1
|
Shah S, Patel V. Targeting posterior eye infections with colloidal carriers: The case of Ganciclovir. Int J Pharm 2023; 645:123427. [PMID: 37729977 DOI: 10.1016/j.ijpharm.2023.123427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/09/2023] [Accepted: 09/17/2023] [Indexed: 09/22/2023]
Abstract
The ocular system, unlike any other human body organ, is a system in which foreign bodies appear quite defenceless in front of the eye. Several infections of the ocular system occur due to various opportunistic conditions. Cytomegalovirus (CMV) is one of the opportunivores that causes several posterior eye infections. Ganciclovir (GCV),9-(2-hydroxy-1-(hydroxymethyl) ethoxymethyl), is aguanine-antiviral agent primarily used to treat CMV diseases. However, the major challenge is of lower bioavailability. Hence, GCV must be dosed repeatedly to enhance drug absorption. but this causes side effects like neutropenia and bone marrow suppression. So, formulators have used alternative formulation strategies such as prodrug formulation and colloidal drug delivery systems. In the prodrug strategy, they attempted to bind various compounds into the parent drug to increase the permeability and bioavailability of GCV. In colloidal drug delivery systems, mucoadhesive microspheres, nanoparticles, Niosome and liposome were employed to extend the drug residence time at the application site. This paper discusses several colloidal carriers combined with GCV to treat opportunistic CMV infection in the posterior ocular system. It reviews the limitations of conventional ocular therapy and explores various novel formulation approaches to improve the ocular bioavailability of GCV in the posterior chamber of the eye.
Collapse
Affiliation(s)
- Srushti Shah
- Parul Institute of Pharmacy, ParulUniversity, Gujarat 391760, India.
| | - Vandana Patel
- Krishna School of Pharmacy and Research, KPGU, Gujarat 391240, India
| |
Collapse
|
2
|
Perrone S, Grassi F, Caporilli C, Boscarino G, Carbone G, Petrolini C, Gambini LM, Di Peri A, Moretti S, Buonocore G, Esposito SMR. Brain Damage in Preterm and Full-Term Neonates: Serum Biomarkers for the Early Diagnosis and Intervention. Antioxidants (Basel) 2023; 12:antiox12020309. [PMID: 36829868 PMCID: PMC9952571 DOI: 10.3390/antiox12020309] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The Brain is vulnerable to numerous insults that can act in the pre-, peri-, and post-natal period. There is growing evidence that demonstrate how oxidative stress (OS) could represent the final common pathway of all these insults. Fetuses and newborns are particularly vulnerable to OS due to their inability to active the antioxidant defenses. Specific molecules involved in OS could be measured in biologic fluids as early biomarkers of neonatal brain injury with an essential role in neuroprotection. Although S-100B seems to be the most studied biomarker, its use in clinical practice is limited by the complexity of brain damage etiopathogenesis and the time of blood sampling in relation to the brain injury. Reliable early specific serum markers are currently lacking in clinical practice. It is essential to determine if there are specific biomarkers that can help caregivers to monitor the progression of the disease in order to active an early neuroprotective strategy. We aimed to describe, in an educational review, the actual evidence on serum biomarkers for the early identification of newborns at a high risk of neurological diseases. To move the biomarkers from the bench to the bedside, the assays must be not only be of a high sensitivity but suitable for the very rapid processing and return of the results for the clinical practice to act on. For the best prognosis, more studies should focus on the association of these biomarkers to the type and severity of perinatal brain damage.
Collapse
Affiliation(s)
- Serafina Perrone
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Correspondence:
| | - Federica Grassi
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Chiara Caporilli
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Giovanni Boscarino
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Giulia Carbone
- Pediatric Clinic, Pietro Barilla Children’s Hospital, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Chiara Petrolini
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Lucia Maria Gambini
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Antonio Di Peri
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Sabrina Moretti
- Neonatology Unit, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Giuseppe Buonocore
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | | |
Collapse
|
3
|
Nugnes R, Russo C, Lavorgna M, Orlo E, Kundi M, Isidori M. Polystyrene microplastic particles in combination with pesticides and antiviral drugs: Toxicity and genotoxicity in Ceriodaphnia dubia. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120088. [PMID: 36075334 DOI: 10.1016/j.envpol.2022.120088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Freshwater ecosystems are recognized as non-negligible sources of plastic contamination for the marine environment that is the final acceptor of 53 thousand tons of plastic per year. In this context, microplastic particles are well known to directly pose a great threat to freshwater organisms, they also indirectly affect the aquatic ecosystem by adsorbing and acting as a vector for the transport of other pollutants ("Trojan horse effect"). Polystyrene is one of the most widely produced plastics on a global scale, and it is among the most abundant microplastic particles found in freshwaters. Nevertheless, to date few studies have focused on the eco-genotoxic effects on freshwater organisms caused by polystyrene microplastic particles (PS-MPs) in combination with other pollutants such as pharmaceuticals and pesticides. The aim of this study is to investigate chronic and sub-chronic effects of the microplastic polystyrene beads (PS-MP, 1.0 μm) both as individual xenobiotic and in combination (binary/ternary mixtures) with the acicloguanosine antiviral drug acyclovir (AC), and the neonicotinoid broad-spectrum insecticide imidacloprid (IMD) in one of the most sensitive non-target organisms of the freshwater food chain: the cladoceran crustacean Ceriodaphnia dubia. Considering that the individually selected xenobiotics have different modes of action and/or different biological sites, the Bliss independence was used as reference model for this research. Basically, when C. dubia neonates were exposed for 24 h to the mixtures during Comet assay, mostly an antagonistic genotoxic effect was observed. When neonates were exposed to the mixtures for 7 days, mostly an additive chronic toxic effect occurred at concentrations very close or even overlapping to the environmental ones ranging from units to tens of ng/L for PS-MPs, from tenths/hundredths to units of μg/L for AC and from units to hundreds of μg/L for IMD, revealing great environmental concern.
Collapse
Affiliation(s)
- Roberta Nugnes
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy.
| | - Chiara Russo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy.
| | - Margherita Lavorgna
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy.
| | - Elena Orlo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy.
| | - Michael Kundi
- Medical University of Vienna, Center for Public Health, Department of Environmental Health, Kinderspitalgasse 15, 1090, Vienna, Austria.
| | - Marina Isidori
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy.
| |
Collapse
|
4
|
Ledbetter EC, Badanes ZI, Chan RX, Donohue LK, Hayot NL, Harman RM, Van de Walle GR, Mohammed HO. Comparative Efficacy of Topical Ophthalmic Ganciclovir and Oral Famciclovir in Cats with Experimental Ocular Feline Herpesvirus-1 Epithelial Infection. J Ocul Pharmacol Ther 2022; 38:339-347. [PMID: 35613418 PMCID: PMC9242719 DOI: 10.1089/jop.2022.0001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/04/2022] [Indexed: 01/05/2023] Open
Abstract
Purpose: To determine the comparative efficacy of ganciclovir ophthalmic gel and famciclovir oral tablets in cats with experimentally induced ocular feline herpesvirus-1 (FHV-1) epithelial infection. Methods: A randomized, placebo-controlled trial was performed using 16 nonvaccinated, specific pathogen-free cats with experimental FHV-1 infection induced by topical ocular inoculation. Cats received topical ganciclovir 0.15% ophthalmic gel (1 drop 3 times daily, n = 6 cats), oral famciclovir (90 mg/kg twice daily, n = 6), or topical artificial tear gel (1 drop 3 times daily, n = 4) for 14 days. Cats were monitored after inoculation for 30 days. Ophthalmic examinations were performed every 2 days and ocular disease scores calculated. In vivo confocal microscopy was performed, and corneal leukocyte infiltrates quantified. Ocular samples for FHV-1 quantitative polymerase chain reaction (qPCR) and virus isolation assays were collected every 3 days. Hemograms and serum biochemistry panels were performed at intervals. Results: Clinical ocular disease scores and corneal leukocyte infiltrates were significantly lower in the ganciclovir and famciclovir groups compared with placebo, but no significant differences were detected between the antiviral treatment groups. Ocular viral loads determined by qPCR were significantly lower in the ganciclovir group compared with the placebo group, but there were no significant differences between the other study groups. Hemograms and biochemistry panels were unremarkable. Conclusion: Topical application of ganciclovir gel 3 times daily was well-tolerated and displayed similar efficacy at reducing clinical ocular disease scores and corneal inflammation as twice daily oral famciclovir treatment in cats with experimental ocular FHV-1 infection.
Collapse
Affiliation(s)
- Eric C. Ledbetter
- Department of Clinical Sciences and College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Zachary I. Badanes
- Department of Clinical Sciences and College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Remington X. Chan
- Department of Clinical Sciences and College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Laura K. Donohue
- Department of Clinical Sciences and College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Nathalie L. Hayot
- Department of Clinical Sciences and College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Rebecca M. Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Gerlinde R. Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Hussni O. Mohammed
- Department of Population Medicine & Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
5
|
Setia A, Bhatia J, Bhattacharya S. An Overview of Acute Flaccid Myelitis. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:774-794. [PMID: 34823462 DOI: 10.2174/1871527320666211125101424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/19/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Acute Flaccid Myelitis is defined by the presence of Acute Flaccid Paralysis (AFP) and a spinal cord lesion on magnetic resonance imaging that is primarily limited to the grey matter. AFM is a difficult situation to deal with when you have a neurologic illness. According to the Centers for Disease Control and Prevention (CDC), a large number of cases were discovered in the United States in 2014, with 90% of cases occurring in children. Although the exact cause of AFM is unknown, mounting evidence suggests a link between AFM and enterovirus D68 (EV-D68). In 2014, an outbreak of AFM was discovered in the United States. The condition was initially linked to polioviruses; however, it was later found that the viruses were caused by non-polioviruses Enteroviruses D-68 (EV-D68). The number of cases has increased since 2014, and the disease has been declared pandemic in the United States. The sudden onset of muscle weakness, usually in an arm or leg, as well as pain throughout the body, the change in patient's facial expression (facial weakness), and shortness of breath, ingesting, and speaking are all common symptoms in patients suffering from neurologic disease. This article includes graphic and histogram representations of reported AFM incidents and criteria for causality, epidemiology, various diagnostic approaches, signs and symptoms, and various investigational guidelines. It also includes key statements about recent clinical findings related to AFM disease.
Collapse
Affiliation(s)
- Aseem Setia
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab-142001, India
| | - Jasween Bhatia
- Department of Masters in Public Health Science, Symbiosis Institute of Health Science, Pune-411042, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management Shirpur, SVKM\'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| |
Collapse
|
6
|
Li J, Meng P, Zhou R, Zhang Y, Lin Q. Famciclovir leads to failure of hematopoiesis, but may have the benefit of relieving myeloid expansion in MDS-like zebrafish. Toxicol Appl Pharmacol 2020; 410:115334. [PMID: 33207248 DOI: 10.1016/j.taap.2020.115334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 10/23/2022]
Abstract
Famciclovir (FCV) is an antiviral drug that is often utilized after bone marrow transplantation to prevent viral infection. Yet, its role in hematopoiesis is poorly understood. Here, by utilizing a zebrafish model, we found that FCV exposure led to hematopoietic failure by impairing the proliferation of hematopoietic stem and progenitor cell (HSPC) and inducing HSPC apoptosis. On the other hand, FCV treatment could effectively relieve myeloid malignancies in the c-mybhyper MDS-like fish model, and played a role not only in the embryonic stage but also in adult zebrafish. This study reveals that FCV functions as a double-edged sword, with hematotoxicity at a high level, but that appropriate FCV treatment may be beneficial for the treatment of MDS.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China; Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, PR China
| | - Panpan Meng
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China; Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, PR China
| | - Riyang Zhou
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Yiyue Zhang
- Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, PR China; Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, PR China.
| | - Qing Lin
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
7
|
Chiopris G, Veronese P, Cusenza F, Procaccianti M, Perrone S, Daccò V, Colombo C, Esposito S. Congenital Cytomegalovirus Infection: Update on Diagnosis and Treatment. Microorganisms 2020; 8:E1516. [PMID: 33019752 PMCID: PMC7599523 DOI: 10.3390/microorganisms8101516] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 01/25/2023] Open
Abstract
Congenital cytomegalovirus (cCMV) infection is the most common congenital viral infection and is the leading non-genetic cause of sensorineural hearing loss (SNLH) and an important cause of neurodevelopmental disabilities. The risk of intrauterine transmission is highest when primary infection occurs during pregnancy, with a higher rate of vertical transmission in mothers with older gestational age at infection, while the risk of adverse fetal effects significantly increases if fetal infection occurs during the first half of pregnancy. Despite its prevalence and morbidity among the neonatal population, there is not yet a standardized diagnostic test and therapeutic approach for cCMV infection. This narrative review aims to explore the latest developments in the diagnosis and treatment of cCMV infection. Literature analysis shows that preventive interventions other than behavioral measures during pregnancy are still lacking, although many clinical trials are currently ongoing to formulate a vaccination for women before pregnancy. Currently, we recommend using a PCR assay in blood, urine, and saliva in neonates with suspected cCMV infection. At present, there is no evidence of the benefit of antiviral therapy in asymptomatic infants. In the case of symptomatic cCMV, we actually recommend treatment with oral valganciclovir for a duration of 12 months. The effectiveness and tolerability of this therapy option have proven effective for hearing and neurodevelopmental long-term outcomes. Valganciclovir is reserved for congenitally-infected neonates with the symptomatic disease at birth, such as microcephaly, intracranial calcifications, abnormal cerebrospinal fluid index, chorioretinitis, or sensorineural hearing loss. Treatment with antiviral drugs is not routinely recommended for neonates with the mildly symptomatic disease at birth, for neonates under 32 weeks of gestational age, or for infants more than 30 days old because of insufficient evidence from studies. However, since these populations represent the vast majority of neonates and infants with cCMV infection and they are at risk of developing late-onset sequelae, a biomarker able to predict long-term sequelae should also be found to justify starting treatment and reducing the burden of CMV-related complications.
Collapse
Affiliation(s)
- Giulia Chiopris
- Paediatric Clinic Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy; (G.C.); (P.V.); (F.C.); (M.P.)
| | - Piero Veronese
- Paediatric Clinic Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy; (G.C.); (P.V.); (F.C.); (M.P.)
| | - Francesca Cusenza
- Paediatric Clinic Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy; (G.C.); (P.V.); (F.C.); (M.P.)
| | - Michela Procaccianti
- Paediatric Clinic Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy; (G.C.); (P.V.); (F.C.); (M.P.)
| | - Serafina Perrone
- Neonatology Clinic, Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy;
| | - Valeria Daccò
- Cystic Fibrosis Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy; (V.D.); (C.C.)
| | - Carla Colombo
- Cystic Fibrosis Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy; (V.D.); (C.C.)
| | - Susanna Esposito
- Paediatric Clinic Pietro Barilla Children’s Hospital, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy; (G.C.); (P.V.); (F.C.); (M.P.)
| |
Collapse
|
8
|
Gantt S, Brophy J, Dunn J, Vaudry W, Bitnun A, Renaud C, Kakkar F. AMMI Canada: Response to FAQs about the management of children with congenital cytomegalovirus infection in Canada. ACTA ACUST UNITED AC 2019; 4:208-214. [DOI: 10.3138/jammi.2019-08-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Soren Gantt
- BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason Brophy
- Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Jessica Dunn
- Children’s Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada
| | - Wendy Vaudry
- Stollery Children’s Hospital, University of Alberta, Edmonton, Alberta, Canada
| | - Ari Bitnun
- Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Christian Renaud
- CHU Ste. Justine, Université de Montréal, Montréal, Québec, Canada
| | - Fatima Kakkar
- CHU Ste. Justine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
9
|
Tomicic MT, Steigerwald C, Rasenberger B, Brozovic A, Christmann M. Functional mismatch repair and inactive p53 drive sensitization of colorectal cancer cells to irinotecan via the IAP antagonist BV6. Arch Toxicol 2019; 93:2265-2277. [PMID: 31289894 DOI: 10.1007/s00204-019-02513-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/04/2019] [Indexed: 11/26/2022]
Abstract
A common strategy to overcome acquired chemotherapy resistance is the combination of a specific anticancer drug (e.g., topoisomerase I inhibitor irinotecan) together with a putative sensitizer. The purpose of this study was to analyze the cytostatic/cytotoxic response of colorectal carcinoma (CRC) cells to irinotecan, depending on the mismatch repair (MMR) and p53 status and to examine the impact of BV6, a bivalent antagonist of inhibitors of apoptosis c-IAP1/c-IAP2, alone or combined with irinotecan. Therefore, several MSH2- or MSH6-deficient cell lines were complemented for MMR deficiency, or MSH6 was knocked out/down in MMR-proficient cells. Upon irinotecan, MMR-deficient/p53-mutated lines repaired DNA double-strand breaks by homologous recombination less efficiently than MMR-proficient/p53-mutated lines and underwent elevated caspase-9-dependent apoptosis. Opposite, BV6-mediated sensitization was achieved only in MMR-proficient/p53-mutated cells. In those cells, c-IAP1 and c-IAP2 were effectively degraded by BV6, caspase-8 was fully activated, and both canonical and non-canonical NF-κB signaling were triggered. The results were confirmed ex vivo in tumor organoids from CRC patients. Therefore, the particular MMR+/p53mt signature, often found in non-metastasizing (stage II) CRC might be used as a prognostic factor for an adjuvant therapy using low-dose irinotecan combined with a bivalent IAP antagonist.
Collapse
Affiliation(s)
- Maja T Tomicic
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, 55130, Mainz, Germany.
| | - Christian Steigerwald
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, 55130, Mainz, Germany
| | - Birgit Rasenberger
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, 55130, Mainz, Germany
| | - Anamaria Brozovic
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, 55130, Mainz, Germany
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Markus Christmann
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Str. 67, 55130, Mainz, Germany
| |
Collapse
|
10
|
Xie Y, Wu L, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Zhu D, Zhao X, Chen S, Liu M, Zhang S, Wang Y, Xu Z, Chen Z, Zhu L, Luo Q, Liu Y, Yu Y, Zhang L, Chen X. Alpha-Herpesvirus Thymidine Kinase Genes Mediate Viral Virulence and Are Potential Therapeutic Targets. Front Microbiol 2019; 10:941. [PMID: 31134006 PMCID: PMC6517553 DOI: 10.3389/fmicb.2019.00941] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022] Open
Abstract
Alpha-herpesvirus thymidine kinase (TK) genes are virulence-related genes and are nonessential for viral replication; they are often preferred target genes for the construction of gene-deleted attenuated vaccines and genetically engineered vectors for inserting and expressing foreign genes. The enzymes encoded by TK genes are key kinases in the nucleoside salvage pathway and have significant substrate diversity, especially the herpes simplex virus 1 (HSV-1) TK enzyme, which phosphorylates four nucleosides and various nucleoside analogues. Hence, the HSV-1 TK gene is exploited for the treatment of viral infections, as a suicide gene in antitumor therapy, and even for the regulation of stem cell transplantation and treatment of parasitic infection. This review introduces the effects of α-herpesvirus TK genes on viral virulence and infection in the host and classifies and summarizes the current main application domains and potential uses of these genes. In particular, mechanisms of action, clinical limitations, and antiviral and antitumor therapy development strategies are discussed.
Collapse
Affiliation(s)
- Ying Xie
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liping Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - XinXin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Kummer P, Marcrum SC. Potential Benefit of Selective CMV Testing after Failed Newborn Hearing Screening. Int J Neonatal Screen 2018; 4:20. [PMID: 33072943 PMCID: PMC7510248 DOI: 10.3390/ijns4020020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/19/2018] [Indexed: 12/31/2022] Open
Abstract
Evidence-based guidelines for the prevention, diagnosis and treatment of congenital cytomegalovirus (cCMV) were recently released by two independent expert groups. Of particular emphasis was the relationship between cCMV and sensorineural hearing loss (SNHL), a major component of the virus' overall disease burden. In this study, a literature review was performed to estimate the proportion of cCMV-related SNHL cases, which might be identified through selective cCMV testing following failed newborn hearing screening. Furthermore, it was of interest to estimate the potential benefit of emerging antiviral therapies. Currently, at most 10% of cCMV-related SNHL is likely to be identified clinically. Through use of a selective cCMV testing protocol, however, a significant improvement in the identification rate can be achieved. Recent expert group statements strongly recommend antiviral therapy in cases of moderate-to-severe disease, especially in the presence of central nervous system involvement. Though differences exist between recommendations in instances of isolated SNHL or SNHL in combination with only mild symptoms, the majority of experts in both groups offered at least a weak recommendation for antiviral treatment. Available results suggest antiviral treatment could therefore benefit a meaningful proportion of newborns referred for cCMV testing following failed newborn hearing screening.
Collapse
Affiliation(s)
- Peter Kummer
- Section Phoniatrics and Pediatric Audiology, Department of Otolaryngology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
- Correspondence: ; Tel.: +49-941-944-9471
| | - Steven C. Marcrum
- Department of Otolaryngology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
12
|
Congenital Cytomegalovirus: A European Expert Consensus Statement on Diagnosis and Management. Pediatr Infect Dis J 2017; 36:1205-1213. [PMID: 29140947 DOI: 10.1097/inf.0000000000001763] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Yang X, Sheng Y, Ray A, Shah SJ, Trinh HM, Pal D, Mitra AK. Uptake and bioconversion of stereoisomeric dipeptide prodrugs of ganciclovir by nanoparticulate carriers in corneal epithelial cells. Drug Deliv 2016; 23:2532-2540. [PMID: 25775276 DOI: 10.3109/10717544.2015.1023384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The objective of this study is to investigate cellular uptake of prodrug-loaded nanoparticle (NP). Another objective is to study bioconversion of stereoisomeric dipeptide prodrugs of ganciclovir (GCV) including L-Val-L-Val-GCV (LLGCV), L-Val-D-Val-GCV (LDGCV) and d-Val-l-Val-GCV (DLGCV) in human corneal epithelial cell (HCEC) model. METHODS Poly(D,L-lactic-co-glycolic acid) (PLGA) NP encapsulating prodrugs of GCV were formulated under a double emulsion method. Fluorescein isothiocyanate isomer-PLGA conjugates were synthesized to fabricate biocompatible fluorescent PLGA NP. Intracellular uptake of FITC-labeled NP was visualized by a fluorescent microscope in HCEC cells. RESULTS Fluorescent PLGA NP and non-fluorescent NP display similar hydrodynamic diameter in the range of 115-145 nm with a narrow particle size distribution and zeta potentials around -13 mV. Both NP types showed identical intracellular accumulation in HCEC cells. Maximum uptake (around 60%) was noted at 3 h for NP. Cellular uptake and intracellular accumulation of prodrugs are significantly different among three stereoisomeric dipeptide prodrugs. The microscopic images show that NPs are avidly internalized by HCEC cells and distributed throughout the cytoplasm instead of being localized on the cell surface. Following cellular uptake, prodrugs released from NP gradually bioreversed into parent drug GCV. LLGCV showed the highest degradation rate, followed by LDGCV and DLGCV. CONCLUSION LLGCV, LDGCV and DLGCV released from NP exhibited superior uptake and bioreversion in corneal cells.
Collapse
Affiliation(s)
- Xiaoyan Yang
- a Division of Pharmaceutical Sciences , School of Pharmacy, University of Missouri-Kansas City , Kansas City , MO , USA
| | - Ye Sheng
- a Division of Pharmaceutical Sciences , School of Pharmacy, University of Missouri-Kansas City , Kansas City , MO , USA
| | - Animikh Ray
- a Division of Pharmaceutical Sciences , School of Pharmacy, University of Missouri-Kansas City , Kansas City , MO , USA
| | - Sujay J Shah
- a Division of Pharmaceutical Sciences , School of Pharmacy, University of Missouri-Kansas City , Kansas City , MO , USA
| | - Hoang M Trinh
- a Division of Pharmaceutical Sciences , School of Pharmacy, University of Missouri-Kansas City , Kansas City , MO , USA
| | - Dhananjay Pal
- a Division of Pharmaceutical Sciences , School of Pharmacy, University of Missouri-Kansas City , Kansas City , MO , USA
| | - Ashim K Mitra
- a Division of Pharmaceutical Sciences , School of Pharmacy, University of Missouri-Kansas City , Kansas City , MO , USA
| |
Collapse
|
14
|
Tarocchi M, Polvani S, Peired AJ, Marroncini G, Calamante M, Ceni E, Rhodes D, Mello T, Pieraccini G, Quattrone A, Luchinat C, Galli A. Telomerase activated thymidine analogue pro-drug is a new molecule targeting hepatocellular carcinoma. J Hepatol 2014; 61:1064-72. [PMID: 24862448 PMCID: PMC4309885 DOI: 10.1016/j.jhep.2014.05.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 04/22/2014] [Accepted: 05/11/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. Although hepatectomy and transplantation have significantly improved survival, there is no effective chemotherapeutic treatment for HCC and its prognosis remains poor. Sustained activation of telomerase is essential for the growth and progression of HCC, suggesting that telomerase is a rational target for HCC therapy. Therefore, we developed a thymidine analogue pro-drug, acycloguanosyl-5'-thymidyltriphosphate (ACV-TP-T), which is specifically activated by telomerase in HCC cells and investigated its anti-tumour efficacy. METHODS First, we verified in vitro whether ACV-TP-T was a telomerase substrate. Second, we evaluated proliferation and apoptosis in murine (Hepa1-6) and human (Hep3B, HuH7, HepG2) hepatic cancer cells treated with ACV-TP-T. Next, we tested the in vivo treatment efficacy in HBV transgenic mice that spontaneously develop hepatic tumours, and in a syngeneic orthotopic murine model where HCC cells were implanted directly in the liver. RESULTS In vitro characterization provided direct evidence that the pro-drug was actively metabolized in liver cancer cells by telomerase to release the active form of acyclovir. Alterations in cell cycle and apoptosis were observed following in vitro treatment with ACV-TP-T. In the transgenic and orthotopic mouse models, treatment with ACV-TP-T reduced tumour growth, increased apoptosis, and reduced the proliferation of tumour cells. CONCLUSIONS ACV-TP-T is activated by telomerase in HCC cells and releases active acyclovir that reduces proliferation and induces apoptosis in human and murine liver cancer cells. This pro-drug holds a great promise for the treatment of HCC.
Collapse
Affiliation(s)
- Mirko Tarocchi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Simone Polvani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Anna Julie Peired
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Giada Marroncini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Massimo Calamante
- ProtEra S.r.l., University Scientific Campus, Sesto Fiorentino, Florence, Italy,ICCOM-CNR Florence, Italy
| | - Elisabetta Ceni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | | | - Tommaso Mello
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | | | - Alessandro Quattrone
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Florence, Italy,Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Florence, Italy,Department of Chemistry, University of Florence, Sesto Fiorentino, Florence, Italy,Giotto Biotech S.r.l., University Scientific Campus, Sesto Fiorentino, Florence, Italy
| | - Andrea Galli
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy.
| |
Collapse
|
15
|
Chou TY, Hong BY. Ganciclovir ophthalmic gel 0.15% for the treatment of acute herpetic keratitis: background, effectiveness, tolerability, safety, and future applications. Ther Clin Risk Manag 2014; 10:665-81. [PMID: 25187721 PMCID: PMC4149409 DOI: 10.2147/tcrm.s58242] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Eye disease due to herpes simplex virus (HSV) is a leading cause of ocular morbidity and the number one infectious cause of unilateral corneal blindness in the developed parts of the globe. Recurrent keratitis can result in progressive corneal scarring, thinning, and vascularization. Antiviral agents employed against HSV have primarily been nucleoside analogs. Early generation drugs included idoxuridine, iododesoxycytidine, vidarabine, and trifluridine. While effective, they tended to have low bioavailability and measurable local cellular toxicity due to their nonselective mode of action. Acyclovir 0.3% ointment is a more selective agent, and had become a first-line topical drug for acute HSV keratitis in Europe and other places outside of the US. Ganciclovir 0.15% gel is the most recently approved topical treatment for herpes keratitis. Compared to acyclovir 0.3% ointment, ganciclovir 0.15% gel has been shown to be better tolerated and no less effective in several Phase II and III trials. Additionally, topical ganciclovir does not cause adverse systemic side effects and is therapeutic at lower concentrations. Based on safety, efficacy, and tolerability, ganciclovir 0.15% gel should now be considered a front-line topical drug in the treatment of dendritic herpes simplex epithelial keratitis. Topics of future investigation regarding other potential uses for ganciclovir gel may include the prophylaxis of recurrent HSV epithelial keratitis, treatment of other forms of ocular disease caused by herpesviruses and adenovirus, and ganciclovir gel as an adjunct to antitumor therapy.
Collapse
Affiliation(s)
- Timothy Y Chou
- Department of Ophthalmology, Stony Brook University, Stony Brook, NY, USA
| | - Bennett Y Hong
- Department of Ophthalmology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
16
|
Castillo-Rodríguez RA, Arango-Rodríguez ML, Escobedo L, Hernandez-Baltazar D, Gompel A, Forgez P, Martínez-Fong D. Suicide HSVtk gene delivery by neurotensin-polyplex nanoparticles via the bloodstream and GCV Treatment specifically inhibit the growth of human MDA-MB-231 triple negative breast cancer tumors xenografted in athymic mice. PLoS One 2014; 9:e97151. [PMID: 24824754 PMCID: PMC4019532 DOI: 10.1371/journal.pone.0097151] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/15/2014] [Indexed: 12/31/2022] Open
Abstract
The human breast adenocarcinoma cell line MDA-MB-231 has the triple-negative breast cancer (TNBC) phenotype, which is an aggressive subtype with no specific treatment. MDA-MB-231 cells express neurotensin receptor type 1 (NTSR1), which makes these cells an attractive target of therapeutic genes that are delivered by the neurotensin (NTS)-polyplex nanocarrier via the bloodstream. We addressed the relevance of this strategy for TNBC treatment using NTS-polyplex nanoparticles harboring the herpes simplex virus thymidine kinase (HSVtk) suicide gene and its complementary prodrug ganciclovir (GCV). The reporter gene encoding green fluorescent protein (GFP) was used as a control. NTS-polyplex successfully transfected both genes in cultured MDA-MB-231 cells. The transfection was demonstrated pharmacologically to be dependent on activation of NTSR1. The expression of HSVtk gene decreased cell viability by 49% (P<0.0001) and induced apoptosis in cultured MDA-MB-231 cells after complementary GCV treatment. In the MDA-MB-231 xenograft model, NTS-polyplex nanoparticles carrying either the HSVtk gene or GFP gene were injected into the tumors or via the bloodstream. Both routes of administration allowed the NTS-polyplex nanoparticles to reach and transfect tumorous cells. HSVtk expression and GCV led to apoptosis, as shown by the presence of cleaved caspase-3 and Apostain immunoreactivity, and significantly inhibited the tumor growth (55-60%) (P<0.001). At the end of the experiment, the weight of tumors transfected with the HSVtk gene was 55% less than that of control tumors (P<0.05). The intravenous transfection did not induce apoptosis in peripheral organs. Our results offer a promising gene therapy for TNBC using the NTS-polyplex nanocarrier.
Collapse
Affiliation(s)
- Rosa A. Castillo-Rodríguez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), México, D.F., México
| | - Martha L. Arango-Rodríguez
- Instituto de Ciencias, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Lourdes Escobedo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), México, D.F., México
| | - Daniel Hernandez-Baltazar
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), México, D.F., México
| | - Anne Gompel
- Unité de Gynécologie, Université Paris Descartes, AP-HP, Port Royal Cochin, Paris, France
| | - Patricia Forgez
- Department of Cellular Homeostasis and Cancer, Université Paris Descartes, INSERM UMR-S 1007, Paris, France
| | - Daniel Martínez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), México, D.F., México
- Programa de Nanociencias y Nanotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), México, D.F., México
| |
Collapse
|
17
|
Christensen CL, Zandi R, Gjetting T, Cramer F, Poulsen HS. Specifically targeted gene therapy for small-cell lung cancer. Expert Rev Anticancer Ther 2014; 9:437-52. [DOI: 10.1586/era.09.10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Van Dillen IJ, Mulder NH, Meijer C, Dam WA, Kamstra E, De Vries L, Meersma GJ, Van der Zee AGJ, De Vries EFJ, Vaalburg W, Hospers GAP. Antagonism of HSV-tk Transfection and Ganciclovir Treatment on Chemotherapeutic Drug Sensitivity. J Chemother 2013; 17:289-96. [PMID: 16038523 DOI: 10.1179/joc.2005.17.3.289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Our study focused on the influence of herpes simplex virus thymidine kinase (HSV-tk) expression and ganciclovir (GCV) treatment on the sensitivity of C6 glioma cells to frequently used chemotherapeutic drugs, i.e. adriamycin (ADR), cisplatin (CDDP), 5-fluorouracil (5-FU), and methotrexate (MTX). Transfection with HSV-tk revealed an increased sensitivity to GCV and CDDP and a decreased sensitivity to ADR and MTX. No significant differences were found in sensitivity to 5-FU. Combined treatment in a HSV-tk negative cell line revealed an additive effect when GCV was combined with ADR, whereas an antagonistic effect was found when GCV was combined with CDDP, 5-FU, or MTX. Comparable results were obtained in an HSV-tk positive cell line, apart from CDDP, which showed an additive effect. In conclusion, both HSV-tk transfection and subsequent GCV treatment can influence the sensitivity of tumor cells to various chemotherapeutic drugs in an antagonistic manner. Therefore, combining HSV-tk/GCV gene therapy with chemotherapy might not always be beneficial.
Collapse
Affiliation(s)
- I J Van Dillen
- Department of Medical Oncology, Groningen University Hospital, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Guérard M, Koenig J, Festag M, Dertinger SD, Singer T, Schmitt G, Zeller A. Assessment of the genotoxic potential of azidothymidine in the comet, micronucleus, and Pig-a assay. Toxicol Sci 2013; 135:309-16. [PMID: 23811826 DOI: 10.1093/toxsci/kft148] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The genotoxic potential of azidothymidine (Zidovudine, AZT), chosen as a model compound for nucleotide analogs, was comprehensively assessed in vivo for gene mutation, clastogenicity, and DNA breakage endpoints. Male Wistar rats were treated by oral gavage over 7 days with AZT at dose levels of 2×0 (control), 2×250, 2×500, and 2×1000mg/kg/day with a final single dose given on day 8. DNA damage was then evaluated with the comet assay in liver, stomach, and peripheral blood and with the micronucleus test in bone marrow and peripheral blood (by flow cytometry) in the same animals. After a treatment-free period of upto 42 days, the Pig-a gene mutation assay was performed in peripheral blood of the high-dose animals. In the comet assay as well as the micronucleus test, AZT caused a considerable dose-dependent increase in DNA damage in all tissues evaluated and was highly cytotoxic to bone marrow and peripheral blood cells. These data are well in line with published results. Surprisingly, AZT did not significantly increase the number of Pig-a mutant cells. We speculate that two factors likely contributed to this negative result: a predominance of large deletions caused by AZT, and the relatively low statistical power of the first-generation scoring method used for this study.
Collapse
Affiliation(s)
- Melanie Guérard
- * F. Hoffmann-La Roche AG, Non-Clinical Safety, 4070 Basel, Switzerland
| | | | | | | | | | | | | |
Collapse
|
20
|
Tomicic MT, Aasland D, Nikolova T, Kaina B, Christmann M. Human three prime exonuclease TREX1 is induced by genotoxic stress and involved in protection of glioma and melanoma cells to anticancer drugs. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1832-43. [PMID: 23578789 DOI: 10.1016/j.bbamcr.2013.03.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 03/15/2013] [Accepted: 03/29/2013] [Indexed: 11/25/2022]
Abstract
To counteract genotoxic stress, DNA repair functions are in effect. Most of them are constitutively expressed while some of them can be up-regulated depending on the level of DNA damage. In human cells, only few DNA repair functions are subject of induction following DNA damage, and thus there is a need to identify and characterize inducible repair functions more thoroughly. Here, we provide evidence that the "three prime exonuclease I" (TREX1) is up-regulated in human fibroblasts and cancer cells on mRNA and protein level. Transcriptional upregulation of TREX1 was observed upon exposure to ultraviolet light and various anticancer drugs in glioma and malignant melanoma cells. Induction of TREX1 was found following treatment with the crosslinking alkylating agents nimustine, carmustine, fotemustine and the topoisomerase I inhibitor topotecan, but not following temozolomide, etoposide and ionizing radiation. Induction of TREX1 following DNA damage requires the AP-1 components c-Jun and c-Fos, as shown by siRNA knockdown, EMSA experiments, ChIP analysis and reporter assays with the TREX1 promoter and constructs harboring mutations in the AP-1 binding site. To analyze whether TREX1 expression impacts the sensitivity of cancer cells to therapeutics, TREX1 expression was down-regulated by siRNA in malignant glioma and melanoma cells. TREX1 knockdown resulted in enhanced cell death following nimustine, fotemustine and topotecan and to a reduced recovery from the anticancer drug induced block to replication. The data revealed that induction of TREX1 is a survival response evoked by various genotoxic anticancer drugs and identified TREX1 as a potential therapeutic target for anticancer therapy.
Collapse
Affiliation(s)
- Maja T Tomicic
- Department of Toxicology, University Medical Center, Mainz, Germany
| | | | | | | | | |
Collapse
|
21
|
The chloroethylating anticancer drug ACNU induces FRA1 that is involved in drug resistance of glioma cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1199-207. [PMID: 22609303 DOI: 10.1016/j.bbamcr.2012.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/11/2012] [Accepted: 05/08/2012] [Indexed: 12/31/2022]
Abstract
FRA1 belongs, together with c-Fos and FosB, to the family of Fos proteins that form with members of the ATF and Jun family the transcription factor AP-1 (activator protein 1). Previously we showed that c-Fos protects mouse embryonic fibroblasts against the cytotoxic effects of ultraviolet (UV) light by induction of the endonuclease XPF, leading to enhanced nucleotide excision repair (NER) activity. Here, we analyzed the regulation of FRA1 in glioma cells treated with the anticancer drug nimustine (ACNU) and its role in ACNU-induced toxicity. We show that FRA1 is upregulated in glioblastoma cells following ACNU on mRNA and protein levels. Knockdown of FRA1 by either siRNA or shRNA clearly sensitized glioma cells towards ACNU-induced cell death. Despite decreased AP-1 binding activity upon FRA1 knockdown, this effect is independent on regulation of the AP-1 target genes fasL, ercc1 and xpf. In addition, FRA1 knockdown does not affect DNA repair capacity. However, lack of FRA1 attenuated the ACNU-induced phosphorylation of CHK1 and led to a reduced arrest of cells in G2/M and, thereby, presumably leads to enhanced cell death in the subsequent cell cycle.
Collapse
|
22
|
Brambilla G, Mattioli F, Robbiano L, Martelli A. Studies on genotoxicity and carcinogenicity of antibacterial, antiviral, antimalarial and antifungal drugs. Mutagenesis 2012; 27:387-413. [PMID: 22228823 DOI: 10.1093/mutage/ger094] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This review provides a compendium of retrievable results of genotoxicity and animal carcinogenicity studies performed of antibacterial, antiviral, antimalarial and antifungal drugs of long-term or intermittent frequent use. Of the 48 drugs considered, 9 (18.75%) do not have retrievable data, whereas the other 39 (81.25%) have at least one genotoxicity or carcinogenicity tests result. Of these 39 drugs, 24 tested positive in at least one genotoxicity assay and 19 in at least one carcinogenicity assay; 14 of them gave a positive response in both at least one genotoxicity assay and at least one carcinogenicity assay. Concerning the predictivity of genetic toxicology findings for the results of long-term carcinogenesis assays, of 23 drugs with both genotoxicity and carcinogenicity data: 2 (8.7%) were neither genotoxic nor carcinogenic, 2 (8.7%) tested positive in at least one genotoxicity assay but were non-carcinogenic, 4 (17.4%) tested negative in genotoxicity assays but were carcinogenic, and 15 (65.2%) gave a positive response in at least one genotoxicity assay and in at least one carcinogenicity assay. Only 18 (37.5%) of the 48 drugs examined had all data required by present guidelines for testing of pharmaceuticals, but a fraction of them (49%) were developed and marketed prior to the present regulatory climate. In the absence of compelling indications, the prescription of the 19 drugs that are animal carcinogens should be avoided.
Collapse
Affiliation(s)
- Giovanni Brambilla
- Department of Internal Medicine, Division of Clinical Pharmacology and Toxicology, University of Genoa, Viale Benedetto XV, 2, I-16132 Genoa, Italy
| | | | | | | |
Collapse
|
23
|
Ladd B, O'Konek JJ, Ostruszka LJ, Shewach DS. Unrepairable DNA double-strand breaks initiate cytotoxicity with HSV-TK/ganciclovir. Cancer Gene Ther 2011; 18:751-9. [PMID: 21869826 PMCID: PMC3176965 DOI: 10.1038/cgt.2011.51] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The herpes simplex virus thymidine kinase (HSV-TK) is the most widely used suicide gene in cancer gene therapy due to its superior anticancer activity with ganciclovir compared to other HSV-TK substrates, such as 1-β-D-arabinofuranosyl thymine (araT). We have evaluated the role of DNA damage as a mechanism for the superiority of GCV. Using γ-H2AX foci as an indicator of DNA damage, GCV induced ≥ 7-fold more foci than araT at similarly cytotoxic concentrations. The number of foci decreased after removal of either drug, followed by an increase in Rad51 foci indicating that homologous recombination repair (HRR) was used to repair this damage. Notably, only GCV produced a late and persistent increase in γ-H2AX foci demonstrating the induction of unrepairable DNA damage. Both drugs induced the ATR damage response pathway, as evidenced by Chk1 activation. However, GCV resulted in greater activation of ATM, which coincided with the late induction of γ-H2AX foci, demonstrating the presence of DNA double strand breaks (DSBs). The increase in DSBs after Rad51 induction suggested that they occurred as a result of a failed attempt at HRR. These data demonstrate that the late and unrepairable DSBs observed uniquely with GCV account for its superior cytotoxicity and further suggest that inhibition of HRR will enhance cytotoxicity with HSV-TK/GCV.
Collapse
Affiliation(s)
- B Ladd
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, MI 48109-5633, USA
| | | | | | | |
Collapse
|
24
|
Antiviral Therapy of CMV Disease in Children. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 697:243-60. [DOI: 10.1007/978-1-4419-7185-2_17] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Christmann M, Tomicic MT, Aasland D, Berdelle N, Kaina B. Three prime exonuclease I (TREX1) is Fos/AP-1 regulated by genotoxic stress and protects against ultraviolet light and benzo(a)pyrene-induced DNA damage. Nucleic Acids Res 2010; 38:6418-32. [PMID: 20511593 PMCID: PMC2965218 DOI: 10.1093/nar/gkq455] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cells respond to genotoxic stress with the induction of DNA damage defence functions. Aimed at identifying novel players in this response, we analysed the genotoxic stress-induced expression of DNA repair genes in mouse fibroblasts proficient and deficient for c-Fos or c-Jun. The experiments revealed a clear up-regulation of the three prime exonuclease I (trex1) mRNA following ultraviolet (UV) light treatment. This occurred in the wild-type but not c-fos and c-jun null cells, indicating the involvement of AP-1 in trex1 induction. Trex1 up-regulation was also observed in human cells and was found on promoter, RNA and protein level. Apart from UV light, TREX1 is induced by other DNA damaging agents such as benzo(a)pyrene and hydrogen peroxide. The mouse and human trex1 promoter harbours an AP-1 binding site that is recognized by c-Fos and c-Jun, and its mutational inactivation abrogated trex1 induction. Upon genotoxic stress, TREX1 is not only up-regulated but also translocated into the nucleus. Cells deficient in TREX1 show reduced recovery from the UV and benzo(a)pyrene-induced replication inhibition and increased sensitivity towards the genotoxins compared to the isogenic control. The data revealed trex1 as a novel DNA damage-inducible repair gene that plays a protective role in the genotoxic stress response.
Collapse
Affiliation(s)
- Markus Christmann
- Department of Toxicology, University Medical Center, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany.
| | | | | | | | | |
Collapse
|
26
|
O'Konek JJ, Ladd B, Flanagan SA, Im MM, Boucher PD, Thepsourinthone TS, Secrist JA, Shewach DS. Alteration of the carbohydrate for deoxyguanosine analogs markedly changes DNA replication fidelity, cell cycle progression and cytotoxicity. Mutat Res 2010; 684:1-10. [PMID: 20004674 DOI: 10.1016/j.mrfmmm.2009.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 10/29/2009] [Accepted: 11/17/2009] [Indexed: 11/17/2022]
Abstract
Nucleoside analogs are efficacious cancer chemotherapeutics due to their incorporation into tumor cell DNA. However, they exhibit vastly different antitumor efficacies, suggesting that incorporation produces divergent effects on DNA replication. Here we have evaluated the consequences of incorporation on DNA replication and its fidelity for three structurally related deoxyguanosine analogs: ganciclovir (GCV), currently in clinical trials in a suicide gene therapy approach for cancer, D-carbocyclic 2'-deoxyguanosine (CdG) and penciclovir (PCV). GCV and CdG elicited similar cytotoxicity at low concentrations, whereas PCV was 10-100-fold less cytotoxic in human tumor cells. DNA replication fidelity was evaluated using a supF plasmid-based mutation assay. Only GCV induced a dose-dependent increase in mutation frequency, predominantly GC-->TA transversions, which contributed to cytotoxicity and implicated the ether oxygen in mutagenicity. Activation of mismatch repair with hydroxyurea decreased mutations but failed to repair the GC-->TA transversions. GCV slowed S-phase progression and CdG also induced a G2/M block, but both drugs allowed completion of one cell cycle after drug treatment followed by cell death in the second cell cycle. In contrast, PCV induced a lengthy early S-phase block due to profound suppression of DNA synthesis, with cell death in the first cell cycle after drug treatment. These data suggest that GCV and CdG elicit superior cytotoxicity due to their effects in template DNA, whereas strong inhibition of nascent strand synthesis by PCV may protect against cytotoxicity. Nucleoside analogs based on the carbohydrate structures of GCV and CdG is a promising area for antitumor drug development.
Collapse
Affiliation(s)
- Jessica J O'Konek
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Tomicic MT, Christmann M, Kaina B. Topotecan triggers apoptosis in p53-deficient cells by forcing degradation of XIAP and survivin thereby activating caspase-3-mediated Bid cleavage. J Pharmacol Exp Ther 2009; 332:316-25. [PMID: 19812371 DOI: 10.1124/jpet.109.159962] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The topoisomerase I inhibitor topotecan (TPT) is used in the therapy of different tumors including high-grade gliomas. We previously showed that TPT-induced apoptosis depends on p53 with p53 wild-type (wt) cells being more resistant because of p53-controlled degradation of topoisomerase I. Here, we show that p53-deficient (p53(-/-)) fibroblasts undergo excessive mitochondrial apoptosis featuring H2AX phosphorylation, Bcl-x(L) decline, cytochrome c release, caspase-9/-3/-2 activation, and cleavage of Bid. In wt and apaf-1(-/-) cells, caspase-2 did not become activated and Bid was not cleaved. In addition, p53(-/-) cells cotreated with TPT and caspase-3 inhibitor showed neither caspase-2 activation nor Bid cleavage, implying that caspase-2 is processed downstream of the apoptosome by caspase-3. Although processing of caspase-9/-3 was similar in wt and p53(-/-) cells, only p53(-/-) cells displayed active caspase-3. This was due to the proteasomal degradation of X-chromosome-linked inhibitor of apoptosis (XIAP) and survivin that inhibits caspase-3 activity. Accordingly, TPT-induced apoptosis in wt cells was increased after XIAP/survivin knockdown. Silencing of Bid led to reduction of TPT-triggered apoptosis. Data obtained with mouse fibroblasts could be extended to human glioma cells. In U87MG (p53wt) cells cotreated with TPT and pifithrin-alpha, or transfected with p53-siRNA, caspase-2 and Bid were significantly cleaved and XIAP/survivin was degraded. Furthermore, the knockdown of XIAP and survivin led to increased TPT-triggered apoptosis. Overall, the data show that p53-deficient/depleted cells are hypersensitive to TPT because they down-regulate XIAP and survivin, and thus amplify the intrinsic apoptotic pathway via caspase-3-mediated Bid cleavage. Therefore, in gliomas harboring wild-type p53, TPT-based therapy might be improved by targeted down-regulation of XIAP and survivin.
Collapse
Affiliation(s)
- Maja T Tomicic
- Department of Toxicology, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | | | | |
Collapse
|
28
|
Abstract
Suicide gene therapy with herpes simplex virus thymidine kinase and ganciclovir is notable for producing multi-log cytotoxicity in a unique pattern of delayed cytotoxicity in S-phase. Because hydroxyurea, a ribonucleotide reductase inhibitor that activates mismatch repair, can increase sensitivity to ganciclovir, we evaluated the role of MLH1, an essential mismatch repair protein, in ganciclovir cytotoxicity. Using HCT116TK (HSV-TK-expressing) colon carcinoma cells that express or lack MLH1, cell survival studies demonstrated greater ganciclovir sensitivity in the MLH1 deficient cells, primarily at high concentrations. This could not be explained by differences in ganciclovir metabolism, as the less sensitive MLH1-expresssing cells accumulated more ganciclovir triphosphate and incorporated more of the analog into DNA. SiRNA suppression of MLH1 in U251 glioblastoma or SW480 colon carcinoma cells also enhanced sensitivity to high concentrations of ganciclovir. Studies in a panel of yeast deletion mutants confirmed the results with MLH1, and further suggested a role for homologous recombination repair and several cell cycle checkpoint proteins in ganciclovir cytotoxicity. These data suggest that MLH1 can prevent cytotoxicity with ganciclovir. Targeting mismatch repair-deficient tumors may increase efficacy of this suicide gene therapy approach to cancer treatment.
Collapse
|
29
|
Christmann M, Tomicic MT, Gestrich C, Roos WP, Bohr VA, Kaina B. WRN protects against topo I but not topo II inhibitors by preventing DNA break formation. DNA Repair (Amst) 2008; 7:1999-2009. [PMID: 18805512 DOI: 10.1016/j.dnarep.2008.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/15/2008] [Accepted: 08/25/2008] [Indexed: 12/24/2022]
Abstract
The Werner syndrome helicase/3'-exonuclease (WRN) is a major component of the DNA repair and replication machinery. To analyze whether WRN is involved in the repair of topoisomerase-induced DNA damage we utilized U2-OS cells, in which WRN is stably down-regulated (wrn-kd), and the corresponding wild-type cells (wrn-wt). We show that cells not expressing WRN are hypersensitive to the toxic effect of the topoisomerase I inhibitor topotecan, but not to the topoisomerase II inhibitor etoposide. This was shown by mass survival assays, colony formation and induction of apoptosis. Upon topotecan treatment WRN deficient cells showed enhanced DNA replication inhibition and S-phase arrest, whereas after treatment with etoposide they showed the same cell cycle response as the wild-type. A considerable difference between WRN and wild-type cells was observed for DNA single- and double-strand break formation in response to topotecan. Topotecan induced DNA single-strand breaks 6h after treatment. In both wrn-wt and wrn-kd cells these breaks were repaired at similar kinetics. However, in wrn-kd but not wrn-wt cells they were converted into DNA double-strand breaks (DSBs) at high frequency, as shown by neutral comet assay and phosphorylation of H2AX. Our data provide evidence that WRN is involved in the repair of topoisomerase I, but not topoisomerase II-induced DNA damage, most likely via preventing the conversion of DNA single-strand breaks into DSBs during the resolution of stalled replication forks at topo I-DNA complexes. We suggest that the WRN status of tumor cells impacts anticancer therapy with topoisomerase I, but not topoisomerase II inhibitors.
Collapse
Affiliation(s)
- Markus Christmann
- Department of Toxicology, University of Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Griffin JL, Blenkiron C, Valonen PK, Caldas C, Kauppinen RA. High-resolution magic angle spinning 1H NMR spectroscopy and reverse transcription-PCR analysis of apoptosis in a rat glioma. Anal Chem 2007; 78:1546-52. [PMID: 16503606 DOI: 10.1021/ac051418o] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The functional genomic approaches of transcriptomics, proteomics and metabolomics aim to measure the mRNA, protein or metabolite complement of a cell, tissue or organism. In this study we have investigated the compatibility of transcriptional analysis, using Reverse Transcription (RT)-PCR, and metabolite analysis, by high-resolution magic angle spinning (HRMAS) 1H NMR spectroscopy, in BT4C rat glioma following the induction of programmed cell death. The metabolite and transcriptional changes that accompanied apoptosis were examined at 0, 4 and 8 days of ganciclovir/thymidine kinase gene therapy. Despite the high spinning speeds employed during HRMAS 1H NMR spectroscopy of one-half of the tumor samples, RT-PCR analysis of the pro-apoptotic transcripts Bcl-2, BAK-1, caspase-9 and FAS was possible, producing similar results to those detected in the unspun half of the tumors. Furthermore, the expression of FAS was inversely correlated with some of the key metabolic changes across the time period examined including the increases CH=CH and CH=CHCH2 lipid resonances which accompany apoptosis. This study demonstrates how combined transcriptomic and metabolomic studies of tumors can be used to understand the molecular events that accompany well documented metabolic perturbations during cell death processes.
Collapse
|
31
|
Portsmouth D, Hlavaty J, Renner M. Suicide genes for cancer therapy. Mol Aspects Med 2007; 28:4-41. [PMID: 17306358 DOI: 10.1016/j.mam.2006.12.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 12/18/2006] [Indexed: 12/31/2022]
Abstract
The principle of using suicide genes for gene directed enzyme prodrug therapy (GDEPT) of cancer has gained increasing significance during the 20 years since its inception. The astute application of suitable GDEPT systems should permit tumour ablation in the absence of off-target toxicity commonly associated with classical chemotherapy, a hypothesis which is supported by encouraging results in a multitude of pre-clinical animal models. This review provides a clear explanation of the rationale behind the GDEPT principle, outlining the advantages and limitations of different GDEPT strategies with respect to the roles of the bystander effect, the immune system and the selectivity of the activated prodrug in contributing to their therapeutic efficacy. An in-depth analysis of the most widely used suicide gene/prodrug combinations is presented, including details of the latest advances in enzyme and prodrug optimisation and results from the most recent clinical trials.
Collapse
Affiliation(s)
- Daniel Portsmouth
- Research Institute for Virology and Biomedicine, University of Veterinary Medicine, Vienna, Austria
| | | | | |
Collapse
|
32
|
Chiu CC, Li CH, Fuh TS, Chen WL, Huang CS, Chen LJ, Ung WH, Fang K. The suppressed proliferation and premature senescence by ganciclovir in p53-mutated human non-small-lung cancer cells acquiring herpes simplex virus-thymidine kinase cDNA. ACTA ACUST UNITED AC 2005; 29:286-93. [PMID: 15916863 DOI: 10.1016/j.cdp.2005.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 02/08/2005] [Indexed: 11/28/2022]
Abstract
The concerted actions of molecular networks determine how cells undergo proliferation, death or aging. Here we show that the highly invasive, tumorigenic human non-small-cell-lung cancer (NSCLC) cells carrying mutated p53 alleles were transfected with herpes simplex virus-thymidine kinase (HSV-tk) cDNA and the selected clone was susceptible to exogenous ganciclovir (GCV). The work further indicated that, in the stable HSV-tk transfectants, GCV suppressed cell proliferation by inducing G(2)/M cell cycle arrest and premature senescence and the potency can be amplified through bystander effect. The growth suppression of the established tumor xenografts in nude mice can be successfully targeted by GCV. These data showed that the GCV-suppressed tumor cell proliferation can be coordinated by cell cycle arrest and cellular senescence in HSV-tk transfectant lacking wild-type p53.
Collapse
Affiliation(s)
- C-C Chiu
- Department of Biological Science, National Taiwan Normal University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Tomicic MT, Christmann M, Kaina B. Topotecan-Triggered Degradation of Topoisomerase I Is p53-Dependent and Impacts Cell Survival. Cancer Res 2005; 65:8920-6. [PMID: 16204064 DOI: 10.1158/0008-5472.can-05-0266] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The anticancer drug topotecan belongs to the group of topoisomerase I (topo I) inhibitors. In the presence of topotecan, topo I cleaves the DNA but is unable to religate the single-strand break. This leads to stabilization of topo I-DNA-bound complexes and the accumulation of DNA strand breaks that may interfere with DNA replication. The molecular mechanism of controlling the repair of topo I-DNA covalent complexes and its impact on sensitivity of cells to topotecan is largely unknown. Here, we used mouse embryonic fibroblasts expressing wild-type p53 and deficient in p53, in order to elucidate the role of p53 in topotecan-induced cell death. We show that p53-deficient mouse embryonic fibroblasts are significantly more sensitive to topotecan than wild-type cells, displaying a higher frequency of topotecan-induced apoptosis and DNA strand breaks. Treatment of p53 wild-type cells with pifithrin-alpha, an inhibitor of the trans-activating activity of p53, caused reversal of the phenotype, making wild-type cells more sensitive to topotecan. Upon topotecan treatment, topo I was degraded in wild-type but not in p53-deficient cells. Topo I degradation was attenuated by the proteosomal inhibitor MG132. Similar data were obtained with human glioblastoma cells. U138 cells (p53 mutated) were significantly more sensitive to topotecan than U87 cells (p53 wild-type). Furthermore, U87 cells showed significant degradation of topo I upon topotecan treatment, whereas in U138 cells, this response was abrogated. Topo I degradation was again attenuated by pifithrin-alpha. The data suggests that p53 causes resistance of cells to topo I inhibitors due to stimulation of topotecan-triggered topo I degradation which may impact topotecan-based cancer therapy.
Collapse
Affiliation(s)
- Maja T Tomicic
- Institute of Toxicology, University of Mainz, Mainz, Germany
| | | | | |
Collapse
|
34
|
Shirata N, Kudoh A, Daikoku T, Tatsumi Y, Fujita M, Kiyono T, Sugaya Y, Isomura H, Ishizaki K, Tsurumi T. Activation of ataxia telangiectasia-mutated DNA damage checkpoint signal transduction elicited by herpes simplex virus infection. J Biol Chem 2005; 280:30336-41. [PMID: 15964848 DOI: 10.1074/jbc.m500976200] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic cells are equipped with machinery to monitor and repair damaged DNA. Herpes simplex virus (HSV) DNA replication occurs at discrete sites in nuclei, the replication compartment, where viral replication proteins cluster and synthesize a large amount of viral DNA. In the present study, HSV infection was found to elicit a cellular DNA damage response, with activation of the ataxia-telangiectasia-mutated (ATM) signal transduction pathway, as observed by autophosphorylation of ATM and phosphorylation of multiple downstream targets including Nbs1, Chk2, and p53, while infection with a UV-inactivated virus or with a replication-defective virus did not. Activated ATM and the DNA damage sensor MRN complex composed of Mre11, Rad50, and Nbs1 were recruited and retained at sites of viral DNA replication, probably recognizing newly synthesized viral DNAs as abnormal DNA structures. These events were not observed in ATM-deficient cells, indicating ATM dependence. In Nbs1-deficient cells, HSV infection induced an ATM DNA damage response that was delayed, suggesting a functional MRN complex requirement for efficient ATM activation. However, ATM silencing had no effect on viral replication in 293T cells. Our data open up an interesting question of how the virus is able to complete its replication, although host cells activate ATM checkpoint signaling in response to the HSV infection.
Collapse
Affiliation(s)
- Noriko Shirata
- Division of Virology, Aichi Cancer Center Research Institute, 1-1, Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Suter W, Plappert-Helbig U, Glowienke S, Poetter-Locher F, Staedtler F, Racine R, Martus HJ. Induction of gene mutations by 5-(2-chloroethyl)-2'-deoxyuridine (CEDU), an antiviral pyrimidine nucleoside analogue. Mutat Res 2004; 568:195-209. [PMID: 15542107 DOI: 10.1016/j.mrfmmm.2004.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 08/17/2004] [Accepted: 08/27/2004] [Indexed: 05/01/2023]
Abstract
5-(2-chloroethyl)-2'-deoxyuridine (CEDU) had been developed for the treatment of herpes simplex infections. In the Salmonella reverse mutation test, the compound was found to be mutagenic in strains TA1535 and TA102 at very high concentrations (> or =2500 micro g/plate), both with and without S9-mix. The mutagenic potential of CEDU was further investigated in vivo and in vitro. It did not induce DNA repair in rat hepatocyte primary cultures, and was negative in the micronucleus test in V79 cells and in the comet assay in human leukocytes. In vivo, CEDU was negative in the bone marrow micronucleus test in CD1 mice. The mouse spot test provided a clearly positive result. Treatment of mice on day 9 of pregnancy with 2000 mg/kg resulted in 5.9% of the F1 animals having genetically relevant spots, whereas the corresponding vehicle control group had a spot rate of 1.9%. Since these data clearly identified CEDU as an inducer of gene mutations in vivo, this potential was further investigated in lacZ transgenic Muta Mouse. Six female animals were treated daily on five consecutive days with 2000 mg/kg/day and sacrificed, after a treatment-free sampling time, 14 days later. The data showed a clear increase in the mutant frequency in the bone marrow, the lung and in the spleen. CEDU is an exception in the group of nucleoside analogues, because it was found to be a strong gene mutagen and, in contrast to the other compounds of this group investigated so far, had no considerable clastogenic effects.
Collapse
Affiliation(s)
- Willi Suter
- Preclinical Safety, Novartis Pharma AG, MUT 2881.2.35, CH 4002 Basel, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
36
|
Kaina B. Mechanisms and consequences of methylating agent-induced SCEs and chromosomal aberrations: a long road traveled and still a far way to go. Cytogenet Genome Res 2004; 104:77-86. [PMID: 15162018 DOI: 10.1159/000077469] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 01/12/2004] [Indexed: 11/19/2022] Open
Abstract
Since the milestone work of Evans and Scott, demonstrating the replication dependence of alkylation-induced aberrations, and Obe and Natarajan, pointing to the critical role of DNA double-strand breaks (DSBs) as the ultimate trigger of aberrations, the field has grown extensively. A notable example is the identification of DNA methylation lesions provoking chromosome breakage (clastogenic) effects, which made it possible to model clastogenic pathways evoked by genotoxins. Experiments with repair-deficient mutants and transgenic cell lines revealed both O6-methylguanine (O6MeG) and N- methylpurines as critical lesions. For S(N)2 agents such as methyl- methanesulfonate (MMS), base N-methylation lesions are most critical, likely because of the formation of apurinic sites blocking replication. For S(N)1 agents, such as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), O6-methylguanine (O6MeG) plays the major role both in recombination and clastogenicity in the post-treatment cell cycle, provided the lesion is not pre-replicatively repaired by O6-methylguanine-DNA methyltransferase (MGMT). The conversion probability of O6MeG into SCEs and chromosomal aberrations is estimated to be about 30:1 and >10,000:1 respectively, indicating this mispairing pro-mutagenic lesion to be highly potent in inducing recombination giving rise to SCEs. O6MeG needs replication and mismatch repair to become converted into a critical secondary genotoxic lesion. Here it is proposed that this secondary lesion can be tolerated by a process termed recombination bypass. This process is supposed to be important in the tolerance of lesions that can not be processed by translesion synthesis accomplished by low-fidelity DNA polymerases. Recombination bypass results in SCEs and might represent an alternative pathway of tolerance of non-instructive lesions. In the case of O6MeG-derived secondary lesions, recombination bypass appears to protect against cell killing since SCEs are already induced with low, non-toxic doses of MNNG. Saturation of lesion tolerance by recombination bypass or translesion synthesis may cause block of DNA replication leading to DSBs at stalled replication forks, which result in chromatid-type aberrations. Along with this model, several putative consequences of methylation-induced aberrations will be discussed such as cell death by apoptosis as well its role in tumor promotion and progression.
Collapse
Affiliation(s)
- B Kaina
- Division of Applied Toxicology, Institute of Toxicology, University of Mainz, Mainz, Germany.
| |
Collapse
|
37
|
Kaina B. DNA damage-triggered apoptosis: critical role of DNA repair, double-strand breaks, cell proliferation and signaling. Biochem Pharmacol 2003; 66:1547-54. [PMID: 14555233 DOI: 10.1016/s0006-2952(03)00510-0] [Citation(s) in RCA: 219] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genotoxic DNA damaging agents may activate both membrane death receptors and the endogenous mitochondrial damage pathway leading to cell death via apoptosis. Here, apoptotic responses in cells exhibiting a defect in various DNA repair pathways such as alkyltransferase, base excision repair, nucleotide excision repair and mismatch repair are reviewed. The HSVTk/ganciclovir and VZV/BVDU suicide system will also be discussed. Data are available to show that critical DNA damage triggers apoptosis in a DNA replication dependent way by activating the mitochondrial damage pathway in fibroblasts. It is proposed that DNA double-strand breaks (DSBs) are common ultimate apoptosis-triggering lesions arising from primary DNA lesions during DNA replication. Thus, DNA replication is a necessary component in DNA damage-triggered apoptosis, at least in fibroblasts treated with genotoxins not inducing DSBs themselves. For methylating agents inducing O(6)-methylguanine, an additional requirement is mismatch repair provoking DSB formation that triggers Bcl-2 decline and caspase-9/-3 activation. This occurs independent of p53 since most of the repair deficient cell lines under study were mutated for p53. Moreover, p53 knockout fibroblasts are more sensitive to methylating agents and UV light than p53 wt cells, suggesting p53 to play a protective rather than a pro-apoptotic role in this cell system, probably by its involvement in DNA repair. However, for lymphoblastoid cells p53 wt variants are more sensitive to DNA damage indicating that p53 participates in apoptotic signaling in a cell type-specific fashion. The role of topoisomerase II inhibitors and c-Fos/AP-1 in apoptosis will also be discussed.
Collapse
Affiliation(s)
- Bernd Kaina
- Division of Applied Toxicology, Institute of Toxicology, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| |
Collapse
|
38
|
Bi X, Zhang JZ. Experimental study of thymidine kinase gene therapy of neuroblastoma in vitro and in vivo. Pediatr Surg Int 2003; 19:400-5. [PMID: 12845457 DOI: 10.1007/s00383-003-1019-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2002] [Indexed: 10/26/2022]
Abstract
Neuroblastoma arises as a direct result of genetic disorder; therefore, it should be well treated and conquered by gene therapy in future. In this study, neuroblastoma cell line SH-SY5Y experiments, in vitro and in nude mice in vivo, were subjected to research thymidine kinase suicide gene to treat neuroblastoma. The plasmid LXpsp-hytk and a plasmid LXSH were transduced separately by lipofectin into human neuroblastoma cell line SH-SY5Y. SH-SY5Y-hy and SH-SY5Y-hytk were selected by hygromycin B. Different ganciclovir (GCV) concentration was given to SH-SY5Y-hytk to determine optimal GCV concentration. The cytotoxic effect of GCV on SH-SY5Y-hytk, SH-SY5Y-hy, and SH-SY5Y cells was determined. Scapular subcutaneous tumors were established in nude mice by inoculating 2.5 x 10(6) SH-SY5Y-hytk on their left sides and 2.5 x 10(6) SH-SY5Y-hy cells on their right sides for every mouse of treatment group and control group, respectively. After 1 week, mass grew in both sides of all the mice, and from the eighth day on, every mouse in treatment group received daily intraperitoneal injection of GCV 50 mg/kg body weight for 14 days; every mouse in control group received daily intraperitoneal injection of 1 ml saline for 14 days. On day 22 tumors were excised and weighed on the left and right sides, respectively, and apoptosis was detected by TUNEL method. Apoptotic index was calculated on the left and on the right sides, respectively, for every mouse in treatment group and control group. The lowest concentration of hygromycin B was 60 microg/ml. The cytotoxic effect of GCV on SH-SY5Y-hytk cells was obvious (IC(50)=0.03 microM), whereas GCV showed almost no cytotoxic effect on SH-SY5Y and SH-SY5Y-hy cells (IC(50)>400 microM). SH-SY5Y-hytk was killed by concentrations of 30 microM GCV effectively and it obviously showed the bystander effect, when SH-SY5Y-hytk remained at least 18% in the mixture culture cells. The tumor on the left side was much smaller than that of the right side in control group (p<0.05), and apoptotic index of the left was higher than that of the right in control group (p<0.01). SH-SY5Y-hytk has the bystander effect over 18% SH-SY5Y-hytk of the mixture culture cells at the concentration of 30 microM GCV. The HSV-tk/GCV system was effective in treating SH-SY5Y neuroblastoma cell line in vivo as well. Our findings suggest that thymidine kinase gene therapy could be a potential method for treating neuroblastoma in the future.
Collapse
Affiliation(s)
- Xun Bi
- Capital Institute of Pediatrics, 100020 Beijing, China
| | | |
Collapse
|
39
|
Suzutani T, Ishioka K, De Clercq E, Ishibashi K, Kaneko H, Kira T, Hashimoto KI, Ogasawara M, Ohtani K, Wakamiya N, Saijo M. Differential mutation patterns in thymidine kinase and DNA polymerase genes of herpes simplex virus type 1 clones passaged in the presence of acyclovir or penciclovir. Antimicrob Agents Chemother 2003; 47:1707-13. [PMID: 12709344 PMCID: PMC153316 DOI: 10.1128/aac.47.5.1707-1713.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A total of 21 clones of acyclovir (ACV)-resistant (ACV(r)) herpes simplex virus type 1 (HSV-1) and 23 clones of penciclovir (PCV)-resistant (PCV(r)) HSV-1, emerging during serial passages in the presence of ACV or PCV, were isolated under conditions excluding contamination of resistant mutants in the starting virus culture, and their mutations in the thymidine kinase (TK) and DNA polymerase (DNA Pol) genes were analyzed comparatively. Mutations in the TK genes from ACV(r) mutants consisted of 50% single nucleotide substitutions and 50% frameshift mutations, while the corresponding figures for the PCV(r) mutants were 4 and 96%, respectively (P < 0.001). Eight of the 21 ACV(r) clones, but none of the 23 PCV(r) clones, had mutations in DNA Pol. Only nucleotide substitution(s) could be detected in the DNA Pol gene, as the gene is essential for virus replication. Therefore, the results for the DNA Pol mutants are concordant with those for the TK mutants in that a single nucleotide substitution was commonly observed in the ACV(r), but not in the PCV(r), mutants. These results clearly point to differential mutation patterns between ACV(r) and PCV(r) HSV-1 clones.
Collapse
Affiliation(s)
- Tatsuo Suzutani
- Department of Microbiology, Fukushima Medical University, Fukushima, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|