1
|
Sluchanko NN, Kapitonova AA, Shulepko MA, Kukushkin ID, Kulbatskii DS, Tugaeva KV, Varfolomeeva LA, Minyaev ME, Boyko KM, Popov VO, Kirpichnikov MP, Lyukmanova EN. Crystal structure reveals canonical recognition of the phosphorylated cytoplasmic loop of human alpha7 nicotinic acetylcholine receptor by 14-3-3 protein. Biochem Biophys Res Commun 2023; 682:91-96. [PMID: 37804592 DOI: 10.1016/j.bbrc.2023.09.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels composed of five homologous subunits. The homopentameric α7-nAChR, abundantly expressed in the brain, is involved in the regulation of the neuronal plasticity and memory and undergoes phosphorylation by protein kinase A (PKA). Here, we extracted native α7-nAChR from murine brain, validated its assembly by cryo-EM and showed that phosphorylation by PKA in vitro enables its interaction with the abundant human brain protein 14-3-3ζ. Bioinformatic analysis narrowed the putative 14-3-3-binding site down to the fragment of the intracellular loop (ICL) containing Ser365 (Q361RRCSLASVEMS372), known to be phosphorylated in vivo. We reconstructed the 14-3-3ζ/ICL peptide complex and determined its structure by X-ray crystallography, which confirmed the Ser365 phosphorylation-dependent canonical recognition of the ICL by 14-3-3. A common mechanism of nAChRs' regulation by ICL phosphorylation and 14-3-3 binding that potentially affects nAChR activity, stoichiometry, and surface expression is suggested.
Collapse
Affiliation(s)
- Nikolai N Sluchanko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| | - Anna A Kapitonova
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Mikhail A Shulepko
- Faculty of Biology, MSU-BIT Shenzhen University, Shenzhen, 518172, China
| | - Ilya D Kukushkin
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow region, 141701, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
| | - Dmitrii S Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
| | - Kristina V Tugaeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Larisa A Varfolomeeva
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Mikhail E Minyaev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin M Boyko
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Vladimir O Popov
- A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia; Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119234, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia; Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119234, Russia
| | - Ekaterina N Lyukmanova
- Faculty of Biology, MSU-BIT Shenzhen University, Shenzhen, 518172, China; Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny, Moscow region, 141701, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia; Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Biological Faculty, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119234, Russia.
| |
Collapse
|
2
|
Chen T, Cai C, Wang L, Li S, Chen L. Farnesyl Transferase Inhibitor Lonafarnib Enhances α7nAChR Expression Through Inhibiting DNA Methylation of CHRNA7 and Increases α7nAChR Membrane Trafficking. Front Pharmacol 2021; 11:589780. [PMID: 33447242 PMCID: PMC7801264 DOI: 10.3389/fphar.2020.589780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/15/2020] [Indexed: 11/25/2022] Open
Abstract
Inhibition of Ras farnesylation in acute has been found to upregulate the α7 nicotinic acetylcholine receptor (α7nAChR) activity. This study was carried out to investigate the effect of chronic administration for 7 days of farnesyl transferase inhibitor lonafarnib (50 mg/kg, intraperitoneally injected) to male mice on the expression and activity of α7nAChR in hippocampal CA1 pyramidal cells. Herein, we show that lonafarnib dose dependently enhances the amplitude of ACh-evoked inward currents (IACh), owning to the increased α7nAChR expression and membrane trafficking. Lonafarnib inhibited phosphorylation of c-Jun and JNK, which was related to DNA methylation. In addition, reduced DNA methyltransferase 1 (DNMT1) expression was observed in lonafarnib-treated mice, which was reversed by JNK activator. Lonafarnib-upregulated expression of α7nAChR was mimicked by DNMT inhibitor, and repressed by JNK activator. However, only inhibited DNA methylation did not affect IACh, and the JNK activator partially decreased the lonafarnib-upregulated IACh. On the other hand, lonafarnib also increased the membrane expression of α7nAChR, which was partially inhibited by JNK activator or CaMKII inhibitor, without changes in the α7nAChR phosphorylation. CaMKII inhibitor had no effect on the expression of α7nAChR. Lonafarnib-enhanced spatial memory of mice was also partially blocked by JNK activator or CaMKII inhibitor. These results suggest that Ras inhibition increases α7nAChR expression through depressed DNA methylation of CHRNA7 via Ras-c-Jun-JNK pathway, increases the membrane expression of α7nAChR resulting in part from the enhanced CaMKII pathway and total expression of this receptor, and consequently enhances the spatial memory.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China.,Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, China
| | - Chengyun Cai
- School of Life Science, Nantong University, Nantong, China
| | - Lifeng Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China.,Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, China
| | - Shixin Li
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China.,Jiangsu Province Key Laboratory of Inflammation and Molecular Drug Target, Nantong, China
| | - Ling Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Electrochemical studies of human nAChR a7 subunit phosphorylation by kinases PKA, PKC and Src. Anal Biochem 2019; 574:46-56. [DOI: 10.1016/j.ab.2019.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022]
|
4
|
Torrealba D, Balasch JC, Criado M, Tort L, Mackenzie S, Roher N. Functional evidence for the inflammatory reflex in teleosts: A novel α7 nicotinic acetylcholine receptor modulates the macrophage response to dsRNA. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:279-291. [PMID: 29501534 DOI: 10.1016/j.dci.2018.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
The inflammatory reflex modulates the innate immune system, keeping in check the detrimental consequences of overstimulation. A key player controlling the inflammatory reflex is the alpha 7 acetylcholine receptor (α7nAChR). This receptor is one of the signalling molecules regulating cytokine expression in macrophages. In this study, we characterize a novel teleost α7nAChR. Protein sequence analysis shows a high degree of conservation with mammalian orthologs and trout α7nAChR has all the features and essential amino acids to form a fully functional receptor. We demonstrate that trout macrophages can bind α-bungarotoxin (α-BTX), a competitive antagonist for α7nAChRs. Moreover, nicotine stimulation produces a decrease in pro-inflammatory cytokine expression after stimulation with poly(I:C). These results suggest the presence of a functional α7nAChR in the macrophage plasma membrane. Further, in vivo injection of poly(I:C) induced an increase in serum ACh levels in rainbow trout. Our results manifest for the first time the functional conservation of the inflammatory reflex in teleosts.
Collapse
Affiliation(s)
- Débora Torrealba
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Departament de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Joan Carles Balasch
- Departament de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Manuel Criado
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, 03550 Sant Joan d'Alacant, Spain
| | - Lluís Tort
- Departament de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Simon Mackenzie
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, United Kingdom.
| | - Nerea Roher
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; Departament de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
5
|
Chen T, Wang Y, Zhang T, Zhang B, Chen L, Zhao L, Chen L. Simvastatin Enhances Activity and Trafficking of α7 Nicotinic Acetylcholine Receptor in Hippocampal Neurons Through PKC and CaMKII Signaling Pathways. Front Pharmacol 2018; 9:362. [PMID: 29706890 PMCID: PMC5906710 DOI: 10.3389/fphar.2018.00362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/28/2018] [Indexed: 11/13/2022] Open
Abstract
Simvastatin (SV) enhances glutamate release and synaptic plasticity in hippocampal CA1 region upon activation of α7 nicotinic acetylcholine receptor (α7nAChR). In this study, we examined the effects of SV on the functional activity of α7nAChR on CA1 pyramidal cells using patch-clamp recording and explored the underlying mechanisms. We found that the treatment of hippocampal slices with SV for 2 h induced a dose-dependent increase in the amplitude of ACh-evoked inward currents (IACh) and the level of α7nAChR protein on the cell membrane without change in the level of α7nAChR phosphorylation. These SV-induced phenotypes were suppressed by addition of farnesol (FOH) that converts farnesyl pyrophosphate, but not geranylgeraniol. Similarly, the farnesyl transferase inhibitor FTI277 was able to increase the amplitude of IACh and enhance the trafficking of α7nAChR. The treatment with SV enhanced phosphorylation of CaMKII and PKC. The SV-enhanced phosphorylation of CaMKII rather than PKC was blocked by FOH, Src inhibitor PP2 or NMDA receptor antagonist MK801 and mimicked by FTI. The SV-enhanced phosphorylation of PKC was sensitive to the IP3R antagonist 2-APB. The SV-increased amplitude of IACh was suppressed by PKC inhibitor GF109203X and Go6983, or CaMKII inhibitor KN93. The SV- and FTI-enhanced trafficking of α7nAChR was sensitive to KN93, but not GF109203X or Go6983. The PKC activator PMA increased α7nAChR activity, but had no effect on trafficking of α7nAChR. Collectively, these results indicate that acute treatment with SV enhances the activity and trafficking of α7nAChR by increasing PKC phosphorylation and reducing farnesyl-pyrophosphate to trigger NMDA receptor-mediated CaMKII activation.
Collapse
Affiliation(s)
- Tingting Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Ya Wang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Tingting Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Baofeng Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Lei Chen
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Liandong Zhao
- Department of Neurology, Huaian Second People's Hospital, Huaian, China
| | - Ling Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
McDaid J, Abburi C, Wolfman SL, Gallagher K, McGehee DS. Ethanol-Induced Motor Impairment Mediated by Inhibition of α7 Nicotinic Receptors. J Neurosci 2016; 36:7768-78. [PMID: 27445152 PMCID: PMC4951579 DOI: 10.1523/jneurosci.0154-16.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED Nicotine and ethanol (EtOH) are among the most widely co-abused substances, and nicotinic acetylcholine receptors (nAChRs) contribute to the behavioral effects of both drugs. Along with their role in addiction, nAChRs also contribute to motor control circuitry. The α7 nAChR subtype is highly expressed in the laterodorsal tegmental nucleus (LDTg), a brainstem cholinergic center that contributes to motor performance through its projections to thalamic motor relay centers, including the mediodorsal thalamus. We demonstrate that EtOH concentrations just above the legal limits for intoxication in humans can inhibit α7 nAChRs in LDTg neurons from rats. This EtOH-induced inhibition is mediated by a decrease in cAMP/PKA signaling. The α7 nAChR-positive allosteric modulator PNU120596 [N-(5-chloro-2,4-dimethoxyphenyl)-N'-(5-methyl-3-isoxazolyl)-urea], which interferes with receptor desensitization, completely eliminated EtOH modulation of these receptors. These data suggest that EtOH inhibits α7 responses through a PKA-dependent enhancement of receptor desensitization. EtOH also inhibited the effects of nicotine at presynaptic α7 nAChRs on glutamate terminals in the mediodorsal thalamus. In vivo administration of PNU120596 either into the cerebral ventricles or directly into the mediodorsal thalamus attenuated EtOH-induced motor impairment. Thus, α7 nAChRs are likely important mediators of the motor impairing effects of moderate EtOH consumption. SIGNIFICANCE STATEMENT The motor-impairing effects of ethanol contribute to intoxication-related injury and death. Here we explore the cellular and neural circuit mechanisms underlying ethanol-induced motor impairment. Physiologically relevant concentrations of ethanol inhibit activity of a nicotinic receptor subtype that is expressed in brain areas associated with motor control. That receptor inhibition is mediated by decreased receptor phosphorylation, suggesting an indirect modulation of cell signaling pathways to achieve the physiological effects.
Collapse
Affiliation(s)
- John McDaid
- Department of Anesthesia and Critical Care and
| | | | - Shannon L Wolfman
- Committee on Neurobiology, University of Chicago, Chicago, Illinois 60637
| | | | - Daniel S McGehee
- Department of Anesthesia and Critical Care and Committee on Neurobiology, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
7
|
Komal P, Estakhr J, Kamran M, Renda A, Nashmi R. cAMP-dependent protein kinase inhibits α7 nicotinic receptor activity in layer 1 cortical interneurons through activation of D1/D5 dopamine receptors. J Physiol 2015; 593:3513-32. [PMID: 25990637 DOI: 10.1113/jp270469] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/13/2015] [Indexed: 01/11/2023] Open
Abstract
KEY POINTS Protein kinases can modify the function of many proteins including ion channels. However, the role of protein kinase A in modifying nicotinic receptors in the CNS has never been investigated. We showed through whole-cell recordings of layer 1 prefrontal cortical interneurons that α7 nicotinic responses are negatively modulated by protein kinase A. Furthermore, we show that stimulation of dopamine receptors can similarly attenuate α7 nicotinic responses through the activation of protein kinase A. These results suggest how the interaction of the cholinergic and dopaminergic systems may influence neuronal excitability in the brain. ABSTRACT Phosphorylation of ion channels, including nicotinic acetylcholine receptors (nAChRs), by protein kinases plays a key role in the modification of synaptic transmission and neuronal excitability. α7 nAChRs are the second most prevalent nAChR subtype in the CNS following α4β2. Serine 365 in the M3-M4 cytoplasmic loop of the α7 nAChR is a phosphorylation site for protein kinase A (PKA). D1/D5 dopamine receptors signal through the adenylate cyclase-PKA pathway and play a key role in working memory and attention in the prefrontal cortex. Thus, we examined whether the dopaminergic system, mediated through PKA, functionally interacts with the α7-dependent cholinergic neurotransmission. In layer 1 interneurons of mouse prefrontal cortex, α7 nicotinic currents were decreased upon stimulation with 8-Br-cAMP, a PKA activator. In HEK 293T cells, dominant negative PKA abolished 8-Br-cAMP's effect of diminishing α7 nicotinic currents, while a constitutively active PKA catalytic subunit decreased α7 currents. In brain slices, the PKA inhibitor KT-5720 nullified 8-Br-cAMP's effect of attenuating α7 nicotinic responses, while applying a PKA catalytic subunit in the pipette solution decreased α7 currents. 8-Br-cAMP stimulation reduced surface expression of α7 nAChRs, but there was no change in single-channel conductance. The D1/D5 dopamine receptor agonist SKF 83822 similarly attenuated α7 nicotinic currents from layer 1 interneurons and this attenuation of nicotinic current was prevented by KT-5720. These results demonstrate that dopamine receptor-mediated activation of PKA negatively modulates nicotinic neurotransmission in prefrontal cortical interneurons, which may be a contributing mechanism of dopamine modulation of cognitive behaviours such as attention or working memory.
Collapse
Affiliation(s)
- Pragya Komal
- Department of Biology, Centre for Biomedical Research, University of Victoria, British Columbia, Canada
| | - Jasem Estakhr
- Department of Biology, Centre for Biomedical Research, University of Victoria, British Columbia, Canada
| | - Melad Kamran
- Department of Biology, Centre for Biomedical Research, University of Victoria, British Columbia, Canada
| | - Anthony Renda
- Department of Biology, Centre for Biomedical Research, University of Victoria, British Columbia, Canada
| | - Raad Nashmi
- Department of Biology, Centre for Biomedical Research, University of Victoria, British Columbia, Canada
| |
Collapse
|
8
|
Stokes C, Treinin M, Papke RL. Looking below the surface of nicotinic acetylcholine receptors. Trends Pharmacol Sci 2015; 36:514-23. [PMID: 26067101 DOI: 10.1016/j.tips.2015.05.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 01/10/2023]
Abstract
The amino acid sequences of nicotinic acetylcholine receptors (nAChRs) from diverse species can be compared across extracellular, transmembrane, and intracellular domains. The intracellular domains are most divergent among subtypes, yet relatively consistent among species. The diversity indicates that each nAChR subtype has a unique language for communication with its host cell. The conservation across species also suggests that the intracellular domains have defining functional roles for each subtype. Secondary structure prediction indicates two relatively conserved alpha helices within the intracellular domains of all nAChRs. Among all subtypes, the intracellular domain of α7 nAChR is one of the most well conserved, and α7 nAChRs have effects in non-neuronal cells independent of generating ion currents, making it likely that the α7 intracellular domain directly mediates signal transduction. There are potential phosphorylation and protein-binding sites in the α7 intracellular domain, which are conserved and may be the basis for α7-mediated signal transduction.
Collapse
Affiliation(s)
- Clare Stokes
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA
| | - Millet Treinin
- Department of Medical Neurobiology, Hadassah Medical School, Hebrew University, Jerusalem 91120, Israel
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
9
|
The linoleic acid derivative DCP-LA increases membrane surface localization of the α7 ACh receptor in a protein 4.1N-dependent manner. Biochem J 2013; 450:303-9. [DOI: 10.1042/bj20121348] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In yeast two-hybrid screening, protein 4.1N, a scaffolding protein, was identified as a binding partner of the α7 ACh (acetylcholine) receptor. For rat hippocampal slices, the linoleic acid derivative DCP-LA {8-[2-(2-pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid} increased the association of the α7 ACh receptor with 4.1N, and the effect was inhibited by GF109203X, an inhibitor of PKC (protein kinase C), although DCP-LA did not induce PKC phosphorylation of 4.1N. For PC-12 cells, the presence of the α7 ACh receptor in the plasma membrane fraction was significantly suppressed by knocking down 4.1N. DCP-LA increased the presence of the α7 ACh receptor in the plasma membrane fraction, and the effect was still inhibited by knocking down 4.1N. In the monitoring of α7 ACh receptor mobilization, DCP-LA enhanced signal intensities for the α7 ACh receptor at the membrane surface in PC-12 cells, which was clearly prevented by knocking down 4.1N. Taken together, the results of the present study show that 4.1N interacts with the α7 ACh receptor and participates in the receptor tethering to the plasma membrane. The results also indicate that DCP-LA increases membrane surface localization of the α7 ACh receptor in a 4.1N-dependent manner under the control of PKC, but without phosphorylating 4.1N.
Collapse
|
10
|
Becchetti A. Neuronal nicotinic receptors in sleep-related epilepsy: studies in integrative biology. ISRN BIOCHEMISTRY 2012; 2012:262941. [PMID: 25969754 PMCID: PMC4392997 DOI: 10.5402/2012/262941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/21/2012] [Indexed: 11/23/2022]
Abstract
Although Mendelian diseases are rare, when considered one by one, overall they constitute a significant social burden. Besides the medical aspects, they propose us one of the most general biological problems. Given the simplest physiological perturbation of an organism, that is, a single gene mutation, how do its effects percolate through the hierarchical biological levels to determine the pathogenesis? And how robust is the physiological system to this perturbation? To solve these problems, the study of genetic epilepsies caused by mutant ion channels presents special advantages, as it can exploit the full range of modern experimental methods. These allow to extend the functional analysis from single channels to whole brains. An instructive example is autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), which can be caused by mutations in neuronal nicotinic acetylcholine receptors. In vitro, such mutations often produce hyperfunctional receptors, at least in heterozygous condition. However, understanding how this leads to sleep-related frontal epilepsy is all but straightforward. Several available animal models are helping us to determine the effects of ADNFLE mutations on the mammalian brain. Because of the complexity of the cholinergic regulation in both developing and mature brains, several pathogenic mechanisms are possible, which also present different therapeutic implications.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
11
|
Kanno T, Shimizu T, Tanaka A, Nishimoto T, Nishizaki T. Free fatty acid derivative HUHS2002 potentiates α7 ACh receptor responses through indirect activation of CaMKII. Lipids 2012; 47:865-71. [PMID: 22820984 DOI: 10.1007/s11745-012-3701-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 06/28/2012] [Indexed: 10/28/2022]
Abstract
The present study examined the effect of 4-[4-(Z)-hept-1-enyl-phenoxy] butyric acid (HUHS2002), a free fatty acid derivative, on α7 acetylcholine (ACh) receptor responses. HUHS2002 potentiated whole-cell membrane currents through α7 ACh receptors expressed in Xenopus oocytes in a concentration (1-100 nM)-dependent manner, reaching about 140 % of the original amplitude at 100 nM 50 min after a 10-min treatment. The HUHS2002 effect was prevented by KN-93, an inhibitor of Ca²⁺/calmodulin-dependent protein kinase II (CaMKII), while it was not affected by GF109203X, an inhibitor of protein kinase C (PKC), or H-89, an inhibitor of protein kinase A (PKA). In the in situ CaMKII assay using cultured rat hippocampal neurons, HUHS2002 activated CaMKII and the activation was abolished by KN-93. In the cell-free assay of protein phosphatase 1 (PP1), HUHS2002 partially inhibited PP1 activity. Taken together, these results indicate that HUHS2002 potentiates α7 ACh receptor responses by indirectly activating CaMKII, possibly via inhibition of PP1.
Collapse
Affiliation(s)
- Takeshi Kanno
- Division of Bioinformation, Department of Physiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya 663-8501, Japan
| | | | | | | | | |
Collapse
|
12
|
Abstract
Cys-loop receptors are membrane-spanning neurotransmitter-gated ion channels that are responsible for fast excitatory and inhibitory transmission in the peripheral and central nervous systems. The best studied members of the Cys-loop family are nACh, 5-HT3, GABAA and glycine receptors. All these receptors share a common structure of five subunits, pseudo-symmetrically arranged to form a rosette with a central ion-conducting pore. Some are cation selective (e.g. nACh and 5-HT3) and some are anion selective (e.g. GABAA and glycine). Each receptor has an extracellular domain (ECD) that contains the ligand-binding sites, a transmembrane domain (TMD) that allows ions to pass across the membrane, and an intracellular domain (ICD) that plays a role in channel conductance and receptor modulation. Cys-loop receptors are the targets for many currently used clinically relevant drugs (e.g. benzodiazepines and anaesthetics). Understanding the molecular mechanisms of these receptors could therefore provide the catalyst for further development in this field, as well as promoting the development of experimental techniques for other areas of neuroscience.In this review, we present our current understanding of Cys-loop receptor structure and function. The ECD has been extensively studied. Research in this area has been stimulated in recent years by the publication of high-resolution structures of nACh receptors and related proteins, which have permitted the creation of many Cys loop receptor homology models of this region. Here, using the 5-HT3 receptor as a typical member of the family, we describe how homology modelling and ligand docking can provide useful but not definitive information about ligand interactions. We briefly consider some of the many Cys-loop receptors modulators. We discuss the current understanding of the structure of the TMD, and how this links to the ECD to allow channel gating, and consider the roles of the ICD, whose structure is poorly understood. We also describe some of the current methods that are beginning to reveal the differences between different receptor states, and may ultimately show structural details of transitions between them.
Collapse
|
13
|
Modulation of brain-derived neurotrophic factor (BDNF) actions in the nervous system by adenosine A(2A) receptors and the role of lipid rafts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1340-9. [PMID: 20603099 DOI: 10.1016/j.bbamem.2010.06.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 06/23/2010] [Accepted: 06/27/2010] [Indexed: 12/11/2022]
Abstract
In this paper we review some novel aspects related to the way adenosine A(2A) receptors (A(2A)R) modulate the action of BDNF or its high-affinity receptors, the TrkB receptors, on synaptic transmission and plasticity, as well as upon cholinergic currents and GABA transporters. Evidence has been accumulating that adenosine A(2A)Rs are required for most of the synaptic actions of BDNF. In some cases, where A(2A)Rs are constitutively activated (e.g. by endogenous extracellular adenosine), the need for A(2A)R activation for the maintenance of the synaptic influences of BDNF can be envisaged from the loss of BDNF effects upon blockade of adenosine A(2A)Rs or upon removal of extracellular adenosine with adenosine deaminase. In some other cases, it is necessary to enhance extracellular adenosine levels (e.g. depolarization) or to further activate A(2A)Rs (e.g. with selective agonists) to trigger a BDNF neuromodulatory role at the synapses. Age- and cell-dependent differences may determine the above two possibilities, but in all cases it is quite clear that there is close interplay between adenosine A(2A)Rs and BDNF TrkB receptors at synapses. The role of lipid rafts in this cross-talk will be discussed. This article is part of a Special Issue entitled: "Adenosine Receptors".
Collapse
|
14
|
López-Hernández GY, Biaggi-Labiosa NM, Torres-Cintrón A, Ortiz-Acevedo A, Lasalde-Dominicci JA. Contribution of position alpha4S336 on functional expression and up-regulation of alpha4beta2 neuronal nicotinic receptors. Cell Mol Neurobiol 2008; 29:41-53. [PMID: 18818999 DOI: 10.1007/s10571-008-9293-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 06/20/2008] [Indexed: 12/01/2022]
Abstract
Phosphorylation of the nicotinic acetylcholine receptor (nAChR) is believed to play a critical role in its nicotine-induced desensitization and up-regulation. We examined the contribution of a consensus PKC site in the alpha4 M3/M4 intracellular loop (alpha4S336) on the desensitization and up-regulation of alpha4beta2 nAChRs expressed in oocytes. Position alpha4S336 was replaced with either alanine to abolish potential phosphorylation at this site or with aspartic acid to mimic phosphorylation at this same site. Mutations alpha4S336A and alpha4S336D displayed a threefold increase in the ACh-induced response and an increase in ACh EC(50). Epibatidine binding revealed a three and sevenfold increase in surface expression for the alpha4S336A and alpha4S336D mutations, respectively, relative to wild-type, therefore, both mutations enhanced expression of the alpha4beta2 nAChR. Interestingly, the EC(50)'s and peak currents for nicotine activation remained unaffected in both mutants. Both mutations abolished the nicotine-induced up-regulation that is normally observed in the wild-type. The present data suggest that adding or removing a negative charge at this phosphorylation site cannot be explained by a simple straightforward on-and-off mechanism; rather a more complex mechanism(s) may govern the functional expression of the alpha4beta2 nAChR. Along the same line, our data support the idea that phosphorylation at multiple consensus sites in the alpha4 subunit could play a remarkable role on the regulation of the functional expression of the alpha4beta2 nAChR.
Collapse
|
15
|
Postsynaptic action of brain-derived neurotrophic factor attenuates alpha7 nicotinic acetylcholine receptor-mediated responses in hippocampal interneurons. J Neurosci 2008; 28:5611-8. [PMID: 18495895 DOI: 10.1523/jneurosci.5378-07.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nicotinic mechanisms acting on the hippocampus influence attention, learning, and memory and constitute a significant therapeutic target for many neurodegenerative, neurological, and psychiatric disorders. Here, we report that brain-derived neurotrophic factor (BDNF) (1-100 ng/ml), a member of the neurotrophin gene family, rapidly decreases alpha7 nicotinic acetylcholine receptor responses in interneurons of the hippocampal CA1 stratum radiatum. Such effect is dependent on the activation of the TrkB receptor and involves the actin cytoskeleton; noteworthy, it is compromised when the extracellular levels of the endogenous neuromodulator adenosine are reduced with adenosine deaminase (1 U/ml) or when adenosine A(2A) receptors are blocked with SCH 58261 (2-(2-furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine) (100 nm). The intracellular application of U73122 (1-[6[[(17beta)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione) (5 mum), a broad-spectrum inhibitor of phospholipase C, or GF 109203X (bisindolylmaleimide I) (2 mum), a general inhibitor of protein kinase C isoforms, blocks BDNF-induced inhibition of alpha7 nicotinic acetylcholine receptor function. Moreover, in conditions of simultaneous intracellular dialysis of the fast Ca(2+) chelator BAPTA (10 mm) and removal of extracellular Ca(2+) ions, the inhibitory action of BDNF is further prevented. The present findings disclose a novel target for rapid actions of BDNF that might play important roles on synaptic transmission and plasticity in the brain.
Collapse
|
16
|
Ochoa ELM, Lasalde-Dominicci J. Cognitive deficits in schizophrenia: focus on neuronal nicotinic acetylcholine receptors and smoking. Cell Mol Neurobiol 2008; 27:609-39. [PMID: 17554626 PMCID: PMC4676572 DOI: 10.1007/s10571-007-9149-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Accepted: 04/13/2007] [Indexed: 02/08/2023]
Abstract
Patients with schizophrenia present with deficits in specific areas of cognition. These are quantifiable by neuropsychological testing and can be clinically observable as negative signs. Concomitantly, they self-administer nicotine in the form of cigarette smoking. Nicotine dependence is more prevalent in this patient population when compared to other psychiatric conditions or to non-mentally ill people. The target for nicotine is the neuronal nicotinic acetylcholine receptor (nAChR). There is ample evidence that these receptors are involved in normal cognitive operations within the brain. This review describes neuronal nAChR structure and function, focusing on both cholinergic agonist-induced nAChR desensitization and nAChR up-regulation. The several mechanisms proposed for the nAChR up-regulation are examined in detail. Desensitization and up-regulation of nAChRs may be relevant to the physiopathology of schizophrenia. The participation of several subtypes of neuronal nAChRs in the cognitive processing of non-mentally ill persons and schizophrenic patients is reviewed. The role of smoking is then examined as a possible cognitive remediator in this psychiatric condition. Finally, pharmacological strategies focused on neuronal nAChRs are discussed as possible therapeutic avenues that may ameliorate the cognitive deficits of schizophrenia.
Collapse
Affiliation(s)
- Enrique L. M. Ochoa
- Department of Psychiatry, University of California at Davis, 2230 Stockton Boulevard, Sacramento, CA 95817, USA
| | - Jose Lasalde-Dominicci
- Department of Biology, University of Puerto Rico, Río Piedras Campus, P.O. Box 23360, San Juan 00931-3360, Puerto Rico
| |
Collapse
|
17
|
Tsuneki H, Kobayashi S, Takagi K, Kagawa S, Tsunoda M, Murata M, Matsuoka T, Wada T, Kurachi M, Kimura I, Sasaoka T. Novel G423S Mutation of Human α7 Nicotinic Receptor Promotes Agonist-Induced Desensitization by a Protein Kinase C-Dependent Mechanism. Mol Pharmacol 2006; 71:777-86. [PMID: 17132684 DOI: 10.1124/mol.106.030866] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The alpha7 nicotinic acetylcholine receptor subunit (CHRNA7) gene harbors a high degree of polymorphism. In this study, we found a novel variant (1267 G to A) in exon 10 of the CHRNA7 gene in a Japanese population. This variant results in glycine-to-serine substitution at position 423 (G423S) located in the large cytoplasmic loop of the protein. To clarify the possibility that the G423S mutation alters the pharmacological properties of alpha7 receptors, acetylcholine (ACh)-elicited current through alpha7-G423S mutant receptors expressed in Xenopus laevis oocytes was measured using the two-electrode voltage-clamp technique. We found that the current elicited by ACh (1 mM, 5 s) through alpha7-G423S receptors, but not through alpha7 receptors, was significantly decreased by treatment with a protein kinase C activator, phorbol-12-myristate-13-acetate (PMA, 10-30 nM). In addition, PMA (10 nM) selectively promoted a progressive decrease in alpha7-G423S current induced by repetitive application of ACh pulses (1 mM, 0.1 s, 0.17-0.33 Hz) compared with alpha7 current. PMA also enhanced the inactivation of alpha7-G423S mutant receptors induced by a prolonged application of choline (30 microM) without affecting alpha7 receptor responses. Western blot analysis showed that the treatment with PMA (30 nM) increased the serine phosphorylation level of the alpha7-G423S mutant receptors but not that of the wild-type receptors. These findings demonstrate that the G423S mutation promotes receptor desensitization by a protein kinase C-dependent mechanism. Thus, we provide the first evidence that a variant in the human CHRNA7 gene alters the function of alpha7 nicotinic receptors.
Collapse
Affiliation(s)
- Hiroshi Tsuneki
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cho CH, Song W, Leitzell K, Teo E, Meleth AD, Quick MW, Lester RAJ. Rapid upregulation of alpha7 nicotinic acetylcholine receptors by tyrosine dephosphorylation. J Neurosci 2005; 25:3712-23. [PMID: 15814802 PMCID: PMC6725387 DOI: 10.1523/jneurosci.5389-03.2005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Revised: 03/02/2005] [Accepted: 03/02/2005] [Indexed: 11/21/2022] Open
Abstract
Alpha7 nicotinic acetylcholine receptors (nAChRs) modulate network activity in the CNS. Thus, functional regulation of alpha7 nAChRs could influence the flow of information through various brain nuclei. It is hypothesized here that these receptors are amenable to modulation by tyrosine phosphorylation. In both Xenopus oocytes and rat hippocampal interneurons, brief exposure to a broad-spectrum protein tyrosine kinase inhibitor, genistein, specifically and reversibly potentiated alpha7 nAChR-mediated responses, whereas a protein tyrosine phosphatase inhibitor, pervanadate, caused depression. Potentiation was associated with an increased expression of surface alpha7 subunits and was not accompanied by detectable changes in receptor open probability, implying that the increased function results from an increased number of alpha7 nAChRs. Soluble N-ethylmaleimide-sensitive factor attachment protein receptor-mediated exocytosis was shown to be a plausible mechanism for the rapid delivery of additional alpha7 nAChRs to the plasma membrane. Direct phosphorylation/dephosphorylation of alpha7 subunits was unlikely because mutation of all three cytoplasmic tyrosine residues did not prevent the genistein-mediated facilitation. Overall, these data are consistent with the hypothesis that the number of functional cell surface alpha7 nAChRs is controlled indirectly via processes involving tyrosine phosphorylation.
Collapse
Affiliation(s)
- Chang-Hoon Cho
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0021, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Braga MFM, Pereira EFR, Mike A, Albuquerque EX. Pb2+ via protein kinase C inhibits nicotinic cholinergic modulation of synaptic transmission in the hippocampus. J Pharmacol Exp Ther 2004; 311:700-10. [PMID: 15226386 DOI: 10.1124/jpet.104.070466] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study was designed to investigate the effects of Pb(2+) on modulation of synaptic transmission by nicotinic receptors (nAChRs) in the rat hippocampus. To this end, inhibitory and excitatory postsynaptic currents (IPSCs and EPSCs, respectively) were recorded by means of the whole-cell mode of the patch-clamp technique from rat hippocampal neurons in culture. Acetylcholine (ACh, 1 mM; 1-s pulses) triggered GABA release via activation of alpha4beta2* and alpha7* nAChRs. It also triggered glutamate release via activation of alpha7* nAChRs. Pb(2+) (0.1 and 1 microM) blocked ACh-triggered transmitter release. Blockade by Pb(2+) of ACh-triggered IPSCs was partially reversible upon washing of the neurons. In contrast, even after 30- to 60-min washing, there was no reversibility of Pb(2+)-induced blockade of ACh-triggered EPSCs. The effects of Pb(2+) on GABA release triggered by activation of alpha7* and alpha4beta2* nACRs were mimicked by the protein kinase C (PKC) activator phorbol-12-myristate-13-acetate (1 microM) and blocked by the indolocarbazole Go 7874 (50 nM) and the bisindolylmaleimide Ro-31-8425 (150 nM), which are selective PKC inhibitors. After washing of fully functional neuronal networks that had been exposed for 5 min to Pb(2+), the irreversible inhibition by Pb(2+) of ACh-triggered glutamate release was partially overridden by a disinhibitory mechanism that is likely to involve alpha4beta2* nAChR activation in interneurons that synapse onto other interneurons synapsing onto pyramidal neurons. Long-lasting inhibition of alpha7* nAChR modulation of synaptic transmission may contribute to the persistent cognitive impairment that results from childhood Pb(2+) intoxication.
Collapse
Affiliation(s)
- Maria F M Braga
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, 655 West Baltimore St., Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
20
|
Nicotinic acetylcholine receptors in the nervous system. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/s1569-2558(03)32012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
21
|
Hogg RC, Raggenbass M, Bertrand D. Nicotinic acetylcholine receptors: from structure to brain function. Rev Physiol Biochem Pharmacol 2003; 147:1-46. [PMID: 12783266 DOI: 10.1007/s10254-003-0005-1] [Citation(s) in RCA: 365] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels and can be divided into two groups: muscle receptors, which are found at the skeletal neuromuscular junction where they mediate neuromuscular transmission, and neuronal receptors, which are found throughout the peripheral and central nervous system where they are involved in fast synaptic transmission. nAChRs are pentameric structures that are made up of combinations of individual subunits. Twelve neuronal nAChR subunits have been described, alpha2-alpha10 and beta2-beta4; these are differentially expressed throughout the nervous system and combine to form nAChRs with a wide range of physiological and pharmacological profiles. The nAChR has been proposed as a model of an allosteric protein in which effects arising from the binding of a ligand to a site on the protein can lead to changes in another part of the molecule. A great deal is known about the structure of the pentameric receptor. The extracellular domain contains binding sites for numerous ligands, which alter receptor behavior through allosteric mechanisms. Functional studies have revealed that nAChRs contribute to the control of resting membrane potential, modulation of synaptic transmission and mediation of fast excitatory transmission. To date, ten genes have been identified in the human genome coding for the nAChRs. nAChRs have been demonstrated to be involved in cognitive processes such as learning and memory and control of movement in normal subjects. Recent data from knockout animals has extended the understanding of nAChR function. Dysfunction of nAChR has been linked to a number of human diseases such as schizophrenia, Alzheimer's and Parkinson's diseases. nAChRs also play a significant role in nicotine addiction, which is a major public health concern. A genetically transmissible epilepsy, ADNFLE, has been associated with specific mutations in the gene coding for the alpha4 or beta2 subunits, which leads to altered receptor properties.
Collapse
Affiliation(s)
- R C Hogg
- Department of Physiology, CMU, 1 rue Michel Servet, 1211 Geneva 4, Switzerland.
| | | | | |
Collapse
|
22
|
Quick MW, Lester RAJ. Desensitization of neuronal nicotinic receptors. JOURNAL OF NEUROBIOLOGY 2002; 53:457-78. [PMID: 12436413 DOI: 10.1002/neu.10109] [Citation(s) in RCA: 354] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The loss of functional response upon continuous or repeated exposure to agonist, desensitization, is an intriguing phenomenon if not as yet a well-defined physiological mechanism. However, detailed evaluation of the properties of desensitization, especially for the superfamily of ligand-gated ion channels, reveals how the nervous system could make important use of this process that goes far beyond simply curtailing excessive receptor stimulation and the prevention of excitotoxicity. Here we will review the mechanistic basis of desensitization and discuss how the subunit-dependent properties and regulation of nicotinic acetylcholine receptor (nAChR) desensitization contribute to the functional diversity of these channels. These studies provide the essential framework for understanding how the physiological regulation of desensitization could be a major determinant of synaptic efficacy by controlling, in both the short and long term, the number of functional receptors. This type of mechanism can be extended to explain how the continuous occupation of desensitized receptors during chronic nicotine exposure contributes to drug addiction, and highlights the potential significance of prolonged nAChR desensitization that would also occur as a result of extended acetylcholine lifetime during treatment of Alzheimer's disease with cholinesterase inhibitors. Thus, a clearer picture of the importance of nAChR desensitization in both normal information processing and in various diseased states is beginning to emerge.
Collapse
Affiliation(s)
- Michael W Quick
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | |
Collapse
|
23
|
Abstract
Neuronal nicotinic acetylcholine receptors are a prototype of ligand-gated channels that mediate transmission in the central and peripheral nervous system. Structure-function studies performed at the amino acid level are now unraveling the determinant residues either for the properties of the ligand-binding domain or the ionic pore. In this work we review, in the light of the latest finding, the structure-function relationship of these receptors and their implication in neurological diseases.
Collapse
Affiliation(s)
- V Itier
- Department of Physiology, CMU, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland
| | | |
Collapse
|
24
|
Cibelli G, Corsi P, Diana G, Vitiello F, Thiel G. Corticotropin-releasing factor triggers neurite outgrowth of a catecholaminergic immortalized neuron via cAMP and MAP kinase signalling pathways. Eur J Neurosci 2001; 13:1339-48. [PMID: 11298794 DOI: 10.1046/j.0953-816x.2001.01510.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Corticotropin-releasing factor (CRF), a neuropeptide of 41 amino acids, acts as the major physiological regulator of the basal and stress-induced release of corticotropin (ACTH), beta-endorphin and other proopiomelanocortin-derived peptides from the anterior pituitary gland. In addition to its endocrine activity, CRF displays extrahypophysiotropic effects, mainly as a regulator of stress responses. We show here that CRF may additionally function as a differentiating factor in immortalized noradrenergic neuronal CATH.a cells that express CRF receptor type I and resemble locus coeruleus-derived neurons. CRF triggers morphological changes in CATH.a cells including the appearance of extended long, slender neurites with prominent growth cones. CRF-treated CATH.a cells exhibit a morphology similar to locus coeruleus neurons in primary culture. CRF-induced neurite outgrowth of CATH.a cells was blocked by addition of inhibitors for cAMP-dependent protein kinase or extracellular signal-regulated protein kinase (ERK), a subtype of the mitogen-activated protein kinases. The participation of ERK within the CRF signalling cascade was further confirmed by Western blot experiments, with antibodies directed against the phosphorylated form of ERK, and also with transcription-based assays. We conclude that CRF functions as a differentiating factor of CATH.a cells via the cAMP and the MAP kinase signalling pathways.
Collapse
Affiliation(s)
- G Cibelli
- Department of Pharmacology and Human Physiology, Medical Faculty, University of Bari, I-70124 Bari, Italy
| | | | | | | | | |
Collapse
|
25
|
Wecker L, Guo X, Rycerz AM, Edwards SC. Cyclic AMP-dependent protein kinase (PKA) and protein kinase C phosphorylate sites in the amino acid sequence corresponding to the M3/M4 cytoplasmic domain of alpha4 neuronal nicotinic receptor subunits. J Neurochem 2001; 76:711-20. [PMID: 11158241 DOI: 10.1046/j.1471-4159.2001.00041.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To determine whether alpha4 subunits of alpha4beta2 neuronal nicotinic receptors are phosphorylated within the M3/M4 intracellular region by cyclic AMP-dependent protein kinase A (PKA) or protein kinase C (PKC), immunoprecipitated receptors from Xenopus oocytes and a fusion protein corresponding to the M3/M4 cytoplasmic domain of alpha4 (alpha4(336-597)) were incubated with ATP and either PKA or PKC. Both alpha4 and alpha4(336-597) were phosphorylated by PKA and PKC, providing the first direct biochemical evidence that the M3/M4 cytoplasmic domain of neuronal nicotinic receptor alpha4 subunits is phosphorylated by both kinases. When the immunoprecipitated receptors and the alpha4(336-597) fusion protein were phosphorylated and the labeled proteins subjected to phosphoamino acid analysis, results indicated that alpha4 and alpha4(336-597) were phosphorylated on the same amino acid residues by each kinase. Furthermore, PKA phosphorylated serines exclusively, whereas PKC phosphorylated both serines and threonines. To determine whether Ser(368) was a substrate for both kinases, a peptide corresponding to amino acids 356-371 was synthesized (alpha4(356-371)) and incubated with ATP and the kinases. The phosphorylation of alpha4(356-371) by both PKA and PKC was saturable with K(m)s of 15.3 +/- 3.3 microM and 160.8 +/- 26.8 microM, respectively, suggesting that Ser(368) was a better substrate for PKA than PKC.
Collapse
Affiliation(s)
- L Wecker
- Department of Pharmacology and Therapeutics, University of South Florida College of Medicine, Tampa, Florida, USA.
| | | | | | | |
Collapse
|
26
|
Abstract
Nicotinic acetylcholine receptors in the nervous system are heterogeneous with distinct pharmacological and functional properties resulting from differences in post-translational processing and subunit composition. Because of nicotinic receptor diversity, receptor purification and biochemical characterization have been difficult, and the precise subunit composition of each receptor subtype is poorly characterized. Evidence is presented that alpha-bungarotoxin (Bgt)-binding nicotinic receptors found in pheochromocytoma 12 (PC12) cells are pentamers composed solely of alpha7 subunits. Metabolically labeled, affinity-purified Bgt receptors (BgtRs) consisted of a single 55 kDa band on SDS gels, which was recognized by anti-alpha7 antibodies on immunoblots. Isoelectric focusing separated the 55 kDa band into multiple spots, all recognized by anti-alpha7 antibodies and, therefore, each a differentially processed alpha7 subunit. Cell-surface BgtR subunits, cross-linked to each other and (125)I-Bgt, migrated on gels as a ladder of five bands with each band a multiple of an alpha7 subunit monomer. Similar characteristics of BgtRs from rat brain suggest that they, like PC12 BgtRs, are alpha7 pentamers containing differentially processed alpha7 subunits.
Collapse
|
27
|
Actin filaments and the opposing actions of CaM kinase II and calcineurin in regulating alpha7-containing nicotinic receptors on chick ciliary ganglion neurons. J Neurosci 1999. [PMID: 10575025 DOI: 10.1523/jneurosci.19-23-10280.1999] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nicotinic acetylcholine receptors containing alpha7 subunits have a high relative permeability to calcium and influence numerous calcium-dependent cellular events. On chick ciliary ganglion neurons the receptors are concentrated on somatic spines containing actin filaments. Using conventional whole-cell patch-clamp recording from dissociated ciliary ganglion neurons, we show that responses from alpha7-containing receptors undergo substantial rundown when the receptors are repeatedly challenged with nicotine. Stabilization of actin filaments with phalloidin partially prevents the rundown, whereas collapse of actin filaments with latrunculin A exacerbates it. The rundown depends on calcium influx through the receptors because it requires receptor activation and can be prevented by replacing extracellular calcium with barium or by intracellular dialysis with BAPTA. Thapsigargin and ryanodine each inhibit the rundown, demonstrating further a requirement for calcium release from internal stores. Blockade of calmodulin by calmidazolium or blockade of CaM kinase II with either KN93 or autocamtide-2-related inhibitory peptide each prevents the rundown; blockade of the phosphatase calcineurin with either cyclosporin A or deltamethrin increases the rundown. The results indicate a balance of calcium-dependent kinase and phosphatase activities in regulating the function of alpha7-containing receptors. Manifestation of the rundown depends in part on the loss of intracellular components via dialysis because little rundown is seen if perforated patch-clamp recording is used to monitor receptor responses even in latrunculin A-treated cells. A membrane-permeable calcineurin inhibitor, however, still decreases the nicotinic response in a calcium-dependent manner, confirming that calcium-dependent phosphoregulation of alpha7-containing receptors occurs in the intact cell.
Collapse
|
28
|
Pituitary adenylate cyclase-activating polypeptide activates a phospholipase C-dependent signal pathway in chick ciliary ganglion neurons that selectively inhibits alpha7-containing nicotinic receptors. J Neurosci 1999. [PMID: 10414962 DOI: 10.1523/jneurosci.19-15-06327.1999] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuropeptide receptors couple via G-proteins to two principal signaling pathways that elevate cAMP through adenylate cyclase (AC) or mobilize intracellular Ca(2+) through phospholipase C (PLC)-stimulated inositol phosphate (IP) turnover and production of inositol 1,4,5-trisphosphate (IP(3)). We showed previously that high-affinity receptors for pituitary adenylate cyclase-activating polypeptide (PACAP) are present on chick ciliary ganglion neurons and that receptor occupation increases cAMP production, resulting in enhanced acetylcholine sensitivity. After we suppressed AC activity and cAMP production with 2'-5' dideoxyadenosine, however, PACAP no longer increased acetylcholine sensitivity but instead reduced it, suggesting that an AC-independent signal pathway activated by PACAP inhibits some nicotinic acetylcholine receptors (AChRs). We now use fast-perfusion, imaging, and biochemical methods to identify the AChRs modulated by PACAP and to characterize the signal pathway responsible for their inhibition. Without previous AC block, both the rapidly desensitizing, alpha-bungarotoxin (alphaBgt)-sensitive alpha7-AChRs and the slowly desensitizing, alphaBgt-insensitive alpha3*-AChRs on the neurons were potentiated by PACAP. After AC blockade, however, PACAP inhibited alpha7-AChRs but left alpha3*-AChRs unaffected. The selective inhibition of alpha7-AChRs appeared to use a PLC signaling pathway because it was not seen after lowering PLC activity or buffering intracellular Ca(2+) and was mimicked by dialyzing neurons with an IP(3) receptor agonist. PACAP also induced IP turnover and increased [Ca(2+)](i) assessed directly with Fluo-3AM imaging. Given our previous findings that PACAP receptors couple to AC, the present results demonstrate a remarkable ability of a single neuropeptide to activate two signaling pathways and in so doing selectively regulate two classes of downstream ion channel targets.
Collapse
|
29
|
Thiel G, Cibelli G. Corticotropin-releasing factor and vasoactive intestinal polypeptide activate gene transcription through the cAMP signaling pathway in a catecholaminergic immortalized neuron. Neurochem Int 1999; 34:183-91. [PMID: 10355485 DOI: 10.1016/s0197-0186(98)00086-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Corticotropin-releasing factor (CRF) and vasoactive intestinal polypeptide (VIP) are neuropeptides displaying a variety of short-term effects in the nervous system. It is shown here in transfection experiments of an immortalized noradrenergic locus coeruleus-like cell line that both CRF and VIP also trigger a signaling cascade capable of activating gene transcription. To elucidate the signaling pathway leading to transcriptional induction, cells were transfected with an inhibitor for cAMP-dependent protein kinase, targeted to the nucleus via a nuclear-localization signal. Transcriptional induction of a reporter gene by CRF and VIP was blocked in these cells, indicating that the cAMP-dependent protein kinase is required for transducing CRF and VIP generated signals into the nucleus. Additionally, transfection experiments with a reporter gene containing cAMP response elements in its regulatory region demonstrate that CRF and VIP receptor activation induce transcription through this genetic regulatory element. We conclude that long-term effects of CRF and VIP in neurons are likely to be mediated by the transcriptional regulation of CRF and VIP-responsive genes via the cAMP signaling pathway.
Collapse
Affiliation(s)
- G Thiel
- Medical Biochemistry and Molecular Biology, University of the Saarland, Medical School, Homburg, Germany.
| | | |
Collapse
|
30
|
Arias HR. Binding sites for exogenous and endogenous non-competitive inhibitors of the nicotinic acetylcholine receptor. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1376:173-220. [PMID: 9748559 DOI: 10.1016/s0304-4157(98)00004-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The nicotinic acetylcholine receptor (AChR) is the paradigm of the neurotransmitter-gated ion channel superfamily. The pharmacological behavior of the AChR can be described as three basic processes that progress sequentially. First, the neurotransmitter acetylcholine (ACh) binds the receptor. Next, the intrinsically coupled ion channel opens upon ACh binding with subsequent ion flux activity. Finally, the AChR becomes desensitized, a process where the ion channel becomes closed in the prolonged presence of ACh. The existing equilibrium among these physiologically relevant processes can be perturbed by the pharmacological action of different drugs. In particular, non-competitive inhibitors (NCIs) inhibit the ion flux and enhance the desensitization rate of the AChR. The action of NCIs was studied using several drugs of exogenous origin. These include compounds such as chlorpromazine (CPZ), triphenylmethylphosphonium (TPMP+), the local anesthetics QX-222 and meproadifen, trifluoromethyl-iodophenyldiazirine (TID), phencyclidine (PCP), histrionicotoxin (HTX), quinacrine, and ethidium. In order to understand the mechanism by which NCIs exert their pharmacological properties several laboratories have studied the structural characteristics of their binding sites, including their respective locations on the receptor. One of the main objectives of this review is to discuss all available experimental evidence regarding the specific localization of the binding sites for exogenous NCIs. For example, it is known that the so-called luminal NCIs bind to a series of ring-forming amino acids in the ion channel. Particularly CPZ, TPMP+, QX-222, cembranoids, and PCP bind to the serine, the threonine, and the leucine ring, whereas TID and meproadifen bind to the valine and extracellular rings, respectively. On the other hand, quinacrine and ethidium, termed non-luminal NCIs, bind to sites outside the channel lumen. Specifically, quinacrine binds to a non-annular lipid domain located approximately 7 A from the lipid-water interface and ethidium binds to the vestibule of the AChR in a site located approximately 46 A away from the membrane surface and equidistant from both ACh binding sites. The non-annular lipid domain has been suggested to be located at the intermolecular interfaces of the five AChR subunits and/or at the interstices of the four (M1-M4) transmembrane domains. One of the most important concepts in neurochemistry is that receptor proteins can be modulated by endogenous substances other than their specific agonists. Among membrane-embedded receptors, the AChR is one of the best examples of this behavior. In this regard, the AChR is non-competitively modulated by diverse molecules such as lipids (fatty acids and steroids), the neuropeptide substance P, and the neurotransmitter 5-hydroxytryptamine (5-HT). It is important to take into account that the above mentioned modulation is produced through a direct binding of these endogenous molecules to the AChR. Since this is a physiologically relevant issue, it is useful to elucidate the structural components of the binding site for each endogenous NCI. In this regard, another important aim of this work is to review all available information related to the specific localization of the binding sites for endogenous NCIs. For example, it is known that both neurotransmitters substance P and 5-HT bind to the lumen of the ion channel. Particularly, the locus for substance P is found in the deltaM2 domain, whereas the binding site for 5-HT and related compounds is putatively located on both the serine and the threonine ring. Instead, fatty acid and steroid molecules bind to non-luminal sites. More specifically, fatty acids may bind to the belt surrounding the intramembranous perimeter of the AChR, namely the annular lipid domain, and/or to the high-affinity quinacrine site which is located at a non-annular lipid domain. Additionally, steroids may bind to a site located on the extracellular hydrophi
Collapse
Affiliation(s)
- H R Arias
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, and Universidad Nacional del Sur, Blanca, Argentina.
| |
Collapse
|
31
|
Viseshakul N, Figl A, Lytle C, Cohen BN. The alpha4 subunit of rat alpha4beta2 nicotinic receptors is phosphorylated in vivo. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 59:100-4. [PMID: 9729306 DOI: 10.1016/s0169-328x(98)00128-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The intracellular domains of the alpha4 and beta2 neuronal nicotinic subunits between transmembrane segments 3 and 4 contain a number of predicted phosphorylation sites but there is no direct evidence that any of these sites are actually phosphorylated in vivo. We expressed rat alpha4beta2 nicotinic receptors in Xenopus oocytes, labeled them by an overnight incubation in [32P]orthophosphate, and analyzed the immunoprecipitated receptors by autoradiography and Western blotting. Our results show that the oocytes contained three kinds of alpha4 subunits with apparent weights of 69, 79, and 89 kDa. The 89 kDa alpha4 subunit was the most heavily phosphorylated.
Collapse
Affiliation(s)
- N Viseshakul
- Division of Biomedical Sciences, University of California, Riverside, CA 92521-0121, USA
| | | | | | | |
Collapse
|
32
|
Molinari EJ, Delbono O, Messi ML, Renganathan M, Arneric SP, Sullivan JP, Gopalakrishnan M. Up-regulation of human alpha7 nicotinic receptors by chronic treatment with activator and antagonist ligands. Eur J Pharmacol 1998; 347:131-9. [PMID: 9650859 DOI: 10.1016/s0014-2999(98)00084-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This study examined the binding and functional properties of human alpha7 neuronal nicotinic acetylcholine receptors stably expressed in human embryonic kidney (HEK) 293 cells following chronic treatment with nicotinic receptor ligands. Treatment of cells with (-)-nicotine (100 microM) for 120 h increased the Bmax values of [125I]alpha-bungarotoxin binding 2.5-fold over untreated cells. This effect was concentration-dependent (EC50) = 970 microM) and a 6-fold upregulation was observed with the maximal concentration of (-)-nicotine tested. Also, treatment of cells with ligands of varying intrinsic activities including (+/-)-epibatidine, (2,4)-dimethoxybenzylidene anabaseine (GTS-21) and 1,1-dimethyl-4-phenyl piperazinium iodide (DMPP) also upregulated [125I]alpha-bungarotoxin binding. A concentration-dependent upregulation of binding sites was also observed following treatment with the alpha7 nicotinic receptor antagonist, methyllycaconitine (EC50 = 92 microM) with a maximal upregulation of about 7-fold. Functionally, the peak amplitude of the whole-cell currents recorded by fast application of (-)-nicotine after chronic treatment of cells with concentrations of (-)-nicotine (1000 microM) or methyllycaconitine (10 microM) that elicited similar increases in binding levels (3.5-fold) resulted in increases of 2-fold (505 +/- 21 pA) and 6-fold (1820 +/- 137 pA) respectively in whole cell current amplitude compared to untreated cells (267 +/- 24 pA). These studies clearly demonstrate that long-term exposure to both activator and antagonist ligands can increase the density of alpha7 nicotinic receptors and can differentially enhance nicotinic receptor function.
Collapse
Affiliation(s)
- E J Molinari
- Neurological and Urological Diseases Research, Pharmaceutical Products Division, Abbott Laboratories, Abbott Park, IL 60064-3500, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Buisson B, Bertrand D. Allosteric modulation of neuronal nicotinic acetylcholine receptors. JOURNAL OF PHYSIOLOGY, PARIS 1998; 92:89-100. [PMID: 9782450 DOI: 10.1016/s0928-4257(98)80144-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure-function relationship of the neuronal nicotinic acetylcholine receptor is examined in the light of the allosteric concepts. Effects of site-directed mutagenesis as well as those caused by allosteric effector of the physiological and pharmacological receptor properties are discussed.
Collapse
Affiliation(s)
- B Buisson
- Department of Physiology, Medical Faculty, Geneva, Switzerland
| | | |
Collapse
|