1
|
Marigómez I, Olivares M, Zaldibar B, Benito D, Soto M, Blanco-Rayón E, Lekube X, Izagirre U, Aguirre-Rubí J. Biomarker responsiveness in Norwegian Sea mussels, Mytilus edulis, exposed at low temperatures to aqueous fractions of crude oil alone and combined with dispersant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174186. [PMID: 38909801 DOI: 10.1016/j.scitotenv.2024.174186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Biological effects of aqueous fractions of a crude oil, alone or in combination with dispersant, were investigated in mussels, Mytilus edulis, exposed at three temperatures (5, 10 and 15 °C). Polycyclic aromatic hydrocarbons (PAHs) tissue concentrations were determined, together with genotoxicity, oxidative stress and general stress biomarkers and the Integrated Biological Response (IBR) index. The bioaccumulation of individual PAHs varied depending on the exposure temperature, with relevant bioaccumulation of phenantrene and fluoranthene at 5 °C and heavier (e.g. 5-rings) PAHs at 15 °C. The values and response profiles of each particular biomarker varied with exposure time, concentration of the oil aqueous fraction and dispersant addition, as well as with exposure temperature. Indeed, PAH bioaccumulation and biomarker responsiveness exhibited specific recognizable patterns in mussels exposed at low temperatures. Thus, genotoxicity was recorded early and transient at 5 °C and delayed but unremitting at 10-15 °C. Catalase activity presented a temperature-dependent response profile similar to the genotoxicity biomarker; however, glutathione-S-transferase responsiveness was more intricate. Lysosomal membrane stability in digestive cells decreased more markedly at 5 °C than at higher temperatures and the histological appearance of the digestive gland tissue was temperature-specific, which was interpreted as the combined effects of PAH toxicity and cold stress. It can be concluded that the profile and level of the biological effects are definitely different at low temperatures naturally occurring in the Arctic/Subarctic region (e.g. 5 °C) than at higher temperatures closer to the thermal optimum of this species (10-15 °C).
Collapse
Affiliation(s)
- Ionan Marigómez
- BCTA Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa-Bizkaia, Basque Country, Spain; BCTA Research Group, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia-Bizkaia, Basque Country, Spain.
| | - Maitane Olivares
- IBeA Research Group, Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa-Bizkaia, Basque Country, Spain; BCTA Research Group, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia-Bizkaia, Basque Country, Spain
| | - Beñat Zaldibar
- BCTA Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa-Bizkaia, Basque Country, Spain; BCTA Research Group, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia-Bizkaia, Basque Country, Spain
| | - Denis Benito
- BCTA Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa-Bizkaia, Basque Country, Spain; BCTA Research Group, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia-Bizkaia, Basque Country, Spain
| | - Manu Soto
- BCTA Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa-Bizkaia, Basque Country, Spain; BCTA Research Group, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia-Bizkaia, Basque Country, Spain
| | - Esther Blanco-Rayón
- BCTA Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa-Bizkaia, Basque Country, Spain; BCTA Research Group, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia-Bizkaia, Basque Country, Spain
| | - Xabier Lekube
- BCTA Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa-Bizkaia, Basque Country, Spain; BCTA Research Group, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia-Bizkaia, Basque Country, Spain
| | - Urtzi Izagirre
- BCTA Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa-Bizkaia, Basque Country, Spain; BCTA Research Group, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia-Bizkaia, Basque Country, Spain
| | - Javier Aguirre-Rubí
- BCTA Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Sarriena z/g, E-48940 Leioa-Bizkaia, Basque Country, Spain; BCTA Research Group, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country (UPV/EHU), Areatza z/g, 48620 Plentzia-Bizkaia, Basque Country, Spain
| |
Collapse
|
2
|
He Z, Pan L, Xu Q, Zhou Y, Li P, Li Z, Wang Q. Studies on the characteristics of polycyclic aromatic hydrocarbons accumulation in lipids and the disturbance of lipid metabolism of Ruditapes philippinarum. CHEMOSPHERE 2024; 364:143304. [PMID: 39251158 DOI: 10.1016/j.chemosphere.2024.143304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) constitute a class of persistent organic pollutants with strong lipophilicity, which readily accumulate within organisms and have the effect to induce disorders in lipid metabolism. The present study aimed to investigate the accumulation localization and pattern of PAHs in Ruditapes philippinarum, and to reveal the association between PAHs and lipids metabolism. The 21-day exposure experiment was conducted using a mixture of phenanthrene, chrysene, and benzo[a]pyrene (the proportion is 1:1:1) at concentrations of 0.4 μg/L, 2 μg/L, and 10 μg/L. The tissue distribution of PAHs indicated that the digestive gland was the primary site of PAHs accumulation. Meanwhile, fluorescence colocalization suggested that PAHs primarily accumulated within the lipid droplets of digestive gland cells. This study further determined the transcriptomic and lipidomic profiles of the digestive gland to analyze the key genes involved in disrupted lipid metabolism and the major lipids affected. Lipidomic analysis identified the key differential metabolites as triglycerides (TGs). Furthermore, TGs were upregulated in the digestive gland had a total carbon atom number of 50-64 and a total number of 3-9 double bonds in the acyl side chains. Biochemical analysis experiments and oil red O stained frozen sections confirmed that the content of TGs steadily increased in various tissues during the experiment, leading to an elevated digestive gland index. Changes of lipid metabolism associated genes expression level also indicated that the synthesis of lipid in digestive gland were up-regulated while the decomposition was down-regulated. This study is the first to demonstrate the cellular localization of PAHs accumulation in bivalves and confirms the pattern of variation in TGs, providing new insights into the mechanisms of PAHs bioaccumulation and lipid metabolism disruption.
Collapse
Affiliation(s)
- Zhiheng He
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China.
| | - Qiuhong Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Pengfei Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Zeyuan Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| | - Qiaoqiao Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, PR China
| |
Collapse
|
3
|
Dash MK, Rahman MS. Molecular and biochemical responses to tributyltin (TBT) exposure in the American oyster: Triggers of stress-induced oxidative DNA damage and prooxidant-antioxidant imbalance in tissues by TBT. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109523. [PMID: 36427667 DOI: 10.1016/j.cbpc.2022.109523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Environmental pollution increases due to anthropogenic activities. Toxic chemicals in the environment affect the health of aquatic organisms. Tributyltin (TBT) is a toxic chemical widely used as an antifouling paint on boats, hulls, and ships. The toxic effect of TBT is well documented in aquatic organisms; however, little is known about the effects of TBT on DNA lesions in shellfish. The American oyster (Crassostrea virginica, an edible and commercially important species) is an ideal marine mollusk to examine the effects of TBT exposure on DNA lesions and oxidative/nitrative stress. In this study, we investigated the effects of TBT on 8'-hydroxy-2'-deoxyguanosine (8-OHdG, a biomarker of pro-mutagenic DNA lesion), double-stranded DNA (dsDNA), dinitrophenyl protein (DNP, a biomarker on reactive oxygen species, ROS), 3-nitrotyrosine protein (NTP, a biomarker of reactive nitrogen species, RNS), catalase (CAT, an antioxidant), and acetylcholinesterase (AChE, a cholinergic enzyme) expressions in the gills and digestive glands of oysters. We also analyzed extrapallial (EF) fluid conditions. Immunohistochemical and qRT-PCR results showed that TBT exposure significantly increased 8-OHdG, dsDNA, DNP, NTP, and CAT mRNA and/or protein expressions in the gills and digestive glands. However, AChE mRNA and protein expressions, and EP fluid pH and protein concentrations were decreased in TBT-exposed oysters. Taken together, these results suggest that antifouling biocide-induced production of ROS/RNS results in DNA damage, which may lead to decreased cellular functions in oysters. To the best of our knowledge, the present study provides the first molecular/biochemical evidence that TBT exposure results in oxidative/nitrative stress and DNA lesions in oysters.
Collapse
Affiliation(s)
- Mohan Kumar Dash
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA; Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA.
| |
Collapse
|
4
|
Rahman MF, Billah MM, Kline RJ, Rahman MS. Effects of elevated temperature on 8-OHdG expression in the American oyster ( Crassostrea virginica): Induction of oxidative stress biomarkers, cellular apoptosis, DNA damage and γH2AX signaling pathways. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 4:100079. [PMID: 36589260 PMCID: PMC9798191 DOI: 10.1016/j.fsirep.2022.100079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Global temperature is increasing due to anthropogenic activities and the effects of elevated temperature on DNA lesions are not well documented in marine organisms. The American oyster (Crassostrea virginica, an edible and commercially important marine mollusk) is an ideal shellfish species to study oxidative DNA lesions during heat stress. In this study, we examined the effects of elevated temperatures (24, 28, and 32 °C for one-week exposure) on heat shock protein-70 (HSP70, a biomarker of heat stress), 8‑hydroxy-2'-deoxyguanosine (8-OHdG, a biomarker of pro-mutagenic DNA lesion), double-stranded DNA (dsDNA), γ-histone family member X (γH2AX, a molecular biomarker of DNA damage), caspase-3 (CAS-3, a key enzyme of apoptotic pathway) and Bcl-2-associated X (BAX, an apoptosis regulator) protein and/or mRNA expressions in the gills of American oysters. Immunohistochemical and qRT-PCR results showed that HSP70, 8-OHdG, dsDNA, and γH2AX expressions in gills were significantly increased at high temperatures (28 and 32 °C) compared with control (24°C). In situ TUNEL analysis showed that the apoptotic cells in gill tissues were increased in heat-exposed oysters. Interestingly, the enhanced apoptotic cells were associated with increased CAS-3 and BAX mRNA and/or protein expressions, along with 8-OHdG levels in gills after heat exposure. Moreover, the extrapallial (EP) fluid (i.e., extracellular body fluid) protein concentrations were lower; however, the EP glucose levels were higher in heat-exposed oysters. Taken together, these results suggest that heat shock-driven oxidative stress alters extracellular body fluid conditions and induces cellular apoptosis and DNA damage, which may lead to increased 8-OHdG levels in cells/tissues in oysters.
Collapse
Key Words
- 8-OHdG, 8‑hydroxy-2′-deoxyguanosine
- BAX, bcl-2-associate X
- BSA, bovine serum albumin
- CAS-3, caspase-3
- Caspase 3
- DSBs, double-stranded breaks
- EP, extrapallial
- Extrapallial fluid
- HSP70
- HSP70, heat shock protein 70
- Heat stress
- Marine mollusks
- PBS, Phosphate buffer saline
- SSBs, single-stranded breaks
- TUNEL, terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling
- dsDNA breaks
- dsDNA, double-stranded DNA
- qRT-PCR, quantitative real-time polymerase chain reaction
- ssDNA, single-stranded DNA
- γ-H2AX, γ-histone family member X
Collapse
Affiliation(s)
- Md Faizur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Mohammad Maruf Billah
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Richard J. Kline
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA,Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Md Saydur Rahman
- School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA,Department of Biology, University of Texas Rio Grande Valley, Brownsville, TX, USA,Corresponding author at: Department of Biology, University of Texas Rio Grande Valley, 1 West University Blvd., Brownsville, Texas 78520, USA.
| |
Collapse
|
5
|
Bi Y, Chen W, Miao J, Pan L, Li D. Bioaccumulation, Detoxification, and Biological Macromolecular Damage of Benzo[a]pyrene in Exposure in Tissues and Subcellular Fractions of Scallop Chlamys farreri. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2353-2364. [PMID: 35751451 DOI: 10.1002/etc.5418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Because of the persistence and high toxicity of benzo[a]pyrene (B[a]P), the bioaccumulation and detoxification mechanisms of B[a]P have been studied extensively at the tissue level; but the data at the subcellular level in bivalves have not been reported. The present study was conducted to investigate the effects of B[a]P exposure on bioaccumulation, detoxification, and biomacromolecular damage in gills, digestive glands, and their subcellular fractions of the scallop Chlamys farreri. The subcellular fraction contains cytoplasm, mitochondria, microsome, nucleus, cell membrane, and overall organelle. The results demonstrated that B[a]P accumulation showed a clear time-dose effect. Based on the time-dependent accumulation of B[a]P in subcellular fractions, we speculated that the intracellular migration order of B[a]P was cell membrane, organelle, and nucleus in turn. Considering the difference of B[a]P accumulation may be related to B[a]P metabolism, we have further confirmed that the activities of B[a]P metabolizing enzymes in scallop tissues and subcellular fractions were significantly tempted by B[a]P (p < 0.05), including 7-ethoxyresorufin O-deethylase (increased), glutathione-S-transferase (GST; decreased), and superoxide dismutase (increased). First, GST was detected in bivalve cytoplasm and microsome. Second, B[a]P exposure also caused biomacromolecules damage. The results demonstrated that mitochondria and microsome were more vulnerable to lipid peroxidation than cell membrane and nucleus. Taken together, the present study fills some of the gaps in our knowledge of the bioaccumulation and detoxification mechanisms of C. farreri exposed to B[a]P in subcellular fractions and deeply explores the transportation and the main metabolic and damage sites of polycyclic aromatic hydrocarbons (PAHs) in cells, which helped us to comprehensively understand the toxic mechanism of PAHs on bivalves. Environ Toxicol Chem 2022;41:2353-2364. © 2022 SETAC.
Collapse
Affiliation(s)
- Yaqi Bi
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Wei Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| | - Dongyu Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, PR China
| |
Collapse
|
6
|
Wang J, Xia B. Effects of chromium (VI) on the toxicity of benzo[z]pyrene in 16HBE cells. Toxicol Ind Health 2022; 38:733-744. [DOI: 10.1177/07482337221127095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Contamination of human habitats with complex mixtures of heavy metals and polycyclic aromatic hydrocarbons (PAHs) is an important environmental and industrial health problem. Hexavalent chromium (Cr(VI)) and benzo(a)pyrene (B[a] P) are typical of the two, respectively. In recent decades, a great deal of research has focused on their carcinogenicity and mechanisms of action. However, few studies have been conducted to evaluate their combined effects on humans and cells, which has important implications for overall understanding of their toxicity and interaction. In the current study, the combined toxic effects of B[a] P and Cr(VI) were studied in human bronchial epithelial cells (16 HBE). We measured the genotoxic activity and epigenetic changes of these two toxicants alone and in combination on these cells and analyzed the difference between their single and combined toxicity. The results showed that B[a]P caused DNA damage in 16HBE cells in a concentration-dependent manner, while the presence of Cr(VI) showed a sharp decrease in DNA damage, and it inhibited the expression of genes related to base excision repair induced by B[a]P. In addition, Cr(VI) also reduced B[a]P-triggered epigenetic changes in 16HBE cells. In conclusion, the combined effect of B[a]P and Cr(VI) on 16HBE cells was less toxic than single B[a]P exposure, indicating that the combined toxicity of the two toxicants is partially antagonistic. Further research is required to explore the mechanism of this antagonism.
Collapse
Affiliation(s)
- Jialin Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| | - Bo Xia
- College of Food Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
7
|
Polystyrene nanoplastics and microplastics can act as Trojan horse carriers of benzo(a)pyrene to mussel hemocytes in vitro. Sci Rep 2021; 11:22396. [PMID: 34789853 PMCID: PMC8599475 DOI: 10.1038/s41598-021-01938-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/12/2021] [Indexed: 12/24/2022] Open
Abstract
In this work we studied the ability of polystyrene (PS) nanoplastics (NPs) and microplastics (MPs) to transfer benzo(a)pyrene (BaP) to mussel hemocytes and to produce toxic effects in vitro. For this, intracellular fate and toxicity of PS NPs (0.05 μm) and MPs (0.5 and 4.5 μm) alone or with BaP and of BaP alone were assessed. Particles of 0.05 and 0.5 µm largely aggregated in the exposure medium whereas presence of BaP reduced particle aggregation. Cells internalized PS NPs and MPs alone or with BaP and these were found inside and outside lysosomes, depending on their size. PS particles alone or with BaP were cytotoxic to hemocytes only at the highest concentrations tested. The same was true for most sublethal endpoints except for increased phagocytic activity provoked by NPs and 0.5 μm MPs at lower concentrations. Plastic particles appeared to be the main drivers for reduced plasma membrane integrity and increased phagocytic and lysosomal activities whereas BaP appeared to contribute more to reduced cell viability and phagocytosis and increased ROS production and genotoxicity. Overall, PS NPs and MPs can act as carriers of BaP to mussel hemocytes, rising concerns about risks plastics associated to pollutants may pose to aquatic organisms.
Collapse
|
8
|
Acute benzo[a]pyrene exposure induced oxidative stress, neurotoxicity and epigenetic change in blood clam Tegillarca granosa. Sci Rep 2021; 11:18744. [PMID: 34548601 PMCID: PMC8455545 DOI: 10.1038/s41598-021-98354-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
The blood clam (Tegillarca granosa) is being developed into a model bivalve mollusc for assessing and monitoring marine pollution on the offshore seabed. However, the information on the response of blood clam to PAHs, an organic pollutant usually deposited in submarine sediment, remains limited. Herein, we employed multiple biomarkers, including histological changes, oxidative stress, neurotoxicity and global DNA methylation, to investigate the effects of 10 and 100 μg/L Bap exposure on the blood clams under laboratory conditions, as well as the potential mechanisms. Acute Bap exposure can induce significant morphological abnormalities in gills as shown through hematoxylin–eosin (H.E) staining, providing an intuitive understanding on the effects of Bap on the structural organization of the blood clams. Meanwhile, the oxidative stress was significantly elevated as manifested by the increase of antioxidants activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and glutathione-s-transferase (GST), lipid peroxidation (LPO) level and 8-hydroxy-2′-deoxyguanosine (8-OHdG) content. The neurotoxicity was also strengthened by Bap toxicity manifested as inhibited acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) activities. In addition, the global DNA methylation level was investigated, and a significant DNA hypomethylation was observed in Bap exposed the blood clam. The correlation analysis showed that the global DNA methylation was negatively correlated with antioxidants (SOD, CAT and POD) activities, but positively correlated choline enzymes (AChE and ChAT) activities. These results collectively suggested that acute Bap exposure can cause damage in gills structures in the blood clam possibly by generating oxidative stress and neurotoxicity, and the global DNA methylation was inhibited to increase the transcriptional expression level of antioxidants genes and consequently elevate antioxidants activities against Bap toxicity. These results are hoped to shed some new light on the study of ecotoxicology effect of PAHs on marine bivalves.
Collapse
|
9
|
Kodzhahinchev V, Shekh K, Weber LP, Niyogi S. Interactive effects of cadmium and Benzo[a]pyrene in adult zebrafish (Danio rerio) during short-term aqueous co-exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:116027. [PMID: 33248835 DOI: 10.1016/j.envpol.2020.116027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Environmental water quality guidelines often work under the assumption that the toxicity of environmental pollutants is identical when present in isolation or in a complex chemical mixture. Thus, there is a crucial gap in our knowledge regarding how these toxicants interact and alter the toxicological effects in aquatic organisms. The present study examined the effects of acute (72-hr) aqueous exposures of Cadmium (Cd), a highly toxic non-essential trace metal, and Benzo[a]Pyrene (B[a]P), a prototypical polycyclic aromatic hydrocarbon (PAH) in adult zebrafish. Following a range-finding series of individual single-toxicant exposures, a second series was carried out using select concentrations in binary mixture exposures (using 5.8 or 22 μg/L for Cd; 0.44 or 1.07 μg/L for B[a]P). Our results demonstrated that tissue accumulation of both toxicants increased significantly in the presence of the second toxicant relative to single-toxicant exposures. Cd-only and B[a]P-only single toxicant exposures caused a significant downregulation of cytochrome p4501a (CYP1A1) and metallothionein-2 (MT2) mRNA in the gills, respectively, however binary co-exposures using both toxicants resulted in strong up-regulation of CYP1A1 and MT2. Additionally, co-exposures caused a strong induction of SOD1 and CAT mRNA transcript levels in the gill. The observed increase in body burden and transcript modulation did not translate into additive or more-than-additive toxic effects (oxidative stress) in zebrafish.
Collapse
Affiliation(s)
| | - Kamran Shekh
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Lynn P Weber
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
10
|
Moore MN, Sforzini S, Viarengo A, Barranger A, Aminot Y, Readman JW, Khlobystov AN, Arlt VM, Banni M, Jha AN. Antagonistic cytoprotective effects of C 60 fullerene nanoparticles in simultaneous exposure to benzo[a]pyrene in a molluscan animal model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142355. [PMID: 33022458 DOI: 10.1016/j.scitotenv.2020.142355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
The hypothesis that C60 fullerene nanoparticles (C60) exert an antagonistic interactive effect on the toxicity of benzo[a]pyrene (BaP) has been supported by this investigation. Mussels were exposed to BaP (5, 50 & 100μg/L) and C60 (C60-1mg/L) separately and in combination. Both BaP and C60 were shown to co-localize in the secondary lysosomes of the hepatopancreatic digestive cells in the digestive gland where they reduced lysosomal membrane stability (LMS) or increased membrane permeability, while BaP also induced increased lysosomal lipid and lipofuscin, indicative of oxidative cell injury and autophagic dysfunction. Combinations of BaP and C60 showed antagonistic effects for lysosomal stability, mTORC1 (mechanistic target of rapamycin complex 1) inhibition and intralysosomal lipid (5 & 50μg/L BaP). The biomarker data (i.e., LMS, lysosomal lipidosis and lipofuscin accumulation; lysosomal/cell volume and dephosphorylation of mTORC1) were further analysed using multivariate statistics. Principal component and cluster analysis clearly indicated that BaP on its own was more injurious than in combination with C60. Use of a network model that integrated the biomarker data for the cell pathophysiological processes, indicated that there were significant antagonistic interactions in network complexity (% connectance) at all BaP concentrations for the combined treatments. Loss of lysosomal membrane stability probably causes the release of intralysosomal iron and hydrolases into the cytosol, where iron can generate harmful reactive oxygen species (ROS). It was inferred that this adverse oxidative reaction induced by BaP was ameliorated in the combination treatments by the ROS scavenging property of intralysosomal C60, thus limiting the injury to the lysosomal membrane; and reducing the oxidative damage in the cytosol and to the nuclear DNA. The ROS scavenging by C60, in combination with enhanced autophagic turnover of damaged cell constituents, appeared to have a cytoprotective effect against the toxic reaction to BaP in the combined treatments.
Collapse
Affiliation(s)
- Michael N Moore
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK; European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Cornwall TR1 3LJ, UK; Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3HD, UK.
| | - Susanna Sforzini
- Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment - IAS, National Research Council - CNR, Via de Marini, 6, 16149 Genova, GE, Italy
| | - Aldo Viarengo
- Institute for the Study of Anthropic Impacts and Sustainability in Marine Environment - IAS, National Research Council - CNR, Via de Marini, 6, 16149 Genova, GE, Italy
| | - Audrey Barranger
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - Yann Aminot
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| | - James W Readman
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK; Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3HD, UK
| | - Andrei N Khlobystov
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK; Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, King's College London, MRC-PHE Centre for Environmental & Health, London SE1 9NH, UK; Toxicology Department, GAB Consulting GmbH, 69126 Heidelberg, Germany
| | - Mohamed Banni
- Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, Sousse, Tunisia
| | - Awadhesh N Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| |
Collapse
|
11
|
González-Soto N, Hatfield J, Katsumiti A, Duroudier N, Lacave JM, Bilbao E, Orbea A, Navarro E, Cajaraville MP. Impacts of dietary exposure to different sized polystyrene microplastics alone and with sorbed benzo[a]pyrene on biomarkers and whole organism responses in mussels Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 684:548-566. [PMID: 31154227 DOI: 10.1016/j.scitotenv.2019.05.161] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/26/2019] [Accepted: 05/12/2019] [Indexed: 06/09/2023]
Abstract
Due to their hydrophobicity and relatively large surface area, microplastics (MPs) can act as carriers of hydrophobic pollutants in the ocean and may facilitate their transfer to organisms. This study examined effects of dietary exposure to polystyrene MPs of 0.5 and 4.5 μm alone and with sorbed benzo[a]pyrene (BaP) on mussels Mytilus galloprovincialis in order to elucidate the effects of MP size and the presence of sorbed BaP on the organism. MPs were provided daily, mixed with algae, during 26 days at equivalent mass (0.058 mg/L), corresponding to 1000 particles/mL for 4.5 μm MPs and to 7.44 × 105 particles/mL for 0.5 μm MPs. Effects were determined on early cellular biomarkers in hemocytes, structure and cell type composition of digestive tubules (DTs), histopathology and whole organism responses (condition index (CI), clearance rate (CR), food absorption efficiency (AE), respiration rate (RR) and scope for growth (SFG)). BaP concentrations in mussels increased with time, in particular when sorbed to smaller MPs. Large MPs were abundant in the lumen of stomach and DTs, but were also occasionally found within epithelial cells. Effects in all treatments increased with exposure time. MPs with sorbed BaP were more toxic than MPs alone according to hemocyte viability and catalase activity and to the quantitative structure of DT epithelium. Higher toxicity of small MPs compared to larger ones was recorded for DNA damage and cell composition of DTs. At tissue level a slight increase in prevalence of inflammatory responses occurred in all exposed groups. At whole organism level a compensatory effect was observed on absorption efficiency across MP treatments at day 26, resulting in increased SFG in mussels exposed to small MPs with sorbed BaP. This could be related to an increased energy need to deal with stress observed in biomarkers. Further work is required to understand the Trojan horse effect of a variety of plastic type, size, shape combinations together with a wide variety of pollutants.
Collapse
Affiliation(s)
- Nagore González-Soto
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Plentzia Marine Station, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Joseph Hatfield
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Plentzia Marine Station, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Alberto Katsumiti
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Plentzia Marine Station, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Nerea Duroudier
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Plentzia Marine Station, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - José María Lacave
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Plentzia Marine Station, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Eider Bilbao
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Plentzia Marine Station, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Amaia Orbea
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Plentzia Marine Station, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Enrique Navarro
- Animal Physiology Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Basque Country, Spain
| | - Miren P Cajaraville
- CBET Research Group, Department of Zoology and Animal Cell Biology, Faculty of Science and Technology and Plentzia Marine Station, University of the Basque Country (UPV/EHU), Basque Country, Spain.
| |
Collapse
|
12
|
Barranger A, Rance GA, Aminot Y, Dallas LJ, Sforzini S, Weston NJ, Lodge RW, Banni M, Arlt VM, Moore MN, Readman JW, Viarengo A, Khlobystov AN, Jha AN. An integrated approach to determine interactive genotoxic and global gene expression effects of multiwalled carbon nanotubes (MWCNTs) and benzo[a]pyrene (BaP) on marine mussels: evidence of reverse ‘Trojan Horse’ effects. Nanotoxicology 2019; 13:1324-1343. [DOI: 10.1080/17435390.2019.1654003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Audrey Barranger
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Graham A. Rance
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK
- Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham, UK
| | - Yann Aminot
- Centre for Chemical Sciences, University of Plymouth, Plymouth, UK
| | - Lorna J. Dallas
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Susanna Sforzini
- Ecotoxicology and Environmental Safety Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Nicola J. Weston
- Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham, UK
| | - Rhys W. Lodge
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK
- Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham, UK
| | - Mohamed Banni
- Ecotoxicology and Environmental Safety Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
- Laboratory of Biochemistry and Environmental Toxicology, ISA chottMariem, Sousse University, Sousse, Tunisia
| | - Volker M. Arlt
- Department of Analytical, Environmental and Forensic Sciences, King’s College London, MRC-PHE Centre for Environmental & Health, London, UK
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards, King’s College London in Partnership with Public Health England and Imperial College London, London, UK
| | - Michael N. Moore
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
- Plymouth Marine Laboratory, Plymouth, UK
- European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Royal Cornwall Hospital, Truro, UK
| | - James W. Readman
- Centre for Chemical Sciences, University of Plymouth, Plymouth, UK
- Plymouth Marine Laboratory, Plymouth, UK
| | - Aldo Viarengo
- Ecotoxicology and Environmental Safety Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Andrei N. Khlobystov
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK
- Nanoscale and Microscale Research Centre, University of Nottingham, Nottingham, UK
| | - Awadhesh N. Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
13
|
Speciale A, Zena R, Calabrò C, Bertuccio C, Aragona M, Saija A, Trombetta D, Cimino F, Lo Cascio P. Experimental exposure of blue mussels (Mytilus galloprovincialis) to high levels of benzo[a]pyrene and possible implications for human health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 150:96-103. [PMID: 29268120 DOI: 10.1016/j.ecoenv.2017.12.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are lipophilic compounds able to accumulate in the food chain. Mussels showed to bioaccumulate contaminants, such as PAHs, so that recurrent consumption of such contaminated food represents a risk for human health. This study was aimed to elucidate if acute exposure of Mediterranean blue mussel (Mytilus galloprovincialis), a bivalve of great economic importance in several countries, to a PAH, benzo[a]pyrene (B[a]P), at doses able to induce cytochrome P450 1A (CYP1A) and pathological changes in mussel gills, can produce accumulation in soft tissue. We explored the cytotoxic effects (cell viability, DNA laddering, and glutathione levels) of in vitro exposure of human peripheral blood mononuclear cells (PBMCs) to organic extracts obtained from blue mussels previously exposed for 12 and 72h via water to B[a]P (0.5-1mg/L). In our experimental conditions, B[a]P induced CYP1A induction and morphological changes in mussel gills and a significant B[a]P accumulation in soft tissue. Conversely, exposing PBMCs to organic extracts obtained from contaminated mussels, resulted in a significant reduction of cell viability and cell glutathione content, and in an increase in DNA laddering. This confirms that consumption of mussels from B[a]P polluted waters might affect human health. Our data lead us to suggest that CYP1A activity in mussel gills may be useful (more than the amount of detected PAHs in the mussel edible tissue) as a marker in assessment of risk for health of consumers exposed to PAHs through ingestion of shellfish.
Collapse
Affiliation(s)
- A Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - R Zena
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - C Calabrò
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - C Bertuccio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - M Aragona
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - A Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - D Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - F Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy.
| | - P Lo Cascio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
14
|
Sforzini S, Moore MN, Oliveri C, Volta A, Jha A, Banni M, Viarengo A. Role of mTOR in autophagic and lysosomal reactions to environmental stressors in molluscs. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 195:114-128. [PMID: 29306034 DOI: 10.1016/j.aquatox.2017.12.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/15/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
Lysosomal membrane stability (LMS) has been used in various organisms as a very sensitive biomarker of stress. However, despite the abundance of data about regulation of the autophagic process in mammals, in the invertebrates there is only limited mechanistic understanding. Marine mussels (Mytilus galloprovincialis Lam.) are bivalve molluscs, widely used as models in ecotoxicology and as environmental bioindicators of sea water quality. In order to elucidate this fundamental process, in the present study, mussels were exposed for 3 days to a "priority", ubiquitous environmental contaminant, benzo[a]pyrene (B[a]P) at different concentrations (i.e. 5, 50, 100 μg/L seawater). B[a]P accumulated in lysosomes of digestive tubule epithelial cells (digestive cells) and in enlarged lipid-rich lysosomes (autolysosomes) as detected by immunofluorescence and UV-fluorescence. B[a]P also activated the autophagic process with a marked decrease of LMS and concurrent increase in lysosomal/cytoplasmic volume ratio. Dephosphorylation of mTOR contributes to increased lysosomal membrane permeability and induced autophagy. B[a]P induced a decrease in phosphorylated (active form) mTOR. The probable role of mTOR in cell signalling and the regulation of the cellular responses to the contaminants has been also confirmed in a field study, where there was significant inactivation of mTOR in stressed animals. Statistical and network modelling supported the empirical investigations of autophagy and mTOR; and was used to integrate the mechanistic biomarker data with chemical analysis and DNA damage.
Collapse
Affiliation(s)
- Susanna Sforzini
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy; Laboratory of Environmental Chemistry and Toxicology, IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy
| | - Michael N Moore
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy; European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Truro, TR1 3HD, UK; Plymouth Marine Laboratory, Plymouth, PL1 3DH, UK; School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Caterina Oliveri
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy
| | - Anna Volta
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy
| | - Awadhesh Jha
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Mohamed Banni
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy; Laboratory of Biochemistry and Environmental Toxicology, ISA, Chott-Mariem, Sousse, Tunisia
| | - Aldo Viarengo
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", V.le T. Michel 11, 15121 Alessandria, Italy; Laboratory of Environmental Chemistry and Toxicology, IRCCS, Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milan, Italy.
| |
Collapse
|
15
|
Guo R, Pan L, Ji R. A multi-biomarker approach in scallop Chlamys farreri to assess the impact of contaminants in Qingdao coastal area of China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:399-409. [PMID: 28454052 DOI: 10.1016/j.ecoenv.2017.04.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/27/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
A multi-biomarker approach was carried out to classify the environmental quality and the adverse effects of contaminants on scallop Chlamys farreri. The scallops were collected from three sampling stations in Qingdao coastal area of China in March, May, August and October of 2015. A suite of environmental factors and biomarkers, including temperature, salinity, pH, the concentrations of polycyclic aromatic hydrocarbons (PAHs), tetrabromobisphenol A (TBBPA) and metals (Cr, Mn, Cu, Zn, Cd, Pb, As) in seawater and soft tissue, mRNA expression of aryl hydrocarbon receptor (AhR) and P-glycoprotein (P-gp), 7-ethoxyresorufin O-deethylase (EROD), glutathione-S-transferase (GST), uridine-diphosphate-glucuronyl-transferase (UGT), sulfotransferase (SULT), metallothionein (MT), Superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), lipid peroxidation (LPO) and protein carbonyl (PC) contents and DNA strand breaks, were measured in the gill and digestive gland. The results showed that S2 was the most polluted while S1 was identified the least polluted. Despite the differentiation of pollution levels and environmental parameters the selected biomarkers responded efficiently to contaminants. Principal component analysis (PCA) revealed that EROD for PAHs, AhR for TBBPA, MT for Cr, Pb and Mn, LPO and PC for Zn were the effective biomarkers respectively. This study demonstrated that the application of multi-biomarker approach in conjunction with the traditional analysis of environmental parameters and contaminants provided valuable information in environmental risk assessment.
Collapse
Affiliation(s)
- Ruiming Guo
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China.
| | - Rongwang Ji
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| |
Collapse
|
16
|
Banni M, Sforzini S, Arlt VM, Barranger A, Dallas LJ, Oliveri C, Aminot Y, Pacchioni B, Millino C, Lanfranchi G, Readman JW, Moore MN, Viarengo A, Jha AN. Assessing the impact of Benzo[a]pyrene on Marine Mussels: Application of a novel targeted low density microarray complementing classical biomarker responses. PLoS One 2017. [PMID: 28651000 PMCID: PMC5484464 DOI: 10.1371/journal.pone.0178460] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Despite the increasing use of mussels in environmental monitoring and ecotoxicological studies, their genomes and gene functions have not been thoroughly explored. Several cDNA microarrays were recently proposed for Mytilus spp., but putatively identified partial transcripts have rendered the generation of robust transcriptional responses difficult in terms of pathway identification. We developed a new low density oligonucleotide microarray with 465 probes covering the same number of genes. Target genes were selected to cover most of the well-known biological processes in the stress response documented over the last decade in bivalve species at the cellular and tissue levels. Our new ‘STressREsponse Microarray’ (STREM) platform consists of eight sub-arrays with three replicates for each target in each sub-array. To assess the potential use of the new array, we tested the effect of the ubiquitous environmental pollutant benzo[a]pyrene (B[a]P) at 5, 50, and 100 μg/L on two target tissues, the gills and digestive gland, of Mytilus galloprovincialis exposed invivo for three days. Bioaccumulation of B[a]P was also determined demonstrating exposure in both tissues. In addition to the well-known effects of B[a]P on DNA metabolism and oxidative stress, the new array data provided clues about the implication of other biological processes, such as cytoskeleton, immune response, adhesion to substrate, and mitochondrial activities. Transcriptional data were confirmed using qRT-PCR. We further investigated cellular functions and possible alterations related to biological processes highlighted by the microarray data using oxidative stress biomarkers (Lipofuscin content) and the assessment of genotoxicity. DNA damage, as measured by the alkaline comet assay, increased as a function of dose.DNA adducts measurements using 32P-postlabeling method also showed the presence of bulky DNA adducts (i.e. dG-N2-BPDE). Lipofiscin content increased significantly in B[a]P exposed mussels. Immunohistochemical analysis of tubulin and actin showed changes in cytoskeleton organisation. Our results adopting an integrated approach confirmed that the combination of newly developed transcriptomic approcah, classical biomarkers along with chemical analysis of water and tissue samples should be considered for environmental bioimonitoring and ecotoxicological studies to obtain holistic information to assess the impact of contaminants on the biota.
Collapse
Affiliation(s)
- Mohamed Banni
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", Alessandria, Italy
- Laboratory of Biochemistry and Environmental Toxicology, ISA chott-Mariem, Sousse University, Sousse, Tunisia
- * E-mail: (MB); (ANJ)
| | - Susanna Sforzini
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", Alessandria, Italy
| | - Volker M. Arlt
- Analytical and Environmental Sciences Division, King's College London, MRC-PHE Centre for Environmental & Health, London, United Kingdom
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King’s College London in partnership with Public Health England, London, United Kingdom
| | - Audrey Barranger
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Lorna J. Dallas
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
| | - Caterina Oliveri
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", Alessandria, Italy
| | - Yann Aminot
- Centre for Chemical Sciences, University of Plymouth, Plymouth, United Kingdom
| | | | | | | | - James W. Readman
- Centre for Chemical Sciences, University of Plymouth, Plymouth, United Kingdom
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, United Kingdom
| | - Michael N. Moore
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, United Kingdom
- European Centre for Environment & Human Health (ECEHH), University of Exeter Medical School, Knowledge Spa, Royal Cornwall Hospital, Truro, Cornwall, United Kingdom
| | - Aldo Viarengo
- Department of Sciences and Technological Innovation (DiSIT), University of Piemonte Orientale "A. Avogadro", Alessandria, Italy
| | - Awadhesh N. Jha
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom
- * E-mail: (MB); (ANJ)
| |
Collapse
|
17
|
Guo R, Pan L, Lin P, Zheng L. The detoxification responses, damage effects and bioaccumulation in the scallop Chlamys farreri exposed to single and mixtures of benzo[a]pyrene and chrysene. Comp Biochem Physiol C Toxicol Pharmacol 2017; 191:36-51. [PMID: 27627846 DOI: 10.1016/j.cbpc.2016.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/08/2016] [Accepted: 09/08/2016] [Indexed: 12/31/2022]
Abstract
This study aimed to investigate the detoxification responses, damage effects and biotransformation in scallop Chlamys farreri exposed to benzo[a]pyrene (BaP) (0.1, 1μg/L), chrysene (CHR) (0.1, 1μg/L) and BaP+CHR (0.1+0.1, 1+1μg/L) for 15days. Results demonstrated that BaP and CHR concentration (BaP<CHR) in tissues increased rapidly in a time and dose effect. The mRNA expression of aryl hydrocarbon receptor (AhR), cytochrome P450 1A1 (CYP1A1), CYP1B1, multidrug resistance protein 1 (MRP1/ABCC1), breast cancer resistance protein (BCRP/ABCG2) and P-glycoprotein (P-gp) were induced especially in the mixtures of BaP and CHR. Heat shock protein 90 (HSP90) and aryl hydrocarbon receptor nuclear translocator (ARNT) mRNA expression was significantly elevated at days 1, 10 and 15. Detoxification enzymes of 7-ethoxyresorufin O-deethylase (EROD), uridine-diphosphate-glucuronyl-transferase (UGT) and sulfotransferase (SULT) were significantly induced and then became stable gradually while glutathione-S-transferase (GST) was inhibited in the mixtures of BaP and CHR at days 10 and 15. Superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) and glutathione (GSH) were all stimulated especially in the mixtures of BaP and CHR. The levels of DNA strand breaks, lipid peroxidation (LPO) and protein carbonyl (PC) contents showed damage effects exposed BaP and CHR. All the results indicated that BaP and CHR have similar induced effect and a majority of the biomarkers pointed to a more toxic effect when BaP and CHR were mixed. These will provide a solid foundation for the study of PAHs detoxification mechanism in bivalves and valuable information for marine pollution monitoring.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Animals
- Antioxidants/metabolism
- Benzo(a)pyrene/metabolism
- Benzo(a)pyrene/toxicity
- Biomarkers/metabolism
- Body Burden
- Chrysenes/metabolism
- Chrysenes/toxicity
- Cytochrome P-450 CYP1A1/genetics
- Cytochrome P-450 CYP1A1/metabolism
- Cytochrome P-450 CYP1B1/genetics
- Cytochrome P-450 CYP1B1/metabolism
- Dose-Response Relationship, Drug
- Environmental Monitoring/methods
- Gene Expression Regulation, Enzymologic/drug effects
- Lipid Peroxidation/drug effects
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- Oxidative Stress/drug effects
- Pectinidae/drug effects
- Pectinidae/genetics
- Pectinidae/metabolism
- Protein Carbonylation/drug effects
- Receptors, Aryl Hydrocarbon/drug effects
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Signal Transduction/drug effects
- Time Factors
- Water Pollutants, Chemical/metabolism
- Water Pollutants, Chemical/toxicity
Collapse
Affiliation(s)
- Ruiming Guo
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China.
| | - Pengfei Lin
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Lei Zheng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| |
Collapse
|
18
|
Martins M, Ferreira AM, Costa MH, Costa PM. Comparing the genotoxicity of a potentially carcinogenic and a noncarcinogenic PAH, singly, and in binary combination, on peripheral blood cells of the European sea bass. ENVIRONMENTAL TOXICOLOGY 2016; 31:1307-1318. [PMID: 25728603 DOI: 10.1002/tox.22135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 02/09/2015] [Accepted: 02/15/2015] [Indexed: 06/04/2023]
Abstract
Research on the toxicological mechanisms of polycyclic aromatic hydrocarbons (PAHs) deemed carcinogenic and noncarcinogenic has mostly been developed for individual compounds even though, in the environment, PAHs invariably occur in mixtures. The present work aimed at understanding the interaction effects of two model PAHs, the potentially carcinogenic benzo[b]fluoranthene (B[b]F) and the noncarcinogenic phenanthrene (Phe) to a marine fish (the sea bass Dicentrarchus labrax). The study endeavoured an ecologically-relevant scenario with respect to concentrations and contaminant matrix, sediments, which are the main reservoirs of these substances in the environment, due to their hydrophobic nature. For the purpose, 28-day laboratorial bioassays with spiked sediments (with individual and combined PAHs at equitoxic concentrations) were conducted. Genotoxicity was determined in peripheral blood through the "Comet" assay and by scoring erythrocytic nuclear abnormalities (ENA). The results showed that exposure to either PAHs induced similar levels of DNA strand breaks, although without a clear dose- or time-response, likely due to the low concentrations of exposure and potential shits in PAH bioavailability during the assays. However, clastogenic/aneugenic lesions were only observed in fish exposed to B[b]F-spiked sediments. Conversely, the combination assays revealed a supra-additive effect especially at chromosome level, linked to concentrations of PAHs in water. A decrease in DNA-strand breakage was observed over time during all assays, revealing some ability of fish to cope with this DNA lesion. Overall, the findings show that low-moderate concentrations of sediment-bound mixed PAHs may significantly increase the hazard of mutagenesis even when the individual concentrations indicate low risk, especially considering that chromosome-level damage is unlikely to be repaired, leading to the fixation of DNA lesions upon prolonged exposures. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1307-1318, 2016.
Collapse
Affiliation(s)
- Marta Martins
- MARE-Marine and Environmental Sciences Centre, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516, Caparica, Portugal.
| | - Ana M Ferreira
- IPMA-Instituto Português do Mar e da Atmosfera, Avenida do Brasil, 1449-006, Lisboa, Portugal
| | - Maria H Costa
- MARE-Marine and Environmental Sciences Centre, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Pedro M Costa
- MARE-Marine and Environmental Sciences Centre, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| |
Collapse
|
19
|
Lan J, Gou N, Rahman SM, Gao C, He M, Gu AZ. A Quantitative Toxicogenomics Assay for High-throughput and Mechanistic Genotoxicity Assessment and Screening of Environmental Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3202-14. [PMID: 26855253 PMCID: PMC6321748 DOI: 10.1021/acs.est.5b05097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The ecological and health concern of mutagenicity and carcinogenicity potentially associated with an overwhelmingly large and ever-increasing number of chemicals demands for cost-effective and feasible method for genotoxicity screening and risk assessment. This study proposed a genotoxicity assay using GFP-tagged yeast reporter strains, covering 38 selected protein biomarkers indicative of all the seven known DNA damage repair pathways. The assay was applied to assess four model genotoxic chemicals, eight environmental pollutants and four negative controls across six concentrations. Quantitative molecular genotoxicity end points were derived based on dose response modeling of a newly developed integrated molecular effect quantifier, Protein Effect Level Index (PELI). The molecular genotoxicity end points were consistent with multiple conventional in vitro genotoxicity assays, as well as with in vivo carcinogenicity assay results. Further more, the proposed genotoxicity end point PELI values quantitatively correlated with both comet assay in human cell and carcinogenicity potency assay in mice, providing promising evidence for linking the molecular disturbance measurements to adverse outcomes at a biological relevant level. In addition, the high-resolution DNA damaging repair pathway alternated protein expression profiles allowed for chemical clustering and classification. This toxicogenomics-based assay presents a promising alternative for fast, efficient and mechanistic genotoxicity screening and assessment of drugs, foods, and environmental contaminants.
Collapse
Affiliation(s)
- Jiaqi Lan
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Na Gou
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Sheikh Mokhles Rahman
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Ce Gao
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Miao He
- Environmental Simulation and Pollution Control (ESPC) State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China
- (Miao He) .
| | - April Z. Gu
- Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
- Corresponding Authors (April Z. Gu)
| |
Collapse
|
20
|
Cai Y, Pan L, Miao J. In vitro study of the effect of metabolism enzymes on benzo(a)pyrene-induced DNA damage in the scallop Chlamys farreri. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 42:92-98. [PMID: 26851374 DOI: 10.1016/j.etap.2016.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 01/10/2016] [Accepted: 01/13/2016] [Indexed: 06/05/2023]
Abstract
Acute toxicity effect of benzo(a)pyrene (BaP) on isolated scallop (Chlamys farreri) digestive gland cells was studied and a dose-dependent increase in toxicity was observed. The 8 μg/L of BaP had a significant toxic effect on isolated cells (p<0.05). In order to study the mechanism of CYP450, GST, SOD and MXR transporters involved in the production of DNA strand breakage such as DNA adduct formation and oxidative DNA damage by BaP were investigated in isolated digestive gland cells. Isolated cells were exposed in vitro to 0.8 μg/L of BaP for 24h in the dark at 25 °C in the absence or presence of cytochrome P450 inhibitor, GST inhibitor, Pgp inhibitor and antioxidant enzyme inhibitor. DNA adduct and 8-OHdG content were measured using the Enzyme-linked Immunosorbent Assay. The result indicated that DNA strand breakage was increased to 2 times compared with the control in the 0.8 μg/L of BaP treatment groups. The BaP-induced DNA adduct and 8-OHdG content increased significantly by inhibiting GST, while only 8-OHdG increased significantly when SOD was inhibited. The content of DNA adduct and 8-OHdG had no significant change when CYP450 was inhibited, while it decreased significantly when MXR transporters were inhibited. The result proved that GST play a key role in eliminating the BaP-induced DNA adduct and 8-OHdG, and SOD also had an important function in reducing the production of BaP-induced 8-OHdG.
Collapse
Affiliation(s)
- Yuefeng Cai
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Fisheries College, Yushan Road 5, Qingdao 266003, PR China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Fisheries College, Yushan Road 5, Qingdao 266003, PR China.
| | - Jingjing Miao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Fisheries College, Yushan Road 5, Qingdao 266003, PR China
| |
Collapse
|
21
|
Barranger A, Heude-Berthelin C, Rouxel J, Adeline B, Benabdelmouna A, Burgeot T, Akcha F. Parental exposure to the herbicide diuron results in oxidative DNA damage to germinal cells of the Pacific oyster Crassostrea gigas. Comp Biochem Physiol C Toxicol Pharmacol 2016; 180:23-30. [PMID: 26610786 DOI: 10.1016/j.cbpc.2015.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/16/2015] [Accepted: 11/18/2015] [Indexed: 01/23/2023]
Abstract
Chemical pollution by pesticides has been identified as a possible contributing factor to the massive mortality outbreaks observed in Crassostrea gigas for several years. A previous study demonstrated the vertical transmission of DNA damage by subjecting oyster genitors to the herbicide diuron at environmental concentrations during gametogenesis. This trans-generational effect occurs through damage to genitor-exposed gametes, as measured by the comet-assay. The presence of DNA damage in gametes could be linked to the formation of DNA damage in other germ cells. In order to explore this question, the levels and cell distribution of the oxidized base lesion 8-oxodGuo were studied in the gonads of exposed genitors. High-performance liquid chromatography coupled with UV and electrochemical detection analysis showed an increase in 8-oxodGuo levels in both male and female gonads after exposure to diuron. Immunohistochemistry analysis showed the presence of 8-oxodGuo at all stages of male germ cells, from early to mature stages. Conversely, the oxidized base was only present in early germ cell stages in female gonads. These results indicate that male and female genitors underwent oxidative stress following exposure to diuron, resulting in DNA oxidation in both early germ cells and gametes, such as spermatozoa, which could explain the transmission of diuron-induced DNA damage to offspring. Furthermore, immunostaining of early germ cells seems indicates that damages caused by exposure to diuron on germ line not only affect the current sexual cycle but also could affect future gametogenesis.
Collapse
Affiliation(s)
- Audrey Barranger
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France; Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, 17390 La Tremblade, France.
| | - Clothilde Heude-Berthelin
- Unité Biologie des organismes et écosystèmes aquatiques (BOREA, UMR 7208), Université de Caen Basse-Normandie, Sorbonne Universités, Muséum national d'Histoire naturelle, Université Pierre et Marie Curie, CNRS, IRD, 57 Rue Cuvier, 75005 Paris, France
| | - Julien Rouxel
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - Béatrice Adeline
- Unité Biologie des organismes et écosystèmes aquatiques (BOREA, UMR 7208), Université de Caen Basse-Normandie, Sorbonne Universités, Muséum national d'Histoire naturelle, Université Pierre et Marie Curie, CNRS, IRD, 57 Rue Cuvier, 75005 Paris, France
| | - Abdellah Benabdelmouna
- Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, 17390 La Tremblade, France
| | - Thierry Burgeot
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - Farida Akcha
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France.
| |
Collapse
|
22
|
Michel C, Vincent-Hubert F. DNA oxidation and DNA repair in gills of zebra mussels exposed to cadmium and benzo(a)pyrene. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:2009-2016. [PMID: 26438356 DOI: 10.1007/s10646-015-1536-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/12/2015] [Indexed: 06/05/2023]
Abstract
Freshwater bivalve molluscs are considered as effective indicators of environmental pollution. The comet assay allows the detection of DNA damage such as DNA strand breaks and alkali-labile sites. The main oxidative lesion, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), which is a pre-mutagenic lesion, can be detected by the comet assay coupled with the hOGG1 DNA repair enzyme. With this modified assay we recently observed that BaP induced 8-oxodG lesions and with the modified comet-Fpg assay we observed that Cd induced oxidative DNA damage. The aim of this study was to determine the stability of DNA lesions in Cd and BaP exposed zebra mussels using the comet-hOGG1 assay. Mussels were exposed for 24 h to these two chemicals and then placed in clean water for 6 days. We observed that BaP (7, 12 and 18 µg/L) induced an increase of DNA strand break levels as soon as 6 h of exposure and that the two highest concentrations of BaP induced a low level of hOGG1-sensitive sites. After 2 days of depuration, BaP induced DNA lesions returned to the basal level, indicating an effective DNA repair. Cd (3, 32 and 81 µg/L) induced an increase of the DNA strand break levels and a low level of hOGG1-sensitive sites. This study revealed that BaP-induced DNA lesions are repaired more efficiently than Cd-induced DNA lesions. As the level of hOGG1 sensitive sites was increased in Cd and BaP exposed mussels, it seems that these chemicals induce 8-oxo-dG.
Collapse
Affiliation(s)
- Cécile Michel
- Unité de Recherches Hydrosystèmes et Bioprocédés, IRSTEA, 1 rue Pierre-Gilles de Gennes, CS 10030, 92761, Antony Cedex, France
| | - Françoise Vincent-Hubert
- Unité de Recherches Hydrosystèmes et Bioprocédés, IRSTEA, 1 rue Pierre-Gilles de Gennes, CS 10030, 92761, Antony Cedex, France.
- Laboratory of Microbiology-LNR, IFREMER, rue de l'île d'Yeu, BP 21105, 44311, Nantes Cedex 03, France.
| |
Collapse
|
23
|
Sellami B, Khazri A, Louati H, Dellali M, Driss MR, Aïssa P, Mahmoudi E, Hamouda B, Coelho AV, Sheehan D. Effects of anthracene on filtration rates, antioxidant defense system, and redox proteomics in the Mediterranean clam Ruditapes decussatus (Mollusca: Bivalvia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:10956-10968. [PMID: 25779113 DOI: 10.1007/s11356-015-4328-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/05/2015] [Indexed: 06/04/2023]
Abstract
This study aimed at analyzing the impact of a toxic polyaromatic hydrocarbon (PAH), anthracene (ANT), on Ruditapes decussatus collected from a Tunisian coastal lagoon (Bizerte Lagoon). Filtration rates, several antioxidant enzymes--superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione transferase (GST)--as well as indices of protein oxidation status were determined in various tissues of this bivalve. Specimens were exposed to 100 μg/L of ANT for 2 days. ANT levels were evaluated using HPLC and were detected in the gill and digestive gland at different amounts. ANT exposure altered the behavior of bivalves by changing the siphon movement and decreasing filtration rate significantly. The enzymatic results indicated that ANT exposure affected the oxidative stress status of the gills of R. decussatus. In addition, modification of proteins was detected in the gills using redox proteomics after ANT treatment. Three protein spots were successfully identified by matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (MALDI-TOF-MS). These proteins can be roughly related to muscle contraction function. In contrast, no significant modification of enzymatic and protein responses was detected in the digestive gland after ANT treatment. These data demonstrate that combined behavioral and biochemical analyses are a powerful tool to provide valuable insights into possible mechanisms of toxicity of anthracene in R. decussatus. Additionally, the results highlight the potential of the gill as a valuable candidate for investigating PAH toxicity.
Collapse
Affiliation(s)
- Badreddine Sellami
- Laboratory of Environment Biomonitoring, Coastal Ecology Unit, Faculty of Sciences of Bizerta, University of Carthage, 7021, Zarzouna, Tunisia,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Châtel A, Faucet-Marquis V, Gourlay-Francé C, Pfohl-Leszkowicz A, Vincent-Hubert F. Genotoxicity and activation of cellular defenses in transplanted zebra mussels Dreissena polymorpha along the Seine river. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 114:241-249. [PMID: 24951272 DOI: 10.1016/j.ecoenv.2014.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
The aim of the present study was to confirm the relevance of studying DNA adduct formation in a field study. In that context, freshwater mussels Dreissena polymorpha, collected in a reference station, were transplanted in different sites with a pollution gradient. After one and two months, mussels were collected and DNA adduct formation was analyzed using the (32)P post labelling technique on both gills and digestive glands. In addition, the expression of genes involved in the detoxification system (catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), HSP70, aryl hydrocarbon receptor (AHR), P glycoprotein (PgP), metallothionein (MT)) was assessed by RT-PCR. DNA adducts were observed at amount comparable to data from literature. Increase of DNA adducts after two months of transplantation could be correlated with strong modulation of gene expression implicated in detoxification processes. Indeed, PgP and HSP70 gene expressions were similarly induced in gills and digestive glands while SOD and CAT expressions were down regulated in both tissues. AHR, GST and MT genes were differently regulated depending upon the tissue studied and the level of contamination in the different sites. We demonstrated that mussels transplanted in the different stations with pollution gradient were able to biotransform PAHs, assessed by DNA adduct formation and the high decrease of detoxification genes. Specific DNA adducts pattern obtained after one and two month mussel transplantations demonstrated the relevance of DNA adduct as biomarker of environmental pollution.
Collapse
Affiliation(s)
- Amélie Châtel
- Cemagref, Unité de Recherche Hydrosystèmes et Bioprocédés, 1 rue Pierre-Gilles de Gennes, CS10030-92761 Antony, France.
| | - Virginie Faucet-Marquis
- Université de Toulouse, INPT/ENSAT, Laboratoire de Génie Chimie, UMR-CNRS 5503, Département Bioprocédés et systèmes microbiens, 1 avenue agrobiopôle, 31320 Auzeville-Tolosane, France
| | - Catherine Gourlay-Francé
- Cemagref, Unité de Recherche Hydrosystèmes et Bioprocédés, 1 rue Pierre-Gilles de Gennes, CS10030-92761 Antony, France
| | - Annie Pfohl-Leszkowicz
- Université de Toulouse, INPT/ENSAT, Laboratoire de Génie Chimie, UMR-CNRS 5503, Département Bioprocédés et systèmes microbiens, 1 avenue agrobiopôle, 31320 Auzeville-Tolosane, France
| | - Françoise Vincent-Hubert
- Cemagref, Unité de Recherche Hydrosystèmes et Bioprocédés, 1 rue Pierre-Gilles de Gennes, CS10030-92761 Antony, France
| |
Collapse
|
25
|
Huang L, Zuo Z, Zhang Y, Wang C. Toxicogenomic analysis in the combined effect of tributyltin and benzo[a]pyrene on the development of zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 158:157-164. [PMID: 25438121 DOI: 10.1016/j.aquatox.2014.10.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/21/2014] [Accepted: 10/29/2014] [Indexed: 06/04/2023]
Abstract
There is a growing recognition that the toxic effects of chemical mixtures are been an important issue in toxicological sciences. Tributyltin (TBT) and benzo[a]pyrene (BaP) are widespread pollutants that occur simultaneously in the aquatic environments. This study was designed to examine comprehensively the combined effects of TBT and BaP on zebrafish (Danio rerio) embryos using toxicogenomic approach combined with biochemical detection and morphological analysis, and tried to gain insight into the mechanisms underlying the combined effects of TBT and BaP. The results of toxicogenomic data indicated that: (1) TBT cotreatment rescued the embryos from decreased hatching ratio caused by BaP alone, while the alteration of gene expression (in this article the phrase gene expression is used as a synonym to gene transcription, although in is acknowledged that gene expression can also be regulated by, e.g., translation and mRNA or protein stability) relative to zebrafish hatching in the BaP groups was resumed by the cotreatment with TBT; (2) BaP cotreatment decreased TBT-mediated dorsal curvature, and alleviated the perturbation of Notch pathway caused by TBT alone; (3) cotreatment with TBT decreased BaP-mediated bradycardia, which might be due to that TBT cotreatment alleviated the perturbation in expression of genes related to cardiac muscle cell development and calcium handling caused by BaP alone; 4) TBT cotreatment brought an antagonistic effect on the BaP-mediated oxidative stress and DNA damage. These results suggested that toxicogenomic approach was available for analyzing combined toxicity with high sensitivity and accuracy, which might improve our understanding and predictability for the combined effects of chemicals.
Collapse
Affiliation(s)
- Lixing Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China; Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, Xiamen University, Xiamen, PR China
| | - Youyu Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China; Key Laboratory of Ministry of Education for Subtropical Wetland Ecosystem Research, Xiamen University, Xiamen, PR China.
| |
Collapse
|
26
|
Martins M, Costa PM. The comet assay in Environmental Risk Assessment of marine pollutants: applications, assets and handicaps of surveying genotoxicity in non-model organisms. Mutagenesis 2014; 30:89-106. [DOI: 10.1093/mutage/geu037] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
27
|
Chatel A, Faucet-Marquis V, Pfohl-Leszkowicz A, Gourlay-France C, Vincent-Hubert F. DNA adduct formation and induction of detoxification mechanisms in Dreissena polymorpha exposed to nitro-PAHs. Mutagenesis 2014; 29:457-65. [DOI: 10.1093/mutage/geu040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
28
|
Xiu M, Pan L, Jin Q. Bioaccumulation and oxidative damage in juvenile scallop Chlamys farreri exposed to benzo[a]pyrene, benzo[b]fluoranthene and chrysene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 107:103-110. [PMID: 24967756 DOI: 10.1016/j.ecoenv.2014.05.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/07/2014] [Accepted: 05/16/2014] [Indexed: 06/03/2023]
Abstract
The study is aimed at investigating the bioaccumulation and oxidative damage of juvenile scallops (Chlamys farreri) exposed to three selected PAHs: benzo[a]pyrene (BaP), benzo[b]fluoranthene (BbF) and chrysene (CHR). For this purpose, a study was performed on juvenile scallops exposed to BaP (0.01, 0.2 and 4μg/L), BbF (0.02, 0.2 and 2μg/L) and CHR (0.2, 0.8 and 3.2μg/L) for 21 days. Accumulations of these three PAHs in soft parts of scallops, except the 0.01μg/L BaP group and the 0.02μg/L BbF group, showed obvious time and dose dependence, and CHR accumulation was higher when compared to BaP and BbF. Oxidative damage indicators, including lipid peroxidation (LPO), protein carbonyl (PC) and DNA strand breaks, were also measured in soft parts to assess effects of the selected PAHs. The results showed that the LPO levels, PC contents and DNA damage were induced significantly (P<0.05 or P<0.01), except in the low level groups of BaP and BbF, and different trends were detected with time of exposure. According to the correlation analysis results, PC content in soft parts showed a good correlation with the target contaminant and seemed to be proposed as a potential early indicator of BaP, BbF and CHR. In addition the sequence of toxicity is BaP>BbF>CHR, judging by the level of induction of oxidative damage at 0.2μg/L levels. The results of this research are expected to contribute to the establishment of a good biochemical index of exposure to PAHs in laboratory experiments, which can be further useful in field studies.
Collapse
Affiliation(s)
- Meng Xiu
- The Key Laboratory of Mariculture, Fisheries College, Ministry of Education, Ocean University of China, Yushan Road 5, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Fisheries College, Ministry of Education, Ocean University of China, Yushan Road 5, Qingdao 266003, PR China.
| | - Qian Jin
- The Key Laboratory of Mariculture, Fisheries College, Ministry of Education, Ocean University of China, Yushan Road 5, Qingdao 266003, PR China
| |
Collapse
|
29
|
Subashchandrabose S, Krishnan K, Gratton E, Megharaj M, Naidu R. Potential of fluorescence imaging techniques to monitor mutagenic PAH uptake by microalga. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9152-9160. [PMID: 25020149 PMCID: PMC4140530 DOI: 10.1021/es500387v] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 05/30/2023]
Abstract
Benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH), is one of the major environmental pollutants that causes mutagenesis and cancer. BaP has been shown to accumulate in phytoplankton and zooplankton. We have studied the localization and aggregation of BaP in Chlorella sp., a microalga that is one of the primary producers in the food chain, using fluorescence confocal microscopy and fluorescence lifetime imaging microscopy with the phasor approach to characterize the location and the aggregation of BaP in the cell. Our results show that BaP accumulates in the lipid bodies of Chlorella sp. and that there is Förster resonance energy transfer between BaP and photosystems of Chlorella sp., indicating the close proximity of the two molecular systems. The lifetime of BaP fluorescence was measured to be 14 ns in N,N-dimethylformamide, an average of 7 ns in Bold's basal medium, and 8 ns in Chlorella cells. Number and brightness analysis suggests that BaP does not aggregate inside Chlorella sp. (average brightness = 5.330), while it aggregates in the supernatant. In Chlorella grown in sediments spiked with BaP, in 12 h the BaP uptake could be visualized using fluorescence microscopy.
Collapse
Affiliation(s)
- Suresh
Ramraj Subashchandrabose
- Centre
for Environmental Risk Assessment and Remediation, University of South Australia and CRC CARE, Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Kannan Krishnan
- Centre
for Environmental Risk Assessment and Remediation, University of South Australia and CRC CARE, Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Enrico Gratton
- Laboratory
for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, California 92697, United States
| | - Mallavarapu Megharaj
- Centre
for Environmental Risk Assessment and Remediation, University of South Australia and CRC CARE, Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Ravi Naidu
- Centre
for Environmental Risk Assessment and Remediation, University of South Australia and CRC CARE, Mawson Lakes, Adelaide, South Australia 5095, Australia
| |
Collapse
|
30
|
Huang L, Zuo Z, Zhang Y, Wu M, Lin JJ, Wang C. Use of toxicogenomics to predict the potential toxic effect of Benzo(a)pyrene on zebrafish embryos: ocular developmental toxicity. CHEMOSPHERE 2014; 108:55-61. [PMID: 24875912 DOI: 10.1016/j.chemosphere.2014.02.078] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 02/12/2014] [Accepted: 02/22/2014] [Indexed: 06/03/2023]
Abstract
Benzo(a)pyrene (BaP) is a representative polycyclic aromatic hydrocarbon (PAH), which is ubiquitous in the environment. The toxic effects of BaP on fish embryos have been described in detail, but some potentially toxic effects of BaP might have been neglected owing to the limitations of traditional techniques. In the present research, global transcriptional patterns were used to study the potentially toxic effects of BaP, as well as its underlying toxicological mechanisms. The expression levels of multiple genes were significantly changed by BaP exposure. The results of ontology assignments and cluster analysis showed that BaP could affect the processes of photoreceptor maintenance and phototransduction. We also conducted an experiment on phototactic response and found that larvae exposed to BaP displayed a decreasing response to light. In addition, BaP exposure decreased the cellular density of the ganglion cell layer (GCL) significantly. These results suggested that BaP exposure induced visual system developmental defects and dysfunction by perturbation of photoreceptor development related genes. Our results were helpful for an understanding of the toxicity of BaP. This study also indicated that microarray analysis was effective for predicting the potential toxicity of chemicals with high sensitivity and accuracy.
Collapse
Affiliation(s)
- Lixing Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, PR China
| | - Youyu Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | - Meifang Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China
| | | | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, PR China.
| |
Collapse
|
31
|
Huang L, Gao D, Zhang Y, Wang C, Zuo Z. Exposure to low dose benzo[a]pyrene during early life stages causes symptoms similar to cardiac hypertrophy in adult zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2014; 276:377-382. [PMID: 24922095 DOI: 10.1016/j.jhazmat.2014.05.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/17/2014] [Accepted: 05/20/2014] [Indexed: 06/03/2023]
Abstract
Growing evidence indicates that polycyclic aromatic hydrocarbons (PAHs) can lead to cardiac hypertrophy and recent research indicates that exposure to low dose crude oil during early embryonic development may lead to impacts on heart health at later life stages. The aim of this study was to evaluate whether exposure during early life stages to low dose benzo[a]pyrene (BaP), as a high-ring PAH, would lead to cardiac hypertrophy at later life stages. Zebrafish were exposed to low dose BaP until 96 hpf, then transferred to clean water and maintained for a year before histological and molecular biological analysis. Our results showed that exposure to low level BaP during early life stages increased heart weight to body weight ratios and deposited collagen in the heart of adult zebrafish. ANP, BNP and c-Myc were also induced in the heart of adult zebrafish by BaP. These results proved that low level BaP exposure during early life stages caused symptoms similar to cardiac hypertrophy in adult zebrafish. Our results displayed an elevated expression of CdC42, RhoA, p-ERK1, 2 and Rac1. Therefore, the mechanism of the cardiac hypertrophy caused by BaP exposure during early life stages may be through inducing the expression of CdC42, RhoA and Rac1, together with activating ERK1, 2.
Collapse
Affiliation(s)
- Lixing Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Dongxu Gao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Youyu Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Chonggang Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
32
|
Ren X, Pan L, Wang L. Metabolic enzyme activities, metabolism-related genes expression and bioaccumulation in juvenile white shrimp Litopenaeus vannamei exposed to benzo[a]pyrene. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 104:79-86. [PMID: 24636950 DOI: 10.1016/j.ecoenv.2014.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 02/14/2014] [Accepted: 02/20/2014] [Indexed: 06/03/2023]
Abstract
The purpose of this study was to investigate the impact of benzo[a]pyrene (BaP) on metabolic detoxification system and bioaccumulation of white shrimp Litopenaeus vannamei. In this study, juvenile white shrimp L. vannamei were exposed for 21 days at four different concentrations of 0, 0.03, 0.3 and 3μg/L. Detoxification enzyme activities of phase I (aryl hydrocarbon hydroxylase (AHH), 7-ethoxyresorufin O-deethylase (EROD), epoxide hydrolase (EH)) and phase II (glutathione-S-transferase (GST), sulfotransferase (SULT), uridine diphosphate glucuronyl transferase (UGT)) were determined, and results showed that all the detoxification enzyme activities increased in a dose-dependent manner except for the low BaP exposure. Transcription of genes was detected and measured by real-time RT-PCR. It showed that at day six BaP increased cytochrome P450 (CYP) 1A1, GST, SULT visa aryl hydrocarbon receptor (AhR) mRNA expression in a dose-dependent manner, which suggests that they could be potential targets of BaP that disrupt the detoxification system. The consistency of their responses to BaP exposure implies that AhR action may be involved in invertebrate CYP regulation. Additionally, BaP bioaccumulation increased rapidly first and showed an incoming plateau. Besides, the enzyme activities and bioaccumulation in the hepatopancreas were higher than those in the gills. These results will not only provide information on BaP metabolic mechanism for this species, but also scientific data for pollution monitoring.
Collapse
Affiliation(s)
- Xianyun Ren
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Lin Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
33
|
Liu D, Pan L, Cai Y, Li Z, Miao J. Response of detoxification gene mRNA expression and selection of molecular biomarkers in the clam Ruditapes philippinarum exposed to benzo[a]pyrene. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 189:1-8. [PMID: 24602878 DOI: 10.1016/j.envpol.2014.02.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 02/07/2014] [Accepted: 02/09/2014] [Indexed: 06/03/2023]
Abstract
Benzo[a]pyrene (B[a]P) has a high carcinogenic potential. B[a]P concentrations and molecular biomarkers (mRNA expressions of Pgp, AhR, CYP4, CYP414A1, GST-pi, GST-S2, Cu/Zn-SOD and Mn-SOD) were assayed in gills and digestive glands of the clam Ruditapes philippinarum exposed to 0.03, 0.3 and 3 μg/L B[a]P for 21 days and then exposed to natural seawater for 15 days. Results showed that B[a]P was rapidly accumulated in and then eliminated from tissues of the clams. All gene mRNA expressions in the treated groups were induced significantly with the exception of CYP414A1 and Cu/Zn-SOD in the 0.03 μg/L B[a]P group. According to correlation analysis, mRNA expressions of AhR, GST-pi and Mn-SOD in gills and GST-pi in digestive glands had good correlations with B[a]P concentrations and could be used as molecular biomarkers of B[a]P exposure. This study investigated the molecular response of the genes mentioned above and selected useful molecular biomarkers for B[a]P pollution monitoring.
Collapse
Affiliation(s)
- Dong Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Yuefeng Cai
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Zhen Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
34
|
Liu D, Pan L, Yang H, Wang J. A physiologically based toxicokinetic and toxicodynamic model links the tissue distribution of benzo[a]pyrene and toxic effects in the scallop Chlamys farreri. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:493-504. [PMID: 24561533 DOI: 10.1016/j.etap.2014.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 06/03/2023]
Abstract
A physiologically based toxicokinetic and toxicodynamic (PBTK-TD) model was developed for benzo[a]pyrene (B[a]P) in scallop Chlamys farreri. The PBTK model structure consisted of gill, digestive gland, adductor muscle, hemolymph and other tissues. In TD modeling, aryl hydrocarbon hydroxylase (AHH) activity assay, comet assay, protein carbonyl measurement and lipid peroxidation level determination in digestive gland were used as biomarkers to reflect toxic effects. We integrated B[a]P concentration and biomarkers by using sigmoid Emax model in digestive gland. The PBTK-TD model predicted the B[a]P concentrations within each organ compartment and the toxic effects in digestive gland. The results showed that the predicted and measured data in different organs were in good agreement and comet assay was considered as the best biomarker. This model would serve as a useful tool for pollution monitoring and food security.
Collapse
Affiliation(s)
- Dong Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Huizan Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jing Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
35
|
Tian S, Pan L, Zhang H. Identification of a CYP3A-like gene and CYPs mRNA expression modulation following exposure to benzo[a]pyrene in the bivalve mollusk Chlamys farreri. MARINE ENVIRONMENTAL RESEARCH 2014; 94:7-15. [PMID: 24296241 DOI: 10.1016/j.marenvres.2013.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/29/2013] [Accepted: 11/01/2013] [Indexed: 06/02/2023]
Abstract
In this study, we isolated a CYP3A-like gene from ovary of the scallop (Chlamys farreri). High levels of CYP3A-like gene expression occur in the digestive gland and gonad, which suggested their role in the metabolism of steroids and xenobiotics. Scallops were exposed to a polycyclic aromatic hydrocarbons (PAHs), benzo[a]pyrene (B[a]P) for 10 days. The CYP4 and CYP3A-like gene can be up-regulated by B[a]P in a dose-dependent manner after 10 days exposure. But no induction of the CYP3A-like was observed in 10 μg/L B[a]P group. The CYP1A-like expression can only be induced by 0.025 μg/L B[a]P. 0.5 and 10 μg/L B[a]P caused significant DNA damage and 10 μg/L B[a]P can also lead to oxidative damage. These results demonstrate that the mollusk CYPs can be modulated by environmental pollutant, and the blocked induction of CYP3A-like and CYP1A-like expression probably results from the high genotoxicity and oxidative damage partly.
Collapse
Affiliation(s)
- Shuangmei Tian
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao 266003, PR China.
| | - Hui Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao 266003, PR China
| |
Collapse
|
36
|
Turja R, Guimarães L, Nevala A, Kankaanpää H, Korpinen S, Lehtonen KK. Cumulative effects of exposure to cyanobacteria bloom extracts and benzo[a]pyrene on antioxidant defence biomarkers in Gammarus oceanicus (Crustacea: Amphipoda). Toxicon 2014; 78:68-77. [DOI: 10.1016/j.toxicon.2013.11.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 11/19/2013] [Accepted: 11/26/2013] [Indexed: 12/01/2022]
|
37
|
Kim RO, Kim BM, Jeong CB, Nelson DR, Lee JS, Rhee JS. Expression pattern of entire cytochrome P450 genes and response of defensomes in the benzo[a]pyrene-exposed monogonont rotifer Brachionus koreanus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:13804-13812. [PMID: 24191723 DOI: 10.1021/es403269v] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Cytochrome P450 (CYP) proteins are involved in the first line of detoxification mechanism against diverse polycyclic aromatic hydrocarbons (PAHs) including benzo[a]pyrene (B[a]P). In aquatic invertebrates, there is still a lack of knowledge on the CYP genes involved in the molecular response to B[a]P exposure due to limited gene information. In this study, we cloned the entire 25 CYP genes in the monogonont rotifer Brachionus koreanus with the aid of next generation sequencing (NGS) technologies and analyzed their transcript profiles with a real-time RT-PCR array to better understand B[a]P-triggered molecular response over different time courses. As a result, B[a]P exposure induced CYP2/3-involved detoxification mechanisms and defensome, including phase II detoxification and antioxidant systems with a modulation of the chaperone heat shock protein (hsp) expression but did not change expression of other CYP clans in B. koreanus . Therefore, we found that B[a]P induced a strong detoxification mechanism to overcome detrimental effects of B[a]P associated with B[a]P-induced growth retardation as a trade-off in fitness costs. Also, this approach revealed that the entire CYP profiling can be a way of providing a better understanding on the mode of action of B[a]P in B. koreanus with respect to molecular defense metabolism.
Collapse
Affiliation(s)
- Ryeo-Ok Kim
- Department of Chemistry, College of Natural Sciences, Hanyang University , Seoul 133-791, South Korea
| | | | | | | | | | | |
Collapse
|
38
|
Martins M, Costa PM, Ferreira AM, Costa MH. Comparative DNA damage and oxidative effects of carcinogenic and non-carcinogenic sediment-bound PAHs in the gills of a bivalve. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 142-143:85-95. [PMID: 23969285 DOI: 10.1016/j.aquatox.2013.07.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/22/2013] [Accepted: 07/29/2013] [Indexed: 06/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) regarded as carcinogenic and non-carcinogenic to humans are ubiquitous hydrophobic pollutants that tend to be trapped in aquatic sediments. As a consequence of their acknowledged toxicity and pro-mutagenic or even carcinogenic potential, PAHs are deemed prioritary in biomonitoring programmes. Still, the differences between the toxicity of carcinogenic and non-carcinogenic PAHs are poorly known especially, when aquatic organisms are exposed to ecologically-relevant concentrations of these compounds in sediments. Laboratory bioassays with sediments spiked with phenanthrene (Phe) and benzo[b]fluoranthene (B[b]F), non-carcinogenic and carcinogenic PAH, respectively, were conducted and the effects of exposure (related to DNA damage and oxidative stress) were analyzed in the gills of a burrowing clam, Ruditapes decussatus (Bivalvia, Veneridae). To ensure ecological relevance, two contaminant concentrations (termed "low" and "high") were selected in accordance with available PAH sediment quality guidelines. The results showed that, even in "low" concentrations, both compounds caused a likely genotoxic effect in the gills, which is in accordance with the link between PAHs in water. Glutathione S-transferase activity and glutathione biosynthesis appear to be associated with limited lipid peroxidation even though they were insufficient to prevent higher and faster genotoxicity induced by exposure to the carcinogenic B[b]F, comparative to Phe. Overall the findings indicate that low concentrations of sediment-bound PAHs, carcinogenic or not, may be rendered significantly bioavailable to benthic filter-feeders as to induce genotoxicity, revealing that even PAHs considered non-carcinogenic to humans detain a latent, albeit significant, pro-mutagenic hazard to bivalve molluscs.
Collapse
Affiliation(s)
- Marta Martins
- IMAR-Instituto do Mar, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; IPMA - Instituto Português do Mar e da Atmosfera, Avenida do Brasil, 1449-006 Lisboa, Portugal.
| | | | | | | |
Collapse
|
39
|
Zanette J, Jenny MJ, Goldstone JV, Parente T, Woodin BR, Bainy ACD, Stegeman JJ. Identification and expression of multiple CYP1-like and CYP3-like genes in the bivalve mollusk Mytilus edulis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 128-129:101-12. [PMID: 23277104 PMCID: PMC3846546 DOI: 10.1016/j.aquatox.2012.11.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/16/2012] [Accepted: 11/22/2012] [Indexed: 05/06/2023]
Abstract
Various sequencing projects over the last several years have aided the discovery of previously uncharacterized invertebrate sequences, including new cytochrome P450 genes (CYPs). Here we present data on the identification and characterization of two CYP1-like and three CYP3-like genes from the bivalve mollusk Mytilus edulis, and assess their potential as biomarkers based on their responses to several known vertebrate aryl hydrocarbon receptor (AHR) agonists. Quantitative real-time PCR was used to measure CYP transcript levels in digestive gland, labial palps, adductor muscle, gill, foot, and different regions of the mantle. Levels of both CYP1-like genes were highest in digestive gland, whereas labial palps had the highest expression levels of the three CYP3-like genes followed by digestive gland and outer margin of the mantle. Mussels were exposed by injection to the AHR agonists, β-naphthoflavone (BNF; 25 μg g(-1)), 3,3',4,4',5-polychlorinated biphenyl (PCB126; 2 μg g(-1)), or 6-formylindolo[3,2-b]carbazole (FICZ; 0.1 μg g(-1)), or to Aroclor 1254 (a mixture of PCBs; 50 μg g(-1)) for 24 h, followed by CYP expression analysis. There was no statistically significant change in expression of either of the CYP1-like genes after exposure to the various AHR agonists. The CYP3-like-1 gene was significantly up-regulated by BNF in gill tissues and the CYP3-like-2 gene was up-regulated in digestive gland by PCB126 and in gill tissue by BNF. These results suggest that distinct mechanisms of CYP gene activation could be present in M. edulis, although the importance of the CYP1-like and CYP3-like genes for xenobiotic and endogenous lipids biotransformation requires additional investigation.
Collapse
Affiliation(s)
- Juliano Zanette
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543
- Biochemistry Department, Federal University of Santa Catarina, Florianopolis SC, Brazil
| | - Matthew J. Jenny
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543
- Department of Biological Sciences, University of Alabama, Tuscaloosa AL 35487
| | - Jared V. Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543
| | - Thiago Parente
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543
- Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bruce R. Woodin
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543
| | - Afonso C. D. Bainy
- Biochemistry Department, Federal University of Santa Catarina, Florianopolis SC, Brazil
| | - John J. Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole MA 02543
- Correspondence to: John J. Stegeman, Biology Department, MS 32, Woods Hole Oceanographic Institution, Woods Hole MA USA 02543,
| |
Collapse
|
40
|
Liu N, Pan L, Wang J, Yang H, Liu D. Application of the biomarker responses in scallop (Chlamys farreri) to assess metals and PAHs pollution in Jiaozhou Bay, China. MARINE ENVIRONMENTAL RESEARCH 2012; 80:38-45. [PMID: 22784563 DOI: 10.1016/j.marenvres.2012.06.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/11/2012] [Accepted: 06/15/2012] [Indexed: 06/01/2023]
Abstract
Scallops (Chlamys farreri) were collected at three sites in the Jiaozhou Bay, China in April and July 2007. The responses of biomarkers were evaluated for assessment of physiological status of scallops and pollution in the areas. Compared with site S1, the activity of aryl hydrocarbon hydroxylase was induced notably (P < 0.05) and glutathione S-transferase activity was inhibited significantly (P < 0.05) in S2 and S3. The levels of DNA alkaline unwinding, DNA protein crosslinks, protein carbonyl and lipid peroxidation were tested and indicated the oxidative stress situation of scallops. There was significant difference of biomarker levels between sampling seasons (P < 0.05), and between digestive gland and gill (P < 0.05). The results provided the reference data for multiple-pollution assessment in the marine environment and indicated that tissue type and seasons affect biomarkers, therefore these factors should be taken into consideration when biomarkers are used for environmental assessment purposes.
Collapse
Affiliation(s)
- Na Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | | | | | | | | |
Collapse
|
41
|
Chatel A, Faucet-Marquis V, Perret M, Gourlay-France C, Uher E, Pfohl-Leszkowicz A, Vincent-Hubert F. Genotoxicity assessment and detoxification induction in Dreissena polymorpha exposed to benzo[a]pyrene. Mutagenesis 2012; 27:703-11. [DOI: 10.1093/mutage/ges036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
42
|
Vosloo D, Sara J, Vosloo A. Acute responses of brown mussel (Perna perna) exposed to sub-lethal copper levels: integration of physiological and cellular responses. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 106-107:1-8. [PMID: 22041098 DOI: 10.1016/j.aquatox.2011.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/26/2011] [Accepted: 10/02/2011] [Indexed: 05/31/2023]
Abstract
This study examined the effect of sub-lethal copper levels on selected physiological and cellular responses of the marine bivalve Perna perna. Animals were exposed to five environmentally relevant concentrations of 12.5, 25.0, 37.5 and 50.0 μg L⁻¹ copper and metal accumulation was found to be significantly increased at the two higher copper concentrations after 24 h of exposure. Physiological responses found to increase during acute copper exposure included mucus secretion rate (at 25 and 50 μg L⁻¹ copper), nitrogen excretion rates and oxygen consumption rates (both at 25 and 50 μg L⁻¹ copper). Perna perna changed its substrate utilisation at 25, 37.5 and 50 μg L⁻¹ copper in favour of protein-based metabolism. A higher degree of ROS induced DNA damage was observed at acute exposure to 37.5 and 50 μg L⁻¹ copper. Filtration rate was unchanged during acute copper exposure. A model is proposed that integrates cellular and physiological responses to copper during short-term acute and long-term chronic exposures.
Collapse
Affiliation(s)
- Daléne Vosloo
- School of Biological and Conservation Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X5400, Durban 4001, South Africa
| | | | | |
Collapse
|
43
|
Maria VL, Bebianno MJ. Antioxidant and lipid peroxidation responses in Mytilus galloprovincialis exposed to mixtures of benzo(a)pyrene and copper. Comp Biochem Physiol C Toxicol Pharmacol 2011; 154:56-63. [PMID: 21354328 DOI: 10.1016/j.cbpc.2011.02.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 01/14/2023]
Abstract
This study aimed to assess the antioxidant system potential and lipid peroxidative effects, in the gill and digestive gland of Mytilus galloprovincialis exposed to individual and binary mixtures of benzo(a)pyrene (BaP) and Cu for 7 days. Data demonstrated that in mussels exposed to BaP antioxidant enzymes (catalase--CAT, total glutathione peroxidase--tGPx, glutathione S-transferase--GST and glutathione reductase--GR) and lipid peroxidation (LPO) increased in the gill. On the contrary, in the digestive gland inhibitory antioxidant effects (superoxide dismutase-SOD, GR, metallothioneins-MT) and no changes in LPO levels were detected. Cu was also a potent oxidant agent since MT and LPO levels increased in mussel gill, despite no LPO effect in the digestive gland. For both single contaminants the organ specificity and distinct physiologic/metabolism roles were evident in terms of antioxidant capacity. Gill SOD inhibition, MT and GST unchanged was a result of "simple independent action" of exposure to BaP and Cu. "Interactions" in the binary mixtures, led to absence of changes in LPO effects. In the digestive gland, BaP and Cu interactions were also responsible for the GST and LPO enhancement (antagonistic effects). The current findings demonstrate the differences in antioxidant responses where the organ dependency highlights each contaminant particular mode of action. Generally, in the gill "non-interactive" effects occurred with the lowest Cu concentration while "interactions" exist for the mixture with the highest Cu concentrations. In the digestive gland, "interactions" and "no interaction" effects occurred in all the binary mixtures. Complex contaminant mixtures interact differently based on target tissue which may lead to an imbalance in the mussels health status.
Collapse
Affiliation(s)
- V L Maria
- University of Algarve & CIMA, 8005-139 Faro, Portugal
| | | |
Collapse
|
44
|
Fernández B, Campillo JA, Martínez-Gómez C, Benedicto J. Antioxidant responses in gills of mussel (Mytilus galloprovincialis) as biomarkers of environmental stress along the Spanish Mediterranean coast. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 99:186-197. [PMID: 20471114 DOI: 10.1016/j.aquatox.2010.04.013] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 04/12/2010] [Accepted: 04/18/2010] [Indexed: 05/27/2023]
Abstract
Antioxidant response was used to assess the effects of the main pollutants in wild mussels (Mytilus galloprovincialis) along the Mediterranean coast of Spain. Antioxidant enzyme activities - those of catalase, superoxide dismutase, glutathione peroxidases, glutathione reductase, glutathione S-transferase and DT-diaphorase - as well as lipid peroxidation and metallothionein concentrations were measured in gills of mussels from 16 selected sites. Furthermore, concentrations of the main contaminants (Hg, Pb, Cd, Cu, Zn, As, PAH, PCB, and DDT) were quantified in mussel tissue, and environmental parameters were measured in water samples collected at each site. Results showed that the glutathione-dependent antioxidant enzymes offered an increased and coordinated response against metal (Hg, Pb and Cd) contamination. These enzymatic activities correlated positively to temperature, suggesting the influence of this environmental parameter on antioxidant responses in gill tissues. Furthermore, although temperature did not reach stressful levels in the study area, it seemed to add a synergistic effect to that produced by metals to induce antioxidant enzymes in the most metal-polluted sites. Catalase activity appeared to be involved in a different antioxidant pathway, more related to organic pollutant bioaccumulation, offering an efficient protection mechanism against reactive oxygen species generation due both to organic exposure and high physiological activity, reflected by high condition indices. In general terms, increased levels of antioxidant enzymes at some sites suffering from metal and organic pollution indicated a situation of oxidative stress that nevertheless did not appear to be harmful, since lipid peroxidation levels showed no peroxidative damage in gill tissues of mussels collected from even the most heavily polluted sites. On the other hand, metallothionein and DT-diaphorase did not reflect pollutant exposure and seemed to be more influenced by environmental variables than by the pollutants.
Collapse
Affiliation(s)
- B Fernández
- Instituto Español de Oceanografía, IEO, Centro Oceanográfico de Murcia, C/Varadero 1, 30740, San Pedro del Pinatar, Murcia, Spain
| | | | | | | |
Collapse
|
45
|
Bebianno MJ, Barreira LA. Polycyclic aromatic hydrocarbons concentrations and biomarker responses in the clam Ruditapes decussatus transplanted in the Ria Formosa lagoon. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2009; 72:1849-1860. [PMID: 19539372 DOI: 10.1016/j.ecoenv.2009.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 03/02/2009] [Accepted: 03/16/2009] [Indexed: 05/27/2023]
Abstract
Clams Ruditapes decussatus were transplanted in the Ria Formosa lagoon and the variation of PAH concentrations in the whole soft tissues measured, along with a suite of biomarkers, including the following: (a) phase I and phase II metabolism of xenobiotics enzymes: benzo[a]pyrene hydroxylase (BPH) and glutathione S-transferase (GST); (b) antioxidant enzymes: superoxide dismutase, catalase and glutathione peroxidases and (c) lipid peroxidation (LPO) levels. Individual PAHs were differently accumulated and eliminated by R. decussatus. During the metabolisation of PAHs by R. decussatus BPH was clearly induced in the digestive gland. Moreover, ROS lead to the induction of protective antioxidant enzymes still causing oxidative damage to membranes. Therefore, BPH seems to be a relevant indicator of PAHs in R. decussatus.
Collapse
Affiliation(s)
- Maria J Bebianno
- CIMA, FCMA-Faculty of Marine and Environmental Sciences, University of Algarve, Campus de Gambelas, 8000-117 Faro, Portugal.
| | | |
Collapse
|
46
|
Bodnar AG. Marine invertebrates as models for aging research. Exp Gerontol 2009; 44:477-84. [PMID: 19454313 DOI: 10.1016/j.exger.2009.05.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 03/27/2009] [Accepted: 05/07/2009] [Indexed: 11/29/2022]
Affiliation(s)
- A G Bodnar
- Bermuda Institute of Ocean Sciences, 17 Biological Lane, St. George's GE 01, Bermuda.
| |
Collapse
|
47
|
Jing-Jing M, Lu-qing P, Jing L, Lin Z. Effects of benzo[a]pyrene on DNA damage and histological alterations in gonad of scallop Chlamys farreri. MARINE ENVIRONMENTAL RESEARCH 2009; 67:47-52. [PMID: 19081130 DOI: 10.1016/j.marenvres.2008.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 10/20/2008] [Accepted: 10/23/2008] [Indexed: 05/27/2023]
Abstract
To investigate the biological impact of polycyclic aromatic hydrocarbons (PAHs) on reproductive system, scallops Chlamys farreri were continuously exposed to benzo[a]pyrene (BaP) (0.5, 3, 10microgL(-1)) during 15 days. DNA damage and histological alterations were examined in female gonad. DNA strand break levels significantly increased after 12h exposure, and remained high and significantly different from control values until the end of the exposure. In the ovaries of the scallops exposed to 10microgL(-1) BaP for ten days, histological analysis showed that the cytoplasts of the oocytes in the outer layer of the ovaries became sparse, and the nuclear membranes were obscure. Damaging effects on ovaries and oocytes were more severe after 15 days exposure. Degenerating oocytes increased and the connective tissue of the ovary envelops became loose. Electron microscopic examination revealed ultrastructural aspects of degenerating oocyte and degenerated oocyte after 15 days exposure.
Collapse
Affiliation(s)
- Miao Jing-Jing
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | | | | | | |
Collapse
|
48
|
Gestal C, Roch P, Renault T, Pallavicini A, Paillard C, Novoa B, Oubella R, Venier P, Figueras A. Study of Diseases and the Immune System of Bivalves Using Molecular Biology and Genomics. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/10641260802325518] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
49
|
Lemiere S, Cossu-Leguille C, Charissou AM, Vasseur P. DNA damage (comet assay) and 8-oxodGuo (HPLC-EC) in relation to oxidative stress in the freshwater bivalveUnio tumidus. Biomarkers 2008; 10:41-57. [PMID: 16097392 DOI: 10.1080/13547500500038783] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The relationships between DNA damage and oxidative stress in the digestive gland, gills and haemocytes of the freshwater bivalve Unio tumidus were investigated. Two markers of genotoxicity were measured: DNA breaks by means of the comet assay, and oxidative DNA lesions by means of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) measured using high-performance liquid chromatography (HPLC) coupled to electrochemical detection. Lipid peroxidation was evaluated by measuring malondialdehyde (MDA) tissue levels. Effects were studied after exposure of bivalves for 6 days to benzo[a]pyrene (B[a]P) (50 and 100 microg l(-1)) and ferric iron (20 and 40 mg l(-1)), applied alone or in combination. Lipid peroxidation in the digestive gland and gills resulted from exposure to Fe3+ or B[a]P whatever the concentrations tested. DNA oxidatively formed lesions were induced in the two tissues at a higher level after B[a]P exposure than after Fe3+ treatment. No significant dose-response relationship was found with the two compounds and no synergistic effect was observed between Fe3+ and B[a]P. The gills appeared less sensitive than the digestive gland to DNA lesions expressed as 8-oxodGuo and comet results. Good correlations were noted between 8-oxodGuo and comet. MDA and DNA damage did not correlate as well, although it was stronger in the digestive gland than in the gills. Production of mucus by the gills likely served to prevent lesions by reducing the bioavailability of the chemicals tested, which could explain that dose-effect relationships and synergistic effects were not observed.
Collapse
Affiliation(s)
- S Lemiere
- ESE, CNRS FRE 2635, University of Metz, UFR SciFA, Metz, France.
| | | | | | | |
Collapse
|
50
|
C. Porte, X. Biosca, M. Solé, J. Al. TheAegean Seaoil spill on the Galician Coast (NW Spain). III:The assessment of long-term sublethal effects on mussels. Biomarkers 2008; 5:436-46. [DOI: 10.1080/135475000750052448] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|