1
|
Ozgür B, Saaby L, Janfelt C, Langthaler K, Eneberg E, Jacobsen AM, Badolo L, Montanari D, Brodin B. Screening novel CNS drug candidates for P-glycoprotein interactions using the cell line iP-gp: In vitro efflux ratios from iP-gp and MDCK-MDR1 monolayers compared to brain distribution data from mice. Eur J Pharm Biopharm 2021; 169:211-219. [PMID: 34756975 DOI: 10.1016/j.ejpb.2021.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/17/2021] [Accepted: 10/14/2021] [Indexed: 01/16/2023]
Abstract
Drug efflux by P-glycoprotein (P-gp, ABCB1) is considered as a major obstacle for brain drug delivery for small molecules. P-gp-expressing cell monolayers are used for screening of new drug candidates during early states of drug development. It is, however, uncertain how well the in vitro studies can predict the in vivo P-gp mediated efflux at the blood-brain barrier (BBB). We previously developed a novel cell line of porcine origin, the iP-gp cell line, with high transepithelial resistance and functional expression of human P-gp. The aim of the present study was to evaluate the applicability of the cell line for screening of P-gp interactions of novel drug candidates. For this purpose, bidirectional fluxes of 14 drug candidates were measured in iP-gp cells and in MDCK-MDR1 cells, and compared with pharmacokinetic data obtained in male C57BL/6 mice. The iP-gp cells formed extremely tight monolayers (>15 000 Ω∙cm2) as compared to the MDCK- MDR1 cells (>250 Ω∙cm2) and displayed lower Papp,a-b values. The efflux ratios obtained with iP-gp and MDCK-MDR1 monolayers correlated with Kp,uu,brain values from the in vivo studies, where compounds with the lowest Kp,uu,brain generally displayed the highest efflux ratios. 12 of the tested compounds displayed a poor BBB penetration in mice as judged by Kp,uu less than 1. Of these compounds, nine compounds were categorized as P-gp substrates in the iP-gp screening, whereas analysis of data estimated in MDCK-MDR1 cells indicated four compounds as potential substrates. The results suggest that the iP-gp cell model may be a sensitive and useful screening tool for drug screening purposes to identify possible substrates of human P-glycoprotein.
Collapse
Affiliation(s)
- Burak Ozgür
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Lasse Saaby
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; Bioneer-FARMA, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Christian Janfelt
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | - Elin Eneberg
- H. Lundbeck A/S, Ottiliavej 9, 2500 Valby, Denmark
| | | | | | | | - Birger Brodin
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
2
|
Majkowska-Pilip A, Halik PK, Gniazdowska E. The Significance of NK1 Receptor Ligands and Their Application in Targeted Radionuclide Tumour Therapy. Pharmaceutics 2019; 11:E443. [PMID: 31480582 PMCID: PMC6781293 DOI: 10.3390/pharmaceutics11090443] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023] Open
Abstract
To date, our understanding of the Substance P (SP) and neurokinin 1 receptor (NK1R) system shows intricate relations between human physiology and disease occurrence or progression. Within the oncological field, overexpression of NK1R and this SP/NK1R system have been implicated in cancer cell progression and poor overall prognosis. This review focuses on providing an update on the current state of knowledge around the wide spectrum of NK1R ligands and applications of radioligands as radiopharmaceuticals. In this review, data concerning both the chemical and biological aspects of peptide and nonpeptide ligands as agonists or antagonists in classical and nuclear medicine, are presented and discussed. However, the research presented here is primarily focused on NK1R nonpeptide antagonistic ligands and the potential application of SP/NK1R system in targeted radionuclide tumour therapy.
Collapse
Affiliation(s)
- Agnieszka Majkowska-Pilip
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland.
| | - Paweł Krzysztof Halik
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Ewa Gniazdowska
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| |
Collapse
|
3
|
Chen Z, Shao T, Gao W, Fu H, Collier TL, Rong J, Deng X, Yu Q, Zhang X, Davenport AT, Daunais JB, Wey HY, Shao Y, Josephson L, Qiu WW, Liang S. Synthesis and Preliminary Evaluation of [ 11 C]GNE-1023 as a Potent PET Probe for Imaging Leucine-Rich Repeat Kinase 2 (LRRK2) in Parkinson's Disease. ChemMedChem 2019; 14:1580-1585. [PMID: 31365783 DOI: 10.1002/cmdc.201900321] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/19/2019] [Indexed: 12/19/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a large protein involved in the pathogenesis of Parkinson's disease (PD). It has been demonstrated that PD is mainly conferred by LRRK2 mutations that bring about increased kinase activity. As a consequence, selective inhibition of LRRK2 may help to recover the normal functions of LRRK2, thereby serving as a promising alternative therapeutic target for PD treatment. The mapping of LRRK2 by positron emission tomography (PET) studies allows a thorough understanding of PD and other LRRK2-related disorders; it also helps to validate and translate novel LRRK2 inhibitors. However, no LRRK2 PET probes have yet been reported in the primary literature. Herein we present a facile synthesis and preliminary evaluation of [11 C]GNE-1023 as a novel potent PET probe for LRRK2 imaging in PD. [11 C]GNE-1023 was synthesized in good radiochemical yield (10 % non-decay-corrected RCY), excellent radiochemical purity (>99 %), and high molar activity (>37 GBq μmol-1 ). Excellent in vitro binding specificity of [11 C]GNE-1023 toward LRRK2 was demonstrated in cross-species studies, including rat and nonhuman primate brain tissues by autoradiography experiments. Subsequent whole-body biodistribution studies indicated limited brain uptake and urinary and hepatobiliary elimination of this radioligand. This study may pave the way for further development of a new generation of LRRK2 PET probes.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Tuo Shao
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Wei Gao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Hualong Fu
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Thomas Lee Collier
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Jian Rong
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Xiaoyun Deng
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Qingzhen Yu
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Xiaofei Zhang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - April T Davenport
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, USA
| | - James B Daunais
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, 27157, USA
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Lee Josephson
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Wen-Wei Qiu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China
| | - Steven Liang
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| |
Collapse
|
4
|
Hoppe JM, Frick A, Åhs F, Linnman C, Appel L, Jonasson M, Lubberink M, Långström B, Frans Ö, von Knorring L, Fredrikson M, Furmark T. Association between amygdala neurokinin-1 receptor availability and anxiety-related personality traits. Transl Psychiatry 2018; 8:168. [PMID: 30154470 PMCID: PMC6113290 DOI: 10.1038/s41398-018-0163-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 03/30/2018] [Accepted: 04/13/2018] [Indexed: 02/08/2023] Open
Abstract
Animal studies indicate that substance P (SP) and its preferred neurokinin-1 (NK1) receptor modulate stress and anxiety-related behavior. Alterations in the SP-NK1 system have also been observed in human anxiety disorders, yet little is known about the relation between this system and individual differences in personality traits associated with anxiety propensity and approach-avoidance behavior, including trait anxiety, neuroticism, and extraversion. Exploring this relation could provide important insights into the neurobiological underpinnings of human anxiety and the etiology of anxiety disorders, as anxious traits are associated with increased susceptibility to develop psychopathological conditions. Here we examined the relationship between central NK1 receptor availability and self-rated measures of trait anxiety, neuroticism, and extraversion. The amygdala was chosen as the primary region of interest since this structure has been suggested to mediate the effect of the SP-NK1 system on anxiety. Anxious traits and NK1 receptor availability, determined with positron emission tomography and the radiotracer [11C]GR205171, were measured in 17 healthy individuals. Voxel-wise analyses showed a significant positive correlation between bilateral amygdala NK1 receptor availability and trait anxiety, and a trend in similar direction was observed for neuroticism. Conversely, extraversion was found to be negatively associated with amygdala NK1 receptor availability. Extraversion also correlated negatively with the NK1 measure in the cuneus/precuneus and fusiform gyrus according to exploratory whole-brain analyses. In conclusion, our findings indicate that amygdala NK1 receptor availability is associated with anxiety-related personality traits in healthy subjects, consistent with a modulatory role for the SP-NK1 system in human anxiety.
Collapse
Affiliation(s)
- Johanna M. Hoppe
- 0000 0004 1936 9457grid.8993.bDepartment of Psychology, Uppsala University, Uppsala, Sweden
| | - Andreas Frick
- 0000 0004 1936 9457grid.8993.bDepartment of Psychology, Uppsala University, Uppsala, Sweden ,0000 0004 1936 9377grid.10548.38Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Fredrik Åhs
- 0000 0004 1936 9457grid.8993.bDepartment of Psychology, Uppsala University, Uppsala, Sweden ,0000 0004 1937 0626grid.4714.6Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Clas Linnman
- 000000041936754Xgrid.38142.3cDepartment of Anesthesiology, Perioperative and Pain Medicine, Boston Children’s Hospital, and Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Lieuwe Appel
- 0000 0004 1936 9457grid.8993.bNuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - My Jonasson
- 0000 0004 1936 9457grid.8993.bNuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ,0000 0001 2351 3333grid.412354.5Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Mark Lubberink
- 0000 0004 1936 9457grid.8993.bNuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ,0000 0001 2351 3333grid.412354.5Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| | - Bengt Långström
- 0000 0004 1936 9457grid.8993.bDepartment of Chemistry, Uppsala University, Uppsala, Sweden
| | - Örjan Frans
- 0000 0004 1936 9457grid.8993.bDepartment of Psychology, Uppsala University, Uppsala, Sweden
| | - Lars von Knorring
- 0000 0004 1936 9457grid.8993.bDepartment of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Mats Fredrikson
- 0000 0004 1936 9457grid.8993.bDepartment of Psychology, Uppsala University, Uppsala, Sweden ,0000 0004 1937 0626grid.4714.6Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Furmark
- 0000 0004 1936 9457grid.8993.bDepartment of Psychology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Carletti R, Tacconi S, Mugnaini M, Gerrard P. Receptor distribution studies. Curr Opin Pharmacol 2017; 35:94-100. [PMID: 28803835 DOI: 10.1016/j.coph.2017.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/23/2017] [Indexed: 12/18/2022]
Abstract
Receptor distribution studies have played a key role in the characterization of receptor systems (e.g. GABAB, NMDA (GluNRs), and Neurokinin 1) and in generating hypotheses to exploit these systems as potential therapeutic targets. Distribution studies can provide important information on the potential role of candidate receptors in normal physiology/disease and alert for possible adverse effects of targeting the receptors. Moreover, they can provide valuable information relating to quantitative target engagement (e.g. % receptor occupancy) to drive mechanistic pharmacokinetic/pharmacodynamic (PK/PD) hypotheses for compounds in the Drug Discovery process. Finally, receptor distribution and quantitative target engagement studies can be used to validate truly translational technologies such as PET ligands and pharmacoEEG paradigms to facilitate bridging of the preclinical/clinical interface and thus increase probability of success.
Collapse
Affiliation(s)
- Renzo Carletti
- Center of Drug Discovery & Development, Aptuit S.r.l., via Fleming 4, 37135 Verona, Italy.
| | - Stefano Tacconi
- Center of Drug Discovery & Development, Aptuit S.r.l., via Fleming 4, 37135 Verona, Italy
| | - Manolo Mugnaini
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co. KG, Knollstraße 50, 67061 Ludwigshafen, Germany
| | - Philip Gerrard
- Center of Drug Discovery & Development, Aptuit S.r.l., via Fleming 4, 37135 Verona, Italy
| |
Collapse
|
6
|
Wang X, Zhang ZY, Powers D, Wang J, Lu S, Kansra V. Rolapitant Absolute Bioavailability and PET Imaging Studies in Healthy Adult Volunteers. Clin Pharmacol Ther 2017; 102:332-339. [DOI: 10.1002/cpt.637] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/20/2016] [Accepted: 01/21/2017] [Indexed: 11/09/2022]
Affiliation(s)
- X Wang
- Tesaro Inc; Waltham Massachusetts USA
| | - ZY Zhang
- Tesaro Inc; Waltham Massachusetts USA
| | - D Powers
- Tesaro Inc; Waltham Massachusetts USA
| | - J Wang
- Tesaro Inc; Waltham Massachusetts USA
| | - S Lu
- Tesaro Inc; Waltham Massachusetts USA
| | - V Kansra
- Tesaro Inc; Waltham Massachusetts USA
| |
Collapse
|
7
|
Frick A, Åhs F, Palmquist ÅM, Pissiota A, Wallenquist U, Fernandez M, Jonasson M, Appel L, Frans Ö, Lubberink M, Furmark T, von Knorring L, Fredrikson M. Overlapping expression of serotonin transporters and neurokinin-1 receptors in posttraumatic stress disorder: a multi-tracer PET study. Mol Psychiatry 2016; 21:1400-7. [PMID: 26619809 DOI: 10.1038/mp.2015.180] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/10/2015] [Accepted: 10/06/2015] [Indexed: 02/07/2023]
Abstract
The brain serotonergic system is colocalized and interacts with the neuropeptidergic substance P/neurokinin-1 (SP/NK1) system. Both these neurochemical systems have independently been implicated in stress and anxiety, but interactions between them might be crucial for human anxiety conditions. Here, we examined the serotonin and substance P/neurokinin-1 (SP/NK1) systems individually as well as their overlapping expression in 16 patients with posttraumatic stress disorder (PTSD) and 16 healthy controls. Participants were imaged with the highly selective radiotracers [(11)C]-3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile (DASB) and [(11)C]GR205171 assessing serotonin transporter (SERT) and NK1 receptor availability, respectively. Voxel-wise analyses in the amygdala, our a priori-defined region of interest, revealed increased number of NK1 receptors, but not SERT in the PTSD group. Symptom severity, as indexed by the Clinician-administered PTSD Scale, was negatively related to SERT availability in the amygdala, and NK1 receptor levels moderated this relationship. Exploratory, voxel-wise whole-brain analyses revealed increased SERT availability in the precentral gyrus and posterior cingulate cortex of PTSD patients. Patients, relative to controls, displayed lower degree of overlapping expression between SERT and NK1 receptors in the putamen, thalamus, insula and lateral orbitofrontal gyrus, lower overlap being associated with higher PTSD symptom severity. Expression overlap also explained more of the symptomatology than did either system individually, underscoring the importance of taking interactions between the neurochemical systems into account. Thus, our results suggest that aberrant serotonergic-SP/NK1 couplings contribute to the pathophysiology of PTSD and, consequently, that normalization of these couplings may be therapeutically important.
Collapse
Affiliation(s)
- A Frick
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - F Åhs
- Department of Psychology, Uppsala University, Uppsala, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Å M Palmquist
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - A Pissiota
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - U Wallenquist
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - M Fernandez
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - M Jonasson
- Department of Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden
| | - L Appel
- Department of Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden
| | - Ö Frans
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - M Lubberink
- Department of Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden
| | - T Furmark
- Department of Psychology, Uppsala University, Uppsala, Sweden
| | - L von Knorring
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - M Fredrikson
- Department of Psychology, Uppsala University, Uppsala, Sweden.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Decreased Brain Neurokinin-1 Receptor Availability in Chronic Tennis Elbow. PLoS One 2016; 11:e0161563. [PMID: 27658244 PMCID: PMC5033598 DOI: 10.1371/journal.pone.0161563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 08/08/2016] [Indexed: 12/28/2022] Open
Abstract
Substance P is released in painful and inflammatory conditions, affecting both peripheral processes and the central nervous system neurokinin 1 (NK1) receptor. There is a paucity of data on human brain alterations in NK1 expression, how this system may be affected by treatment, and interactions between central and peripheral tissue alterations. Ten subjects with chronic tennis elbow (lateral epicondylosis) were selected out of a larger (n = 120) randomized controlled trial evaluating graded exercise as a treatment for chronic tennis elbow (lateral epicondylosis). These ten subjects were examined by positron emission tomography (PET) with the NK1-specific radioligand 11C-GR205171 before, and eight patients were followed up after treatment with graded exercise. Brain binding in the ten patients before treatment, reflecting NK1-receptor availability (NK1-RA), was compared to that of 18 healthy subjects and, longitudinally, to the eight of the original ten patients that agreed to a second PET examination after treatment. Before treatment, patients had significantly lower NK1-RA in the insula, vmPFC, postcentral gyrus, anterior cingulate, caudate, putamen, amygdala and the midbrain but not the thalamus and cerebellum, with the largest difference in the insula contralateral to the injured elbow. No significant correlations between brain NK1-RA and pain, functional severity, or peripheral NK1-RA in the affected limb were observed. In the eight patients examined after treatment, pain ratings decreased in everyone, but there were no significant changes in NK1-RA. These findings indicate a role for the substance P (SP) / NK1 receptor system in musculoskeletal pain and tissue healing. As neither clinical parameters nor successful treatment response was reflected in brain NK1-RA after treatment, this may reflect the diverse function of the SP/NK1 system in CNS and peripheral tissue, or a change too small or slow to capture over the three-month treatment.
Collapse
|
9
|
Frick A, Ahs F, Linnman C, Jonasson M, Appel L, Lubberink M, Långström B, Fredrikson M, Furmark T. Increased neurokinin-1 receptor availability in the amygdala in social anxiety disorder: a positron emission tomography study with [11C]GR205171. Transl Psychiatry 2015; 5:e597. [PMID: 26151925 PMCID: PMC5068728 DOI: 10.1038/tp.2015.92] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/29/2015] [Accepted: 06/01/2015] [Indexed: 12/11/2022] Open
Abstract
The neurokinin-1 (NK1) receptor is abundantly expressed in the fear circuitry of the brain, including the amygdala, where it modulates stress and anxiety. Despite its proposed involvement in psychopathology, only a few studies of NK1 receptor availability in human subjects with anxiety disorders exist. Here, we compared NK1 receptor availability in patients with social anxiety disorder (SAD; n = 17) and healthy controls (n = 17) using positron emission tomography and the radiotracer [11C]GR205171. The Patlak Graphical plot using a cerebellar reference region was used to model the influx parameter, Ki measuring NK1 receptor availability. Voxel-wise statistical parametric mapping analyses revealed increased NK1 receptor availability specifically in the right amygdala in SAD patients relative to controls. Thus, we demonstrate that exaggerated social anxiety is related to enhanced NK1 receptor availability in the amygdala. This finding supports the contribution of NK1 receptors not only in animal models of stress and anxiety but also in humans with anxiety disorders.
Collapse
Affiliation(s)
- A Frick
- Department of Psychology, Uppsala University, Uppsala, Sweden,Department of Psychology, Uppsala University, Box 1225, SE-751 42 Uppsala, Sweden. E-mail:
| | - F Ahs
- Department of Psychology, Uppsala University, Uppsala, Sweden,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - C Linnman
- Center for Pain and the Brain, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - M Jonasson
- Department of Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden
| | - L Appel
- Department of Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden
| | - M Lubberink
- Department of Nuclear Medicine and PET, Uppsala University, Uppsala, Sweden
| | - B Långström
- Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - M Fredrikson
- Department of Psychology, Uppsala University, Uppsala, Sweden,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - T Furmark
- Department of Psychology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Piel M, Vernaleken I, Rösch F. Positron Emission Tomography in CNS Drug Discovery and Drug Monitoring. J Med Chem 2014; 57:9232-58. [DOI: 10.1021/jm5001858] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Markus Piel
- Institute
of Nuclear Chemistry, Johannes Gutenberg-University, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany
| | - Ingo Vernaleken
- Department
of Psychiatry, Psychotherapy, and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, D-52074 Aachen, Germany
| | - Frank Rösch
- Institute
of Nuclear Chemistry, Johannes Gutenberg-University, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany
| |
Collapse
|
11
|
Progress in the development of neurokinin 3 modulators for the treatment of schizophrenia: molecule development and clinical progress. Future Med Chem 2014; 5:1525-46. [PMID: 24024945 DOI: 10.4155/fmc.13.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The neuropeptide NK3 receptor is expressed almost exclusively within the mammalian nervous system and its localization is commensurate with a role in modulating central monoaminergic neurotransmission. Following on from our previous work we review the rationale for NK3 receptor antagonists as wide spectrum antipsychotics and the recent scientific and patent literature that has highlighted new chemical strategies to identify selective NK3 and dual activity NK1/3 receptor ligands for the putative treatment of schizophrenia. We discuss the emerging structural biology and its use in the design of molecules with increased structural diversity and predictable receptor pharmacology. Particular attention is paid to the progress in improving ligand drug-like properties. The status of imaging and the development of translational technologies in the neurokinin field are also discussed. Finally, we summarize the available clinical information on the compounds that have progressed into psychiatric patient populations and evaluate the potential therapeutic utility of NK3 receptor targeted ligands.
Collapse
|
12
|
Ridler K, Gunn RN, Searle GE, Barletta J, Passchier J, Dixson L, Hallett WA, Ashworth S, Gray FA, Burgess C, Poggesi I, Bullman JN, Ratti E, Laruelle MA, Rabiner EA. Characterising the plasma-target occupancy relationship of the neurokinin antagonist GSK1144814 with PET. J Psychopharmacol 2014; 28:244-53. [PMID: 24429221 DOI: 10.1177/0269881113517953] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
GSK1144814 is a potent, insurmountable antagonist at human NK₁ and NK₃ receptors. Understanding the relationship between plasma pharmacokinetics and receptor occupancy in the human brain, was crucial for dose selection in future clinical studies. GSK1144814 occupancy data were acquired in parallel with the first-time-in-human safety and tolerability study. [¹¹C]GR-205171 a selective NK₁ receptor PET ligand was used to estimate NK₁ occupancy at several time-points following single dose administration of GSK1144814. The time-plasma concentration-occupancy relationship post-single dose administration was assessed, and used to predict the plasma concentration-occupancy relationship following repeat dose administration. Repeat dose predictions were tested in a subsequent cohort of subjects examined following approximately 7 and 14 days dosing with GSK1144814. GSK1144814 was shown to demonstrate a dose-dependent occupancy of the NK₁ receptor with an estimated in vivo EC₅₀~0.9 ng/mL in the human brain. A direct relationship was seen between the GSK1144814 plasma concentration and its occupancy of the brain NK₁ receptor, indicating that in future clinical trials the occupancy of brain receptors can be accurately inferred from the measured plasma concentration. Our data provided support for the further progression of this compound and have optimised the likely therapeutic dose range.
Collapse
|
13
|
Navari RM. Fosaprepitant: a neurokinin-1 receptor antagonist for the prevention of chemotherapy-induced nausea and vomiting. Expert Rev Anticancer Ther 2014; 8:1733-42. [DOI: 10.1586/14737140.8.11.1733] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rudolph M Navari
- Professor of Medicine, Assistant Dean and Director Indiana University School of Medicine South Bend Director, Walther Cancer Research Center University of Notre Dame,1234 Notre Dame Avenue, South Bend, IN 46617, USA
| |
Collapse
|
14
|
Spinelli T, Calcagnile S, Giuliano C, Rossi G, Lanzarotti C, Mair S, Stevens L, Nisbet I. Netupitant PET imaging and ADME studies in humans. J Clin Pharmacol 2014; 54:97-108. [PMID: 24122871 PMCID: PMC4282341 DOI: 10.1002/jcph.198] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 09/25/2013] [Indexed: 01/12/2023]
Abstract
Netupitant is a new, selective NK1 receptor antagonist under development for the prevention of chemotherapy-induced nausea and vomiting. Two studies were conducted to evaluate the brain receptor occupancy (RO) and disposition (ADME) of netupitant in humans. Positron emission tomography (PET) imaging with the NK1 receptor-binding-selective tracer [(11) C]-GR205171 was used to evaluate the brain penetration of different doses of netupitant (100, 300, and 450 mg) and to determine the NK1 -RO duration. A NK1 -RO of 90% or higher was achieved with all doses in the majority of the tested brain regions at Cmax, with a long duration of RO. The netupitant minimal plasma concentration predicted to achieve a NK1 -RO of 90%, C90% , in the striatum was 225 ng/mL; after administration of netupitant 300 mg, concentrations exceeded the C90% . In the ADME study, a single nominal dose of [(14) C]-netupitant 300 mg was used to assess its disposition. Absorption was rapid and netupitant was extensively metabolized via Phase I and II hepatic metabolism. Elimination of >90% was predicted at day 29 and was principally via hepatic/biliary route (>85%) with a minor contribution of the renal route (<5%). In conclusion, these studies demonstrate that netupitant is a potent agent targeting NK1 receptors with long lasting RO. In addition, netupitant is extensively metabolized and is mainly eliminated through the hepatic/biliary route and to a lesser extent via the kidneys.
Collapse
|
15
|
Peterson M, Svärdsudd K, Appel L, Engler H, Aarnio M, Gordh T, Långström B, Sörensen J. PET-scan shows peripherally increased neurokinin 1 receptor availability in chronic tennis elbow: visualizing neurogenic inflammation? PLoS One 2013; 8:e75859. [PMID: 24155873 PMCID: PMC3796513 DOI: 10.1371/journal.pone.0075859] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 08/22/2013] [Indexed: 02/02/2023] Open
Abstract
UNLABELLED In response to pain, neurokinin 1 (NK1) receptor availability is altered in the central nervous system. The NK1 receptor and its primary agonist, substance P, also play a crucial role in peripheral tissue in response to pain, as part of neurogenic inflammation. However, little is known about alterations in NK1 receptor availability in peripheral tissue in chronic pain conditions and very few studies have been performed on human beings. Ten subjects with chronic tennis elbow were therefore examined by positron emission tomography (PET) with the NK1 specific radioligand [(11)C]GR205171 before and after treatment with graded exercise. The radioligand signal intensity was higher in the affected arm as compared with the unaffected arm, measured as differences between the arms in volume of voxels and signal intensity of this volume above a reference threshold set as 2.5 SD above mean signal intensity of the unaffected arm before treatment. In the eight subjects examined after treatment, pain ratings decreased in all subjects but signal intensity decreased in five and increased in three. In conclusion, NK1 receptors may be activated, or up-regulated in the peripheral, painful tissue of a chronic pain condition. This up-regulation does, however, have moderate correlation to pain ratings. The increased NK1 receptor availability is interpreted as part of ongoing neurogenic inflammation and may have correlation to the pathogenesis of chronic tennis elbow. TRIAL REGISTRATION ClinicalTrials.gov NCT00888225 http://clinicaltrials.gov/
Collapse
Affiliation(s)
- Magnus Peterson
- Department of Public Health and Caring Sciences, Family Medicine and Clinical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Kurt Svärdsudd
- Department of Public Health and Caring Sciences, Family Medicine and Clinical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Lieuwe Appel
- Uppsala PET Centre, Department of Radiology, Oncology and Radiation Sciences, Uppsala University, Uppsala, Sweden
| | - Henry Engler
- Uppsala PET Centre, Department of Radiology, Oncology and Radiation Sciences, Uppsala University, Uppsala, Sweden
- Uruguayan Centre of Molecular Imaging (CUDIM), Faculty of Medicine and Faculty of Sciences, University of the Republic, Montevideo, Uruguay
| | - Mikko Aarnio
- Department of Surgical Sciences, Pain Research, Uppsala University, Uppsala, Sweden
| | - Torsten Gordh
- Department of Surgical Sciences, Pain Research, Uppsala University, Uppsala, Sweden
| | - Bengt Långström
- Uppsala PET Centre, Department of Radiology, Oncology and Radiation Sciences, Uppsala University, Uppsala, Sweden
- Department of Biochemistry and Organic Chemistry, Uppsala University, Uppsala, Sweden
- Neuropsychopharmacology Section, Faculty of Medicine, Imperial College, London, United Kingdom
| | - Jens Sörensen
- Uppsala PET Centre, Department of Radiology, Oncology and Radiation Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
16
|
Hargreaves RJ, Rabiner EA. Translational PET imaging research. Neurobiol Dis 2013; 61:32-8. [PMID: 24055214 DOI: 10.1016/j.nbd.2013.08.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 08/07/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022] Open
Abstract
The goal of any early central nervous system (CNS) drug development program is always to test the mechanism and not the molecule in order to support additional research investments in late phase clinical trials. Confirmation that drugs reach their targets using translational positron emission tomography (PET) imaging markers of engagement is central to successful clinical proof-of-concept testing and has become an important feature of most neuropsychiatric drug development programs. CNS PET imaging can also play an important role in the clinical investigation of the neuropharmacological basis of psychiatric disease and the optimization of drug therapy.
Collapse
Affiliation(s)
- Richard J Hargreaves
- Merck and Co, WP-42-212, 770, Sumneytown Pike, PO Box 4, West Point, PA19486, USA.
| | | |
Collapse
|
17
|
Ratti E, Bettica P, Alexander R, Archer G, Carpenter D, Evoniuk G, Gomeni R, Lawson E, Lopez M, Millns H, Rabiner EA, Trist D, Trower M, Zamuner S, Krishnan R, Fava M. Full central neurokinin-1 receptor blockade is required for efficacy in depression: evidence from orvepitant clinical studies. J Psychopharmacol 2013; 27:424-34. [PMID: 23539641 DOI: 10.1177/0269881113480990] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Full, persistent blockade of central neurokinin-1 (NK1) receptors may be a potential antidepressant mechanism. The selective NK1 antagonist orvepitant (GW823296) was used to test this hypothesis. A preliminary positron emission tomography study in eight male volunteers drove dose selection for two randomized six week studies in patients with major depressive disorder (MDD). Displacement of central [(11)C]GR205171 binding indicated that oral orvepitant doses of 30-60 mg/day provided >99% receptor occupancy for ≥24 h. Studies 733 and 833 randomized patients with MDD and 17-item Hamilton Depression Rating Scale (HAM-D)≥22 to double-blind treatment with orvepitant 30 mg/day, orvepitant 60 mg/day or placebo (1:1:1). Primary outcome measure was change from baseline in 17-item HAM-D total score at Week 6 analyzed using mixed models repeated measures. Study 733 (n=328) demonstrated efficacy on the primary endpoint (estimated drug-placebo differences of 30 mg: -2.41, 95% confidence interval (CI) (-4.50 to -0.31) p=0.0245; 60 mg: -2.86, 95% CI (-4.97 to -0.75) p=0.0082). Study 833 (n=345) did not show significance (estimated drug-placebo differences of 30 mg: -1.67, 95% CI (-3.73 to 0.39) p=0.1122; 60 mg: -0.76, 95% CI (-2.85 to 1.32) p=0.4713). The results support the hypothesis that full, long lasting blockade of central NK1 receptors may be an efficacious mechanism for the treatment of MDD.
Collapse
Affiliation(s)
- Emiliangelo Ratti
- Neurosciences Center for Excellence in Drug Discovery, GlaxoSmithKline, Verona, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Linnman C. New pieces for the substance P puzzle. Pain 2013; 154:966-967. [PMID: 23643331 DOI: 10.1016/j.pain.2013.04.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/09/2013] [Indexed: 01/27/2023]
Affiliation(s)
- Clas Linnman
- Boston Childreńs Hospital, Harvard Medical School, Anesthesia, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
19
|
Engman J, Åhs F, Furmark T, Linnman C, Pissiota A, Appel L, Frans Ö, Långström B, Fredrikson M. Age, sex and NK1 receptors in the human brain -- a positron emission tomography study with [¹¹C]GR205171. Eur Neuropsychopharmacol 2012; 22:562-8. [PMID: 22225860 DOI: 10.1016/j.euroneuro.2011.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/13/2011] [Accepted: 12/02/2011] [Indexed: 10/14/2022]
Abstract
The substance P/neurokinin 1 (SP/NK1) system has been implicated in the processing of negative affect. Its role seems complex and findings from animal studies have not been easily translated to humans. Brain imaging studies on NK1 receptor distribution in humans have revealed an abundance of receptors in cortical, striatal and subcortical areas, including the amygdala. A reduction in NK1 receptors with increasing age has been reported in frontal, temporal, and parietal cortices, as well as in hippocampal areas. Also, a previous study suggests sex differences in cortical and subcortical areas, with women displaying fewer NK1 receptors. The present PET study explored NK1 receptor availability in men (n=9) and women (n=9) matched for age varying between 20 and 50years using the highly specific NK1 receptor antagonist [¹¹C]GR205171 and a reference tissue model with cerebellum as the reference region. Age by sex interactions in the amygdala and the temporal cortex reflected a lower NK1 receptor availability with increasing age in men, but not in women. A general age-related decline in NK1 receptor availability was evident in the frontal, temporal, and occipital cortices, as well as in the brainstem, caudate nucleus, and thalamus. Women had lower NK1 receptor availability in the thalamus. The observed pattern of NK1 receptor distribution in the brain might have functional significance for brain-related disorders showing age- and sex-related differences in prevalence.
Collapse
Affiliation(s)
- Jonas Engman
- Department of Psychology, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
A pharmacokinetic PET study of NK1 receptor occupancy. Eur J Nucl Med Mol Imaging 2011; 39:226-35. [DOI: 10.1007/s00259-011-1954-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 09/27/2011] [Indexed: 11/27/2022]
|
21
|
Danfors T, Åhs F, Appel L, Linnman C, Fredrikson M, Furmark T, Kumlien E. Increased neurokinin-1 receptor availability in temporal lobe epilepsy: a positron emission tomography study using [(11)C]GR205171. Epilepsy Res 2011; 97:183-9. [PMID: 21925840 DOI: 10.1016/j.eplepsyres.2011.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 08/04/2011] [Accepted: 08/06/2011] [Indexed: 11/19/2022]
Abstract
PURPOSE Activation of the neurokinin-1 (NK1) receptor by neuropeptide substance P (SP) induces and maintains epileptic activity in various experimental models of epilepsy. The primary objective of this study was to investigate whether neurobiological changes linked to NK1-SP receptor system are associated with hyperexcitability in patients with temporal lobe epilepsy (TLE). A secondary objective was to investigate the relationship between seizure frequency and NK1 receptor availability. METHODS A positron emission tomography study was conducted with the selective NK1 receptor antagonist [(11)C]GR205171 in nine patients with TLE and 18 healthy control participants. Parametric PET images were generated using the Patlak graphical method, with cerebellum as reference region. Data analyses including group comparisons were performed using statistical parametric mapping. RESULTS Patients with TLE showed increased NK1 receptor availability in both hemispheres with the most pronounced increase in anterior cingulate gyrus ipsilateral to seizure onset. A positive correlation between NK1 receptor availability and seizure frequency was observed in the medial temporal lobe and in the lentiform nucleus ipsilateral to the seizure onset. CONCLUSION Our results suggest that there is an intrinsic network using the NK1-SP receptor system for synaptic transmission and epileptiform activity in TLE.
Collapse
Affiliation(s)
- Torsten Danfors
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
22
|
Gackenheimer SL, Gehlert DR. In vitro and ex vivo autoradiography of the NK-1 antagonist [³H]-LY686017 in Guinea pig brain. Neuropeptides 2011; 45:157-64. [PMID: 21295853 DOI: 10.1016/j.npep.2011.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 11/26/2022]
Abstract
NK-1 receptor antagonists have shown potential for the clinical treatment of chemotherapy-induced nausea and vomiting, depression and alcoholism. In a recent study, we disclosed the potential for the NK-1 antagonist, LY686017, to treat alcoholism in a clinical population. To assess whether this compound could be utilized as a platform for a brain imaging ligand, we evaluated the binding of [³H]-LY686017 to sections of guinea pig in vitro. In these studies, [³H]-LY686017 bound with a distribution and pharmacology consistent with the NK-1 receptor. Using sections through the region of the caudate nucleus, we obtained a K(d) of 0.34 nM and a B(max) of 31.37 fmoles/mg tissue. Based on its high potency and low nonspecific binding in vitro, we initiated studies to evaluate the radioligand as a tool to measure in vivo receptor occupancy. In initial studies, 25 microCi of [³H]-LY686017 was administered via an indwelling jugular catheter and accumulation of radioactivity in the caudate (NK-1 containing tissue) and cerebellum (low NK-1 expression) were assessed. The ratios of caudate to cerebellum radioactivity were optimal 2 h after radioligand administration so this time point was used for subsequent studies. To assess the pharmacological specificity of the radioactivity accumulation, we administered various doses of Aprepitant, a potent NK-1 antagonists 1h prior to intravenous administration of [³H]-LY686017. Aprepitant produced a dose-dependent reduction in radioactivity in the caudate with an approximate 70% reduction at 10 mg/kg. To image NK-1 receptors, 100 microCi of [³H]-LY686017 was administered and the brains sectioned for autoradiography. In these studies, a characteristic distribution on NK-1 receptors was observed. Based on these results, LY686017 should serve as a suitable chemical platform for future imaging ligand development.
Collapse
Affiliation(s)
- Susan L Gackenheimer
- Neuroscience and Endocrine Discovery Research, Lilly Research Laboratories, A Division of Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | |
Collapse
|
23
|
Linnman C, Appel L, Furmark T, Söderlund A, Gordh T, Långström B, Fredrikson M. Ventromedial prefrontal neurokinin 1 receptor availability is reduced in chronic pain. Pain 2010; 149:64-70. [PMID: 20137858 DOI: 10.1016/j.pain.2010.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2009] [Revised: 12/30/2009] [Accepted: 01/12/2010] [Indexed: 11/19/2022]
Abstract
Neurokinin 1 (NK1) receptors are involved in pain and anxiety behaviors in animals, but little is known about central alterations in this receptor system in human pain. With positron emission tomography, using a [11]-Carbon labeled NK1 receptor antagonist, we demonstrate attenuated NK1 receptor availability in frontal, insular and cingulate cortex, as well as the hippocampus, amygdala and the periaqueductal gray area in patients with chronic pain. The reduced availability was most pronounced in the ventromedial prefrontal cortex (vmPFC), where attenuations correlated to measures of fear and avoidance of movement. Further, vmPFC NK1 levels also displayed opposing influences in patients as compared to controls on regional cerebral blood flow in the anterior cingulate. We conclude that the central NK1 receptor system is altered in human chronic pain. The results suggest that NK1 receptors in the vmPFC modulate motor inhibition, and contribute to fear and avoidance of movement.
Collapse
Affiliation(s)
- Clas Linnman
- Department of Psychology, Uppsala University, Uppsala, Sweden Uppsala Imanet AB, GE Healthcare, Uppsala, Sweden Department of Physiotherapy, School of Health, Care and Social Welfare, Mälardalen University, Västerås, Sweden Section of Physiotherapy, Department of Neuroscience, Uppsala University, Sweden Laboratory of Pain Research, Department of Surgical Sciences, Division of Anaesthesiology and Intensive Care Medicine, Uppsala University Hospital, Sweden Department of Biochemistry and Organic Chemistry, Uppsala University, Sweden Neuropsychopharmacology Section, Faculty of Medicine, Imperial College, London, UK
| | | | | | | | | | | | | |
Collapse
|
24
|
Tauscher J, Kielbasa W, Iyengar S, Vandenhende F, Peng X, Mozley D, Gehlert DR, Marek G. Development of the 2nd generation neurokinin-1 receptor antagonist LY686017 for social anxiety disorder. Eur Neuropsychopharmacol 2010; 20:80-7. [PMID: 20018493 DOI: 10.1016/j.euroneuro.2009.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
Abstract
The neurokinin-1 (NK-1) antagonist LY686017 showed activity in preclinical anxiety models. The clinical development of LY686017 included a PET study and a proof-of-concept in social anxiety disorder (SAD). [(11)C]GR205171 was used healthy volunteers receiving 1-100mg/d LY686017 for 28 days to determine brain receptor occupancy (RO). The mean NK-1 RO increased ranged from 25% with 1mg to 93% with 100mg. Subsequently, a 12-week randomized clinical trial tested LY686017 vs. paroxetine, or placebo in SAD. Pharmacokinetic (PK)/RO modeling based on the PET results predicted that once daily dosing of >30mg LY686017 led to sustained trough RO of over 80%. 189 outpatients(1) suffering from SAD were randomly assigned to 12-weeks treatment with 50mg/d LY686017 (N=77), placebo (N=74), or 20mg/d paroxetine (N=38). There was no significant difference between LY686017 and placebo as measured with the Liebowitz Social Anxiety scale (LSAS). The active comparator paroxetine showed positive trends on primary and secondary measures. The plasma concentrations were above the level expected to produce maximal brain NK-1 RO based on the PK/RO relationship obtained in the human PET investigation. Thus, further evaluation of LY686017 for the treatment of SAD does not seem warranted.
Collapse
Affiliation(s)
- Johannes Tauscher
- Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, IN 46285, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
First evaluation of [11C]R116301 as an in vivo tracer of NK1 receptors in man. Mol Imaging Biol 2009; 11:241-5. [PMID: 19333655 PMCID: PMC2693769 DOI: 10.1007/s11307-009-0204-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 11/14/2008] [Accepted: 01/16/2009] [Indexed: 01/08/2023]
Abstract
Purpose NK1 receptors have been implicated in various neuropsychiatric and other disorders. R116301 is a selective NK1 receptor antagonist. In this pilot study, [11C]R116301 was evaluated as a potential positron emission tomography (PET) ligand for the NK1 receptor. Procedures Two dynamic PET studies were performed in three normal volunteers before and after a blocking dose of aprepitant. Data were analyzed using striatum to cerebellum standardized uptake value (SUV) ratios. Results Baseline SUV ratios at 60–90 min after injection ranged from 1.22 to 1.70. Following aprepitant administration, this specific signal was completely blocked. Aprepitant administration did not significantly affect uptake in cerebellum, confirming the absence of NK1 receptors in cerebellum. Conclusion These preliminary results indicate that [11C]R116301 has potential as a radioligand for in vivo assessment of NK1 receptors in the human brain.
Collapse
|
26
|
Syvänen S, Hooker A, Rahman O, Wilking H, Blomquist G, Långström B, Bergström M, Hammarlund-Udenaes M. Pharmacokinetics of P-glycoprotein inhibition in the rat blood-brain barrier. J Pharm Sci 2009; 97:5386-400. [PMID: 18384156 DOI: 10.1002/jps.21359] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This article describes the experimental set-up and pharmacokinetic modeling of P-glycoprotein function in the rat blood-brain barrier using [(11)C]verapamil as the substrate and cyclosporin A as an inhibitor of P-gp. [(11)C]verapamil was administered to rats as an i.v. bolus dose followed by graded infusions to obtain steady-state concentrations in the brain during 70 min. CsA was administered as a bolus followed by a constant infusion 20 min after the start of the [(11)C]verapamil infusion. The brain uptake of [(11)C]verapamil over 2 h was portrayed in a sequence of PET scans in parallel with measurement of [(11)C]verapamil concentrations in blood and plasma and CsA concentrations in blood. Mixed effects modeling in NONMEM was used to build a pharmacokinetic model of CsA-induced P-gp inhibition. The brain pharmacokinetics of [(11)C]verapamil was well described by a two-compartment model. The effect of CsA on the uptake of [(11)C]verapamil in the brain was best described by an inhibitory indirect effect model with an effect on the transport of [(11)C]verapamil out of the brain. The CsA concentration required to obtain 50% of the maximal inhibition was 4.9 microg/mL (4.1 microM). The model parameters indicated that 93% of the outward transport of [(11)C]verapamil was P-gp mediated.
Collapse
Affiliation(s)
- Stina Syvänen
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 751 24 Uppsala, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Syvänen S, Lindhe O, Palner M, Kornum BR, Rahman O, Långström B, Knudsen GM, Hammarlund-Udenaes M. Species differences in blood-brain barrier transport of three positron emission tomography radioligands with emphasis on P-glycoprotein transport. Drug Metab Dispos 2008; 37:635-43. [PMID: 19047468 DOI: 10.1124/dmd.108.024745] [Citation(s) in RCA: 251] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Species differences occur in the brain concentrations of drugs, but the reasons for these differences are not yet apparent. This study was designed to compare brain uptake of three radiolabeled P-glycoprotein (P-gp) substrates across species using positron emission tomography. Brain concentrations and brain-to-plasma ratios were compared; [(11)C]verapamil in rats, guinea pigs, and monkeys; [(11)C](S)-(2-methoxy-5-(5-trifluoromethyltetrazol-1-yl)-phenylmethylamino)-2(S)-phenylpiperidine (GR205171) in rats, guinea pigs, monkeys, and humans; and [(18)F]altanserin in rats, minipigs, and humans. The fraction of the unbound radioligand in plasma was studied along with its metabolism. The effect of P-gp inhibition was investigated by administering cyclosporin A (CsA). Pronounced species differences were found in the brain and brain-to-plasma concentrations of [(11)C]verapamil, [(11)C]GR205171, and [(18)F]altanserin with higher brain distribution in humans, monkeys, and minipigs than in rats and guinea pigs. For example, the brain-to-plasma ratio of [(11)C]GR205171 was almost 9-fold higher in humans compared with rats. The species differences were still present after P-gp inhibition, although the increase in brain concentrations after P-gp inhibition was somewhat greater in rats than in the other species. Differences in plasma protein binding and metabolism did not explain the species-related differences. The findings are important for interpretation of brain drug delivery when extrapolating preclinical data to humans. Compounds found to be P-gp substrates in rodents are likely to also be substrates in higher species, but sufficient blood-brain barrier permeability may be retained in humans to allow the compound to act at intracerebral targets.
Collapse
Affiliation(s)
- Stina Syvänen
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
In vivo site-directed radiotracers: a mini-review. Nucl Med Biol 2008; 35:805-15. [DOI: 10.1016/j.nucmedbio.2008.10.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 09/10/2008] [Accepted: 10/01/2008] [Indexed: 11/29/2022]
|
29
|
Navari RM. Fosaprepitant (MK-0517): a neurokinin-1 receptor antagonist for the prevention of chemotherapy-induced nausea and vomiting. Expert Opin Investig Drugs 2008; 16:1977-85. [PMID: 18042005 DOI: 10.1517/13543784.16.12.1977] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chemotherapy-induced nausea and vomiting (CINV) is a distressing and common adverse event associated with cancer treatment. Updated anti-emetic guidelines were published in 2007 by the National Comprehensive Cancer Network and in 2006 by the American Society of Clinical Oncology, which have included the use of the new and more effective anti-emetic agents (5-hydroxytryptamine-3 [5-HT(3)] receptor antagonists and neurokinin-1 [NK-1] receptor antagonists). Aprepitant is a selective NK-1 receptor antagonist approved as part of combination therapy with a corticosteroid and a 5-HT(3) receptor antagonist for the prevention of acute and delayed CINV. Fosaprepitant (also known as MK-0517 and L-758,298) is a water-soluble phosphoryl prodrug for aprepitant, which, when administered intravenously, is converted to aprepitant within 30 min after intravenous administration via the action of ubiquitous phosphatases. Because fosaprepitant is rapidly converted to the active form (aprepitant), it is expected to provide the same aprepitant exposure in terms of AUC, and a correspondingly similar anti-emetic effect. Clinical studies have suggested that fosaprepitant could be appropriate as an intravenous alternative to the aprepitant oral capsule. In a study in healthy subjects, fosaprepitant was well tolerated up to 150 mg (1 mg/ml), and fosaprepitant 115 mg was bioequivalent in its AUC to aprepitant 125 mg. Fosaprepitant 115 mg has been submitted for FDA approval as an alternative on day 1 of a 3-day oral aprepitant regimen, with oral aprepitant administered on days 2 and 3. Fosaprepitant may be a useful parenteral alternative to oral aprepitant. Further study is needed to clarify the use of fosaprepitant for the prevention of CINV, and to clarify optimal dosing regimens that may be appropriate substitutes for oral aprepitant.
Collapse
|
30
|
Sundqvist M, Kristensson E, Adolfsson R, Leffler A, Ahlstedt I, Engberg S, Drmota T, Sigfridsson K, Jussila R, de Verdier J, Novén A, Johansson A, Påhlman I, von Mentzer B, Lindström E. Senktide-induced gerbil foot tapping behaviour is blocked by selective tachykinin NK1 and NK3 receptor antagonists. Eur J Pharmacol 2007; 577:78-86. [DOI: 10.1016/j.ejphar.2007.08.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 07/31/2007] [Accepted: 08/28/2007] [Indexed: 10/22/2022]
|
31
|
Griffante C, Carletti R, Andreetta F, Corsi M. [3H]GR205171 displays similar NK1 receptor binding profile in gerbil and human brain. Br J Pharmacol 2007; 148:39-45. [PMID: 16501582 PMCID: PMC1617048 DOI: 10.1038/sj.bjp.0706697] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1 In this study, [(3)H]GR205171 (3(S)-(2-methoxy-5-(5-trifluoromethyltetrazol-1-yl)-phenylmethylamino)-2(S)-phenylpiperidine), a potent and selective NK1 receptor antagonist, was characterised in autoradiographic studies in gerbil brain and in binding experiments on homogenates from gerbil and human brain cortex and striatum. 2 In autoradiographic studies in gerbil brain, highest levels of [(3)H]GR205171 binding sites were observed in caudate putamen, nucleus accumbens, medial and cortical nuclei of the amygdala and intermediate levels were detected in the hypothalamus, basolateral amygdala, septum, and cortex. 3 Saturation experiments in homogenates of brain striatum from gerbil showed that [(3)H]GR205171 binds to a single receptor population with a pK(d) value of 10.8+/-0.2 and a B(max) value of 607+/-40 fmol mg(-1). A lower number of NK1 receptor sites was found in cortex, where a B(max) of 94+/-6 fmol mg(-1) protein was obtained. Saturation experiments performed on homogenates from brain striatum of two human subjects and brain cortex of three human subjects showed that [(3)H]GR205171 binds with pK(d) values not different from gerbil and B(max) values ranging from 318+/-51 to 432+/-27 fmol mg(-1) protein in striatum and from 59+/-1 to 74+/-21 fmol mg(-1) protein in cortex. The natural ligand [(3)H]Substance P (SP) bound with sub-nanomolar affinity to 15 and 6% sites compared to [(3)H]GR205171 in gerbil and human striatum, respectively. 4 In competition binding experiments, GR205171 and the NK1 receptor antagonists aprepitant (MK-869), L-733,060 and NKP-608 bound with similar pK(i) values in gerbil and human striatum, irrespective of the use of [(3)H]GR205171 or [(3)H]SP as radioligand. The following rank order was found in terms of pK(i) values: GR205171>aprepitant> or =L-733,060>NKP-608. In homologous displacement experiments in gerbil and human striatum, SP showed nanomolar affinity, whereas in [(3)H]GR205171 competition experiments SP bound with pIC(50) values in the micromolar range and Hill slopes significantly lower than one. 5 It is concluded that the similarities of [(3)H]GR205171 binding characteristics and pharmacology between gerbil and human in cortex and striatum support the use of gerbil in preclinical models to study the effects of NK1 receptor antagonists in the central nervous system.
Collapse
Affiliation(s)
- Cristiana Griffante
- Psychiatry Centre of Excellence for Drug Discovery, GlaxoSmithKline Group, Medicines Research Centre, 37135 Verona, Italy.
| | | | | | | |
Collapse
|
32
|
Syvänen S, Eriksson J, Genchel T, Lindhe Ö, Antoni G, Långström B. Synthesis of two potential NK1-receptor ligands using [1-11C]ethyl iodide and [1-11C]propyl iodide and initial PET-imaging. BMC Med Imaging 2007; 7:6. [PMID: 17663770 PMCID: PMC1959516 DOI: 10.1186/1471-2342-7-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 07/30/2007] [Indexed: 11/10/2022] Open
Abstract
Background The previously validated NK1-receptor ligand [O-methyl-11C]GR205171 binds with a high affinity to the NK1-receptor and displays a slow dissociation from the receptor. Hence, it cannot be used in vivo for detecting concentration changes in substance P, the endogenous ligand for the NK1-receptor. A radioligand used for monitoring these changes has to enable displacement by the endogenous ligand and thus bind reversibly to the receptor. Small changes in the structure of a receptor ligand can lead to changes in binding characteristics and also in the ability to penetrate the blood-brain barrier. The aim of this study was to use carbon-11 labelled ethyl and propyl iodide with high specific radioactivity in the synthesis of two new and potentially reversible NK1-receptor ligands with chemical structures based on [O-methyl-11C]GR205171. Methods [1-11C]Ethyl and [1-11C]propyl iodide with specific radioactivities of 90 GBq/μmol and 270 GBq/μmol, respectively, were used in the synthesis of [O-methyl-11C]GR205171 analogues by alkylation of O-desmethyl GR205171. The brain uptake of the obtained (2S,3S)-N-(1-(2- [1-11C]ethoxy-5-(3-(trifluoromethyl)-4H-1,2,4-triazol-4-yl)phenyl)ethyl)-2-phenylpiperidin-3-amine (I) and (2S,3S)-2-phenyl-N-(1-(2- [1-11C]propoxy-5-(3-(trifluoromethyl)-4H-1,2,4-triazol-4-yl)phenyl)ethyl)piperidin-3-amine (II) was studied with PET in guinea pigs and rhesus monkeys and compared to the uptake of [O-methyl-11C]GR205171. Results All ligands had similar uptake distribution in the guinea pig brain. The PET-studies in rhesus monkeys showed that (II) had no specific binding in striatum. Ligand (I) had moderate specific binding compared to the [O-methyl-11C]GR205171. The ethyl analogue (I) displayed reversible binding characteristics contrary to the slow dissociation rate shown by [O-methyl-11C]GR205171. Conclusion The propyl-analogue (II) cannot be used for detecting changes in NK1-ligand levels, while further studies should be performed with the ethyl-analogue (I).
Collapse
Affiliation(s)
- Stina Syvänen
- Uppsala Imanet, GE Healthcare, Box 967, 751 09 Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 751 24 Uppsala, Sweden
| | - Jonas Eriksson
- Uppsala Imanet, GE Healthcare, Box 967, 751 09 Uppsala, Sweden
- Department of Biochemistry and Organic Chemistry, Box 576, Uppsala University, 751 23 Uppsala, Sweden
| | - Tove Genchel
- Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 751 24 Uppsala, Sweden
| | - Örjan Lindhe
- Uppsala Imanet, GE Healthcare, Box 967, 751 09 Uppsala, Sweden
| | - Gunnar Antoni
- Uppsala Imanet, GE Healthcare, Box 967, 751 09 Uppsala, Sweden
| | - Bengt Långström
- Uppsala Imanet, GE Healthcare, Box 967, 751 09 Uppsala, Sweden
- Department of Biochemistry and Organic Chemistry, Box 576, Uppsala University, 751 23 Uppsala, Sweden
| |
Collapse
|
33
|
Lindström E, von Mentzer B, Påhlman I, Ahlstedt I, Uvebrant A, Kristensson E, Martinsson R, Novén A, de Verdier J, Vauquelin G. Neurokinin 1 Receptor Antagonists: Correlation between in Vitro Receptor Interaction and in Vivo Efficacy. J Pharmacol Exp Ther 2007; 322:1286-93. [PMID: 17575073 DOI: 10.1124/jpet.107.124958] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We compared the neurokinin 1 receptor (NK(1)R) antagonists aprepitant, CP-99994 [(2S,3S)-3-(2-methoxybenzylamino)-2-phenylpiperidine], and ZD6021 [3-cyano-N-((2S)-2-(3,4-dichlorophenyl)-4-[4-[2-(methyl-(S)-sulfinyl)phenyl]piperidino]butyl)-N-methyl]napthamide]] with respect to receptor interactions and duration of efficacy in vivo. In Ca(2+) mobilization assays (fluorometric imaging plate reader), antagonists were applied to human U373MG cells simultaneously with or 2.5 min before substance P (SP). In reversibility studies, antagonists were present for 30 min before washing, and responses to SP were repeatedly measured afterward. The compounds were administered i.p. to gerbils, and the gerbil foot tap (GFT) response was monitored at various time points. The NK(1)R receptor occupancy for aprepitant was determined in striatal regions. Levels of compound in brain and plasma were measured. Antagonists were equipotent at human NK(1)R and acted competitively with SP. After preincubation, aprepitant and ZD6021 attenuated the maximal responses, whereas CP-99994 only shifted the SP concentration-response curve to the right. The inhibitory effect of CP-99994 was over within 30 min, whereas for ZD6021, 50% inhibition still persisted after 60 min. Aprepitant produced maximal inhibition lasting at least 60 min. CP-99994 (3 micromol/kg) inhibited GFT by 100% 15 min after administration, but the effect declined rapidly together with brain levels thereafter. The efficacy of ZD6021 (10 micromol/kg) lasted 4 h and correlated well with brain levels. Aprepitant (3 micromol/kg) inhibited GFT and occupied striatal NK(1)R by 100% for >48 h despite that brain levels of compound were below the limit of detection after 24 h. Slow functional reversibility is associated with long-lasting in vivo efficacy of NK(1)R antagonists, whereas the efficacy of compounds with rapid reversibility is reflected by their pharmacokinetics.
Collapse
|
34
|
Michelgård A, Appel L, Pissiota A, Frans O, Långström B, Bergström M, Fredrikson M. Symptom provocation in specific phobia affects the substance P neurokinin-1 receptor system. Biol Psychiatry 2007; 61:1002-6. [PMID: 16950220 DOI: 10.1016/j.biopsych.2006.07.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 06/07/2006] [Accepted: 06/08/2006] [Indexed: 11/30/2022]
Abstract
BACKGROUND Animal studies demonstrate that stress and negative affect enhance the release of the neuropeptide substance P (SP), which binds to the neurokinin 1 (NK1) receptor. This positron emission tomography (PET) study evaluated how the activity in the SP-NK1 receptor system in the amygdala was affected by fear provocation in subjects with specific phobia. METHODS Sixteen adult women with DSM-IV-defined specific phobia for either snakes or spiders but not both viewed pictures of feared and non-feared animals while being PET-scanned for 60 min with the highly specific NK1 receptor antagonist [(11)C]GR205171 as the labeled PET tracer. RESULTS The uptake of the labeled NK1 receptor antagonist was significantly reduced in the right amygdala during phobic stimulation. In the left amygdala no significant differences were found between phobic and non-phobic conditions. There was a negative correlation in the right, but not left, amygdala between subjective anxiety ratings and NK1 tracer binding. CONCLUSIONS Fear provocation affects the SP-NK1 receptor system in the right amygdala. This reflects reduced NK1 receptor availability during fear and could mirror an increased release of endogenous substance P.
Collapse
Affiliation(s)
- Asa Michelgård
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
35
|
Nagano M, Saitow F, Haneda E, Konishi S, Hayashi M, Suzuki H. Distribution and pharmacological characterization of primate NK-1 and NK-3 tachykinin receptors in the central nervous system of the rhesus monkey. Br J Pharmacol 2006; 147:316-23. [PMID: 16331282 PMCID: PMC1751306 DOI: 10.1038/sj.bjp.0706561] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Much attention has focused on tachykinin receptors as therapeutic targets for neuropsychiatric disorders, although their expressional distributions in the primate central nervous system (CNS) remain unclear. We cloned the genes encoding the NK-1 and NK-3 tachykinin receptors (referred to as rmNK-1 and rmNK-3) from the rhesus monkey (Macaca mulatta) brain and examined their pharmacological profiles and regional distributions in the CNS. The deduced rmNK-1 amino-acid sequence differed by only two amino acids from the human NK-1 (hNK-1). The deduced rmNK-3 amino-acid sequence was two amino acids shorter than human NK-3 (hNK-3), with a seven-amino-acid difference in sequence. Ligand binding studies revealed that the affinity of rmNK-1 to substance P (SP) was comparable to that of hNK-1 in cell lines that expressed individual receptors stably. Nonpeptide antagonists had similar effects on the binding of rmNK-1 and hNK-1. Affinity of rmNK-3 for NKB was stronger than for SP and the IC50 value was comparable with that of hNK-3. Ca2+ imaging showed that activations of both rmNK-1 and rmNK-3 by specific ligands, SP and senktide, induced increased intracellular Ca2+ in cell lines that stably expressed individual primate tachykinin receptors. The amounts of rmNK-1 and rmNK-3 mRNAs were quantitatively determined in the monkey CNS. The expression of rmNK-1 was observed in all of the cortical and subcortical regions, including the hippocampus and the amygdala. The putamen contained the most NK-1 mRNA in the brain, with less rmNK-3 mRNA found in the cortex compared to rmNK-1 mRNA. In the monkey hippocampus and amygdala, rmNK-1 mRNA was present at markedly higher concentrations than rmNK-3 mRNA. The present results provide an insight into the distinct physiological nature and significance of the NK-1 and NK-3 tachykinin systems in the primate CNS. These findings are indispensable for establishing model systems in the search for a subtype-specific tachykinin receptor agonist and antagonist for the treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Masatoshi Nagano
- Department of Pharmacology, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Fumihito Saitow
- Department of Pharmacology, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Eisuke Haneda
- Department of Pharmacology, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Shiro Konishi
- Waseda-Olympus Bioscience Research Institute, Waseda University, Singapore 138667, Singapore
| | - Motoharu Hayashi
- Department of Cellular and Molecular Biology, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Hidenori Suzuki
- Department of Pharmacology, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
- Author for correspondence:
| |
Collapse
|
36
|
Razifar P, Axelsson J, Schneider H, Långström B, Bengtsson E, Bergström M. A new application of pre-normalized principal component analysis for improvement of image quality and clinical diagnosis in human brain PET studies—Clinical brain studies using [11C]-GR205171, [11C]-l-deuterium-deprenyl, [11C]-5-Hydroxy-l-Tryptophan, [11C]-l-DOPA and Pittsburgh Compound-B. Neuroimage 2006; 33:588-98. [PMID: 16934493 DOI: 10.1016/j.neuroimage.2006.05.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 05/11/2006] [Accepted: 05/23/2006] [Indexed: 10/24/2022] Open
Abstract
Principal component analysis (PCA) is one of the most applied multivariate image analysis tool on dynamic Positron Emission Tomography (PET). Independent of used reconstruction methodologies, PET images contain correlation in-between pixels, correlations in-between frame and errors caused by the reconstruction algorithm including different corrections, which can affect the performance of the PCA. In this study, we have investigated a new approach of application of PCA on pre-normalized, dynamic human PET images. A range of different tracers have been used for this purpose to explore the performance of the new method as a way to improve detection and visualization of significant changes in tracer kinetics and to enhance the discrimination between pathological and healthy regions in the brain. We compare the new results with the results obtained using other methods. Images generated using the new approach contain more detailed anatomical information with higher quality, precision and visualization, compared with images generated using other methods.
Collapse
Affiliation(s)
- Pasha Razifar
- Uppsala University, Centre for Image Analysis, Lägerhyddsv. 3, SE-752 37 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
37
|
Syvänen S, Blomquist G, Sprycha M, Höglund AU, Roman M, Eriksson O, Hammarlund-Udenaes M, Långström B, Bergström M. Duration and degree of cyclosporin induced P-glycoprotein inhibition in the rat blood-brain barrier can be studied with PET. Neuroimage 2006; 32:1134-41. [PMID: 16857389 DOI: 10.1016/j.neuroimage.2006.05.047] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2005] [Revised: 05/10/2006] [Accepted: 05/16/2006] [Indexed: 10/24/2022] Open
Abstract
Active efflux transporters in the blood-brain barrier lower the brain concentrations of many drug molecules and endogenous substances and thus affect their central action. The objective of this investigation was to study the dynamics of the entire inhibition process of the efflux transporter P-glycoprotein (P-gp), using positron emission tomography (PET). The P-gp marker [(11)C]verapamil was administered to anesthetized rats as an i.v. bolus dose followed by graded infusions via a computerized pump system to obtain a steady-state concentration of [(11)C]verapamil in brain. The P-gp modulator cyclosporin A (CsA) (3, 10 and 25 mg/kg) was administered as a short bolus injection 30 min after the start of the [(11)C]verapamil infusion. The CsA pharmacokinetics was studied in whole blood in a parallel group of rats. The CsA blood concentrations were used as input to model P-gp inhibition. The inhibition of P-gp was observed as a rapid increase in brain concentrations of [(11)C]verapamil, with a maximum after 5, 7.5 and 17.5 min for the respective doses. The respective increases in maximal [(11)C]verapamil concentrations were 1.5, 2.5 and 4 times the baseline concentration. A model in which CsA inhibited P-gp by decreasing the transport of [(11)C]verapamil out from the brain resulted in the best fit. Our data suggest that it is not the CsA concentration in blood, but rather the CsA concentration in an effect compartment, probably the endothelial cells of the blood-brain barrier that is responsible for the inhibition of P-gp.
Collapse
Affiliation(s)
- Stina Syvänen
- Uppsala Imanet, PO Box 967, SE-751 85 Uppsala, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bergström M, Långström B. Pharmacokinetic studies with PET. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2006; 62:279-317. [PMID: 16329260 DOI: 10.1007/3-7643-7426-8_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Affiliation(s)
- Mats Bergström
- Uppsala Imanet, GE Health Care, Box 967, SE-751 09 Uppsala, Sweden.
| | | |
Collapse
|
39
|
Chernet E, Martin LJ, Li D, Need AB, Barth VN, Rash KS, Phebus LA. Use of LC/MS to assess brain tracer distribution in preclinical, in vivo receptor occupancy studies: Dopamine D2, serotonin 2A and NK-1 receptors as examples. Life Sci 2005; 78:340-6. [PMID: 16139310 DOI: 10.1016/j.lfs.2005.04.075] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Accepted: 04/22/2005] [Indexed: 11/19/2022]
Abstract
High performance liquid chromatography combined with either single quad or triple quad mass spectral detectors (LC/MS) was used to measure the brain distribution of receptor occupancy tracers targeting dopamine D2, serotonin 5-HT2A and neurokinin NK-1 receptors using the ligands raclopride, MDL-100907 and GR205171, respectively. All three non-radiolabeled tracer molecules were easily detectable in discrete rat brain areas after intravenous doses of 3, 3 and 30 microg/kg, respectively. These levels showed a differential brain distribution caused by differences in receptor density, as demonstrated by the observation that pretreatment with compounds that occupy these receptors reduced this differential distribution in a dose-dependent manner. Intravenous, subcutaneous and oral dose-occupancy curves were generated for haloperidol at the dopamine D2 receptor as were oral curves for the antipsychotic drugs olanzapine and clozapine. In vivo dose-occupancy curves were also generated for orally administered clozapine, olanzapine and haloperidol at the cortical 5-HT2A binding site. In vivo occupancy at the striatal neurokinin NK-1 binding site by various doses of orally administered MK-869 was also measured. Our results demonstrate the utility of LC/MS to quantify tracer distribution in preclinical brain receptor occupancy studies.
Collapse
Affiliation(s)
- Eyassu Chernet
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana 46285, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Gao M, Mock BH, Hutchins GD, Zheng QH. Synthesis and initial PET imaging of new potential NK1 receptor radioligands 1-[2-(3,5-bis-trifluoromethyl-benzyloxy)-1-phenyl-ethyl]-4-[11C]methyl-piperazine and {4-[2-(3,5-bis-trifluoromethyl-benzyloxy)-1-phenyl-ethyl]-piperazine-1-yl}-acetic acid [11C]methyl ester. Nucl Med Biol 2005; 32:543-52. [PMID: 15982585 DOI: 10.1016/j.nucmedbio.2005.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 03/14/2005] [Accepted: 03/29/2005] [Indexed: 11/30/2022]
Abstract
The NK(1) receptor radioligands 1-[2-(3,5-bis-trifluoromethyl-benzyloxy)-1-phenyl-ethyl]-4-[(11)C]methyl-piperazine ([(11)C]BMP, [(11)C]) and {4-[2-(3,5-bis-trifluoromethyl-benzyloxy)-1-phenyl-ethyl]-piperazine-1-yl}-acetic acid [(11)C]methyl ester ([(11)C]BME, [(11)C]) were synthesized for evaluation as new potential PET imaging agents for brain NK(1) receptors. The new tracers [(11)C]BMP and [(11)C]BME were prepared by N-[(11)C]methylation and O-[(11)C]methylation of corresponding precursors 1-[2-(3,5-bis-trifluoromethyl-benzyloxy)-1-phenyl-ethyl]-piperazine and {4-[2-(3,5-bis-trifluoromethyl-benzyloxy)-1-phenyl-ethyl]-piperazine-1-yl}-acetic acid using [(11)C]methyl triflate and isolated by solid-phase extraction (SPE) purification procedure with 40-55% radiochemical yields, decay corrected to end of bombardment, and a synthesis time of 15-20 min. The initial PET dynamic studies of the tracers [(11)C] and [(11)C] in rats were performed using an animal PET scanner, IndyPET-II, developed in our laboratory. The results show the tracer [(11)C]BMP had better uptake in the animal brain than the tracer [(11)C]BME and gave higher quality rat brain images. Blocking studies by intravenous coinjection of hot tracer [(11)C]BMP with cold drug BMP had no effect on [(11)C]BMP-PET rat brain imaging. Likewise, blocking studies by intravenous coinjection of hot tracer [(11)C]BME with cold drug BME also showed no effect on [(11)C]BME-PET rat brain imaging. These results suggest that the localization of [(11)C]BMP and [(11)C]BME in rat brain is mediated by nonspecific processes, and the visualization of [(11)C]BMP-PET and [(11)C]BME-PET on rat brain is related to nonspecific binding.
Collapse
Affiliation(s)
- Mingzhang Gao
- Department of Radiology, Indiana University School of Medicine, Indianapolis, 46202-2111, USA
| | | | | | | |
Collapse
|
41
|
Abstract
The specific aim of this review is to assess the potential contribution of single photon emitting radiopharmaceutical technologies to new drug development. For each phase of therapeutic drug development, published literature was sought that shows single photon emitters can add value by quantifying pharmacokinetics, visualizing mechanisms of drug action, estimating therapeutic safety indices, or measuring dose-dependent pharmacodynamic effects. Not any published reports were found that describe using nuclear medicine techniques to help manage the progress of a new drug development program. As a consequence, most of the case in favor of weaving single photon imaging into the process had to be built on extrapolations from studies that showed feasibility post hoc. The strongest evidence of potential value was found for drug candidates that hope to influence diseases characterized by cell proliferation or cell death, particularly in the fields of oncology, cardiology, nephrology, and inflammation. Receptor occupancy studies were observed to occasionally offer unique advantages over analogous studies with positron emission tomography (PET). Enough hard data sets were found to justify the costs of using single photon imaging in a variety of new drug development paradigms.
Collapse
Affiliation(s)
- P David Mozley
- Lilly Corporate Center, Eli Lilly & Company, Indianapolis, IN 46285, USA.
| |
Collapse
|
42
|
Bender D, Olsen AK, Marthi MK, Smith DF, Cumming P. PET evaluation of the uptake of N-[11C]methyl CP-643,051, an NK1 receptor antagonist, in the living porcine brain. Nucl Med Biol 2005; 31:699-704. [PMID: 15246360 DOI: 10.1016/j.nucmedbio.2004.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Revised: 03/11/2004] [Accepted: 03/14/2004] [Indexed: 10/26/2022]
Abstract
Antagonists of neurokinin receptors such as CP-643,051 are presently under investigation as potential antidepressants, but little is known about the brain uptake and distribution of these agents. We developed a method for the efficient N-[11C]methylation of CP-122,721, yielding the NK1 antagonist N-[11C]methyl CP-643,051. The brain uptake and distribution of N-[11C]methyl CP-643,051 were studied by positron emission tomography (PET) in the anaesthetized pig, first in a baseline condition, and again after displacement of specific binding with the NK1 receptor antagonist L-732,138 (0.6 mg/kg, i.v.). In order to validate this displacement procedure, we tested the effects of L-732,138 on cerebral blood flow (CBF) in one pig. We found that N-[11C]methyl CP-643,051 had a distribution volume close to 3 ml g(-1), and a binding potential (pB) of 0.3 in the pig striatum; this binding was displaceable by the L-732,138 pre-treatment, which evoked a small (10-20%) global increase in CBF. We conclude that of N-[11C]methyl CP-643,051 may serve as a lead structure for the development of PET NK-1 ligands of higher specific binding in vivo.
Collapse
Affiliation(s)
- D Bender
- PET Centre, Aarhus University Hospitals, Aarhus, Denmark.
| | | | | | | | | |
Collapse
|
43
|
Abstract
Tachykinins play an important role as peptide modulators in the CNS. Based on the concentration and distribution of the peptides and their receptors, substance P (SP) and its cognate receptor neurokinin 1 (NK1R) seem to play a particularly important role in higher brain functions. They are expressed at high levels in the limbic system, which is the neural basis of emotional responses. Three different lines of evidence from physiological studies support such a role of SP in the regulation of emotionality: (1) stress is often associated with elevated level of SP in animals and humans; (2) systematic and local injections of SP influence anxiety levels in a dose-dependent and site-specific manner; (3) NK1 receptor antagonists show anxiolytic effects in different animal models of anxiety. Although these studies point to the NK1 receptor as a promising target for the pharmacotherapy of anxiety disorders, high affinity antagonists for the human receptors could not be studied in rats or mice due to species differences in the antagonist binding sites. However, studies on anxiety and depression-related behaviors have now been performed in mouse mutants deficient in NK1 receptor or SP and NKA. These genetic studies have shown that anxiety and depression-related phenotypes are profoundly affected by the tachykinin system. For example, NK1R-deficient mice seem to be less prone depression-related behaviors in models of depression, and one study also provided evidence for reduced anxiety levels. Mice deficient in SP and NKA behaved similarly as the NK1R knockouts. In animal models of anxiety they performed like wildtype mice treated with anxiolytic drugs. In behavioral paradigms related to depression they behaved like wildtype animals treated with antidepressants. In summary, the genetic studies clearly show that the SP/NK1 system plays an important role in the modulation of emotional behaviors.
Collapse
Affiliation(s)
- A Bilkei-Gorzo
- Laboratory of Molecular Neurobiology, Department of Psychiatry, University of Bonn, Siegmund-Freund-Strasse 25, 53105 Bonn, Germany
| | | |
Collapse
|
44
|
|
45
|
Bergström M, Hargreaves RJ, Burns HD, Goldberg MR, Sciberras D, Reines SA, Petty KJ, Ogren M, Antoni G, Långström B, Eskola O, Scheinin M, Solin O, Majumdar AK, Constanzer ML, Battisti WP, Bradstreet TE, Gargano C, Hietala J. Human positron emission tomography studies of brain neurokinin 1 receptor occupancy by aprepitant. Biol Psychiatry 2004; 55:1007-12. [PMID: 15121485 DOI: 10.1016/j.biopsych.2004.02.007] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Revised: 02/03/2004] [Accepted: 02/04/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND Aprepitant is a highly selective substance P (neurokinin 1 [NK(1)] receptor) antagonist that significantly improves the pharmacotherapy of acute and delayed highly emetogenic chemotherapy-induced nausea and vomiting, probably through an action in the brain stem region of the central nervous system. Here, we report the use of positron emission tomography imaging with the NK(1) receptor binding-selective tracer [(18)F]SPA-RQC to determine the levels of central NK(1) receptor occupancy achieved by therapeutically relevant doses of aprepitant in healthy humans. METHODS Two single-blind, randomized, placebo-controlled studies in healthy subjects were performed. The first study evaluated the plasma concentration-occupancy relationships for aprepitant dosed orally at 10, 30, 100, or 300 mg, or placebo (n = 12). The second study similarly evaluated oral aprepitant 30 mg and placebo (n = 4). In each study, dosing was once daily for 14 consecutive days. Data from both studies were combined for analyses. The ratio of striatal/cerebellar [(18)F]SPA-RQ (high receptor density region/reference region lacking receptors) was used to calculate trough receptor occupancy 24 hours after the last dose of aprepitant. RESULTS Brain NK(1) receptor occupancy increased after oral aprepitant dosing in both a plasma concentration-related (r =.97; 95% confidence interval [CI] =.94-1.00, p <.001) and a dose-related (r =.94; 95% CI =.86-1.00, p <.001) fashion. High (> or =90%) receptor occupancy was achieved at doses of 100 mg/day or greater. The plasma concentrations of aprepitant that achieved 50% and 90% occupancy were estimated as approximately 10 ng/mL and approximately 100 ng/mL, respectively. CONCLUSIONS Positron emission tomography imaging with [(18)F]SPA-RQ allows brain NK(1) receptor occupancy by aprepitant to be predicted from plasma drug concentrations and can be used to guide dose selection for clinical trials of NK(1) receptor antagonists in central therapeutic indications.
Collapse
Affiliation(s)
- Mats Bergström
- Uppsala Positron Emission Tomography Centre, Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bergström M, Grahnén A, Långström B. Positron emission tomography microdosing: a new concept with application in tracer and early clinical drug development. Eur J Clin Pharmacol 2003; 59:357-66. [PMID: 12937873 DOI: 10.1007/s00228-003-0643-x] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2002] [Accepted: 06/25/2003] [Indexed: 10/26/2022]
Abstract
The realisation that new chemical entities under development as drug candidates fail in three of four cases in clinical trials, together with increased costs and increased demands of reducing preclinical animal experiments, have promoted concepts for improvement of early screening procedures in humans. Positron emission tomography (PET) is a non-invasive imaging technology, which makes it possible to determine drug distribution and concentration in vivo in man with the drug labelled with a positron-emitting radionuclide that does not change the biochemical properties. Recently, developments in the field of rapid synthesis of organic compounds labelled with positron-emitting radionuclides have allowed a substantial number of new drug candidates to be labelled and potentially used as probes in PET studies. Together, these factors led to the logical conclusion that early PET studies, performed with very low drug doses-PET-microdosing-could be included in the drug development process as one means for selection or rejection of compounds based on performance in vivo in man. Another important option of PET, to evaluate drug interaction with a target, utilising a PET tracer specific for this target, necessitates a more rapid development of such PET methodology and validations in humans. Since only very low amounts of drugs are used in PET-microdosing studies, the safety requirements should be reduced relative to the safety requirements needed for therapeutic doses. In the following, a methodological scrutinising of the concept is presented. A complete pre-clinical package including limited toxicity assessment is proposed as a base for the regulatory framework of the PET-microdosing concept.
Collapse
Affiliation(s)
- Mats Bergström
- Department of Pharmaceutical Biosciences, Faculty of Pharmacy, Uppsala University, Sweden,
| | | | | |
Collapse
|
47
|
Nutt D, Lingford-Hughes A, Daglish M. Future directions in substance dependence research. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2003:95-103. [PMID: 12830931 DOI: 10.1007/978-3-7091-6020-6_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Substance dependence is a major health problem but increasing understanding of its neurobiology is likely to lead to improved prevention and treatment. Fundamental aspects of dependence include tolerance and withdrawal and the fact that the drug becomes the centre of the addict's world. Neuroimaging has been key in defining underlying neurobiological mechanisms. The activity in particular brain regions has been shown to be altered in addiction. These include the anterior cingulate which is involved in emotional salience and the orbitofrontal cortex, involved in impulse control. Dopamine is the key neurotransmitter since most abused drugs increase its levels, and many pharmacotherapies have targeted this system. The opiate system is also key in mediating the pleasurable effects of some drugs such as alcohol by increasing dopamine levels. The GABA and glutamate systems mediate many of the other effects of alcohol. As the neurobiology of different components of addiction become evident, pharmacological approaches involve exploiting our new understanding which will likely lead to improved treatments.
Collapse
Affiliation(s)
- D Nutt
- Psychopharmacology Unit, University of Bristol, Bristol, United Kingdom.
| | | | | |
Collapse
|
48
|
Abstract
The tachykinin neuropeptide substance P and its receptor neurokinin 1 have been implicated in the regulation of many physiological and pathological processes, including the control of emotional behaviors. The present study examines mice with a targeted deletion of the Tac1 gene, which encodes the neuropeptides substance P and neurokinin A, in animal models relevant to depressive illness and anxiety. In depression-related paradigms, Tac1-deficient mice were more active in the Porsolt's forced-swimming test and the tail-suspension test, and they did not become hyperactive after bulbectomy. Tac1 mutant mice were also less fearful in several animal models of anxiety. They were more active and less affected by the light conditions in the central area of the open-field arena; they showed more social interactions in an aversive environment, they were more active in the open areas of an elevated zero-maze, and they had a reduced latency to feed in the Thatcher-Britton conflict paradigm. These results demonstrate that tachykinins are powerful mediators of depression-like or anxiety-related behaviors in mice. The tachykinin system therefore may play an important role in the regulation of emotional states and the development of anxiety disorders and depression.
Collapse
|
49
|
Zamuner S, Gomeni R, Bye A. Estimate the time varying brain receptor occupancy in PET imaging experiments using non-linear fixed and mixed effect modeling approach. Nucl Med Biol 2002; 29:115-23. [PMID: 11786282 DOI: 10.1016/s0969-8051(01)00275-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Positron-Emission Tomography (PET) is an imaging technology currently used in drug development as a non-invasive measure of drug distribution and interaction with biochemical target system. The level of receptor occupancy achieved by a compound can be estimated by comparing time-activity measurements in an experiment done using tracer alone with the activity measured when the tracer is given following administration of unlabelled compound. The effective use of this surrogate marker as an enabling tool for drug development requires the definition of a model linking the brain receptor occupancy with the fluctuation of plasma concentrations. However, the predictive performance of such a model is strongly related to the precision on the estimate of receptor occupancy evaluated in PET scans collected at different times following drug treatment. Several methods have been proposed for the analysis and the quantification of the ligand-receptor interactions investigated from PET data. The aim of the present study is to evaluate alternative parameter estimation strategies based on the use of non-linear mixed effect models allowing to account for intra and inter-subject variability on the time-activity and for covariates potentially explaining this variability. A comparison of the different modeling approaches is presented using real data. The results of this comparison indicates that the mixed effect approach with a primary model partitioning the variance in term of Inter-Individual Variability (IIV) and Inter-Occasion Variability (IOV) and a second stage model relating the changes on binding potential to the dose of unlabelled drug is definitely the preferred approach.
Collapse
|
50
|
Bender D, Smith DF, Marthi K, Gjedde A. Synthesis and in vivo evaluation (PIG) of CP-643,051, the N-[11C]methyl analogue of the NK1 receptor antagonist CP-122,721. J Labelled Comp Radiopharm 2001. [DOI: 10.1002/jlcr.25804401100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|