1
|
Ahmadi M, Golalipour M, Samaei NM. Mitochondrial Common Deletion Level in Blood: New Insight Into the Effects of Age and Body Mass Index. Curr Aging Sci 2020; 11:250-254. [PMID: 30714539 PMCID: PMC6635417 DOI: 10.2174/1874609812666190201163421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/06/2019] [Accepted: 01/25/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Age-related decrease in mitochondrial activity has been reported in several tissues. Reactive Oxygen Species (ROS) produced from defected mitochondria lead to aging and accumulate through time. However, studies about the mitochondrial DNA mutation level in blood are contradictory. Other lifestyle factors may modify the effects of age in post-mitotic tissues such as blood. The BMI represents the sum of the various lifestyle factors. OBJECTIVE We proposed that age, obesity and mtDNA deletion are three ROS producing factors, which may interact with each other and induce senescence. METHODS In a cross-sectional study, 172 male and female volunteers without known mitochondrial diseases were selected and the presence of common mitochondrial 4977bp deletion (ΔmtDNA4977) evaluated using Nested-PCR. RESULTS Our results showed that a high percentage of samples (54.06%) harbor common deletion in blood. Furthermore, both BMI and the ΔmtDNA4977 levels significantly decrease with age. The chronological age, BMI and ΔmtDNA4977 reciprocally affect each other. CONCLUSION Our data suggest that age affects purifying selection and BMI, which may influence the relative level of the mtDNA common deletion in blood.
Collapse
Affiliation(s)
- Mahboube Ahmadi
- Department of Biology, School of Basic Sciences, Golestan University, Gorgan, Iran
| | - Masoud Golalipour
- Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Medical Genetics, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Nader M Samaei
- Department of Medical Genetics, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
2
|
Kamfar S, Alavian SM, Hasrak K, Houshmand M, Seifi Zarei B, Khalaj A, Homaunpur F, Saidijam M. Analysis of Mitochondrial 4977-bp Deletion and D-Loop Variation in Iranian Non-Alcoholic Fatty Liver Disease Patients. HEPATITIS MONTHLY 2019; In Press. [DOI: 10.5812/hepatmon.84553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
3
|
Darbandi S, Darbandi M, Khorshid HRK, Sadeghi MR, Al-Hasani S, Agarwal A, Shirazi A, Heidari M, Akhondi MM. Experimental strategies towards increasing intracellular mitochondrial activity in oocytes: A systematic review. Mitochondrion 2016; 30:8-17. [PMID: 27234976 DOI: 10.1016/j.mito.2016.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/04/2016] [Accepted: 05/20/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE The mitochondrial complement is critical in sustaining the earliest stages of life. To improve the Assisted Reproductive Technology (ART), current methods of interest were evaluated for increasing the activity and copy number of mitochondria in the oocyte cell. METHODS This covered the researches from 1966 to September 2015. RESULTS The results provided ten methods that can be studied individually or simultaneously. CONCLUSION Though the use of these techniques generated great concern about heteroplasmy observation in humans, it seems that with study on these suggested methods there is real hope for effective treatments of old oocyte or oocytes containing mitochondrial problems in the near future.
Collapse
Affiliation(s)
- Sara Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahsa Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | | | - Mohammad Reza Sadeghi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Safaa Al-Hasani
- Reproductive Medicine Unit, University of Schleswig-Holstein, Luebeck, Germany.
| | - Ashok Agarwal
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Abolfazl Shirazi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahnaz Heidari
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran. M.@avicenna.ar.ir
| | - Mohammad Mehdi Akhondi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
4
|
Nie H, Chen G, He J, Zhang F, Li M, Wang Q, Zhou H, Lyu J, Bai Y. Mitochondrial common deletion is elevated in blood of breast cancer patients mediated by oxidative stress. Mitochondrion 2016; 26:104-12. [PMID: 26678158 PMCID: PMC4846287 DOI: 10.1016/j.mito.2015.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/25/2015] [Accepted: 12/04/2015] [Indexed: 02/07/2023]
Abstract
The 4977 bp common deletion is one of the most frequently observed mitochondrial DNA (mtDNA) mutations in human tissues and has been implicated in various human cancer types. It is generally believed that continuous generation of intracellular reactive oxygen species (ROS) during oxidative phosphorylation (OXPHOS) is a major underlying mechanism for generation of such mtDNA deletions while antioxidant systems, including Manganese superoxide dismutase (MnSOD), mitigating the deleterious effects of ROS. However, the clinical significance of this common deletion remains to be explored. A comprehensive investigation on occurrence and accumulation of the common deletion and mtDNA copy number was carried out in breast carcinoma (BC) patients, benign breast disease (BBD) patients and age-matched healthy donors in our study. Meanwhile, the representative oxidative (ROS production, mtDNA and lipid oxidative damage) and anti-oxidative features (MnSOD expression level and variation) in blood samples from these groups were also analyzed. We found that the mtDNA common deletion is much more likely to be detected in BC patients at relatively high levels while the mtDNA content is lower. This alteration has been associated with a higher MnSOD level and higher oxidative damages in both BC and BBD patients. Our results indicate that the mtDNA common deletion in blood may serve a biomarker for the breast cancer.
Collapse
Affiliation(s)
- Hezhongrong Nie
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guorong Chen
- Department of Pathology of the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing He
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fengjiao Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ming Li
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiufeng Wang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huaibin Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Yidong Bai
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
5
|
Karimova A, Oltulu YM, Azaklı H, Kara M, Ustek D, Tutluoglu B, Onaran I. Lack of association between increased mitochondrial DNA 4977 deletion and ATP levels of sputum cells from chronic obstructive pulmonary disease patients versus healthy smokers. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 28:361-369. [PMID: 26713688 DOI: 10.3109/19401736.2015.1126826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this study we looked at smokers with and without chronic obstructive pulmonary disease (COPD) patients in order to evaluate the incidence of 4977 base pair (bp) mtDNA (mtDNA4977) deletion and mtDNA copy number in sputum cells and in peripheral blood leukocytes (PBLs) in relation to mitochondrial function and oxidative stress status. Twenty-five COPD patients who were current smokers, 22 smokers and 23 healthy nonsmokers (for only PBLs studies) participated in this study. The 4977-bp deletion was detected in all examined samples within 40 cyles of PCR amplification, using a quantitative real time PCR. The frequency of the mtDNA4977 was significantly higher in the sputum cells of patients with COPD compared to smokers without COPD (p < 0.0001). This difference was not observed in PBLs. Levels of cellular oxidative stress were significantly higher in the sputum cells of subjects with COPD than in the smoker group. However, mtDNA copy number, mitochondrial membrane potential (ΔΨm) and cellular ATP levels in PBLs and sputum cells were not significantly different between the studied groups. The Pearson analysis revealed no correlations between the accumulation of mtDNA4977, and intracellular ATP content and ΔΨm values of the sputum cells, although there was a positive correlation between the increase in the percentage of deleted mtDNA4977 and the levels of cellular oxidative stress in COPD patients (r = 0.80, p < 0.0001). Our studies may suggest that the accumulation of mtDNA4977 in the sputum cells of smokers with COPD does not seem to have an important impact on mitochondrial dysfunction in relation to ATP production and ΔΨm when compared to those of healthy smokers.
Collapse
Affiliation(s)
- A Karimova
- a Department of Medical Biology and Genetics, Cerrahpasa Faculty of Medicine , Istanbul University , Istanbul , Turkey
| | - Y M Oltulu
- b Department of Nutrition and Dietetics, Health Sciences Faculty , Biruni University , Istanbul , Turkey
| | - H Azaklı
- c Department of Medical Genetics, School of Medicine , Istanbul Medipol University , Istanbul , Turkey
| | - M Kara
- d Department of Genetics, School of Medicine , Mugla University , Mugla , Turkey
| | - D Ustek
- c Department of Medical Genetics, School of Medicine , Istanbul Medipol University , Istanbul , Turkey
| | - B Tutluoglu
- e Department of Pneumology, Cerrahpasa Faculty of Medicine , Istanbul University , Istanbul , Turkey
| | - I Onaran
- a Department of Medical Biology and Genetics, Cerrahpasa Faculty of Medicine , Istanbul University , Istanbul , Turkey
| |
Collapse
|
6
|
Lin R, Rittenhouse D, Sweeney K, Potluri P, Wallace DC. TSPO, a Mitochondrial Outer Membrane Protein, Controls Ethanol-Related Behaviors in Drosophila. PLoS Genet 2015; 11:e1005366. [PMID: 26241038 PMCID: PMC4524697 DOI: 10.1371/journal.pgen.1005366] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/17/2015] [Indexed: 11/25/2022] Open
Abstract
The heavy consumption of ethanol can lead to alcohol use disorders (AUDs) which impact patients, their families, and societies. Yet the genetic and physiological factors that predispose humans to AUDs remain unclear. One hypothesis is that alterations in mitochondrial function modulate neuronal sensitivity to ethanol exposure. Using Drosophila genetics we report that inactivation of the mitochondrial outer membrane translocator protein 18kDa (TSPO), also known as the peripheral benzodiazepine receptor, affects ethanol sedation and tolerance in male flies. Knockdown of dTSPO in adult male neurons results in increased sensitivity to ethanol sedation, and this effect requires the dTSPO depletion-mediated increase in reactive oxygen species (ROS) production and inhibition of caspase activity in fly heads. Systemic loss of dTSPO in male flies blocks the development of tolerance to repeated ethanol exposures, an effect that is not seen when dTSPO is only inactivated in neurons. Female flies are naturally more sensitive to ethanol than males, and female fly heads have strikingly lower levels of dTSPO mRNA than males. Hence, mitochondrial TSPO function plays an important role in ethanol sensitivity and tolerance. Since a large array of benzodiazepine analogues have been developed that interact with the peripheral benzodiazepine receptor, the mitochondrial TSPO might provide an important new target for treating AUDs. Alcohol use disorders (AUDs) affect millions of patients worldwide and result in high social and economic burdens. Although environmental factors are involved, there are clear genetic components to AUDs. Both the acute sedating effect of alcohol exposure and alcohol tolerance contribute to long term risk for alcohol dependence and addiction. Yet the genetic etiology of AUDs remains to be determined. The mitochondria play a central role in ethanol metabolism and are important in many aspects of cellular physiology such as REDOX and ROS regulation, and apoptosis. The mitochondrial outer membrane translocator protein 18 kDa (TSPO) binds the benzodiazepines and perhaps other addictive drugs, and thus may play a role in AUDs. Since Drosophila is a well-established model for ethanol-related behaviors, we have developed systems for manipulating the Drosophila tspo gene and protein. With these systems, we have discovered that neuronal TSPO controls sensitivity to ethanol sedation via ROS and caspase-mediated signaling and that systemic TSPO levels are important in the development of tolerance to repeated ethanol exposure. Given the variety of known TSPO ligands, and the common mechanisms of various abusive substances, our studies suggest that TSPO might be a promising target to combat alcoholism as well as addiction to other drugs.
Collapse
Affiliation(s)
- Ran Lin
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Danielle Rittenhouse
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Katelyn Sweeney
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Prasanth Potluri
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
7
|
Zhang Y, Ma Y, Bu D, Liu H, Xia C, Zhang Y, Zhu S, Pan H, Pei P, Zheng X, Wang S, Xu Y, Qi Y. Deletion of a 4977-bp Fragment in the Mitochondrial Genome Is Associated with Mitochondrial Disease Severity. PLoS One 2015; 10:e0128624. [PMID: 26024530 PMCID: PMC4449107 DOI: 10.1371/journal.pone.0128624] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 04/30/2015] [Indexed: 12/22/2022] Open
Abstract
Large deletions in mitochondrial DNA (mtDNA) may be involved in the pathogenesis of mitochondrial disease. In this study, we investigated the relationship between a 4,977-bp deletion in the mitochondrial genome (ΔmtDNA4977) and the severity of clinical symptoms in patients with mitochondrial disease lacking known point mutations. A total of 160 patients with mitochondrial disease and 101 healthy controls were recruited for this study. The copy numbers of ΔmtDNA4977 and wild-type mtDNA were determined by real-time quantitative PCR and analyzed using Spearman’s bivariate correlation analysis, t-tests, or one-way ANOVA. The overall ΔmtDNA4977 copy number per cell and the proportion of mtDNA4977 relative to the total wild-type mtDNA, increased with patient age and symptom severity. Surprisingly, the total mtDNA copy number decreased with increasing symptom severity. Our analyses revealed that increases in the proportion and total copy number of ΔmtDNA4977 in the blood may be associated with disease severity in patients with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yanchun Zhang
- Department of Central Laboratory, Peking University First Hospital, No. 8, West District, Beijing, 100034, China
| | - Yinan Ma
- Department of Central Laboratory, Peking University First Hospital, No. 8, West District, Beijing, 100034, China
- * E-mail: (YM); (YQ)
| | - Dingfang Bu
- Department of Central Laboratory, Peking University First Hospital, No. 8, West District, Beijing, 100034, China
| | - Hui Liu
- Department of Respiratory, Beijing Children’s Hospital, Beijing, 100045, China
| | - Changyu Xia
- Department of Clinical Laboratory, Peking University First Hospital, No. 8, West District, Beijing, 100034, China
| | - Ying Zhang
- Department of Central Laboratory, Peking University First Hospital, No. 8, West District, Beijing, 100034, China
| | - Sainan Zhu
- Department of Biostatistics, Peking University First Hospital, No. 8, West District, Beijing, 100034, China
| | - Hong Pan
- Department of Central Laboratory, Peking University First Hospital, No. 8, West District, Beijing, 100034, China
| | - Pei Pei
- Department of Central Laboratory, Peking University First Hospital, No. 8, West District, Beijing, 100034, China
| | - Xuefei Zheng
- Department of Central Laboratory, Peking University First Hospital, No. 8, West District, Beijing, 100034, China
| | - Songtao Wang
- Department of Central Laboratory, Peking University First Hospital, No. 8, West District, Beijing, 100034, China
| | - Yufeng Xu
- Department of Central Laboratory, Peking University First Hospital, No. 8, West District, Beijing, 100034, China
| | - Yu Qi
- Department of Central Laboratory, Peking University First Hospital, No. 8, West District, Beijing, 100034, China
- * E-mail: (YM); (YQ)
| |
Collapse
|
8
|
Mamdani F, Rollins B, Morgan L, Sequeira PA, Vawter MP. The somatic common deletion in mitochondrial DNA is decreased in schizophrenia. Schizophr Res 2014; 159:370-5. [PMID: 25270547 PMCID: PMC4252352 DOI: 10.1016/j.schres.2014.08.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 01/18/2023]
Abstract
Large deletions in mitochondrial DNA (mtDNA) can occur during or result from oxidative stress leading to a vicious cycle that increases reactive oxygen species (ROS) damage and decreases mitochondrial function, thereby causing further oxidative stress. The objective of this study was to determine if disease specific brain differences of the somatic mtDNA common deletion (4977 bp) could be observed in major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ) compared to a control group. The accumulation of the mtDNA common deletion was measured using a quantitative assay across 10 brain regions (anterior cingulate cortex, amygdala, caudate nucleus, dorsolateral prefrontal cortex, hippocampus, nucleus accumbens, orbitofrontal cortex, putamen, substantia nigra, and thalamus). The correlation with age of the mtDNA deletion was highly significant across brain regions as previously shown. A significant decrease in the global accumulation of common deletion in subjects with SZ compared to MDD, BD, and controls was observed after correcting for age, pH, PMI, and gender. The decreases in SZ were largest in dopaminergic regions. One potential side effect of antipsychotic drugs on mitochondria is the impairment of mitochondria function, which might explain these findings. The decreased global brain mtDNA common deletion levels suggests that mitochondrial function is impaired and might be part of an overall mitochondria dysfunction signature in subjects with schizophrenia.
Collapse
Affiliation(s)
- Firoza Mamdani
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, USA
| | - Brandi Rollins
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, USA
| | - Ling Morgan
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, USA
| | - P Adolfo Sequeira
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, USA
| | - Marquis P Vawter
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, USA.
| |
Collapse
|
9
|
Tranah GJ. Mitochondrial-nuclear epistasis: implications for human aging and longevity. Ageing Res Rev 2011; 10:238-52. [PMID: 20601194 DOI: 10.1016/j.arr.2010.06.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 06/17/2010] [Accepted: 06/17/2010] [Indexed: 12/22/2022]
Abstract
There is substantial evidence that mitochondria are involved in the aging process. Mitochondrial function requires the coordinated expression of hundreds of nuclear genes and a few dozen mitochondrial genes, many of which have been associated with either extended or shortened life span. Impaired mitochondrial function resulting from mtDNA and nuclear DNA variation is likely to contribute to an imbalance in cellular energy homeostasis, increased vulnerability to oxidative stress, and an increased rate of cellular senescence and aging. The complex genetic architecture of mitochondria suggests that there may be an equally complex set of gene interactions (epistases) involving genetic variation in the nuclear and mitochondrial genomes. Results from Drosophila suggest that the effects of mtDNA haplotypes on longevity vary among different nuclear allelic backgrounds, which could account for the inconsistent associations that have been observed between mitochondrial DNA (mtDNA) haplogroups and survival in humans. A diversity of pathways may influence the way mitochondria and nuclear-mitochondrial interactions modulate longevity, including: oxidative phosphorylation; mitochondrial uncoupling; antioxidant defenses; mitochondrial fission and fusion; and sirtuin regulation of mitochondrial genes. We hypothesize that aging and longevity, as complex traits having a significant genetic component, are likely to be controlled by nuclear gene variants interacting with both inherited and somatic mtDNA variability.
Collapse
|
10
|
Abstract
Over the course of our lifetime a stochastic process leads to gradual alterations of biomolecules on the molecular level, a process that is called ageing. Important changes are observed on the DNA-level as well as on the protein level and are the cause and/or consequence of our 'molecular clock', influenced by genetic as well as environmental parameters. These alterations on the molecular level may aid in forensic medicine to estimate the age of a living person, a dead body or even skeletal remains for identification purposes. Four such important alterations have become the focus of molecular age estimation in the forensic community over the last two decades. The age-dependent accumulation of the 4977bp deletion of mitochondrial DNA and the attrition of telomeres along with ageing are two important processes at the DNA-level. Among a variety of protein alterations, the racemisation of aspartic acid and advanced glycation endproducs have already been tested for forensic applications. At the moment the racemisation of aspartic acid represents the pinnacle of molecular age estimation for three reasons: an excellent standardization of sampling and methods, an evaluation of different variables in many published studies and highest accuracy of results. The three other mentioned alterations often lack standardized procedures, published data are sparse and often have the character of pilot studies. Nevertheless it is important to evaluate molecular methods for their suitability in forensic age estimation, because supplementary methods will help to extend and refine accuracy and reliability of such estimates.
Collapse
Affiliation(s)
- Christoph Meissner
- Department of Forensic Medicine, University of Schleswig-Holstein, Kahlhorststraße 31-35, 23562 Lübeck, Germany.
| | | |
Collapse
|
11
|
Low level of the mtDNA4977 deletion in blood of exceptionally old individuals. Mech Ageing Dev 2010; 131:179-84. [DOI: 10.1016/j.mad.2010.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 01/08/2010] [Accepted: 01/24/2010] [Indexed: 12/31/2022]
|
12
|
Mitochondrial DNA deletions of blood lymphocytes as genetic markers of low folate-related mitochondrial genotoxicity in peripheral tissues. Eur J Nutr 2009; 48:429-36. [PMID: 19437061 DOI: 10.1007/s00394-009-0031-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 04/24/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND A low folate status and mitochondrial DNA (mtDNA) mutations are risk factors for various cancers and degenerative diseases. It is not known if lymphocytic mtDNA deletions can be used as genetic "markers" to reflect global mtDNA damage during folate deficiency. AIM OF THE STUDY The aim of this study was to characterize folate-related mtDNA deletions in lymphocytes and their associations with mt genotoxicity in peripheral tissues. METHODS Weaning Wistar rats were fed folate-deficient and folate-replete (control) diets for 2 and 4 weeks. Folate levels of blood lymphocytes and various tissues were assayed by the Lactobacillus casei method. mtDNA deletions were measured by a real-time polymerase chain reaction analysis of whole DNA extracts. RESULTS Compared to the control counterparts, mtDNA deletions of lymphocytes increased by 3.5-fold (P < 0.05) after 4 weeks of folate deficiency. Lymphocytic mtDNA deletions were inversely associated with plasma (r = -0.619, P = 0.018), red blood cell (r = -0.668, P = 0.009), and lymphocytic folate levels (r = -0.536, P = 0.048). Frequencies of lymphatic mtDNA deletions were positively correlated with mtDNA deletions in tissues including the lungs (r = 0.803, P = 0.0005), muscles (r = 0.755, P = 0.001), heart (r = 0.633, P = 0.015), liver (r = 0.722, P = 0.003), kidneys (r = 0.737, P = 0.006), pancreas (r = 0.666, P = 0.009), and brain (r = 0.917, P < 0.0001). CONCLUSIONS Our data demonstrate that accumulated mtDNA deletions of lymphocytes depended upon dietary folate deprivation. The accumulated mt deletions in lymphocytes closely reflected the mt genotoxicity in the peripheral tissues during folate deficiency.
Collapse
|
13
|
Ieremiadou F, Rodakis GC. Correlation of the 4977 bp mitochondrial DNA deletion with human sperm dysfunction. BMC Res Notes 2009; 2:18. [PMID: 19192313 PMCID: PMC2642850 DOI: 10.1186/1756-0500-2-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 02/04/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several studies have examined the association between mitochondrial DNA (mtDNA) deletions, in particular the "common" 4977-bp deletion, and human sperm dysfunction, but have produced contradictory results. FINDINGS Here we show that PCR slippage and primer miss-match to nuclear DNA may lead to overestimates in the frequency of deletions. Our investigation resolves this issue and gives strong negative correlation between the proportion of the "common" deletion and sperm motility. Furthermore, for the first time, we present data which reinforce the hypothesis for a negative correlation between the mtDNA "common" deletion and fertilization efficiency of spermatozoa. CONCLUSION The present analysis resolves several literature inconsistencies and opens the way for diagnostic use of the "common" deletion as a molecular indicator of sperm fertility potential.
Collapse
Affiliation(s)
- Fotini Ieremiadou
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 157 01 Athens, Greece
| | - George C Rodakis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 157 01 Athens, Greece
| |
Collapse
|
14
|
Rossato LB, Nunes ACF, Pereira MLS, de Souza CFM, Dummer C, Milani V, Porsch DB, de Mattos CB, Barros EJG. Prevalence of 4977bp deletion in mitochondrial DNA from patients with chronic kidney disease receiving conservative treatment or hemodialysis in southern Brazil. Ren Fail 2008; 30:9-14. [PMID: 18197537 DOI: 10.1080/08860220701741650] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Damage to mitochondrial DNA (mtDNA) has been described in patients with chronic kidney disease (CKD). The presence of mtDNA 4977bp deletion in many different tissues can serve as a marker of this damage. However, no attempt has been made to detect the presence of mtDNA 4977bp in blood cells of patients with CKD. METHODS Polymerase chain reaction techniques (PCR) were used to detect mtDNA 4977bp deletion in blood samples of 94 CKD patients. RESULTS The prevalence of 4977bp deletion in mtDNA was 73.1% (38/52) in patients with CKD undergoing hemodialysis, 57.1% (27/42) in patients with CKD receiving conservative treatment, and 27.8% (15/54) in control samples (p < 0.001). Higher prevalence of this mutation was not associated with patient age (p = 0.54) or time on hemodialysis (p = 0.70). CONCLUSION The higher prevalence of mtDNA 4977bp deletion in patients in this study indicates that the CKD can induce damage to mtDNA in blood cells and could be exacerbated by hemodialysis.
Collapse
Affiliation(s)
- Liana Bertolin Rossato
- Graduate Program in Medical Science, Nephrology and Hemodialysis Service, Clinical Hospital of Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
von Wurmb-Schwark N, Ringleb A, Schwark T, Broese T, Weirich S, Schlaefke D, Wegener R, Oehmichen M. The effect of chronic alcohol consumption on mitochondrial DNA mutagenesis in human blood. Mutat Res 2007; 637:73-9. [PMID: 17767940 DOI: 10.1016/j.mrfmmm.2007.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 07/16/2007] [Indexed: 11/28/2022]
Abstract
The 4977bp deletion of mitochondrial DNA (mtDNA) is known to accumulate with increasing age in post mitotic tissues. Recently, studies came out detecting this specific alteration also in fast replicating cells, e.g. in blood or skin tissue, often in correlation to specific diseases or -- specifically in skin -- external stressors such as UV radiation. In this study, we investigated mitochondrial mutagenesis in 69 patients with a chronic alcoholic disease and 46 age matched controls with a moderate drinking behavior. Two different fragments, specific for total and for deleted mtDNA (dmtDNA) were amplified in a duplex-PCR. A subsequent fragment analysis was performed and for relative quantification, the quotient of the peak areas of amplification products specific for deleted and total mtDNA was determined. Additionally, a real time PCR was performed to quantify mtDNA copy number. The relative amount of 4977bp deleted mtDNA in alcoholics was significantly increased compared to controls. On the other hand, no difference regarding the mtDNA/nuclear DNA ratio in both investigated groups was detected. Additionally, no age dependence could be found nor in alcoholics, neither in the control group. These findings indicate that mtDNA mutagenesis in blood can be influenced by stressors such as alcohol. Ethanol seems to be a significant factor to alter mitochondrial DNA in blood and might be an additional contributor for the cellular aging process.
Collapse
Affiliation(s)
- N von Wurmb-Schwark
- Institute of Legal Medicine, Christian Albrecht University of Kiel, Arnold-Heller-Str 12, 24105, Kiel, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
von Wurmb-Schwark N, Cavelier L, Cortopassi GA. A low dose of ethidium bromide leads to an increase of total mitochondrial DNA while higher concentrations induce the mtDNA 4997 deletion in a human neuronal cell line. Mutat Res 2006; 596:57-63. [PMID: 16488450 DOI: 10.1016/j.mrfmmm.2005.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Accepted: 12/15/2005] [Indexed: 05/06/2023]
Abstract
Ethidium bromide (EtBr) is widely used to deplete mitochondrial DNA (mtDNA) and produce mitochondrial DNA-less cell lines. However, it frequently fails to deplete mtDNA in mouse cells. In this study we show by using a highly sensitive real-time PCR, that low doses of EtBr (10 microM) did lead to a three-fold increase of the total amount of mitochondrial DNA in a human neuronal cell line (Ntera 2). A higher dose of EtBr (25 microM) led to the expected decrease of mtDNA until day 22 when the cells almost died. Cell growth and mtDNA content could be restored after additional 22 days of non-EtBr treatment. The highest concentration of 50 microM also led to a significant increase of mtDNA. The cells died when they had only about 10% of mtDNA left, indicating a mtDNA threshold for cell survival. Additionally, the so-called common 4977 bp deletion could be induced by prolonged exposure to ethidium bromide. Whereas the higher doses led to significant higher amounts of deleted mtDNA.
Collapse
Affiliation(s)
- N von Wurmb-Schwark
- Institute of Legal Medicine, Christian-Albrechts-University of Kiel, Arnold-Heller-Str. 12, 24105 Kiel, Germany.
| | | | | |
Collapse
|
17
|
Chan CCW, Liu VWS, Lau EYL, Yeung WSB, Ng EHY, Ho PC. Mitochondrial DNA deletion in granulosa and cumulus oophorus cells. Fertil Steril 2006; 85:780-2. [PMID: 16500363 DOI: 10.1016/j.fertnstert.2005.08.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 05/23/2005] [Accepted: 08/16/2005] [Indexed: 10/25/2022]
Abstract
The incidence of the 4,977-bp deletion in mitochondrial DNA (DeltamtDNA4977) in 73 pairs of granulosa and cumulus oophorus cells was studied with polymerase chain reaction (PCR), and was significantly higher in granulosa cells (GC) (67/73, 91%) than in cumulus oophorus cells (17/73, 23.3%), independent of the donors' age. In the cumulus oophorus cells, the oocyte morphology, the ooplasma diameter, and the proportion of oocytes fertilized normally were comparable between those with and without DeltamtDNA4977; whereas the oocyte diameter and the zona thickness were significantly higher in those with DeltamtDNA4977.
Collapse
Affiliation(s)
- Carina C W Chan
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong.
| | | | | | | | | | | |
Collapse
|
18
|
Chan CCW, Liu VWS, Lau EYL, Yeung WSB, Ng EHY, Ho PC. Mitochondrial DNA content and 4977 bp deletion in unfertilized oocytes. ACTA ACUST UNITED AC 2006; 11:843-6. [PMID: 16421213 DOI: 10.1093/molehr/gah243] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Previous studies analysing the incidences of mitochondrial DNA (mtDNA) deletions and mtDNA content in unfertilized oocytes in relation to donors' age have been controversial. The objective of the study was to compare these two parameters in unfertilized oocytes and relate them to the donors' age. Fifty-two women donated 155 unfertilized metaphase II (MII) oocytes. The incidence of 4977 bp deletion was 34.6%, and the mtDNA copy number was 598 350 +/- 265 862. Women >or=35 years of age had a significantly higher incidence of 4977 bp deletion, lower mtDNA copy number, higher FSH level and poorer ovarian response when compared with younger women. The mtDNA copy number was negatively correlated with the donor's age. The higher incidence of mtDNA deletion and lower mtDNA copy number in older women suggested that these two parameters may reflect ovarian ageing.
Collapse
Affiliation(s)
- C C W Chan
- Department of Obstetrics and Gynaecology, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.
| | | | | | | | | | | |
Collapse
|
19
|
Botto N, Berti S, Manfredi S, Al-Jabri A, Federici C, Clerico A, Ciofini E, Biagini A, Andreassi MG. Detection of mtDNA with 4977 bp deletion in blood cells and atherosclerotic lesions of patients with coronary artery disease. Mutat Res 2005; 570:81-8. [PMID: 15680405 DOI: 10.1016/j.mrfmmm.2004.10.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2004] [Revised: 09/09/2004] [Accepted: 10/09/2004] [Indexed: 11/23/2022]
Abstract
Recent evidence suggests that somatic mutations in nuclear and mitochondrial DNA accumulated during aging, may significantly contribute to the pathogenesis of chronic-degenerative illness such as coronary artery disease (CAD). Mitochondrial DNA with 4977 bp deletion mutation (mtDNA4977) is a common type of mtDNA alteration in humans. However, little attempt has been made to detect the presence of mtDNA4977 deletion in cells and tissues of cardiovascular patients. This study investigated the presence of mtDNA4977 in blood samples of 65 cardiovascular patients and 23 atherosclerotic plaques of human coronaries with severe atherosclerosis. Moreover, the presence of the deletion has been investigated in blood cells from 22 healthy age-matched subjects. The detection of mtDNA4977 has been performed by using a nested polymerase chain reaction (PCR) protocol and normalized to wild-type mtDNA. A significant higher incidence of mtDNA4977 was observed in CAD patients with respect to healthy subjects (26.2% versus 4.5%; P=0.03). Furthermore, the relative amount of the deletion was significantly higher in the patients compared to the control group (P=0.02). The mtDNA4977 was detected in 17 of the 65 patients blood samples (26.2%) and deletion levels ranged from 0.18 to 0.46% of the total mtDNA (mean: 0.34+/-0.02%). For what concerns atherosclerotic lesions, 5 patients (21.7%) showed the deletion ranging from 0.13 to 0.45% of the total mtDNA (mean: 0.35+/-0.06%). In both samples from patients, the incidence and the relative amount of mtDNA4977 was not significantly influenced by atherogenic risk factors and clinical parameters. The obtained results may suggest that the increase of oxidative stress in cardiovascular disease may be responsible for the accumulation of mtDNA damage in coronary artery disease patients.
Collapse
Affiliation(s)
- Nicoletta Botto
- CNR, Institute of Clinical Physiology, G. Pasquinucci Hospital, Massa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mohamed SA, Wesch D, Blumenthal A, Bruse P, Windler K, Ernst M, Kabelitz D, Oehmichen M, Meissner C. Detection of the 4977 bp deletion of mitochondrial DNA in different human blood cells. Exp Gerontol 2004; 39:181-8. [PMID: 15036410 DOI: 10.1016/j.exger.2003.10.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2003] [Revised: 09/03/2003] [Accepted: 10/09/2003] [Indexed: 10/26/2022]
Abstract
As recently reported, it is possible to detect and quantify the amount of the deleted human mitochondrial DNA (mtDNA) in whole blood, platelets and peripheral blood mononuclear cells using real-time PCR. The aim of this study was to identify the cell types in human blood carrying the 4977 bp deleted mtDNA and their accumulation with regard to donor age. Whole blood from 10 healthy donors (five individuals aged from 19 to 22 years, five aged from 57 to 61 years) was separated in various cell populations such as granulocytes, B cells/monocytes and T cells. Purity of the cell isolates was determined by flow cytometry. Total DNA was extracted and 250 ng DNA of each cell type was subjected to PCR using fluorescent-labelled primer pairs. The specific PCR product of the 4977 bp deletion was quantified using an automated detection system. The accumulation of the 4977 bp deletion was more pronounced in T lymphocytes and granulocytes in comparison to B lymphocytes/monocytes. The amount of the 4977 bp deletion in whole blood varied from 0 to 0.00018%, in T lymphocytes from 0.00009 to 0.00160%, in granulocytes from 0 to 0.00162% and in the B lymphocyte/monocyte fraction from 0 to 0.00025%. The higher amount of the deletion in T lymphocytes may be due to a subset of lymphocytes with a longer lifespan thus facilitating the accumulation of mitochondrial damage. The higher amount in granulocytes could have the explanation in the higher release of free radicals for prevention of infectious diseases, because free radicals are supposed to damage the macromolecules of this cell type. The 10 donors displayed differences in the pattern of the accumulation with regard to the different cell types, but no age-dependent accumulation was observed. Differences of the accumulation pattern may be due to actual individual living behaviour or environmental factors.
Collapse
Affiliation(s)
- S A Mohamed
- Department of Legal Medicine, Medical University of Luebeck, Kahlhorststrasse 31-35, Luebeck 23562, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
von Wurmb-Schwark N, Schwark T, Meissner C, Oehmichen M. Mitochondrial mutagenesis in the brain in forensic and pathological research. Leg Med (Tokyo) 2003; 5:1-6. [PMID: 12935643 DOI: 10.1016/s1344-6223(03)00003-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Accumulation of alterations to the mitochondrial DNA (mtDNA) would be expected to significantly impair the bioenergetic function of mitochondria in the affected host cells. Many of these changes have been associated with several specific diseases and the process of aging. These mutations may be the result of mitochondrial oxidative stress, which is increased with age of individuals and specific degenerative diseases. Our aim with this review is to summarize the recent literature on the occurrence of mtDNA alterations and its possible relation to age-depending degenerative processes with special regards to the brain. Additionally, we show how these alterations could be used in fields of pathology and forensic medicine.
Collapse
|
22
|
Ross OA, Hyland P, Curran MD, McIlhatton BP, Wikby A, Johansson B, Tompa A, Pawelec G, Barnett CR, Middleton D, Barnett YA. Mitochondrial DNA damage in lymphocytes: a role in immunosenescence? Exp Gerontol 2002; 37:329-40. [PMID: 11772520 DOI: 10.1016/s0531-5565(01)00200-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An age-related increase of DNA damage/mutation has been previously reported in human lymphocytes. The high copy number and mutation rate make the mtDNA genome an ideal candidate for assessing damage and to act as a potential biomarker of ageing. In the present study, two assays were developed to evaluate the level of mtDNA(4977) and the accumulation of point mutations with age. A competitive polymerase chain reaction (PCR) methodology incorporating three primers was used to detect and quantify the levels of mtDNA(4977) and a novel heteroduplex reference strand conformational analysis (RSCA) technique was used to analyse the accumulation of point mutations. The assays were applied to an in vitro model of T cell ageing and ex vivo DNA samples from an elderly cohort of subjects and a younger control group. The mtDNA(4977) was detected in all the DNA samples examined but only a very low concentration was observed and no age-related increase or accumulation was observed. No accumulation of point mutations was identified using RSCA within the T cell clones as they were aged or the ex vivo lymphocytes from the elderly cohort. A higher level of variation was observed within the ex vivo DNA samples, verifying the high resolution of RSCA and its ability to identify different mtDNA species, although no correlation with age was observed. The low level of mtDNA damage observed with respect to the ex vivo lymphocyte DNA samples within this study may be due in part to the high turnover of blood cells/mtDNA, which may inhibit the accumulation of genetically abnormal mtDNA that may play a role in immunosenescence. A similar explanation may also apply to the in vitro model of T cell ageing if the vast majority of the cells are replicating rather than entering senescence.
Collapse
Affiliation(s)
- Owen A Ross
- Northern Ireland Regional Histocompatibility and Immunogenetics Laboratory, Blood Transfusion Building, City Hospital, Belfast, Northern Ireland BT9 7TS, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Meissner C, Mohamed S, Klueter H, Hamann K, Wurmb N, Oehmichen M. . Forensic Sci Int 2001; 122:199. [DOI: 10.1016/s0379-0738(01)00474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Koch H, Wittern KP, Bergemann J. In human keratinocytes the Common Deletion reflects donor variabilities rather than chronologic aging and can be induced by ultraviolet A irradiation. J Invest Dermatol 2001; 117:892-7. [PMID: 11676829 DOI: 10.1046/j.0022-202x.2001.01513.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mitochondrial DNA mutations play a major role in human aging processes and degenerative diseases. The most frequently reported marker for mutations of the mitochondrial DNA in human skin is a 4977 bp large-scale deletion, called the Common Deletion. Although this deletion is rarely detectable and constitutes only one example of the multitude of about 50,000 known mutations in mitochondrial DNA, it can represent "the tip of the iceberg" of all types of mitochondrial DNA mutations. We established a quantitative real-time polymerase chain reaction assay to detect the Common Deletion in vitro as well as in vivo/ex vivo. In contrast to previous studies, we were able to demonstrate that the Common Deletion is frequently abundant in keratinocytes isolated from various donors. Quantitative analysis of the mutation indicated interperson variations but obviously no relation to the donors' ages. Prolonged proliferation of keratinocytes led to a distinct reduction in the amount of the Common Deletion. Single ultraviolet A irradiation (12 J per cm2 and 15 J per cm2) neither in vitro nor in vivo increased the incidence of the mutation in keratinocytes, whereas repetitive irradiation resulted in a clear increase in vitro. Again, prolonged cultivation of these irradiated cells caused a significant reduction in the amounts of the deletion. In view of these results, the Common Deletion appears to be a useful marker rather for ultraviolet-A-induced alterations than for chronologic aging in human skin keratinocytes.
Collapse
Affiliation(s)
- H Koch
- Beiersdorf AG, Paul Gerson Unna Skin Research Center, Hamburg, Germany
| | | | | |
Collapse
|
25
|
Affiliation(s)
- L A Tully
- Biotechnology Division, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8311, Gaithersburg, MD 20899-8311, USA
| | | |
Collapse
|
26
|
Meissner C, Mohamed SA, Klueter H, Hamann K, von Wurmb N, Oehmichen M. Quantification of mitochondrial DNA in human blood cells using an automated detection system. Forensic Sci Int 2000; 113:109-12. [PMID: 10978610 DOI: 10.1016/s0379-0738(00)00249-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The 4977 bp deletion of mitochondrial DNA (mtDNA) accumulates in postmitotic tissues with advancing age. The purpose of our study was to detect and quantify these deletion even in blood cells with a high turnover activity. Whole venous blood, isolated human platelets and peripheral blood mononuclear cells (PBMCs) were collected from 10 unrelated donors aged 20-71 years and total DNA was extracted. PCR was performed for total and mutated mtDNA using two different primer pairs and two fluorogenic probes labeled with the fluorescent dyes FAM and VIC. Specific PCR products were generated, detected and quantified in a real-time PCR. The amplification products of total and deleted mtDNA could be detected in each sample and did not exhibit any differences in the amount of the deleted mtDNA in whole blood, human platelets or PBMCs. Our data did not show any accumulation of the 4977 bp deletion with increasing age as it was observed for several other tissues.
Collapse
Affiliation(s)
- C Meissner
- Department of Legal Medicine, Medical University of Luebeck, Kahlhorststrasse 31-35, 23562, Luebeck, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Meissner C, von Wurmb N, Schimansky B, Oehmichen M. Estimation of age at death based on quantitation of the 4977-bp deletion of human mitochondrial DNA in skeletal muscle. Forensic Sci Int 1999; 105:115-24. [PMID: 10605080 DOI: 10.1016/s0379-0738(99)00126-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The 4977-bp deletion in human mitochondrial DNA (mtDNA) is known to accumulate in various tissues with age. Since this deletion in mtDNA correlates closest with age in muscle tissue, iliopsoas muscle tissue was taken at autopsy from 50 persons aged 24-97 years to determine whether age at death can be estimated based on the amount of the 4977-bp deletion in skeletal muscle. Total DNA (nuclear and mtDNA) was extracted from 100 mg tissue and the 4977-bp deletion quantified using a kinetic polymerase chain reaction (PCR) followed by visualization of the products on silver stained polyacrylamide gels. The amount of the 4977-bp deletion of mtDNA ranged from 0.00049% to 0.14% depending on age, with a correlation coefficient of r = 0.83 (P = 0.0001). In forensic practice this method can aid in the estimation of age at death with a relatively wide confidence interval, thus enabling a discrimination between young and elderly persons in the identification of human remains based solely on skeletal muscle.
Collapse
Affiliation(s)
- C Meissner
- Department of Legal Medicine, Medical University of Luebeck, Germany.
| | | | | | | |
Collapse
|