurosci.1200-04.2004] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Expression of metabotropic GABA(B) receptors is essential for slow inhibitory synaptic transmission in the CNS, and disruption of GABA(B) receptor-mediated responses has been associated with several disorders, including neuropathic pain and epilepsy. The location of GABA(B) receptors in neurons determines their specific role in synaptic transmission, and it is believed that sorting of subunit isoforms, GABA(B)R1a and GABA(B)R1b, to presynaptic or postsynaptic membranes helps to determine this role. GABA(B)R1a and GABA(B)R1b are thought to arise by alternative splicing of heteronuclear RNA. We now demonstrate that alternative promoters, rather than alternative splicing, produce GABA(B)R1a and GABA(B)R1b isoforms. Our data further show that subunit gene expression in hippocampal neurons is mediated by the cAMP response element-binding protein (CREB) by binding to unique cAMP response elements in the alternative promoter regions. Double-stranded oligonucleotide decoys selectively alter levels of endogenous GABA(B)R1a and GABA(B)R1b in primary hippocampal neurons, and CREB knock-out mice show changes in levels of GABA(B)R1a and GABA(B)R1b transcripts, consistent with decoy competition experiments. These results demonstrate a critical role of CREB in transcriptional mechanisms that control GABA(B)R1 subunit levels in vivo. In addition, the CREB-related factor activating transcription factor-4 (ATF4) has been shown to interact directly with GABA(B)R1 in neurons, and we show that ATF4 differentially regulates GABA(B)R1a and GABA(B)R1b promoter activity. These results, together with our finding that the depolarization-sensitive upstream stimulatory factor (USF) binds to a composite CREB/ATF4/USF regulatory element only in the absence of CREB binding, indicate that selective control of alternative GABA(B)R1 promoters by CREB, ATF4, and USF may dynamically regulate expression of their gene products in the nervous system.
Collapse
Affiliation(s)
- Janine L Steiger
- Laboratory of Molecular Neurobiology, Department of Pharmacology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
46
|
Catalano PN, Bonaventura MM, Silveyra P, Bettler B, Libertun C, Lux-Lantos VA. GABA(B1) knockout mice reveal alterations in prolactin levels, gonadotropic axis, and reproductive function. Neuroendocrinology 2005; 82:294-305. [PMID: 16682806 DOI: 10.1159/000093128] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/12/2005] [Indexed: 11/19/2022]
Abstract
gamma-Aminobutyric acid (GABA) has been implicated in the control of hypophyseal functions. We evaluated whether the constitutive loss of functional GABA(B) receptors in GABA(B1) knockout (GABA(B1)(-/-)) mice alters hormonal levels, under basal and stimulated conditions, and reproductive function. The serum hormone levels were measured by radioimmunoassay, the estrous cyclicity was evaluated by vaginal lavages, and the mating behavior was determined by the presence of vaginal plugs. A moderate hyperprolactinemic condition was observed, in which prolactin increase and thyroid-stimulating hormone decrease were similar between genotypes. Basal luteinizing hormone (LH), follicle-stimulating hormone, thyroid-stimulating hormone, and growth hormone levels were similar between genotypes in each sex. Analysis of the gonadotropin axis revealed no differences in puberty onset between female genotypes. In con trast, the estrous cyclicity was significantly disrupted in GABA(B1)(-/-) female mice, showing significantly extended periods in estrus and shortened periods in proestrus. Reproduction was significantly compromised in GABA(B1)(-/-) females, with a significantly lower proportion of mice (37.5%) getting pregnant during the first 30 days of mating as compared with wild-type controls (87.5%). Moreover, only 14% of vaginal plug positive GABA(B1)(-/-) females had successful pregnancies as compared with 75% in the controls. In addition, the postovariectomy LH rise was significantly advanced in GABA(B1)(-/-) mice, while the response to estradiol feedback was similar in both genotypes. In conclusion, our endocrine analysis of GABA(B1)(-/-) mice reveals that GABA(B) receptors are involved in the regulation of basal prolactin titers. Moreover, the hypothalamic-hypophyseal-ovarian axis is seriously disturbed, with alterations in cyclicity, postcastration LH increase, and fertility indexes. The molecular mechanism underlying these hormonal disturbances remains to be addressed.
Collapse
Affiliation(s)
- Paolo N Catalano
- Instituto de Biología y Medicina Experimental-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
47
|
Kaye AD, Hoover JM, Baber SR, Ibrahim IN, Fields AM. The effects of load on systolic mitral annular velocity by tissue Doppler imaging. Anesth Analg 2004; 99:758-763. [PMID: 15271700 DOI: 10.1213/01.ane.0000131972.99804.28] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Tissue Doppler Imaging (TDI) provides information on systolic function through its systolic mitral annulus velocity wave (Sm), reflecting the peak velocity of shortening of the myocardial fibers oriented in the longitudinal direction. In this study, we evaluated the effect of load changes on Sm. Forty-two cardiac surgical patients with left ventricular ejection fraction >60% were consecutively evaluated. In 24 patients, load was changed with an IV bolus of phenylephrine (50-100 microg) or nitroglycerine (300-500 microg); in 18 patients, preload was changed with a rapid infusion of 500 mL of a gelatin solution. The sample volume of TDI was placed at the lateral side of the mitral annulus in the mid-esophageal 4-chamber view. Changing loading conditions with phenylephrine or nitroglycerine had no effect on Sm; the increase of preload in 18 patients resulted in a statistically significant increase of Sm (baseline, 8.4 +/- 2.6 cm/s; after increase of preload, 9.6 +/- 2.5 cm/s; P = 0.001). We conclude that Sm is dependent on changes in preload obtained by volume loading and cannot be recommended as an index of ventricular contractile performance in critically ill patients where significant changes in ventricular filling occur.
Collapse
Affiliation(s)
- Alan D Kaye
- *Department of Anesthesiology, Texas Tech University Health Sciences Center, Lubbock, Texas; †Texas Tech University Health Sciences Center School of Medicine, Lubbock, Texas; ‡Tulane University, New Orleans, Louisiana; and §Yale University School of Medicine, New Haven, CT
| | | | | | | | | |
Collapse
|
48
|
Bettler B, Kaupmann K, Mosbacher J, Gassmann M. Molecular structure and physiological functions of GABA(B) receptors. Physiol Rev 2004; 84:835-67. [PMID: 15269338 DOI: 10.1152/physrev.00036.2003] [Citation(s) in RCA: 645] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
GABA(B) receptors are broadly expressed in the nervous system and have been implicated in a wide variety of neurological and psychiatric disorders. The cloning of the first GABA(B) receptor cDNAs in 1997 revived interest in these receptors and their potential as therapeutic targets. With the availability of molecular tools, rapid progress was made in our understanding of the GABA(B) system. This led to the surprising discovery that GABA(B) receptors need to assemble from distinct subunits to function and provided exciting new insights into the structure of G protein-coupled receptors (GPCRs) in general. As a consequence of this discovery, it is now widely accepted that GPCRs can exist as heterodimers. The cloning of GABA(B) receptors allowed some important questions in the field to be answered. It is now clear that molecular studies do not support the existence of pharmacologically distinct GABA(B) receptors, as predicted by work on native receptors. Advances were also made in clarifying the relationship between GABA(B) receptors and the receptors for gamma-hydroxybutyrate, an emerging drug of abuse. There are now the first indications linking GABA(B) receptor polymorphisms to epilepsy. Significantly, the cloning of GABA(B) receptors enabled identification of the first allosteric GABA(B) receptor compounds, which is expected to broaden the spectrum of therapeutic applications. Here we review current concepts on the molecular composition and function of GABA(B) receptors and discuss ongoing drug-discovery efforts.
Collapse
Affiliation(s)
- Bernhard Bettler
- Pharmazentrum, Dept. of Clinical-Biological Sciences, Institute of Physiology, Univ. of Basel, Klingelbergstr. 50, CH-4056 Basel, Switzerland.
| | | | | | | |
Collapse
|
49
|
Piqueras L, Martinez V. Peripheral GABAB agonists stimulate gastric acid secretion in mice. Br J Pharmacol 2004; 142:1038-48. [PMID: 15210585 PMCID: PMC1575121 DOI: 10.1038/sj.bjp.0705876] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1 We characterized the effects of intravenous GABA and preferential GABAA (muscimol), GABAB (R-baclofen and SKF-97541) and GABAC agonists (imidazole-4-acetic acid) on gastric acid secretion in urethane-anesthetized mice implanted with a gastric cannula, and determined the role of vagal cholinergic mechanisms, and gastrin and somatostatin by using peptide immunoneutralization, the SSTR2 antagonist, PRL-2903, and SSTR2 knockout mice. 2 The selective GABA(B) agonists R-baclofen (0.1-3 mg kg(-1), i.v.) and SKF-97541 (0.01-0.3 mg kg(-1), i.v.) induced a dose-related stimulation of gastric acid secretion. SKF-97541 was about 10 times more potent than R-baclofen stimulating gastric acid secretion. Neither GABA (0.1-100 mg kg(-1), i.v.) nor muscimol (0.1-3 mg kg(-1)) nor imidazole-4-acetic acid (0.1-10 mg kg(-1)) affected basal gastric acid secretion. 3 Stimulatory effects of SKF-97541 (0.1 mg kg(-1), i.v.) were blocked by the selective GABAB antagonist, 2-hydroxysaclofen, cholinergic blockade with atropine, subdiaphragmatic vagotomy or gastrin immunoneutralization. 4 Somatostatin immunoneutralization or SSTR2 blockade with PRL-2903 enhanced the secretory response to SKF-97541 (0.1 mg kg(-1), i.v.) by 78 and 105%, respectively. 5 In SSTR2 knockout mice, SKF-97541 (0.1 mg kg(-1), i.v.) increased basal gastric acid secretion by 48%. Neither GABA nor muscimol nor imidazole-4-acetic acid modified basal gastric acid secretion in SSTR2 knockout mice. 6 These results indicate that, in mice, stimulation of GABAB receptors increases gastric acid secretion through vagal- and gastrin-dependent mechanisms. Somatostatin implication might be secondary to the release of gastrin and the increase in gastric luminal acidity.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Atropine/pharmacology
- Baclofen/analogs & derivatives
- Baclofen/pharmacology
- Deoxyglucose/pharmacology
- Dose-Response Relationship, Drug
- GABA Agonists/pharmacology
- GABA Antagonists/pharmacology
- GABA-A Receptor Agonists
- GABA-B Receptor Agonists
- Gastric Acid/metabolism
- Gastrins/immunology
- Imidazoles/pharmacology
- Injections, Intravenous
- Male
- Mice
- Mice, Knockout
- Muscimol/pharmacology
- Organophosphorus Compounds/pharmacology
- Pentagastrin/pharmacology
- Peptides, Cyclic/pharmacology
- Receptors, GABA/drug effects
- Receptors, GABA/physiology
- Receptors, GABA-A/physiology
- Receptors, GABA-B/physiology
- Receptors, Somatostatin/antagonists & inhibitors
- Receptors, Somatostatin/genetics
- Receptors, Somatostatin/physiology
- Somatostatin/immunology
- Time Factors
- Vagotomy
- gamma-Aminobutyric Acid/pharmacology
Collapse
Affiliation(s)
- Laura Piqueras
- Department of Physiology, Pharmacology and Toxicology, Cardenal Herrera CEU University, Valencia, Spain
| | - Vicente Martinez
- Department of Physiology, Pharmacology and Toxicology, Cardenal Herrera CEU University, Valencia, Spain
- Author for correspondence:
| |
Collapse
|
50
|
Balasubramanian S, Teissére JA, Raju DV, Hall RA. Hetero-oligomerization between GABAA and GABAB Receptors Regulates GABAB Receptor Trafficking. J Biol Chem 2004; 279:18840-50. [PMID: 14966130 DOI: 10.1074/jbc.m313470200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neurotransmitter gamma-aminobutyric acid (GABA) mediates inhibitory signaling in the brain via stimulation of both GABA(A) receptors (GABA(A)R), which are chloride-permeant ion channels, and GABA(B) receptors (GABA(B)R), which signal through coupling to G proteins. Here we report physical interactions between these two different classes of GABA receptor. Association of the GABA(B) receptor 1 (GABA(B)R1) with the GABA(A) receptor gamma2S subunit robustly promotes cell surface expression of GABA(B)R1 in the absence of GABA(B)R2, a closely related GABA(B) receptor that is usually required for efficient trafficking of GABA(B)R1 to the cell surface. The GABA(B)R1/gamma2S complex is not detectably functional when expressed alone, as assessed in both ERK activation assays and physiological analyses in oocytes. However, the gamma2S subunit associates not only with GABA(B)R1 alone but also with the functional GABA(B)R1/GABA(B)R2 heterodimer to markedly enhance GABA(B) receptor internalization in response to agonist stimulation. These findings reveal that the GABA(B)R1/gamma2S interaction results in the regulation of multiple aspects of GABA(B) receptor trafficking, allowing for cross-talk between these two distinct classes of GABA receptor.
Collapse
|