1
|
Arenaza-Corona A, Sánchez-Portillo P, González-Sebastián L, Sánchez-Mora A, Monroy-Torres B, Ramírez-Apan T, Puentes-Díaz N, Alí-Torres J, Barba V, Reyes-Marquez V, Morales-Morales D. Water-Soluble Curcumin Derivatives Including Aza-Crown Ether Macrocycles as Enhancers of Their Cytotoxic Activity. Chem Biodivers 2025; 22:e202402083. [PMID: 39429102 PMCID: PMC11908749 DOI: 10.1002/cbdv.202402083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
The synthesis of three novel curcumin derivative compounds, featuring aza-crown ether macrocycles of various sizes (aza-12-crown-4, aza-15-crown-5, and aza-18-crown-6), is described. The incorporation of these aza-crown macrocycles significantly enhances their water solubility, positioning them as groundbreaking instances of curcumin derivatives that are fully soluble in aqueous environments. These curcumin ligands (L1, L2, and L3) were then reacted with zinc acetate to afford the coordination metal complexes (L1-Zn, L2-Zn, and L3-Zn). Comprehensive characterization of all compounds was achieved using various analytical techniques, including 1D and 2D NMR spectroscopy, ATR-FTIR spectroscopy, mass spectrometry (ESI+), elemental analysis and UV-Vis spectroscopy. The in vitro cytotoxic activity of both, ligands and complexes were evaluated on three human cancer cell lines (U-251, MCF-7, and SK-LU-1). Compared to conventional curcumin, these compounds demonstrated improved antiproliferative potential. Additionally, a wound healing assay was conducted to assess their antimigration properties. The obtained results suggest that these modifications to the curcumin structure represent a promising approach for developing therapeutic agents with enhanced cytotoxic properties.
Collapse
Affiliation(s)
- Antonino Arenaza-Corona
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Mexico City, C.P. 04510, Mexico
| | - Paola Sánchez-Portillo
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, C. P. 62209, Mexico
| | - Lucero González-Sebastián
- Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186, Ciudad de México, C.P. 09340, México
| | - Arturo Sánchez-Mora
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Mexico City, C.P. 04510, Mexico
| | - Brian Monroy-Torres
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Mexico City, C.P. 04510, Mexico
| | - Teresa Ramírez-Apan
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Mexico City, C.P. 04510, Mexico
| | - Nicolás Puentes-Díaz
- Departamento de Química, Universidad Nacional de Colombia- Sede Bogotá, Bogotá, 111321, Colombia
| | - Jorge Alí-Torres
- Departamento de Química, Universidad Nacional de Colombia- Sede Bogotá, Bogotá, 111321, Colombia
| | - Victor Barba
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, C. P. 62209, Mexico
| | - Viviana Reyes-Marquez
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Luis Encinas y Rosales s/n, Hermosillo, Sonora, C.P. 83000, Mexico
| | - David Morales-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Mexico City, C.P. 04510, Mexico
| |
Collapse
|
2
|
Jiang W, Jiang L, Yin X, Zhang S, Duan X, Chen J, Liu Y, Zheng H, Tao Z. Untargeted Metabolomics Reveals the Metabolic Characteristics and Biomarkers of Antioxidant Properties of Gardeniae Fructus from Different Geographical Origins in China. Metabolites 2025; 15:38. [PMID: 39852381 PMCID: PMC11767249 DOI: 10.3390/metabo15010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: Gardeniae Fructus (GF) has been widely used as both food and medicinal purposes for thousands of years, but their antioxidant properties and potential metabolite biomarkers remain unclear. Methods: The purposes of this study were to examine antioxidant activities of 21 GF varieties from different geographical origins in China and identify potential biomarkers of antioxidant properties using an untargeted LC-MS-based metabolomics approach. Results: The results demonstrate that metabolomics had the ability to trace the geographical origins of GF. We found that antioxidant activities varied with different varieties of GF, which was dependent on their chemical compositions. The key chemical categories were obtained as the primary contributors of the antioxidant activity, including prenol lipids, flavonoids, coumarins and derivatives, as well as steroids and steroid derivatives. In addition, adouetine Y, coagulin R 3-glucoside and epicatechin 3-glucoside were identified as potential biomarkers for the antioxidant activity of GF. Conclusions: Therefore, our study sheds light on the metabolic characteristics and biomarkers of the antioxidant properties of GF, contributing to the selection and cultivation of a high antioxidant variety.
Collapse
Affiliation(s)
- Wu Jiang
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China; (W.J.); (X.D.); (J.C.); (Y.L.)
- Innovation Center of Chinese Medicine Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lingling Jiang
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou 325060, China;
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou 325060, China
| | - Xiaoli Yin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (X.Y.); (S.Z.); (H.Z.)
| | - Shuhui Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (X.Y.); (S.Z.); (H.Z.)
| | - Xiaojing Duan
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China; (W.J.); (X.D.); (J.C.); (Y.L.)
- Innovation Center of Chinese Medicine Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiadong Chen
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China; (W.J.); (X.D.); (J.C.); (Y.L.)
- Innovation Center of Chinese Medicine Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yingying Liu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China; (W.J.); (X.D.); (J.C.); (Y.L.)
- Innovation Center of Chinese Medicine Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; (X.Y.); (S.Z.); (H.Z.)
| | - Zhengming Tao
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China; (W.J.); (X.D.); (J.C.); (Y.L.)
- Innovation Center of Chinese Medicine Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
3
|
He M, Wang T, Tang C, Xiao M, Pu X, Qi J, Li Y, Li X. Metabolomics and Transcriptomics Reveal the Effects of Different Fermentation Times on Antioxidant Activities of Ophiocordyceps sinensis. J Fungi (Basel) 2025; 11:51. [PMID: 39852470 PMCID: PMC11766798 DOI: 10.3390/jof11010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/21/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Ophiocordyceps sinensis is a fungus that is cultured through fermentation from wild Chinese cordyceps. While studies have examined its metabolites, the evaluation of its antioxidant capacity remains to be conducted. The antioxidant results of O. sinensis indicate that the ferric ion-reducing antioxidant power (FRAP), antioxidant capacity (2.74 ± 0.12 μmol Trolox/g), 2,2-diphenyl-1-picrylhydrazyl (DPPH•) free radical scavenging rate (60.21 ± 0.51%), and the hydroxyl free radical scavenging rate (91.83 ± 0.68%) reached a maximum on day 30. Using LC-MS/MS to measure the metabolites on D24, D30, and D36, we found that the majority of the differential accumulated metabolites (DAMs) primarily accumulate in lipids, organoheterocyclic compounds, and organic acids and their derivatives. Notably, the DAMs exhibiting high peaks include acetylcarnitine, glutathione, linoleic acid, and L-propionylcarnitine, among others. The transcriptome analysis results indicate that the differentially expressed genes (DEGs) exhibiting high expression peaks on D30 primarily included lnaA, af470, and ZEB1; high expression peaks on D24 comprised SPBC29A3.09c and YBT1; high expression peaks on D36 included dtxS1, PA1538, and katG. The combined analysis revealed significant and extremely significant positive and negative correlations between all the DAMs and DEGs. The primary enriched pathways (p < 0.05) included glutathione metabolism, tryptophan metabolism, carbon metabolism, biosynthesis of secondary metabolites, and phenylalanine metabolism. The metabolic pathway map revealed that the DAMs and DEGs influencing the antioxidant activity of O. sinensis were significantly up-regulated on D30 but down-regulated on D36. The correlation analysis suggests that an increase in the content of DEGs and DAMs promotes an increase in the levels of enzyme and non-enzyme substances, ultimately enhancing the antioxidant capacity of O. sinensis. These findings serve as a reference of how DAMs and DEGs affect the antioxidant activity of O. sinensis. This may contribute to the enhanced development and application of O. sinensis.
Collapse
Affiliation(s)
- Min He
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (T.W.); (C.T.); (M.X.); (X.P.); (Y.L.)
| | - Tao Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (T.W.); (C.T.); (M.X.); (X.P.); (Y.L.)
| | - Chuyu Tang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (T.W.); (C.T.); (M.X.); (X.P.); (Y.L.)
| | - Mengjun Xiao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (T.W.); (C.T.); (M.X.); (X.P.); (Y.L.)
| | - Xiaojian Pu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (T.W.); (C.T.); (M.X.); (X.P.); (Y.L.)
| | - Jianzhao Qi
- Center of Edible Fungi, Northwest A&F University, Yangling, Xianyang 712100, China;
| | - Yuling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (T.W.); (C.T.); (M.X.); (X.P.); (Y.L.)
| | - Xiuzhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (T.W.); (C.T.); (M.X.); (X.P.); (Y.L.)
| |
Collapse
|
4
|
Amaya-Flórez A, Serrano-García JS, Ruiz-Galindo J, Arenaza-Corona A, Cruz-Navarro JA, Orjuela AL, Alí-Torres J, Flores-Alamo M, Cano-Sanchez P, Reyes-Márquez V, Morales-Morales D. POCOP-Ni(II) pincer compounds derived from phloroglucinol. Cytotoxic and antioxidant evaluation. Front Chem 2024; 12:1483999. [PMID: 39635578 PMCID: PMC11614598 DOI: 10.3389/fchem.2024.1483999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
POCOP-Ni(II) pincer compounds have primarily been explored as catalysts, but their potential biological activity has been scarcely studied. To address this gap, we evaluated the anticancer and antioxidant potential of four POCOP-Ni(II) complexes derived from phloroglucinol. A comprehensive supramolecular analysis, based on single-crystal X-ray diffraction (DRX) structures, was conducted using Hirshfeld surfaces and non-covalent interaction analysis. The cytotoxicity of all complexes was systematically assessed against various cancerous cell lines, as well as a non-cancerous cell line (COS-7). The results revealed that complexes 1b and 1c exhibited remarkable antiproliferative activity, with IC50 values ranging from 2.43 to 7.85 μM against cancerous cell lines U251, K562, HCT-15, MCF-7, and SK-LU-1. To further elucidate their mechanism of action, a competitive fluorescence displacement assay with ethidium bromide (EB) suggested that these complexes possess the ability to intercalate with DNA. This multifaceted investigation not only enhances our understanding of the biological potential of POCOP-Ni complexes but also provides valuable insights into their structural features and interactions, paving the way for future exploration in both catalytic and therapeutic domains.
Collapse
Affiliation(s)
- Andrés Amaya-Flórez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Jordi Ruiz-Galindo
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | | | - Adrian L. Orjuela
- Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá, Bogotá, Colombia
| | - Jorge Alí-Torres
- Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá, Bogotá, Colombia
| | - Marcos Flores-Alamo
- Facultad de Química, División de Estudios de Posgrado, Universidad Nacional Autónoma de México, Mexico city, Mexico
| | - Patricia Cano-Sanchez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Viviana Reyes-Márquez
- Departamento de Ciencias Químico-Biológicas, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | - David Morales-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
5
|
Milanović Ž. Exploring enzyme inhibition and comprehensive mechanisms of antioxidant/prooxidative activity of natural furanocoumarin derivatives: A comparative kinetic DFT study. Chem Biol Interact 2024; 396:111034. [PMID: 38723799 DOI: 10.1016/j.cbi.2024.111034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
This study aimed to explore the antioxidant and prooxidative activity of two natural furanocoumarin derivatives, Bergaptol (4-Hydroxy-7H-furo [3,2-g] [1]benzopyran-7-one, BER) and Xanthotoxol (9-Hydroxy-7H-furo [3,2-g] [1]benzopyran-7-one, XAN). The collected thermodynamic and kinetic data demonstrate that both compounds possess substantial antiradical activity against HO• and CCl3OO• radicals in physiological conditions. BER exhibited better antiradical activity in comparison to XAN, which can be attributed to the enhanced deprotonation caused by the positioning of the -OH group on the psoralen ring. In contrast to highly reactive radical species, newly formed radical species BER• and XAN• exhibited negligible reactivity towards the chosen constitutive elements of macromolecules (fatty acids, amino acids, nucleobases). Furthermore, in the presence of O2•─, the ability to regenerate newly formed radicals BER• and XAN• was observed. Conversely, in physiological conditions in the presence of Cu(II) ions, both compounds exhibit prooxidative activity. Nevertheless, the prooxidative activity of both compounds is less prominent than their antioxidant activity. Furthermore, it has been demonstrated that anionic species can engage in the creation of a chelate complex, which restricts the reduction of metal ions when reducing agents are present (O2•─ and Asc─). Moreover, studies have demonstrated that these chelating complexes can be coupled with other radical species, hence enhancing their ability to inactivate radicals. Both compounds exhibited substantial inhibitory effects against enzymes involved in the direct or indirect generation of ROS: Xanthine Oxidase (XOD), Lipoxygenase (LOX), Myeloperoxidase (MPO), NADPH oxidase (NOX).
Collapse
Affiliation(s)
- Žiko Milanović
- University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića bb, 34000, Kragujevac, Serbia.
| |
Collapse
|
6
|
Li X, Li Y, Xiong B, Qiu S. Progress of Antimicrobial Mechanisms of Stilbenoids. Pharmaceutics 2024; 16:663. [PMID: 38794325 PMCID: PMC11124934 DOI: 10.3390/pharmaceutics16050663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Antimicrobial drugs have made outstanding contributions to the treatment of pathogenic infections. However, the emergence of drug resistance continues to be a major threat to human health in recent years, and therefore, the search for novel antimicrobial drugs is particularly urgent. With a deeper understanding of microbial habits and drug resistance mechanisms, various creative strategies for the development of novel antibiotics have been proposed. Stilbenoids, characterized by a C6-C2-C6 carbon skeleton, have recently been widely recognized for their flexible antimicrobial roles. Here, we comprehensively summarize the mode of action of stilbenoids from the viewpoint of their direct antimicrobial properties, antibiofilm and antivirulence activities and their role in reversing drug resistance. This review will provide an important reference for the future development and research into the mechanisms of stilbenoids as antimicrobial agents.
Collapse
Affiliation(s)
- Xiancai Li
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Yongqing Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Binghong Xiong
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| | - Shengxiang Qiu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
| |
Collapse
|
7
|
Zhou Y, Wang F, Li G, Xu J, Zhang J, Gullen E, Yang J, Wang J. From immune checkpoints to therapies: understanding immune checkpoint regulation and the influence of natural products and traditional medicine on immune checkpoint and immunotherapy in lung cancer. Front Immunol 2024; 15:1340307. [PMID: 38426097 PMCID: PMC10902058 DOI: 10.3389/fimmu.2024.1340307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Lung cancer is a disease of global concern, and immunotherapy has brought lung cancer therapy to a new era. Besides promising effects in the clinical use of immune checkpoint inhibitors, immune-related adverse events (irAEs) and low response rates are problems unsolved. Natural products and traditional medicine with an immune-modulating nature have the property to influence immune checkpoint expression and can improve immunotherapy's effect with relatively low toxicity. This review summarizes currently approved immunotherapy and the current mechanisms known to regulate immune checkpoint expression in lung cancer. It lists natural products and traditional medicine capable of influencing immune checkpoints or synergizing with immunotherapy in lung cancer, exploring both their effects and underlying mechanisms. Future research on immune checkpoint modulation and immunotherapy combination applying natural products and traditional medicine will be based on a deeper understanding of their mechanisms regulating immune checkpoints. Continued exploration of natural products and traditional medicine holds the potential to enhance the efficacy and reduce the adverse reactions of immunotherapy.
Collapse
Affiliation(s)
- Yibin Zhou
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fenglan Wang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Guangda Li
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Xu
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Zhang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Elizabeth Gullen
- Department of Pharmacology, Yale Medical School, New Haven, CT, United States
| | - Jie Yang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Wang
- Department of Hematology and Oncology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Bouymajane A, Filali FR, Moujane S, Majdoub YOE, Otzen P, Channaoui S, Ed-Dra A, Bouddine T, Sellam K, Boughrous AA, Miceli N, Altemimi AB, Cacciola F. Phenolic Compound, Antioxidant, Antibacterial, and In Silico Studies of Extracts from the Aerial Parts of Lactuca saligna L. Molecules 2024; 29:596. [PMID: 38338341 PMCID: PMC10856452 DOI: 10.3390/molecules29030596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Medicinal plants are considered a major source for discovering novel effective drugs. To our knowledge, no studies have reported the chemical composition and biological activities of Moroccan Lactuca saligna extracts. In this context, this study aims to characterize the polyphenolic compounds distributed in hydro-methanolic extracts of L. saligna and evaluate their antioxidant and antibacterial activities; in addition, in silico analysis based on molecular docking and ADMET was performed to predict the antibacterial activity of the identified phenolic compounds. Our results showed the identification of 29 among 30 detected phenolic compounds with an abundance of dicaffeoyltartaric acid, luteolin 7-glucoronide, 3,5-di-O-caffeoylquinic acid, and 5-caffeoylquinic acid with 472.77, 224.30, 196.79, and 171.74 mg/kg of dried extract, respectively. Additionally, antioxidant activity assessed by DPPH scavenging activity, ferric reducing antioxidant power (FRAP) assay, and ferrous ion-chelating (FIC) assay showed interesting antioxidant activity. Moreover, the results showed remarkable antibacterial activity against Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, Enterococcus faecalis, Staphylococcus aureus, and Listeria monocytogenes with minimum inhibitory concentrations between 1.30 ± 0.31 and 10.41 ± 0.23 mg/mL. Furthermore, in silico analysis identified three compounds, including Apigenin 7-O-glucuronide, Quercetin-3-O-glucuronide, and 3-p-Coumaroylquinic acid as potent candidates for developing new antibacterial agents with acceptable pharmacokinetic properties. Hence, L. saligna can be considered a source of phytochemical compounds with remarkable activities, while further in vitro and in vivo studies are required to explore the main biological activities of this plant.
Collapse
Affiliation(s)
- Aziz Bouymajane
- Biology, Environment and Health Team, Faculty of Sciences and Technologies, Moulay Ismail University, Meknes 50070, Morocco
- Team of Microbiology and Health, Laboratory of Chemistry-Biology Applied to the Environment, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Fouzia Rhazi Filali
- Team of Microbiology and Health, Laboratory of Chemistry-Biology Applied to the Environment, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Soumia Moujane
- Biochemistry of Natural Substances, Faculty of Science and Techniques, Moulay Ismail University, Errachdia 50003, Morocco
| | - Yassine Oulad El Majdoub
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Philipp Otzen
- Institute of Anorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Souhail Channaoui
- Oasis System Research Unit, Regional Center of Agricultural Research of Errachidia, National Institute of Agricultural Research, P.O. Box 415, Rabat 10090, Morocco
| | - Abdelaziz Ed-Dra
- Laboratory of Engineering and Applied Technologies, Higher School of Technology, M’ghila Campus, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco
| | - Toufik Bouddine
- Bioactive Molecules, Health and Biotechnology, Centre of Technology and Transformation, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Khalid Sellam
- Biology, Environment and Health Team, Faculty of Sciences and Technologies, Moulay Ismail University, Meknes 50070, Morocco
| | - Ali Ait Boughrous
- Biology, Environment and Health Team, Faculty of Sciences and Technologies, Moulay Ismail University, Meknes 50070, Morocco
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Ammar B. Altemimi
- Food Science Department, College of Agriculture, University of Basrah, Basrah 61004, Iraq
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy
| |
Collapse
|
9
|
Gao X, Yang Y, Zhu J, Zhang Y, Wang C, Wang Z, Mi W, Du L. Xanthotoxol relieves itch in mice via suppressing spinal GRP/GRPR signaling. Eur J Pharmacol 2023; 960:176147. [PMID: 37871763 DOI: 10.1016/j.ejphar.2023.176147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Although pruritus, commonly known as itch, is a common and debilitating symptom associated with various skin conditions, there is a lack of effective therapies available. Xanthotoxol (XAN), a biologically active linear furocoumarin, shows potential in the treatment of various neurological disorders. In this study, we discovered that administering XAN either through intraperitoneal or intrathecal injections effectively reduced scratching behavior induced by compound 48/80 or chloroquine. Importantly, XAN also substantially alleviates chronic itch in dry skin and allergic contact dermatitis mice. Substantial progress has highlighted the crucial role of gastrin-releasing peptide (GRP)-gastrin-releasing peptide receptor (GRPR) signaling in the dorsal spinal cord in transmitting various types of itch. Our behavior tests revealed that XAN significantly alleviated scratching behaviors induced by intrathecal administration of GRP or GRPR agonist bombesin. Furthermore, XAN reduced the activation of neurons in the spinal cord caused by intrathecal administration of GRP in mice. Moreover, XAN attenuates the activation of spinal GRPR-positive neurons in itchy mice. These findings suggest that XAN mitigates itch in mice by suppressing spinal GRP/GRPR signaling, thereby establishing XAN as a promising therapeutic option for treating pruritus.
Collapse
Affiliation(s)
- Xinyi Gao
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yayue Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jianyu Zhu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yuxin Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chenghao Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhifei Wang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Lixia Du
- Department of Biochemistry, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
10
|
Arenaza-Corona A, Obregón-Mendoza MA, Meza-Morales W, Ramírez-Apan MT, Nieto-Camacho A, Toscano RA, Pérez-González LL, Sánchez-Obregón R, Enríquez RG. The Homoleptic Curcumin-Copper Single Crystal (ML 2): A Long Awaited Breakthrough in the Field of Curcumin Metal Complexes. Molecules 2023; 28:6033. [PMID: 37630284 PMCID: PMC10458717 DOI: 10.3390/molecules28166033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The first single crystal structure of the homoleptic copper (II) ML2 complex (M=Cu (II), L = curcumin) was obtained and its structure was elucidated by X-ray diffraction showing a square planar geometry, also confirmed by EPR. The supramolecular arrangement is supported by C-H···O interactions and the solvent (MeOH) plays an important role in stabilizing the crystal packing Crystallinity was additionally assessed by XRD patterns. The log P value of the complex (2.3 ± 0.15) was determined showing the improvement in water solubility. The cytotoxic activity of the complex against six cancer cell lines substantially surpasses that of curcumin itself, and it is particularly selective against leukemia (K562) and human glioblastoma (U251) cell lines, with similar antioxidant activity to BHT. This constitutes the first crystal structure of pristine curcumin complexed with a metal ion.
Collapse
Affiliation(s)
- Antonino Arenaza-Corona
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Marco A. Obregón-Mendoza
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - William Meza-Morales
- Department of Chemical Engineering, University of Puerto Rico-Mayaguez, Mayagüez, PR 00680, USA;
| | - María Teresa Ramírez-Apan
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Antonio Nieto-Camacho
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Rubén A. Toscano
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Leidys L. Pérez-González
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Rubén Sánchez-Obregón
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| | - Raúl G. Enríquez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (A.A.-C.); (M.A.O.-M.); (M.T.R.-A.); (A.N.-C.); (R.A.T.); (L.L.P.-G.); (R.S.-O.)
| |
Collapse
|
11
|
Chen S, Xi M, Gao F, Li M, Dong T, Geng Z, Liu C, Huang F, Wang J, Li X, Wei P, Miao F. Evaluation of mulberry leaves’ hypoglycemic properties and hypoglycemic mechanisms. Front Pharmacol 2023; 14:1045309. [PMID: 37089923 PMCID: PMC10117911 DOI: 10.3389/fphar.2023.1045309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
The effectiveness of herbal medicine in treating diabetes has grown in recent years, but the precise mechanism by which it does so is still unclear to both medical professionals and diabetics. In traditional Chinese medicine, mulberry leaf is used to treat inflammation, colds, and antiviral illnesses. Mulberry leaves are one of the herbs with many medicinal applications, and as mulberry leaf study grows, there is mounting evidence that these leaves also have potent anti-diabetic properties. The direct role of mulberry leaf as a natural remedy in the treatment of diabetes has been proven in several studies and clinical trials. However, because mulberry leaf is a more potent remedy for diabetes, a deeper understanding of how it works is required. The bioactive compounds flavonoids, alkaloids, polysaccharides, polyphenols, volatile oils, sterols, amino acids, and a variety of inorganic trace elements and vitamins, among others, have been found to be abundant in mulberry leaves. Among these compounds, flavonoids, alkaloids, polysaccharides, and polyphenols have a stronger link to diabetes. Of course, trace minerals and vitamins also contribute to blood sugar regulation. Inhibiting alpha glucosidase activity in the intestine, regulating lipid metabolism in the body, protecting pancreatic -cells, lowering insulin resistance, accelerating glucose uptake by target tissues, and improving oxidative stress levels in the body are some of the main therapeutic properties mentioned above. These mechanisms can effectively regulate blood glucose levels. The therapeutic effects of the bioactive compounds found in mulberry leaves on diabetes mellitus and their associated molecular mechanisms are the main topics of this paper’s overview of the state of the art in mulberry leaf research for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Sikai Chen
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Miaomiao Xi
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
- Xi’an TANK Medicinal Biology Institute, Xi’an, China
| | - Feng Gao
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Min Li
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - TaiWei Dong
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Zhixin Geng
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Chunyu Liu
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Fengyu Huang
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jing Wang
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xingyu Li
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Peifeng Wei
- Shaanxi University of Chinese Medicine, Xianyang, China
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
- *Correspondence: Peifeng Wei, ; Feng Miao,
| | - Feng Miao
- The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China
- *Correspondence: Peifeng Wei, ; Feng Miao,
| |
Collapse
|
12
|
Motolinia-Alcántara EA, Franco-Vásquez AM, Nieto-Camacho A, Arreguín-Espinosa R, Rodríguez-Monroy M, Cruz-Sosa F, Román-Guerrero A. Phenolic Compounds from Wild Plant and In Vitro Cultures of Ageratina pichichensis and Evaluation of Their Antioxidant Activity. PLANTS (BASEL, SWITZERLAND) 2023; 12:1107. [PMID: 36903964 PMCID: PMC10005229 DOI: 10.3390/plants12051107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Ageratina pichichensis, is commonly used in traditional Mexican medicine. In vitro cultures were established from wild plant (WP) seeds, obtaining in vitro plant (IP), callus culture (CC), and cell suspension culture (CSC) with the objective to determine total phenol content (TPC) and flavonoids (TFC), as well as their antioxidant activity by DPPH, ABTS and TBARS assays, added to the compound's identification and quantification by HPLC, from methanol extracts obtained by sonication. CC showed significantly higher TPC and TFC than WP and IP, while CSC produced 2.0-2.7 times more TFC than WP, and IP produced only 14.16% TPC and 38.8% TFC compared with WP. There were identified compounds such as epicatechin (EPI), caffeic acid (CfA), and p-coumaric acid (pCA) in in vitro cultures that were not found in WP. The quantitative analysis shows gallic acid (GA) as the least abundant compound in samples, whereas CSC produced significantly more EPI and CfA than CC. Despite these results, in vitro cultures show lower antioxidant activity than WP, for DPPH and TBARS WP > CSC > CC > IP and ABTS WP > CSC = CC > IP. Overall, A. pichichensis WP and in vitro cultures produce phenolic compounds with antioxidant activity, especially CC and CSC, which are shown to be a biotechnological alternative for obtaining bioactive compounds.
Collapse
Affiliation(s)
- Elizabeth Alejandra Motolinia-Alcántara
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril de San Rafael Atlixco 186, Col. Leyes de Reforma 1a. Sección, Alcaldía Iztapalapa, Ciudad de Mexico 09310, Mexico
| | - Adrián Marcelo Franco-Vásquez
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de Mexico 04510, Mexico
| | - Antonio Nieto-Camacho
- Laboratorio de Pruebas Biológicas, Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de Mexico 04510, Mexico
| | - Roberto Arreguín-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de Mexico 04510, Mexico
| | - Mario Rodríguez-Monroy
- Centro de Desarrollo de Productos Bióticos (CEPROBI), Departamento de Biotecnología, Instituto Politécnico Nacional (IPN), Yautepec 62731, Mexico
| | - Francisco Cruz-Sosa
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril de San Rafael Atlixco 186, Col. Leyes de Reforma 1a. Sección, Alcaldía Iztapalapa, Ciudad de Mexico 09310, Mexico
| | - Angelica Román-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril de San Rafael Atlixco 186, Col. Leyes de Reforma 1a. Sección, Alcaldía Iztapalapa, Ciudad de Mexico 09310, Mexico
| |
Collapse
|
13
|
Homoleptic Complexes of Heterocyclic Curcuminoids with Mg(II) and Cu(II): First Conformationally Heteroleptic Case, Crystal Structures, and Biological Properties. Molecules 2023; 28:molecules28031434. [PMID: 36771102 PMCID: PMC9919861 DOI: 10.3390/molecules28031434] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 02/05/2023] Open
Abstract
We report herein the synthesis and characterization of three heterocyclic curcuminoid ligands and their homoleptic metal complexes with magnesium and copper. Thus, N-methyl-2-pyrrolecarboxaldehyde, Furan-2-carboxaldehyde, and 2-Thiophenecarboxaldehyde were condensed with 2,4-pentanedione-boron trioxide complex. The first N-methyl-2-pyrrole curcuminoid and its Mg(II) complex are reported. All curcuminoid ligands and their corresponding metal complexes were characterized by infrared spectroscopy (IR), liquid state nuclear magnetic resonance (LSNMR), electron paramagnetic resonance (EPR), mass spectrometry (MS) and single crystal X-ray diffraction (SCXRD). The ThiopheneCurc-Cu (9) constitutes the first case of a "conformationally-heteroleptic" complex. The unique six-peaks star arrangement for the ThiopheneCurc ligand derived from the supramolecular description is reported. The metal complexes of FuranCurc-Mg (5) and ThiopheneCurc-Cu (9) have a good antioxidant effect (IC50 = 11.26 ± 1.73 and 10.30 ± 0.59 μM), three and two times higher than their free ligands respectively. Additionally, (5) shows remarkable cytotoxicity against colon cancer adenocarcinoma cell line HCT-15, comparable to that of cisplatin, with a negligible toxic effect in vitro towards a healthy monkey kidney cell line (COS-7).
Collapse
|
14
|
Alvarez-Ricardo Y, Meza-Morales W, Obregón-Mendoza MA, Toscano RA, Núñez-Zarur F, Germán-Acacio JM, Puentes-Díaz N, Alí-Torres J, Arenaza-Corona A, Ramírez-Apan MT, Morales-Morales D, Enríquez RG. Synthesis, characterization, theoretical studies and antioxidant and cytotoxic evaluation of a series of Tetrahydrocurcumin (THC)-benzylated derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Yang Z, Liu R, Qiu M, Mei H, Hao J, Song T, Zhao K, Zou D, Wang H, Gao M. The roles of ERIANIN in tumor and innate immunity and its' perspectives in immunotherapy. Front Immunol 2023; 14:1170754. [PMID: 37187758 PMCID: PMC10175588 DOI: 10.3389/fimmu.2023.1170754] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Traditional Chinese medicine has been used in China for thousands of years. In 2022, the 14th Five-Year Plan for the Development of Traditional Chinese Medicine was released, aiming to enhance traditional Chinese medicine health services and improve policies and systems for high-quality traditional Chinese medicinal development by 2025. ERIANIN, the main component of the traditional Chinese medicine Dendrobium, plays an important role in anti-inflammatory, antiviral, antitumor, antiangiogenic, and other pharmacological effects. ERIANIN has broad-spectrum antitumor effects, and its tumor-suppressive effects have been confirmed in the study of various diseases, such as precancerous lesions of the stomach, gastric cancer, liver cancer, lung cancer, prostate cancer, bladder cancer, breast cancer, cervical cancer, osteosarcoma, colorectal cancer, leukaemia, nasopharyngeal cancer and melanoma through the multiple signaling pathways. Thus, the aim of this review was to systematically summarise the research on ERIANIN with the aim of serving as a reference for future research on this compound and briefly discuss some future perspectives development of ERIANIN in combined immunotherapy.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Ruxue Liu
- College of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Minghan Qiu
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Hanwei Mei
- College of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jie Hao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China
| | - Teng Song
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Ke Zhao
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Dandan Zou
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
| | - Huaqing Wang
- Department of Oncology, Tianjin Union Medical Center of Nankai University, Tianjin, China
- The Institute of Translational Medicine, Tianjin Union Medical Center of Nankai University, Tianjin, China
- College of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Huaqing Wang, ; Ming Gao,
| | - Ming Gao
- Department of Thyroid and Breast Surgery, Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China
- *Correspondence: Huaqing Wang, ; Ming Gao,
| |
Collapse
|
16
|
Ahmed Z, Tokhi A, Arif M, Rehman NU, Sheibani V, Rauf K, Sewell RDE. Fraxetin attenuates disrupted behavioral and central neurochemical activity in a model of chronic unpredictable stress. Front Pharmacol 2023; 14:1135497. [PMID: 37033640 PMCID: PMC10078985 DOI: 10.3389/fphar.2023.1135497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/14/2023] [Indexed: 04/11/2023] Open
Abstract
Purpose: Chronic unpredictable stress (CUS) induces long-term neuronal and synaptic plasticity with a neurohormonal disbalance leading to the development of co-existing anxiety, depression, and cognitive decline. The side effects and delayed onset of current clinically used antidepressants has prompted a quest for antidepressants with minimum drawbacks. Fraxetin is a natural coumarin derivative with documented antioxidant and neuroprotective activity though its effects on stress are unknown. This study therefore aimed to investigate any possible acute effect of fraxetin in behavioral tests including a CUS paradigm in correlation with brain regional neurochemical changes. Methods: Mice were subjected to a series of mild stressors for 14 days to induce CUS. Furthermore, behavioral performance in the open field test, forced swim test (FST), Y-maze and elevated plus-maze were evaluated. Postmortem frontal cortical, hippocampal and striatal tissues were analyzed via high-performance liquid chromatography (HPLC) for neurochemical changes. Result: Acute administration of fraxetin (20-60 mg/kg, orally) decreased depression-like behavior in the FST and behavioral anxiety in both the open field test and elevated plus-maze. Memory deficits induced during the CUS paradigm were markedly improved as reflected by enhanced Y maze performance. Concurrent biochemical and neurochemical analyses revealed that only the two higher fraxetin doses decreased elevated serum corticosterone levels while diminished serotonin levels in the frontal cortex, striatum and hippocampus were reversed, though noradrenaline was only raised in the striatum. Concomitantly, dopamine levels were restored by fraxetin at the highest dose exclusively in the frontal cortex. Conclusion: Acute treatment with fraxetin attenuated CUS-induced behavioral deficits, ameliorated the increased corticosterone level and restored altered regional neurotransmitter levels and this may indicate a potential application of fraxetin in the management of anxiety and depression modeled by CUS. However, further studies are warranted regarding the chronic effects of fraxetin behaviorally and neurochemically.
Collapse
Affiliation(s)
- Zainab Ahmed
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad campus, Abbottabad, Pakistan
| | - Ahmed Tokhi
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad campus, Abbottabad, Pakistan
| | - Mehreen Arif
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad campus, Abbottabad, Pakistan
| | - Naeem Ur Rehman
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad campus, Abbottabad, Pakistan
| | - Vahid Sheibani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of MedicalSciences, Kerman, Iran
| | - Khalid Rauf
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad campus, Abbottabad, Pakistan
- *Correspondence: Khalid Rauf,
| | - Robert D. E. Sewell
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
17
|
Xanthotoxin modulates oxidative stress, inflammation, and MAPK signaling in a rotenone-induced Parkinson's disease model. Life Sci 2022; 310:121129. [DOI: 10.1016/j.lfs.2022.121129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/22/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022]
|
18
|
Magerusan L, Pogacean F, Rada S, Pruneanu S. Sulphur-doped graphene based sensor for rapid and efficient gallic acid detection from food related samples. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
19
|
Wang X, Luo G, Zhang L, Zheng J, Li X, Tao Z, Zhang Q. Study on the recognition of psoralen and psoralen@cucurbit[8]uril fluorescent probe for Fe3+ ions. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01169-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Tetradentate square-planar acetylumbelliferone–nickel (II) complex formation: a DFT and TD-DFT study. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02903-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Wu KJ, Liu PP, Chen MY, Zhou MX, Liu X, Yang Q, Xu L, Gong Z. The Hepatoprotective Effect of Leonurine Hydrochloride Against Alcoholic Liver Disease Based on Transcriptomic and Metabolomic Analysis. Front Nutr 2022; 9:904557. [PMID: 35873419 PMCID: PMC9301321 DOI: 10.3389/fnut.2022.904557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Excessive alcohol consumption can eventually progress to alcoholic liver disease (ALD). The underlying mechanism of ALD toxicity is primarily associated with oxidative damage. Many alkaloids have been reported to possess potential antioxidative efficacy, while the mechanism of their hepatoprotective activity against ALD is still not clear. In this study, eight alkaloids were selected from a monomer library of Traditional Chinese Medicine and evaluated for their antioxidant activity against ALD by the evaluation of Glutathione (GSH) and Malondialdehyde (MDA). The result suggested that Leonurine hydrochloride (LH) was a potent antioxidant that could reduce alcoholic liver damage. To further investigate the underlying mechanism of LH against ALD, the molecular pathway induced by LH was identified by RNA-seq analyses. Transcriptome data revealed the principal mechanism for the protective effect of LH against ALD might be attributed to the differentially expressed genes (DEGs) of PI3K-AKT, AMPK, and HIF-1 signaling pathways involved in the lipid metabolism. Given the hepatoprotective mechanism of LH is involved in lipid metabolism, the lipid metabolism induced by LH was further analyzed by UHPLC-MS/MS. Metabolome analysis indicated that LH significantly regulated glycerophospholipid metabolism including phosphatidylcholine, 1-acyl-sn-glycero-3-phosphocholine, phosphatidylethanolamine and 1-acyl-sn-glycero-3-phosphoethanolamine in the liver. Overall, this study revealed that the hepatoprotective mechanism of LH against alcoholic liver damage might be associated with the genes involved in glycerophospholipid metabolism.
Collapse
|
22
|
Mocan A, Fernandes Â, Calhelha RC, Gavrilaş L, Ferreira ICFR, Ivanov M, Sokovic M, Barros L, Babotă M. Bioactive Compounds and Functional Properties of Herbal Preparations of Cystus creticus L. Collected From Rhodes Island. Front Nutr 2022; 9:881210. [PMID: 35677542 PMCID: PMC9168797 DOI: 10.3389/fnut.2022.881210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
The members of Cystus genus are perenial shrubs with a well-established use in traditional medicine. Among these, C. creticus is the most popular, herbal preparations obtained from its aerial parts being recognized as antimicrobial, antitumor and anti-inflammatory agents. The present study aimed to evaluate phytochemical profile and bioactive potential of aqueous and hydroethanolic extracts of C. creticus aerial parts harvested from two different areas of Rhodes island. LC-DAD-ESI/MSn analysis revealed the presence of myricetin and quercetin glycosides as main compounds, especially in aqueous extracts, being probably responsible for their enhanced antioxidant and antimicrobial potential. On the other side, hydroethanolic preparations exerted a strong anti-inflammatory and anti-biofilm activity. Our findings suggest that the use of solvents with intermediate polarity can assure the best recovery of bioactive compounds from C. creticus, increasing the extraction yield for other non-phenolic compounds which can enhance therapeutic potential of the extract through a synergistic action.
Collapse
Affiliation(s)
- Andrei Mocan
- Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- *Correspondence: Andrei Mocan ;
| | - Ângela Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Laura Gavrilaş
- Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Marija Ivanov
- Institute for Biological Research “Siniša Stanković”– National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marina Sokovic
- Institute for Biological Research “Siniša Stanković”– National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
- Lillian Barros
| | - Mihai Babotă
- Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
23
|
Stanzione R, Forte M, Cotugno M, Bianchi F, Marchitti S, Rubattu S. Role of DAMPs and of Leukocytes Infiltration in Ischemic Stroke: Insights from Animal Models and Translation to the Human Disease. Cell Mol Neurobiol 2022; 42:545-556. [PMID: 32996044 PMCID: PMC11441194 DOI: 10.1007/s10571-020-00966-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023]
Abstract
Stroke is a leading cause of death and disability worldwide. Several mechanisms are involved in the pathogenesis of ischemic stroke (IS). The contributory role of the inflammatory and immunity processes was demonstrated both in vitro and in animal models, and was confirmed in humans. IS evokes an immediate inflammatory response that involves complex cellular and molecular mechanisms. All components of the innate and adaptive immunity systems are involved in several steps of the ischemic cascade. In the early phase, inflammatory and immune mechanisms contribute to the brain tissue damage, whereas, in the late phase, they participate to the tissue repair processes. In particular, damage-associated molecular patterns (DAMPs) appear critical for the promotion of altered blood brain barrier permeability, leukocytes infiltration, tissue edema and brain injury. Conversely, the activation of regulatory T lymphocytes (Tregs) plays protective effects. The identification of specific cellular/molecular elements belonging to the inflammatory and immune responses, contributing to the brain ischemic injury and tissue remodeling, offers the advantage to design adequate therapeutic strategies. In this article, we will present an overview of the knowledge on inflammatory and immunity processes in IS, with a particular focus on the role of DAMPs and leukocytes infiltration. We will discuss evidence obtained in preclinical models of IS and in humans. The main molecular mechanisms useful for the development of novel therapeutic approaches will be highlighted. The translation of experimental findings to the human disease is still a difficult step to pursue. Further investigations are required to fill up the existing gaps.
Collapse
Affiliation(s)
| | | | | | | | | | - Speranza Rubattu
- IRCCS Neuromed, Pozzilli, IS, Italy.
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
24
|
Cytotoxicity against Human Hepatocellular Carcinoma (HepG2) Cells and Anti-Oxidant Activity of Selected Endemic or Medicinal Plants in Sri Lanka. Adv Pharmacol Pharm Sci 2022; 2022:6407688. [PMID: 35402917 PMCID: PMC8986432 DOI: 10.1155/2022/6407688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/20/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most fatal cancer globally with limited treatment options. Plants and herbs have been used to treat cancer and other diseases for a long time by traditional practitioners in Sri Lanka. In the present study, leaf and bark extracts of selected plants were investigated for cytotoxic properties on HepG2 cells. Anti-oxidant activity and total phenolic and flavonoid contents were also determined. Plant extracts that exerted cytotoxic effects on the HepG2 cell line with IC50 <100 μg/mL were tested on normal liver epithelial cells (THLE-3). Out of the 56 extracts, 21 exhibited potent cytotoxic effects (IC50 < 100 µg/mL) on HepG2 cells after 48 h exposure, and 12 were less toxic (IC50 > 100 μg/mL) to THLE-3 normal liver cells. Six extracts exhibited potent radical scavenging activity with EC50 < 100 μg/mL against 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, while 17 extracts showed potent anti-oxidant activity (Trolox equivalents > 100 mg/g) against ferric reducing anti-oxidant power (FRAP) assay. Out of the 56 extracts, 15 had total phenolic content above 100 mg/g of gallic acid equivalents, and 4 had flavonoid content above 100 mg/g of quercetin equivalents. Among the extracts screened, hexane, dichloromethane, ethyl acetate, and methanol extracts of Allophylus cobbe leaves (IC50 – 9.388, 6.8, 19.95, and 11.3 μg/mL, respectively), Madhuca longiflora bark (IC50 – 14.42 μg/mL), methanol extract of Munronia pinnata bark (IC50 – 52.06 μg/mL), and hexane, dichloromethane, ethyl acetate, and methanol extracts of Adenanthera bicolor (IC50 – 45.86, 27.35, 24.56, and 61.83 μg/mL, respectively) exerted potent cytotoxicity against HepG2 with less toxicity (IC50 > 100 μg/mL) to THLE-3 cells after 48 h of incubation. These findings provide a direction to isolate possible anti-cancer compounds for hepatocellular carcinoma.
Collapse
|
25
|
Clinical Potential of Fruit in Bladder Cancer Prevention and Treatment. Nutrients 2022; 14:nu14061132. [PMID: 35334790 PMCID: PMC8951059 DOI: 10.3390/nu14061132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/27/2022] Open
Abstract
Bladder cancer (BC) is the most common tumor of the urinary system in the world. Moreover, despite using anticancer therapies, BC is also characterized by a high recurrence risk. Among numerous risk factors, cigarette smoking, occupational exposure to certain aromatic compounds, and genetic factors contribute most strongly to BC development. However, the epidemiological data to date suggests that diet quality may influence some carcinogenic factors of BC and, therefore, might have a preventative effect. Adequate consumption of selected fruits with scientifically proven properties, including pomegranates and cranberries, can significantly reduce the risk of developing BC, even in those at risk. Therefore, in this article, we aim to elucidate, using available literature, the role of fruits, including pomegranates, cranberries, citrus fruits, cactus pears, and apples, in BC prevention and treatment. Previous data indicate the role of compounds in the above-mentioned fruits in the modulation of the signaling pathways, including cell proliferation, cell growth, cell survival, and cell death.
Collapse
|
26
|
Gavilán Arriazu EM, Rodriguez SA. STUDY OF ELECTROCHEMICAL BETANIDIN OXIDATION PATH USING COMPUTATIONAL METHODS. Phys Chem Chem Phys 2022; 24:19269-19278. [DOI: 10.1039/d2cp02053j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Betalains can be used in food, drugs, and cosmetic industries and have shown their bioactive potential. For these reasons, unraveling their oxidation mechanism is of high importance and demands a...
Collapse
|
27
|
An Insight into Phytochemical, Pharmacological, and Nutritional Properties of Arbutus unedo L. from Morocco. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1794621. [PMID: 34853597 PMCID: PMC8629616 DOI: 10.1155/2021/1794621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/23/2021] [Accepted: 11/07/2021] [Indexed: 11/18/2022]
Abstract
Arbutus unedo L. (Ericaceae) is an evergreen shrub widely distributed in the Mediterranean region, particularly through the Moroccan forests. It is an important medicinal plant of great scientific interest due to its nutritional, pharmacological, and chemical properties. The objective of this review is to provide insights into traditional medicinal uses and phytochemical and pharmacological properties of A. unedo from Morocco. In Morocco, the plant has been used as a traditional medicine to treat several pathological conditions. Many phytochemical compounds have been reported in the plant, of which vitamins, carotenoids, flavonoids, polyphenols, tannins, and their derivatives are the most prevalent. Leaves and fruits of A. unedo contain the most significant number of phytochemicals among the species. Furthermore, researchers have demonstrated that A. unedo exhibited antioxidant, anticancer, antibacterial, antidiabetic, antiaggregant, and antihypertensive activities due to the presence of many biochemical compounds with health-promoting properties. According to different toxicity tests, the use of A. unedo is devoid of any significant side effects and/or toxicity. Despite its nutraceutical and health-promoting properties, Moroccan A. unedo remains underexploited mainly, and most of its traditional uses have not yet undergone scientific evidence-based research; therefore, improved knowledge about the potential value of the plant would allow understanding of its biological activity based on its phytochemical compounds that may contribute to the species preservation and valorization.
Collapse
|
28
|
Zhang X, Hu L, Xu S, Ye C, Chen A. Erianin: A Direct NLRP3 Inhibitor With Remarkable Anti-Inflammatory Activity. Front Immunol 2021; 12:739953. [PMID: 34745110 PMCID: PMC8564113 DOI: 10.3389/fimmu.2021.739953] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/28/2021] [Indexed: 01/15/2023] Open
Abstract
Erianin (Eri) is the extract of Dendrobium chrysotoxum Lindl. The NLRP3 inflammasome is a multiprotein complex that plays key roles in a wide variety of chronic inflammation-driven human diseases. Nevertheless, little is known about the protection of Eri against NLRP3 inflammasome-related diseases. In this study, we demonstrated that Eri inhibited NLRP3 inflammasome activation in vitro and in vivo. Mechanistically, Eri directly interacted with NLRP3, leading to inhibition of NLRP3 inflammasome assembly. Eri associated with the Walker A motif in the NACHT domain and suppressed NLRP3 ATPase activity. In mouse models, Eri had therapeutic effects on peritonitis, gouty arthritis and type 2 diabetes, via NLRP3. More importantly, Eri was active ex vivo for synovial fluid cells and monocytes from patients with IAV infection and gout. Eri may serve as a potential novel therapeutic compound against NLRP3-driven diseases.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Arthritis, Gouty/drug therapy
- Arthritis, Gouty/genetics
- Arthritis, Gouty/metabolism
- Bibenzyls/pharmacology
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Disease Models, Animal
- Dogs
- HEK293 Cells
- Humans
- Inflammasomes/antagonists & inhibitors
- Inflammasomes/genetics
- Inflammasomes/metabolism
- Madin Darby Canine Kidney Cells
- Mice, Inbred C57BL
- Mice, Knockout
- NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors
- NLR Family, Pyrin Domain-Containing 3 Protein/genetics
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Peritonitis/drug therapy
- Peritonitis/genetics
- Peritonitis/metabolism
- Phenol/pharmacology
- Protein Interaction Domains and Motifs
- THP-1 Cells
- Mice
Collapse
Affiliation(s)
- Xinyong Zhang
- Department of Neurology, Huaian Hospital Affiliated to Xuzhou Medical University, Huaian, China
- The Key Laboratory of Targeted Intervention of Clinical Disease, Collaborative Innovation Center of Translational Medicine for Clinical Disease, Nanjing Medical University, Nanjing, China
| | - Lei Hu
- Guiyang Women and Children’s Hospital, Guizhou Medical University, Guiyang, China
| | - Shilei Xu
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chao Ye
- The Key Laboratory of Targeted Intervention of Clinical Disease, Collaborative Innovation Center of Translational Medicine for Clinical Disease, Nanjing Medical University, Nanjing, China
| | - Aidong Chen
- The Key Laboratory of Targeted Intervention of Clinical Disease, Collaborative Innovation Center of Translational Medicine for Clinical Disease, Nanjing Medical University, Nanjing, China
| |
Collapse
|
29
|
Heravi MM, Abedian‐Dehaghani N, Zadsirjan V, Rangraz Y. Catalytic Function of Cu (I) and Cu (II) in Total Synthesis of Alkaloids. ChemistrySelect 2021. [DOI: 10.1002/slct.202101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Majid M. Heravi
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Neda Abedian‐Dehaghani
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Vahideh Zadsirjan
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| | - Yalda Rangraz
- Department of Chemistry School of Physics and Chemistry Alzahra University, PO.Box 1993891176, Vanak Tehran Iran
| |
Collapse
|
30
|
Zha A, Cui Z, Qi M, Liao S, Chen L, Liao P, Tan B. Dietary Baicalin Zinc Supplementation Alleviates Oxidative Stress and Enhances Nutrition Absorption in Deoxynivalenol Challenged Pigs. Curr Drug Metab 2021; 21:614-625. [PMID: 32116187 DOI: 10.2174/1389200221666200302124102] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/19/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Deoxynivalenol contamination is increasing worldwide, presenting great challenges to food security and causing great economic losses in the livestock industry. OBJECTIVE This study was conducted to determine the protective effect of baicalin zinc as a dietary supplement on pigs fed with a deoxynivalenol contaminated diet. METHODS A total of 40 weaned pigs (21 d of age; 6.13 ± 0.42 kg average BW) were randomly assigned (10 pigs/group) to 4 dietary treatments: basal diet (Con group), basal diet + 4 mg/kg DON (DON group), basal diet + 5 g/kg BZN (BZN group), and basal diet + 5 g/kg BZN + 4 mg/kg DON (DBZN group) for a 14-d period. Seven randomly-selected pigs from each treatment were killed for blood and tissue sampling. RESULTS The results showed that piglets challenged with DON exhibited significantly reduced levels of ADG, ADFI, and F/G (p < 0.05). BZN supplemented diets significantly suppressed the protein expression of p-Nrf2, p-NF-kB, and HO-1 in the jejunum of DON challenged piglets (p < 0.05). In liver, DON markedly increased the mRNA expression of P70S6K and HSP70 in piglets fed the basal diet, but significantly reduced that of HO-1, NQO-1, NF-kB, AMPKα2 and HSP70 in piglets fed the BZN supplemented diet (p < 0.05). Dietary supplementation with BZN markedly increased the T-AOC level of serum in weaned piglets (p < 0.05). In jejunum, dietary supplementation with BZN activated the mRNA expression of ZIP4 in piglets (p < 0.05), BZN supplementation significantly suppressed the activity of sucrose and increased the protein concentration in chyme (p < 0.05). CONCLUSION BZN can play a protective role by reducing oxidative stress and enhancing nutrient absorption in pigs fed DON-contaminated diets.
Collapse
Affiliation(s)
- Andong Zha
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhijuan Cui
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| | - Ming Qi
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Simeng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lixin Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China,Shaodong Animal Husbandry and Fisheries Bureau, Hunan, 422800, China
| | - Peng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| | - Bie Tan
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| |
Collapse
|
31
|
Su C, Liu S, Ma X, Liu J, Liu J, Lei M, Cao Y. The effect and mechanism of erianin on the reversal of oxaliplatin resistance in human colon cancer cells. Cell Biol Int 2021; 45:2420-2428. [PMID: 34351659 DOI: 10.1002/cbin.11684] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/19/2021] [Accepted: 08/01/2021] [Indexed: 11/06/2022]
Abstract
Multidrug resistance (MDR) is the main cause of chemotherapy failure in the treatment of colon cancer and the high expression of drug efflux protein P-gp is one of the main factors of MDR. P-gp expression is regulated by the signal transducer and activator of transcription 3 (STAT3) signaling pathway. In this study, human colon cancer oxaliplatin-resistant cells were treated with oxaliplatin combined with the natural product erianin. Then, we evaluated the impact of erianin on drug resistance, and explored the relationship between erianin-related oxaliplatin resistance and the Janus kinase 2/STAT3 signaling pathway in vitro. Our research showed that erianin could significantly inhibit the proliferation of human colon cancer oxaliplatin-resistant cells, and suppress the cell cycle of oxaliplatin-resistant cells in the G2/M phase, indicating that erianin could regulate the MDR phenotype of oxaliplatin-resistant cells, and its mechanism might be the inhibition of STAT3 signaling pathway and the significant reduction of P-gp expression. However, this study provides a theoretical basis for the clinical application of erianin in platinum-based chemotherapy for colon cancer.
Collapse
Affiliation(s)
- Chang Su
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Shaoqun Liu
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Xiaoying Ma
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Jiajun Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, PR China
| | - Ming Lei
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai, PR China
| | - Yiou Cao
- Department of Surgery, Minhang Hospital, Fudan University, Shanghai, PR China
| |
Collapse
|
32
|
Effect of extracts from baccharis, tamarind, cashew nut shell liquid and clove on animal performance, feed efficiency, digestibility, rumen fermentation and feeding behavior of bulls finished in feedlot. Livest Sci 2021. [DOI: 10.1016/j.livsci.2020.104361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Li J, Wang D, Xue P, Sun H, Feng Q, Miao N. The complete chloroplast genome of Scutellaria scordifolia (Labiatae). Mitochondrial DNA B Resour 2021; 6:84-85. [PMID: 33521276 PMCID: PMC7808380 DOI: 10.1080/23802359.2020.1847621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Scutellaria scordifolia Fisch. ex Schrank Li is a traditional Chinese medicinal plant of genus Scutellaria from the Labiatae family. The complete chloroplast genome of was 152,336 bp in length, which contained 133 complete genes including 87 protein-coding genes (87 PCGs), 8 ribosomal RNA genes (8 rRNAs), and 37 transfer RNA genes (37 tRNAs). The GC content of chloroplast DNA was 38.3%. The corresponding values of the LSC, SSC, and IR regions were 36.3%, 32.5%, and 43.6%, respectively. Phylogenetic tree showed that the species from genus Scutellaria were divided into two monophyletic clades, and the divergence time of S. scordifolia was earlier than that of the other species.
Collapse
Affiliation(s)
- Junyi Li
- Sichuan Academy of Forestry/Ecological Restoration and Conservation on Forest and Wetland Key Laboratory of Sichuan Province, Chengdu, P. R. China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P. R. China
| | - Dong Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P. R. China
| | - Panpan Xue
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P. R. China
| | - Haoran Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P. R. China
| | - Qiuhong Feng
- Sichuan Academy of Forestry/Ecological Restoration and Conservation on Forest and Wetland Key Laboratory of Sichuan Province, Chengdu, P. R. China
| | - Ning Miao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
34
|
Eggplant Fruit (Solanum melongena L.) and Bio-Residues as a Source of Nutrients, Bioactive Compounds, and Food Colorants, Using Innovative Food Technologies. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app11010151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Consumers are very concerned with following a healthy diet, along with some precautions that may influence environmental impact. Solanum melongena L. is one of the most consumed vegetables due to its excellent nutritional value and antioxidant action. Associated with its high consumption, considerable amounts of agro-food wastes are produced. This work targets the valorization of this matrix, through the use of its bio-residues to study the obtention of coloring pigments, applying innovative technologies. Its nutritional value, chemical composition, and bioactive potential were evaluated, and the ultrasound-assisted extraction to obtain coloring pigments of high industrial interest was optimized. Considering the results, low contents of fat and carbohydrates and energy value were evident, as well as the presence of compounds of interest (free sugars, organic acids, unsaturated fatty acids, and phenolic acids). In addition, the antioxidant and antimicrobial potential was detected. Response surface methodology was performed to optimize the extraction of natural pigments, showing a concentration of 11.9 mg/g of anthocyanins/g of extract, applying optimal conditions of time, solvent, and solid/liquid ratio of 0.5 min, 68.2% (v/v) and 5 g/L, respectively. S. melongena proved to be a good source of bioactive compounds and natural pigments, which can generate great interest in the food industry.
Collapse
|
35
|
Lee SY, Lee DY, Kim OY, Kang HJ, Kim HS, Hur SJ. Overview of Studies on the Use of Natural Antioxidative Materials in Meat Products. Food Sci Anim Resour 2020; 40:863-880. [PMID: 33305273 PMCID: PMC7713766 DOI: 10.5851/kosfa.2020.e84] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 11/07/2022] Open
Abstract
Studies conducted in the past decade related to the use of natural antioxidants
in meat products revealed the prevalent use of plant-based antioxidative
materials added as powders, extracts, or dried or raw materials to meat
products. The amount of antioxidative materials varied from 7.8 ppm to
19.8%. Extracts and powders were used in small amounts (ppm to grams) and
large amounts (grams to >1%), respectively. Antioxidative
materials used in meat products are mainly composed of phenolic compounds and
flavonoids, which are able to inhibit lipid peroxidation of meat products,
thereby preserving meat quality. However, the main ingredients used in processed
meat products are the traditional additives, such as sodium erythorbate, sodium
hydrosulfite, and synthetic antioxidants, rather than natural antioxidants. This
difference could be attributed to changes in the sensory quality or
characteristics of meat products using natural antioxidants. Therefore, novel
research paradigms to develop meat products are needed, focusing on the
multifunctional aspects of natural antioxidants.
Collapse
Affiliation(s)
- Seung Yun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - On You Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Hea Jin Kang
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| | - Hyeong Sang Kim
- School of Animal Life Convergence Science, Hankyong National University, Anseong 17579, Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea
| |
Collapse
|
36
|
Mutshinyani M, Mashau ME, Jideani AIO. Bioactive compounds, antioxidant activity and consumer acceptability of porridges of finger millet (Eleusine coracana) flours: effects of spontaneous fermentation. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1825485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Muvhuso Mutshinyani
- Department of Food Science and Technology, School of Agriculture, University of Venda, Thohoyandou, Limpopo Province, South Africa
| | - Mpho Edward Mashau
- Department of Food Science and Technology, School of Agriculture, University of Venda, Thohoyandou, Limpopo Province, South Africa
| | - Afam Israel Obiefuna Jideani
- Department of Food Science and Technology, School of Agriculture, University of Venda, Thohoyandou, Limpopo Province, South Africa
| |
Collapse
|
37
|
Dong H, Wang M, Chang C, Sun M, Yang F, Li L, Feng M, Zhang L, Li Q, Zhu Y, Qiao Y, Xie T, Chen J. Erianin inhibits the oncogenic properties of hepatocellular carcinoma via inducing DNA damage and aberrant mitosis. Biochem Pharmacol 2020; 182:114266. [PMID: 33035506 DOI: 10.1016/j.bcp.2020.114266] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/14/2023]
Abstract
Natural compounds have been confirmed as one of the most feasible solutions for hard-to-treat cancers such as hepatocellular carcinoma (HCC). Erianin, a natural bibenzyl compound from Dendrobium chrysotoxum, has been recently discovered with anticancer property in cancer cells. However, the roles and the molecular mechanisms of erianin in HCC remain unknown. The present study evaluates the effect of erianin on human HCC cells by inhibiting cell proliferation, inducing apoptotic-related cell death and hampering tumorigenicity. Furthermore, it was found that erianin could cause irreparable DNA damage, induce G2/M arrest and deregulate mitotic regulators. It was also observed that many cells with damaged DNA induced by erianin could overcome G2/M arrest and enter mitosis, leading to abnormal mitosis, and subsequently mitotic catastrophe and apoptotic-related cell death. The present study confirmed that erianin could be a potential antitumor agent for HCC clinical treatment.
Collapse
Affiliation(s)
- Heng Dong
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Menglan Wang
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Cunjie Chang
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Mengqing Sun
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Fan Yang
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Lina Li
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Mengqing Feng
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Lele Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou 310003, China
| | - Qian Li
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yannan Zhu
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang Province, Hangzhou 310003, China.
| | - Tian Xie
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Jianxiang Chen
- College of Pharmacy, School of Medicine, Department of Hepatology, Institute of Hepatology and Metabolic Diseases, Institute of Integrated Chinese and Western Medicine for Oncology, the Affiliated Hospital of Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China; Laboratory of Cancer Genomics, Division of Cellular and Molecular Research, National Cancer Centre Singapore, Singapore 169610, Singapore.
| |
Collapse
|
38
|
Pattarachotanant N, Tencomnao T. Citrus hystrix Extracts Protect Human Neuronal Cells against High Glucose-Induced Senescence. Pharmaceuticals (Basel) 2020; 13:ph13100283. [PMID: 33007805 PMCID: PMC7600454 DOI: 10.3390/ph13100283] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 12/17/2022] Open
Abstract
Citrus hystrix (CH) is a beneficial plant utilized in traditional folk medicine to relieve various health ailments. The antisenescent mechanisms of CH extracts were investigated using human neuroblastoma cells (SH-SY5Y). Phytochemical contents and antioxidant activities of CH extracts were analyzed using a gas chromatograph–mass spectrometer (GC-MS), 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) assay and 2,2′-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) assay. Effects of CH extracts on high glucose-induced cytotoxicity, reactive oxygen species (ROS) generation, cell cycle arrest and cell cycle-associated proteins were assessed using a 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide tetrazolium (MTT) assay, non-fluorescent 2′, 7′-dichloro-dihydrofluorescein diacetate (H2DCFDA) assay, flow cytometer and Western blot. The extracts protected neuronal senescence by inhibiting ROS generation. CH extracts induced cell cycle progression by releasing senescent cells from the G1 phase arrest. As the Western blot confirmed, the mechanism involved in cell cycle progression was associated with the downregulation of cyclin D1, phospho-cell division cycle 2 (pcdc2) and phospho-Retinoblastoma (pRb) proteins. Furthermore, the Western blot showed that extracts increased Surtuin 1 (SIRT1) expression by increasing the phosphorylation of Glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Collectively, CH extracts could protect high glucose-induced human neuronal senescence by inducing cell cycle progression and up-regulation of SIRT1, thus leading to the improvement of the neuronal cell functions.
Collapse
Affiliation(s)
- Nattaporn Pattarachotanant
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Age-Related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Age-Related Inflammation and Degeneration Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-2-218-1533
| |
Collapse
|
39
|
Sun Y, Li G, Zhou Q, Shao D, Lv J, Zhou J. Dual Targeting of Cell Growth and Phagocytosis by Erianin for Human Colorectal Cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3301-3313. [PMID: 32848368 PMCID: PMC7429191 DOI: 10.2147/dddt.s259006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022]
Abstract
Objective To investigate the effect of erianin on tumor growth and immune response in human colorectal cancer cells (CRC). Methods The effect of erianin on tumor growth was determined by CCK8 and colony formation assay. Western blotting was used to evaluate the expression levels of relevant proteins and qRT-PCR was used to evaluate the mRNA level of the relevant gene. The transcriptional activity of β-catenin was determined by dual-luciferase reporter assay. Cellular thermal shift assay was used to quantify drug–target interactions. The cell surface CD47 was assessed by flow cytometry. The enrichment of H3K27 acetyl marks on CD47 promoter was evaluated by chromatin immunoprecipitation assay. Phagocytosis assay was used to determine the phagocytic activity of macrophage. In vivo role of erianin was studied on xenograft models. Results We found that erianin significantly decreased cell survival, colony formation, induced cell cycle arrest, and led to cell apoptosis in SW480 and HCT116 cells. Mechanism analysis demonstrated that erianin inhibited the nuclear translocation and transcriptional activity of β-catenin, which might result from erianin-β-catenin interaction. In addition, the downstream gene expressions, such as c-Myc and cyclin D1, was decreased. More interestingly, erianin decreased the expression of CD47 by regulating H3K27 acetyl marks enrichment on CD47 promoter. Consequently, macrophage-mediated phagocytosis was increased. Our in vivo experiments further confirmed the inhibitory effect of erianin on tumor growth. Conclusion In summary, erianin could inhibit CRC cells growth and promoted phagocytosis, which suggested erianin as a potential therapeutic strategy for CRC patients.
Collapse
Affiliation(s)
- Yihan Sun
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, People's Republic of China
| | - Guofeng Li
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, People's Republic of China
| | - Qi Zhou
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, People's Republic of China
| | - Danyue Shao
- Second School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jingwei Lv
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, People's Republic of China
| | - Jianhua Zhou
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, People's Republic of China
| |
Collapse
|
40
|
Peng Y, Gao P, Shi L, Chen L, Liu J, Long J. Central and Peripheral Metabolic Defects Contribute to the Pathogenesis of Alzheimer's Disease: Targeting Mitochondria for Diagnosis and Prevention. Antioxid Redox Signal 2020; 32:1188-1236. [PMID: 32050773 PMCID: PMC7196371 DOI: 10.1089/ars.2019.7763] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022]
Abstract
Significance: Epidemiological studies indicate that metabolic disorders are associated with an increased risk for Alzheimer's disease (AD). Metabolic remodeling occurs in the central nervous system (CNS) and periphery, even in the early stages of AD. Mitochondrial dysfunction has been widely accepted as a molecular mechanism underlying metabolic disorders. Therefore, focusing on early metabolic changes, especially from the perspective of mitochondria, could be of interest for early AD diagnosis and intervention. Recent Advances: We and others have identified that the levels of several metabolites are fluctuated in the periphery before their accumulation in the CNS, which plays an important role in the pathogenesis of AD. Mitochondrial remodeling is likely one of the earliest signs of AD, linking nutritional imbalance to cognitive deficits. Notably, by improving mitochondrial function, mitochondrial nutrients efficiently rescue cellular metabolic dysfunction in the CNS and periphery in individuals with AD. Critical Issues: Peripheral metabolic disorders should be intensively explored and evaluated for the early diagnosis of AD. The circulating metabolites derived from mitochondrial remodeling represent novel potential diagnostic biomarkers for AD that are more readily detected than CNS-oriented biomarkers. Moreover, mitochondrial nutrients provide a promising approach to preventing and delaying AD progression. Future Directions: Abnormal mitochondrial metabolism in the CNS and periphery is involved in AD pathogenesis. More clinical studies provide evidence for the suitability and reliability of circulating metabolites and cytokines for the early diagnosis of AD. Targeting mitochondria to rewire cellular metabolism is a promising approach to preventing AD and ameliorating AD-related metabolic disorders.
Collapse
Affiliation(s)
- Yunhua Peng
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Peipei Gao
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Le Shi
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lei Chen
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiangang Long
- Center for Mitochondrial Biology & Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
41
|
The Role of Ca 2+-NFATc1 Signaling and Its Modulation on Osteoclastogenesis. Int J Mol Sci 2020; 21:ijms21103646. [PMID: 32455661 PMCID: PMC7279283 DOI: 10.3390/ijms21103646] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
The increasing of intracellular calcium concentration is a fundamental process for mediating osteoclastogenesis, which is involved in osteoclastic bone resorption. Cytosolic calcium binds to calmodulin and subsequently activates calcineurin, leading to NFATc1 activation, a master transcription factor required for osteoclast differentiation. Targeting the various activation processes in osteoclastogenesis provides various therapeutic strategies for bone loss. Diverse compounds that modulate calcium signaling have been applied to regulate osteoclast differentiation and, subsequently, attenuate bone loss. Thus, in this review, we summarized the modulation of the NFATc1 pathway through various compounds that regulate calcium signaling and the calcium influx machinery. Furthermore, we addressed the involvement of transient receptor potential channels in osteoclastogenesis.
Collapse
|
42
|
Senousy HH, Abd Ellatif S, Ali S. Assessment of the antioxidant and anticancer potential of different isolated strains of cyanobacteria and microalgae from soil and agriculture drain water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18463-18474. [PMID: 32193737 DOI: 10.1007/s11356-020-08332-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/05/2020] [Indexed: 05/17/2023]
Abstract
The potential usage of cyanobacteria and microalgae as a promising and alternative source for new and safe therapeutic compounds is recently caught the attention, due to its versatile properties as antitumor, antioxidant, antifungal, and antiviral agents. Primarily, the cyanobacteria and microalgae from fresh and marine water are previously studied, however those isolated from soil and agriculture drain water were poorly investigated. Therefore, this study aimed to screen and characterize the antioxidant profile, as well as the potential anticancer assessment of 12 species of cyanobacteria and two species of microalgae strains isolated from soil and agriculture drain water. The data showed that total phenol contents were highest in Anabaena oryzae and Aphanizomenon gracile (27.39 and 26.83 mg GAE/g, respectively), followed by Leptolyngbya fragilis (22.96 mg GAE/g). Out of the 14 species identified, the cyanobacterium Dolichospermum flos-aquae HSSASE2 exhibited the most elevated antioxidant activity in terms of NO scavenging activity and anti-lipid peroxidation potential (IC50 = 28.7 ± 0.1 and 11.9 ± 0.2 μg/ml, respectively) and the lowest DPPH radical scavenging activity (467.7 μg/ml). Screening of the anticancer potential of all studied strains against four different human cancer cell lines (Caco-2, MCF-7, PC3, and HepG-2) demonstrated that Dolichospermum crassum HSSASE20 has the highest anticancer effect among all tested species against colon and prostate cancer cell lines (IC50 = 57.9 ± 0.4 and 44.1 ± 0.2 μg/ml, respectively), while Oscillatoria sancta HSSASE19 recorded the most anticancer effect against MCF-7 (breast cancer) cell line (IC50 = 15.1 ± 0.7 μg/ml). Dolichospermum spiroides HSSASE18 obtained the highest anticancer effect HepG-2 (hepatic cancer) cell line (IC50 = 48.8 ± 0.7 μg/ml). Additionally, cytotoxicity against healthy peripheral blood mononuclear cells was studied and revealed that Oscillatoria sancta was the safest one among all studied strains. Data obtained from the sensitivity index demonstrated that Dolichospermum crassum was the most sensitive strain against the four cancerous cell lines. Cyanobacteria and microalgae from the soil and drain water sources are efficient free radical scavengers, containing apoptogens capable of stimulating apoptotic cascades and overcoming chemo-resistance in cancer therapy. Thus, these novel secondary metabolites are an excellent alternative, safe, and low-cost antioxidant and anticancer therapeutic compounds.
Collapse
Affiliation(s)
- Hoda H Senousy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Sawsan Abd Ellatif
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technology Applications, New Borg El-Arab City, Universities and Research District, 21934, Alexandria, Egypt
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad, 38000, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
43
|
ÖNDER A, ÇINAR AS, YILMAZ SARIALTIN S, İZGİ MN, ÇOBAN T. Evaluation of the Antioxidant Potency of Seseli L. Species (Apiaceae). Turk J Pharm Sci 2020; 17:197-202. [PMID: 32454780 PMCID: PMC7227918 DOI: 10.4274/tjps.galenos.2019.80488] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/24/2019] [Indexed: 12/01/2022]
Abstract
OBJECTIVES In the present study, the antioxidant potency of ethyl acetate (AcOEt) and methanol (MeOH) extracts from the aerial parts of Seseli L. species was investigated for the first time. MATERIALS AND METHODS Seseli species L. such as Seseli andronakii Woronow ex Schischk., S. campestre Besser, S. corymbosum Boiss. & Heldr., S. gummiferum subsp. gummiferum Pall. ex Sm., S. hartvigii Parolly & Nordt, S. libanotis (L.) W.Koch, S. petraeum M.Bieb., S. peucedanoides (M.Bieb.) Koso-Pol., S. resinosum Freyn & Sint., and S. tortuosum L. growing in Turkey were collected and evaluated for their antioxidant capacity by using 1.1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and lipid peroxidation (LPO) inhibition methods. RESULTS The highest activities as a scavenger of DPPH radicals were found in the AcOEt extracts of S. peucedanoides (M.Bieb.) Koso-Pol (IC50=0.49 mg/mL), and S. libanotis (IC50=0.75 mg/mL); α-tocopherol was used as a positive control. On the other hand, in the LPO assay, the highest activities were determined in AcOEt and MeOH extracts (at 5 mg/mL) of S. tortuosum and S. libanotis (84-94%). CONCLUSION This report gives important information about the antioxidant capacity of Seseli L. species. This research on antioxidant capacity proves that the use of some species used in Eastern Anatolia (in salads) is correct. With this screening study performed in Seseli L. species growing in Turkey, in the future, it is planned to isolate antioxidant compounds from the most active strains of Seseli L.
Collapse
Affiliation(s)
- Alev ÖNDER
- Ankara University Faculty of Pharmacy, Department of Pharmacognosy, Ankara, Turkey
| | - Ahsen Sevde ÇINAR
- Ankara University Faculty of Pharmacy, Department of Pharmacognosy, Ankara, Turkey
- Lokman Hekim University Faculty of Pharmacy, Department of Pharmacognosy/Pharmaceutical Botany, Ankara, Turkey
| | - Sezen YILMAZ SARIALTIN
- Ankara University Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara, Turkey
| | - Mehmet Necat İZGİ
- Mardin Artuklu University, Kızıltepe Vocational Higher School, Mardin, Turkey
| | - Tülay ÇOBAN
- Ankara University Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Ankara, Turkey
| |
Collapse
|
44
|
Shi B, Liu J, Zhang Q, Wang S, Jia P, Bian L, Zheng X. Effect of co-administration of Acori Tatarinowii Rhizoma volatile oil on pharmacokinetic fate of xanthotoxol, oxypeucedanin hydrate, and byakangelicin from Angelicae Dahuricae Radix in rat. J Sep Sci 2020; 43:2349-2362. [PMID: 32222035 DOI: 10.1002/jssc.201901250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/29/2022]
Abstract
A combination of Angelicae Dahuricae Radix and Acori Tatarinowii Rhizoma has been widely used as the herb pair in traditional Chinese medicine to treat stroke, migraine, and epilepsy. However, the underlying synergistic mechanism of the herb pair remains unknown. This study was aimed at investigating the effects of Acori Tatarinowii Rhizoma volatile oil on the pharmacokinetic parameters of xanthotoxol, oxypeucedanin hydrate, and byakangelicin from Angelicae Dahuricae Radix in rat, and in vitro absorption behavior of the three compounds using rat everted gut sac, in situ single-pass intestinal perfusion, and Caco-2 cell monolayer models. The pharmacokinetic study exhibited clear changes in the key pharmacokinetic parameters of the three main coumarins through co-administering with Acori Tatarinowii Rhizoma volatile oil (50 mg/kg), the area under curve and the maximum plasma concentration of xanthotoxol increased 1.36 and 1.31 times; the area under curve, the maximum plasma concentration, mean residence time, half-life of elimination, and the time to reach peak concentration of oxypeucedanin hydrate increased by 1.35, 1.18, 1.24, 1.19 and 1.49 times, respectively; the area under curve, mean residence time, half-life of elimination, and time to reach peak concentration of byakangelicin climbed 1.29, 1.27, 1.37, and 1.28 times, respectively. The three coumarin components were absorbed well in the jejunum and ileum in the intestinal perfusion model, when co-administered with Acori Tatarinowii Rhizoma volatile oil (100 μg/mL). The in vivo and in vitro experiments showed good relevance and consistency. The results demonstrated that the three coumarin compounds from Angelicae Dahuricae Radix were absorbed through the active transportation, and Acori Tatarinowii Rhizoma volatile oil could promote the intestinal absorption and transport of these compounds by inhibiting P-glycoprotein (P-gp)-mediated efflux.
Collapse
Affiliation(s)
- Baimei Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, 710069, P. R. China
| | - Jianghong Liu
- Shenzhen Longhua District Central Hospital, Shenzhen, 518110, P. R. China
| | - Qian Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, 710069, P. R. China.,District Traditional Chinese Medicine Hospital of Xi'an, Shaanxi Province, Xi'an, 710100, P. R. China
| | - Shixiang Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, 710069, P. R. China
| | - Pu Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, 710069, P. R. China
| | - Liujiao Bian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, 710069, P. R. China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, 710069, P. R. China
| |
Collapse
|
45
|
Chen YT, Hsieh MJ, Chen PN, Weng CJ, Yang SF, Lin CW. Erianin Induces Apoptosis and Autophagy in Oral Squamous Cell Carcinoma Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 48:183-200. [PMID: 31903779 DOI: 10.1142/s0192415x2050010x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is a leading cause of cancer-related deaths worldwide. It has a very poor prognosis with over a 5-year survival rate of only 50%. Thus, it is important to identify effective therapeutic interventions against oral cancer. Apoptosis and autophagy have reported genetically regulated in physiology and diseases, which close relationship. Many natural compound study objects anticancer effect have been studied between apoptosis and autophagy relationship. The present study was designed to evaluate the effect of erianin on human oral cancer cell proliferation. Results of the study revealed that treatment with erianin significantly reduced the viability of different OSCC cell lines. Erianin exerted its cytotoxic effect by inducing cell cycle arrest and caspase-dependent apoptotic pathways. Both intrinsic and extrinsic pathways were found to be involved in erianin-mediated cell death. In addition, treatment with erianin also increased autophagy in OSCC cells. With further analysis, it was found that erianin induced both apoptosis and autophagy by regulating MAPK signaling pathways. Taken together, our study indicates that erianin plays an important role in reducing oral cancer cell viability, and thus, can be considered as a potential anticancer agent.
Collapse
Affiliation(s)
- Yi-Tzu Chen
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan.,Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Ju Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan.,Department of Holistic Wellness, MingDao University, Changhua, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Pei-Ni Chen
- Institute of Biochemistry, Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Chia-Jui Weng
- Department of Living Services Industry, Tainan University of Technology, Tainan City, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
46
|
Bastías-Montes JM, Monterrosa K, Muñoz-Fariña O, García O, Acuña-Nelson SM, Vidal-San Martín C, Quevedo-Leon R, Kubo I, Avila-Acevedo JG, Domiguez-Lopez M, Wei ZJ, Thakur K, Cespedes-Acuña CL. Chemoprotective and antiobesity effects of tocols from seed oil of Maqui-berry: Their antioxidative and digestive enzyme inhibition potential. Food Chem Toxicol 2019; 136:111036. [PMID: 31862287 DOI: 10.1016/j.fct.2019.111036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 11/18/2022]
Abstract
Maqui-berry (Aristotelia chilensis) is the emerging Chilean superfruit with high nutraceutical value. Until now, the research on this commodity was focused on the formulations enriched with polyphenols from the pulp. Herein, contents of tocols were compared in the seed oil of Maqui-berry obtained through three different extraction methods followed by determining their antioxidative and enzyme inhibitions in-vitro. Firstly, oilseed was extracted with n-hexane (Soxhlet method), chloroform/methanol/water (Bligh and Dyer method) and pressing (industrial). These samples were used to access their effects against DPPH, HORAC, ORAC, FRAP, Lipid-peroxidation (TBARS), α-amylase, α-glucosidase, and pancreatic lipase. All the isomers of tocopherol and tocotrienol were identified, and β-sitosterol was the only sterol found in higher amounts than other vegetable oils. The Bligh and Dyer method could lead to the highest antioxidative capacity compared to Soxhlet and press methods likely because the latter have a higher amount of tocopherols. Further, seed oil from Maqui berry and their tocols (α, β, γ, δ-tocopherols, tocotrienols, and β-sitosterol) warrant clinical investigation for their antioxidative and antiobesity potential. Taken together, these findings provide relevant and suitable conditions for the industrial processing of Maqui-berry.
Collapse
Affiliation(s)
| | - Karen Monterrosa
- Departamento de Ingeniería en Alimentos, Universidad Del Bío-Bío, P.O. Box 447, Chillán, Chile
| | - Ociel Muñoz-Fariña
- Instituto de Ciencia y Tecnología en Alimentos, Universidad Austral de Chile, Valdivia, Chile
| | - Olga García
- Instituto de Ciencia y Tecnología en Alimentos, Universidad Austral de Chile, Valdivia, Chile
| | - Sergio M Acuña-Nelson
- Departamento de Ingeniería en Alimentos, Universidad Del Bío-Bío, P.O. Box 447, Chillán, Chile
| | - Carla Vidal-San Martín
- Departamento de Ingeniería en Alimentos, Universidad Del Bío-Bío, P.O. Box 447, Chillán, Chile
| | - Roberto Quevedo-Leon
- Departamento de Acuicultura y Recursos Agroalimentarios, Universidad de Los Lagos, Osorno, Chile
| | - Isao Kubo
- ESPM Department, UC-Berkeley, CA, 94720-3112, USA
| | | | - Mariana Domiguez-Lopez
- Departamento de Biología Celular y Desarrollo, Laboratorio 305-Sur, Instituto de Fisiología Celular. Universidad Nacional Autónoma de Mexico, Mexico D.F., Mexico
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Carlos L Cespedes-Acuña
- Department of Basic Sciences, Research Group in Chemistry and Biotechnology of Bioactive Natural Products, Faculty of Sciences, University of Bio-Bío, Andrés Bello Avenue, Chillan, Chile.
| |
Collapse
|
47
|
The anti-carcinogenesis properties of erianin in the modulation of oxidative stress-mediated apoptosis and immune response in liver cancer. Aging (Albany NY) 2019; 11:10284-10300. [PMID: 31754081 PMCID: PMC6914393 DOI: 10.18632/aging.102456] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 11/07/2019] [Indexed: 12/25/2022]
Abstract
In this study, erianin was found to reduce the viability of cancer cells, inhibit their proliferation and migration, induce G2/M phase arrest, enhance cancer cell apoptosis, promote an increase in levels of intracellular reactive oxygen species and a decrease in mitochondrial membrane potential, and regulate the expression levels of anti- and pro-apoptosis-related proteins in HepG2 and SMMC-7721 cells. Erianin inhibited tumor growth in HepG2- and SMMC-7721-xenograft tumor nude mouse models, reduced the expression levels of anti-apoptosis proteins and enhanced the expression levels of pro-apoptosis proteins in tumor tissues. Erianin inhibited tumor growth in immunosuppressed BALB/c mice bearing heterotopic tumors. Among 111 types of cytokines detected in proteome profiling of tumor tissues, erianin substantially influenced levels of 38 types of cytokines in HepG2-xenografted tumors and of 15 types of cytokines in SMMC-7721-xenografted tumors, most of which are related to immune functions. Erianin strongly affected the serum levels of cytokines, and regulated the activation of nuclear factor-kappa B (NF-κB), and the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream proteins in spleen. The anti-liver cancer properties of erianin were found to be related mostly to its modulation of oxidative stress-mediated mitochondrial apoptosis and immune response.
Collapse
|
48
|
Akram M, Riaz M, Munir N, Akhter N, Zafar S, Jabeen F, Ali Shariati M, Akhtar N, Riaz Z, Altaf SH, Daniyal M, Zahid R, Said Khan F. Chemical constituents, experimental and clinical pharmacology of Rosa damascena: a literature review. ACTA ACUST UNITED AC 2019; 72:161-174. [PMID: 31709541 DOI: 10.1111/jphp.13185] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/23/2019] [Indexed: 01/06/2023]
Abstract
CONTEXT Rosa damascena Mill. is prescribed for the management of chest and abdominal pain, constipation, digestive disorders, menstrual bleeding and liver ailments. OBJECTIVE The current review compiles up to date and complete information of whole plant of R. damascena with particular emphasis on its numerous scientifically proved pharmacological effects, traditional and folk medicinal uses. KEY FINDING The data on the pharmacological effects of R. damascena were collected from various databases such as PubMed, Wiley Online Library, Elsevier and Web of Science using the keywords like phytoconstituents, pharmacology, medicinal uses and biological activity of R. damascene. Rosa damascena has a wide spectrum of bio-pharmacological activity like antidepressant, hypoglycaemic, anti-inflammatory, analgesic, antioxidant and antimicrobial. The main ingredients of R. damascena essential oil responsible for pharmacological activity are geraniol and citronellol. Its uses have been widely accepted in traditional system of medicines for the management of numerous diseases of human beings in different dosage forms. SUMMARY Rosa damascena has a significant place in traditional system of medicine. It is cost-effective and an important plant with curative application in contemporary medicine. Further studies on the characterization of chemical constituents and scientific basis of pharmacological activity of R. damascena should be carried out to evaluate its impact on traditional system of medicines. Large-scale preclinical and clinical trials will be beneficial in investigating the mechanism of the therapeutic potential of R. damascene to explore its uses in pharmaceutical industries.
Collapse
Affiliation(s)
- Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Naveed Munir
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Naheed Akhter
- College of Allied Health Professional, Government College University Faisalabad, Faisalabad, Pakistan
| | - Sadia Zafar
- Division of Science and Technology, Department of Botany, University of Education, Lahore, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mohammad Ali Shariati
- Kazakh Research Institute of Processing and Food industry (Semey Branch), Semey, Kazakhstan
| | - Naheed Akhtar
- Department of Pharmacy, The University of Poonch, Rawalakot, Azad Kashmir, Pakistan
| | - Zarfishan Riaz
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Syed Hassan Altaf
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Daniyal
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Rabia Zahid
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Fahad Said Khan
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
49
|
NHC-Ir(I) complexes derived from 5,6-dinitrobenzimidazole. Synthesis, characterization and preliminary evaluation of their in vitro anticancer activity. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
50
|
Nie X, Sheng W, Hou D, Liu Q, Wang R, Tan Y. Effect of Hyperin and Icariin on steroid hormone secretion in rat ovarian granulosa cells. Clin Chim Acta 2019; 495:646-651. [PMID: 29729232 DOI: 10.1016/j.cca.2018.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 10/17/2022]
Abstract
AIM OF THE STUDY This study was designed to investigate the effect of different concentrations of Hyperin and Icariin (ICA)on proliferation and the secretion of estrogen (E2), and progesterone (P) in granulosa cells, and to explore the effect of Hyperin and Icariin on the expression of CYP17 and CYP19. MATERIALS AND METHODS Rat ovary granulosa cells were cultured in vitro and treated with different concentrations of Hyperin and Icariin. The proliferation of ovarian granulosa cells was measured with the MTT assay. The concentration of estradiol was measured with a magnetic particle-based enzyme-linked immunosorbent assay (ELISA) kit. The CYP17 and CYP19 mRNA expression was detected by quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR). The CYP17 and CYP19 protein expression was determined with Western blotting. RESULTS Hyperin (50 μg/l) and Icariin (10 μg/l) significantly increased proliferation of ovarian granulosa cells and secretion of estrogen and progesterone. Hyperin and Icariin stimulated the mRNA and protein expression of CYP17 and CYP19. CONCLUSIONS These results showed that Hyperin and Icariin can promote the secretion of E2 and P through up-regulation of CYP17 and CYP19. Frequently used Chinese herbs like Cuscuta Chinensis Lam and Epimedium Brevicornu maxim, which contain Hyperin and Icariin, could improve the ovarian endocrine function through these effects.
Collapse
Affiliation(s)
- Xiaowei Nie
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing 210029, China
| | - Wenjie Sheng
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing 210029, China
| | - Daorong Hou
- Key laboratory of the Model Animal, Animal Core Facility of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Qiang Liu
- Key laboratory of the Model Animal, Animal Core Facility of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Ronggen Wang
- Key laboratory of the Model Animal, Animal Core Facility of Nanjing Medical University, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Yong Tan
- Department of Reproductive Medicine, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing 210029, China.
| |
Collapse
|