1
|
Abualkhair L, Almaghrabi A, Al Edrees N, Hassab Errasoul A. Unmasking of Myasthenia Gravis After Introduction of Oral Risperidone in a Schizophrenic Saudi Male: A Case Report. Cureus 2021; 13:e20541. [PMID: 35070568 PMCID: PMC8765588 DOI: 10.7759/cureus.20541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 11/11/2022] Open
Abstract
Myasthenia gravis is an autoimmune disease that affects the neuromuscular junction. It causes generalized muscle weakness that may include the respiratory muscles, potentially leading to a medical emergency known as a myasthenic crisis. This is a case report of a rare incident of a myasthenia gravis exacerbation after administration of the oral antipsychotic risperidone to a schizophrenic patient. Few similar cases have been reported. Although rare, such incidents are dangerous as physicians could easily confuse myasthenia gravis symptoms with extrapyramidal side effects of antipsychotics. This concern should be addressed not just with risperidone but rather with any other antipsychotics that exhibit anticholinergic side effects.
Collapse
|
2
|
Sheikh S, Alvi U, Soliven B, Rezania K. Drugs That Induce or Cause Deterioration of Myasthenia Gravis: An Update. J Clin Med 2021; 10:jcm10071537. [PMID: 33917535 PMCID: PMC8038781 DOI: 10.3390/jcm10071537] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune neuromuscular disorder which is characterized by presence of antibodies against acetylcholine receptors (AChRs) or other proteins of the postsynaptic membrane resulting in damage to postsynaptic membrane, decreased number of AChRs or blocking of the receptors by autoantibodies. A number of drugs such as immune checkpoint inhibitors, penicillamine, tyrosine kinase inhibitors and interferons may induce de novo MG by altering the immune homeostasis mechanisms which prevent emergence of autoimmune diseases such as MG. Other drugs, especially certain antibiotics, antiarrhythmics, anesthetics and neuromuscular blockers, have deleterious effects on neuromuscular transmission, resulting in increased weakness in MG or MG-like symptoms in patients who do not have MG, with the latter usually being under medical circumstances such as kidney failure. This review summarizes the drugs which can cause de novo MG, MG exacerbation or MG-like symptoms in nonmyasthenic patients.
Collapse
|
3
|
Worsening of myasthenia gravis after administration of injectable long-acting risperidone for treatment of schizophrenia; first case report and a call for caution. Neuromuscul Disord 2016; 26:309-11. [PMID: 27012182 DOI: 10.1016/j.nmd.2016.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/22/2016] [Accepted: 02/10/2016] [Indexed: 11/20/2022]
Abstract
Myasthenia gravis is an autoimmune disease characterized by muscle weakness due to autoantibodies affecting the neuromuscular junction. Co-occurrence of myasthenia gravis and schizophrenia is very rare and raises a challenge in management of both diseases. Antipsychotic drugs exhibit anticholinergic side effects and have the potentials of worsening myasthenia. Long-acting risperidone is an injectable atypical antipsychotic drug that has not been previously reported to worsen myasthenia gravis in literature. We report the first case report of worsening of myasthenia after receiving long-acting risperidone injection for schizophrenia in a 29-year-old female with both diseases. She started to have worsening 2 weeks following the first injection and her symptoms persisted despite receiving plasma exchange. This could be explained by the pharmacokinetics of the drug. We recommend that long-acting risperidone should be used with caution in patients with myasthenia gravis, and clinicians must be aware of the potential risks of this therapy.
Collapse
|
4
|
Nguyen QT, Schroeder LF, Mank M, Muller A, Taylor P, Griesbeck O, Kleinfeld D. An in vivo biosensor for neurotransmitter release and in situ receptor activity. Nat Neurosci 2010; 13:127-132. [PMID: 20010818 PMCID: PMC3992257 DOI: 10.1038/nn.2469] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 11/17/2009] [Indexed: 11/09/2022]
Abstract
Tools from molecular biology, combined with in vivo optical imaging techniques, provide new mechanisms for noninvasively observing brain processes. Current approaches primarily probe cell-based variables, such as cytosolic calcium or membrane potential, but not cell-to-cell signaling. We devised cell-based neurotransmitter fluorescent engineered reporters (CNiFERs) to address this challenge and monitor in situ neurotransmitter receptor activation. CNiFERs are cultured cells that are engineered to express a chosen metabotropic receptor, use the G(q) protein-coupled receptor cascade to transform receptor activity into a rise in cytosolic [Ca(2+)] and report [Ca(2+)] with a genetically encoded fluorescent Ca(2+) sensor. The initial realization of CNiFERs detected acetylcholine release via activation of M1 muscarinic receptors. We used chronic implantation of M1-CNiFERs in frontal cortex of the adult rat to elucidate the muscarinic action of the atypical neuroleptics clozapine and olanzapine. We found that these drugs potently inhibited in situ muscarinic receptor activity.
Collapse
Affiliation(s)
| | - Lee F. Schroeder
- Medical Scientist Training Program, UCSD, La Jolla, CA
- Graduate Program in Neurosciences, UCSD, La Jolla, CA
| | - Marco Mank
- Max-Planck Institut für Neurobiologie, Martinsried, Germany
| | | | - Palmer Taylor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UCSD, La Jolla, CA
| | | | - David Kleinfeld
- Physics Department, UCSD, La Jolla, CA
- Graduate Program in Neurosciences, UCSD, La Jolla, CA
- Center for Neural Circuits and Behavior, UCSD, La Jolla, CA
| |
Collapse
|
5
|
Ortells MO, Barrantes GE. Tobacco addiction: a biochemical model of nicotine dependence. Med Hypotheses 2009; 74:884-94. [PMID: 19962246 DOI: 10.1016/j.mehy.2009.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/04/2009] [Accepted: 11/04/2009] [Indexed: 12/23/2022]
Abstract
Nicotine is the main psychoactive substance present in tobacco, targeting in the CNS the nicotinic acetylcholine receptors (nAChR). The main effects of nicotine associated with smoking are nAChR upregulation, nAChR desensitization and modulation of the dopaminergic system. However, there is a lack of a comprehensive explanation of their roles that effectively makes clear how nicotine dependence might be established on those grounds. Receptor upregulation is an unusual effect for a drug of abuse, because theoretically this implies less need for drug consumption. Receptor upregulation and receptor desensitization are commonly viewed as opposite, homeostatic mechanisms. We here analyze the available information under a model in which both receptor upregulation and receptor desensitization are responsible for establishing a mechanism of nicotine dependence, consequently having an important role in starting and maintaining tobacco addiction. We propose that negative feedbacks on dopamine release regulated by alpha4beta2 nAChRs are disrupted by nicotine. nAChR desensitization is the disrupting mechanism, while nAChR upregulation is the reinforcing process of nicotine dependence, which eventually initiates tobacco addiction. A conclusion of the model is that drugs used for smoking cessation should inhibit preferentially alpha4beta2 nAChRs and to have a low or null ability to upregulate nAChRs, as this characteristic allows the smoker to achieve downregulation without abstinence symptoms. A relationship between this hypothesis and smoking and schizophrenia is also discussed.
Collapse
Affiliation(s)
- Marcelo O Ortells
- Facultad de Medicina, Universidad de Morón - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | | |
Collapse
|
6
|
Atypical antipsychotics as noncompetitive inhibitors of alpha4beta2 and alpha7 neuronal nicotinic receptors. Neuropharmacology 2009; 57:183-91. [PMID: 19481556 DOI: 10.1016/j.neuropharm.2009.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/08/2009] [Accepted: 05/16/2009] [Indexed: 01/30/2023]
Abstract
It has been suggested that the interaction of antipsychotic medications with neuronal nicotinic receptors may increase the cognitive dysfunction associated with schizophrenia and may explain why current therapies only partially address this core feature of the illness. In the present studies we compared the effects of the atypical antipsychotics quetiapine, clozapine and N-desmethylclozapine to those of the typical antipsychotics haloperidol and chlorpromazine on the alpha4beta2 and alpha7 nicotinic receptor subtypes. The binding of [(3)H]-nicotine to rat cortical alpha4beta2 receptors and [(3)H]-methyllycaconitine to rat hippocampal alpha7 receptors was not affected by any of the compounds tested. However, Rb(+) efflux evoked either by nicotine or the selective alpha4beta2 agonist TC-1827 from alpha4beta2 receptors expressed in SH-EP1 cells and nicotine-evoked [(3)H]-dopamine release from rat striatal synaptosomes were non-competitively inhibited by all of the antipsychotics. Similarly, alpha-bungarotoxin-sensitive epibatidine-evoked [(3)H]-norepinephrine release from rat hippocampal slices and acetylcholine-activated currents of alpha7 nicotinic receptors expressed in oocytes were inhibited by haloperidol, chlorpromazine, clozapine and N-desmethylclozapine. The inhibitory effects on nicotinic receptor function produced by the antipsychotics tested occurred at concentrations similar to plasma levels achieved in schizophrenia patients, suggesting that they may lead to clinically relevant effects on cognition.
Collapse
|
7
|
Ochoa ELM, Lasalde-Dominicci J. Cognitive deficits in schizophrenia: focus on neuronal nicotinic acetylcholine receptors and smoking. Cell Mol Neurobiol 2008; 27:609-39. [PMID: 17554626 PMCID: PMC4676572 DOI: 10.1007/s10571-007-9149-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Accepted: 04/13/2007] [Indexed: 02/08/2023]
Abstract
Patients with schizophrenia present with deficits in specific areas of cognition. These are quantifiable by neuropsychological testing and can be clinically observable as negative signs. Concomitantly, they self-administer nicotine in the form of cigarette smoking. Nicotine dependence is more prevalent in this patient population when compared to other psychiatric conditions or to non-mentally ill people. The target for nicotine is the neuronal nicotinic acetylcholine receptor (nAChR). There is ample evidence that these receptors are involved in normal cognitive operations within the brain. This review describes neuronal nAChR structure and function, focusing on both cholinergic agonist-induced nAChR desensitization and nAChR up-regulation. The several mechanisms proposed for the nAChR up-regulation are examined in detail. Desensitization and up-regulation of nAChRs may be relevant to the physiopathology of schizophrenia. The participation of several subtypes of neuronal nAChRs in the cognitive processing of non-mentally ill persons and schizophrenic patients is reviewed. The role of smoking is then examined as a possible cognitive remediator in this psychiatric condition. Finally, pharmacological strategies focused on neuronal nAChRs are discussed as possible therapeutic avenues that may ameliorate the cognitive deficits of schizophrenia.
Collapse
Affiliation(s)
- Enrique L. M. Ochoa
- Department of Psychiatry, University of California at Davis, 2230 Stockton Boulevard, Sacramento, CA 95817, USA
| | - Jose Lasalde-Dominicci
- Department of Biology, University of Puerto Rico, Río Piedras Campus, P.O. Box 23360, San Juan 00931-3360, Puerto Rico
| |
Collapse
|
8
|
Steinkopf S, Schelderup AK, Gjerde HL, Pfeiffer J, Thoresen S, Gjerde AU, Holmsen H. The psychotropic drug olanzapine (Zyprexa) increases the area of acid glycerophospholipid monolayers. Biophys Chem 2008; 134:39-46. [PMID: 18249059 DOI: 10.1016/j.bpc.2008.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 01/07/2008] [Accepted: 01/08/2008] [Indexed: 11/27/2022]
Abstract
The typical antipsychotics chlorpromazine (CPZ) and trifluoperazine (TFP) increase the mean molecular area (mma) of acidic, but not neutral, glycerophospholipids in monolayers at pH 7.36 measured by the Langmuir technique. The atypical antipsychotic olanzapine (OLP(1)) is structurally similar to TFP. We have therefore studied the effects of OLP on glycerophospholipid monolayers and in comparison with CPZ. Olanzapine (10 microM, in subphase, pH 7.36) influenced the isotherms (surface pressure versus mma) in monolayers of the neutral dipalmitoyl phosphatidylcholine (DPPC) and the acidic dipalmitoyl phosphatidylserine (DPPS) or 1-palmitoyl-2-oleoylphosphatidylserine (POPS) in the increasing order of mma: DPPS<DPPC<POPS at both lower and higher temperature. Thus, presence of an unsaturated acyl in PS increased the drug-induced effect on mma. The mma in the absence of drugs was lower at lower temperatures than at higher temperatures. OLP affected mma to a greater extent than CPZ, and caused the greatest interaction at surface pressure of 30 mN/m at higher temperatures. In contrast, CPZ gave the largest effect in the monolayers at surface pressure 30 mN/m at lower temperatures. CPZ did not alter the isotherms of DPPC, at lower or higher temperature, and only affected the packing of the DPPS and POPS monolayers. In contrast, OLP altered the isotherms of DPPC. It is suggested that the drugs affect the monolayer packing by intercalating between the glycerophospholipid molecules. Since CPZ has major side effects, while OLP has few, this may indicate that there is poor correlation between side effects and effects of the drugs on phospholipid monolayers.
Collapse
Affiliation(s)
- Signe Steinkopf
- Department of Biomedical Laboratory Science, Bergen University College, Bergen, Norway.
| | | | | | | | | | | | | |
Collapse
|
9
|
Aaron JJ, Gaye Seye MD, Trajkovska S, Motohashi N. Bioactive Phenothiazines and Benzo[a]phenothiazines: Spectroscopic Studies, and Biological and Biomedical Properties and Applications. TOPICS IN HETEROCYCLIC CHEMISTRY 2008. [DOI: 10.1007/7081_2008_125] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
10
|
Nguyen QT, Miledi R. e-Phys: a suite of intracellular neurophysiology programs integrating COM (component object model) technologies. J Neurosci Methods 2003; 128:21-31. [PMID: 12948545 DOI: 10.1016/s0165-0270(03)00144-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Current computer programs for intracellular recordings often lack advanced data management, are usually incompatible with other applications and are also difficult to adapt to new experiments. We have addressed these shortcomings in e-Phys, a suite of electrophysiology applications for intracellular recordings. The programs in e-Phys use Component Object Model (COM) technologies available in the Microsoft Windows operating system to provide enhanced data storage, increased interoperability between e-Phys and other COM-aware applications, and easy customization of data acquisition and analysis thanks to a script-based integrated programming environment. Data files are extensible, hierarchically organized and integrated in the Windows shell by using the Structured Storage technology. Data transfers to and from other programs are facilitated by implementing the ActiveX Automation standard and distributed COM (DCOM). ActiveX Scripting allows experimenters to write their own event-driven acquisition and analysis programs in the VBScript language from within e-Phys. Scripts can reuse components available from other programs on other machines to create distributed meta-applications. This paper describes the main features of e-Phys and how this package was used to determine the effect of the atypical antipsychotic drug clozapine on synaptic transmission at the neuromuscular junction.
Collapse
Affiliation(s)
- Quoc-Thang Nguyen
- Laboratory of Cellular and Molecular Neurobiology, Department of Neurobiology and Behavior, UC Irvine, Irvine, CA 92697-4550, USA.
| | | |
Collapse
|
11
|
Nguyen QT, Miledi R. Inhibition of skeletal muscle nicotinic receptors by the atypical antipsychotic clozapine. Neuropharmacology 2002; 42:662-9. [PMID: 11985824 DOI: 10.1016/s0028-3908(02)00017-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have previously observed that certain atypical antipsychotic drugs reduce the amplitude and duration of miniature end-plate currents (EPCs) at the frog neuromuscular junction (Effects of atypical antipsychotics on vertebrate neuromuscular transmission, Nguyen, Q.-T., Yang, J., Miledi, R. Neuropharmacology 42, 2002, 670-676), therefore suggesting that these drugs act on nicotinic acetylcholine receptors. In this study we examined the effects of the atypical antipsychotic clozapine on nicotinic receptors of frog neuromuscular end-plates or in Xenopus oocytes expressing the alpha(1)beta(1)gamma delta mouse skeletal muscle nicotinic receptor. At neuromuscular junctions, postsynaptic currents were reduced by micromolar concentrations of clozapine. This compound also acted presynaptically by increasing the quantal content of EPCs of muscles without noticeably affecting paired-pulse facilitation. In oocytes, clozapine inhibited alpha(1)beta(1)gamma delta receptors with an IC(50) of 10 microM and a Hill coefficient of 1. Blockage of alpha(1)beta(1)gamma delta receptors by clozapine bears several hallmarks of open-channel blockers, including faster response decays, strong voltage dependence of the block, large rebound currents upon wash, and reduction of peak responses even at saturating concentrations of acetylcholine. However, clozapine increased the EC(50) for acetylcholine and its blocking effect was enhanced by preincubation. These results suggest that clozapine antagonizes muscle nicotinic receptors by blocking open channels, and possibly also by another mechanism which still remains to be investigated.
Collapse
Affiliation(s)
- Q-T Nguyen
- Laboratory of Cellular and Molecular Neurobiology, Department of Neurobiology and Behavior, University of California, Irvine, CA 92697-4550, USA
| | | |
Collapse
|