1
|
Kumar J, Naina Mohamed I, Mohamed R, Ugusman A, Muzaimi M, Mohamed W, Yahaya MF, Teoh SL, Kamaluddin MR, Abdul Hamid H, Mehat MZ, Shanmugam PK. Locomotion changes in methamphetamine and amphetamine withdrawal: a systematic review. Front Pharmacol 2024; 15:1428492. [PMID: 39086393 PMCID: PMC11288965 DOI: 10.3389/fphar.2024.1428492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Despite extensive preclinical research over the years, a significant gap remains in our understanding of the specific effects of methamphetamine (METH) and amphetamine (AMPH) withdrawal. Understanding these differences could be pivotal to unveiling the unique pathophysiology underlying each stimulant. This may facilitate the development of targeted and effective treatment strategies tailored to the specific characteristics of each substance. Following PRISMA guidelines, this systematic review was conducted to examine alterations in spontaneous locomotor activity, specifically horizontal activity, in animals experiencing withdrawal from extended and repeated administration of AMPH or METH. Original articles were retrieved from four electronic databases, supplemented by a review of the references cited in the published papers. A total of thirty-one full-length articles (n = 31) were incorporated in the analysis. The results indicated that six studies documented a significant increase in horizontal activity among animals, seven studies reported decreased locomotion, and eighteen studies (8 AMPH; 10 METH) reported no significant alterations in the animals' locomotor activity. Studies reporting heightened locomotion mainly employed mice undergoing withdrawal from METH, studies reporting diminished locomotion predominantly involved rats undergoing withdrawal from AMPH, and studies reporting no significant changes in horizontal activity employed both rats and mice (12 rats; 6 mice). Drug characteristics, routes of administration, animal models, dosage regimens, duration, and assessment timing seem to influence the observed outcomes. Despite more than 50% of papers enlisted in this review indicate no significant changes in the locomotion during the stimulant withdrawal, the unique reactions of animals to withdrawal from METH and AMPH reported by some underscore the need for a more nuanced understanding of stimulant withdrawal.
Collapse
Affiliation(s)
- Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Isa Naina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rashidi Mohamed
- Department of Family Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mustapha Muzaimi
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Malaysia
| | - Wael Mohamed
- Basic Medical Science Department, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
- Department of Clinical Pharmacology, Faculty of Medicine, Menoufia University, Shebin El Kom, Egypt
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Malaysia
| | - Mohammad Rahim Kamaluddin
- The Centre for Research in Psychology and Human Well-Being, Faculty of Social Sciences and Humanities, The National University of Malaysia, Bangi, Malaysia
| | - Hafizah Abdul Hamid
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Muhammad Zulfadli Mehat
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | | |
Collapse
|
2
|
Li YT, Huang YL, Chen JJJ, Hyland BI, Wickens JR. Phasic dopamine signals are reduced in the spontaneously hypertensive rat and increased by methylphenidate. Eur J Neurosci 2024; 59:1567-1584. [PMID: 38314648 DOI: 10.1111/ejn.16269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/27/2023] [Accepted: 01/17/2024] [Indexed: 02/06/2024]
Abstract
The spontaneously hypertensive rat (SHR) is a selectively bred animal strain that is frequently used to model attention-deficit hyperactivity disorder (ADHD) because of certain genetically determined behavioural characteristics. To test the hypothesis that the characteristically altered response to positive reinforcement in SHRs may be due to altered phasic dopamine response to reward, we measured phasic dopamine signals in the SHRs and Sprague Dawley (SD) rats using in vivo fast-scan cyclic voltammetry. The effects of the dopamine reuptake inhibitor, methylphenidate, on these signals were also studied. Phasic dopamine signals during the pairing of a sensory cue with electrical stimulation of midbrain dopamine neurons were significantly smaller in the SHRs than in the SD rats. Over repeated pairings, the dopamine response to the sensory cue increased, whereas the response to the electrical stimulation of dopamine neurons decreased, similarly in both strains. However, the final amplitude of the response to the sensory cue after pairing was significantly smaller in SHRs than in the SD rats. Methylphenidate increased responses to sensory cues to a significantly greater extent in the SHRs than in the SD rats, due largely to differences in the low dose effect. At a higher dose, methylphenidate increased responses to sensory cues and electrical stimulation similarly in SHRs and SD rats. The smaller dopamine responses may explain the reduced salience of reward-predicting cues previously reported in the SHR, whereas the action of methylphenidate on the cue response suggests a potential mechanism for the therapeutic effects of low-dose methylphenidate in ADHD.
Collapse
Affiliation(s)
- Yu-Ting Li
- Neurobiology Research Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Yi-Ling Huang
- Neurobiology Research Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Jia-Jin Jason Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Brian Ian Hyland
- Department of Physiology, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Jeffery R Wickens
- Neurobiology Research Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| |
Collapse
|
3
|
Regan SL, Williams MT, Vorhees CV. Review of rodent models of attention deficit hyperactivity disorder. Neurosci Biobehav Rev 2022; 132:621-637. [PMID: 34848247 PMCID: PMC8816876 DOI: 10.1016/j.neubiorev.2021.11.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023]
Abstract
Attention deficit hyperactivity disorder (ADHD) is a polygenic neurodevelopmental disorder that affects 8-12 % of children and >4 % of adults. Environmental factors are believed to interact with genetic predispositions to increase susceptibility to ADHD. No existing rodent model captures all aspects of ADHD, but several show promise. The main genetic models are the spontaneous hypertensive rat, dopamine transporter knock-out (KO) mice, dopamine receptor subtype KO mice, Snap-25 KO mice, guanylyl cyclase-c KO mice, and latrophilin-3 KO mice and rats. Environmental factors thought to contribute to ADHD include ethanol, nicotine, PCBs, lead (Pb), ionizing irradiation, 6-hydroxydopamine, neonatal hypoxia, some pesticides, and organic pollutants. Model validation criteria are outlined, and current genetic models evaluated against these criteria. Future research should explore induced multiple gene KOs given that ADHD is polygenic and epigenetic contributions. Furthermore, genetic models should be combined with environmental agents to test for interactions.
Collapse
Affiliation(s)
- Samantha L. Regan
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45229
| | - Michael T. Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Charles V. Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, and Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229,Corresponding author: Charles V. Vorhees, Ph.D., Div. of Neurology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA:
| |
Collapse
|
4
|
Burke NN, Coppinger J, Deaver DR, Roche M, Finn DP, Kelly J. Sex differences and similarities in depressive- and anxiety-like behaviour in the Wistar-Kyoto rat. Physiol Behav 2016; 167:28-34. [DOI: 10.1016/j.physbeh.2016.08.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/17/2016] [Accepted: 08/30/2016] [Indexed: 12/29/2022]
|
5
|
Perrotti LI, Dennis TS, Jiao X, Servatius RJ, Pang KCH, Beck KD. Activation of extracellular signal-regulated kinase (ERK) and ΔFosB in emotion-associated neural circuitry after asymptotic levels of active avoidance behavior are attained. Brain Res Bull 2013; 98:102-10. [PMID: 23932962 DOI: 10.1016/j.brainresbull.2013.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 06/20/2013] [Accepted: 07/09/2013] [Indexed: 12/30/2022]
Abstract
Avoidance susceptibility may constitute a vulnerability to develop anxiety disorders, and Wistar-Kyoto (WKY) rats exhibit unique features in their acquisition of avoidance behavior that appear to promote susceptibility to this form of learning, namely the absence of the commonly observed "warm-up" effect. The present study sought to determine if strain differences in acquired avoidance behavior, between WKY and Sprague Dawley rats, could be attributed to differences in dopamine-related plasticity, represented by extracellular signal-regulated kinase (ERK) activity, and prolonged neuronal activation, represented by ΔFosB accumulation, in three key areas of the brain: the medial prefrontal cortex (mPFC), dorsal striatum (DS), and basolateral amygdala (BLA). Consistent with earlier work, WKY rats exhibited a higher level of asymptotic performance of avoidance behavior, which included an absence of warm-up in the first few trials of later training sessions, and they exhibited more non-reinforced anticipatory responses in the single minute prior to the initiation of the first warning signal presentation of each training session. In the brain, phosyphorylated ERK2 (pERK2) activation was higher in avoidance trained rats in both the mPFC and DS, although the difference in DS was mostly observed in WKY rats. Avoidance-training was associated with higher levels of ΔFosB expression in the mPFC of SD rats, but not WKY rats. The strain differences in pERK2 activation in the DS and ΔFosB levels in the mPFC may underlie the strain-specific differences observed in warm-up, the emission of non-reinforced anticipatory responses, and general differences in asymptotic performance of active avoidance behavior. The mPFC and DS require further study as potential neural targets for understanding avoidance susceptibility and, as a result, anxiety vulnerability.
Collapse
Affiliation(s)
- Linda I Perrotti
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Barker-Haliski ML, Oldenburger K, Keefe KA. Disruption of subcellular Arc/Arg 3.1 mRNA expression in striatal efferent neurons following partial monoamine loss induced by methamphetamine. J Neurochem 2012; 123:845-55. [PMID: 22978492 DOI: 10.1111/jnc.12017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 08/25/2012] [Accepted: 09/10/2012] [Indexed: 11/29/2022]
Abstract
The immediate-early gene Arc (activity-regulated cytoskeleton-associated protein) is provocative in the context of neuroplasticity because of its experience-dependent regulation and mRNA transport to and translation at activated synapses. Normal rats have more preproenkephalin-negative (ppe-neg; presumed striatonigral) neurons with cytoplasmic Arc mRNA than ppe-positive (ppe-pos; striatopallidal) neurons, despite equivalent numbers of these neurons showing novelty-induced transcriptional activation of Arc. Furthermore, rats with partial monoamine loss induced by methamphetamine (METH) show impaired Arc mRNA expression in both ppe-neg and ppe-pos neurons relative to normal animals following response-reversal learning. In this study, Arc expression induced by exposure to a novel environment was used to assess transcriptional activation and cytoplasmic localization of Arc mRNA in striatal efferent neuron subpopulations subsequent to METH-induced neurotoxicity. Partial monoamine depletion significantly altered Arc expression. Specifically, basal Arc expression was elevated, but novelty-induced transcriptional activation was abolished. Without novelty-induced Arc transcription, METH-pre-treated rats also had fewer neurons with cytoplasmic Arc mRNA expression, with the effect being greater for ppe-neg neurons. Thus, METH-induced neurotoxicity substantially alters striatal efferent neuron function at the level of Arc transcription, suggesting a long-term shift in basal ganglia neuroplasticity processes subsequent to METH-induced neurotoxicity. Such changes potentially underlie striatally based learning deficits associated with METH-induced neurotoxicity.
Collapse
|
7
|
Miller EM, Pomerleau F, Huettl P, Russell VA, Gerhardt GA, Glaser PEA. The spontaneously hypertensive and Wistar Kyoto rat models of ADHD exhibit sub-regional differences in dopamine release and uptake in the striatum and nucleus accumbens. Neuropharmacology 2012; 63:1327-34. [PMID: 22960443 DOI: 10.1016/j.neuropharm.2012.08.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/31/2012] [Accepted: 08/21/2012] [Indexed: 10/27/2022]
Abstract
The most widely used animal model of attention-deficit/hyperactivity disorder (ADHD) is the spontaneously hypertensive rat (SHR/NCrl), which best represents the combined subtype (ADHD-C). Recent evidence has revealed that a progenitor strain, the Wistar Kyoto from Charles River Laboratories (WKY/NCrl), is useful as a model of the inattentive subtype (ADHD-PI) and the Wistar Kyoto from Harlan Laboratories (WKY/NHsd) and the Sprague Dawley (SD) have been suggested as controls. Dopamine (DA) dysfunction in the striatum (Str) and nucleus accumbens core (NAc) is thought to play a significant role in the pathophysiology of ADHD but data obtained with the SHR is equivocal. Using high-speed chronoamperometric recordings with carbon fiber microelectrodes, we found that the SHR/NCrl displayed decreased KCl-evoked DA release versus the WKY/NCrl model of ADHD-PI in the dorsal Str. The WKY/NCrl and the WKY/NHsd control did not differ from each other; however, the control SD released less DA than the WKY/NCrl model of ADHD-PI in the dorsal Str and less than the control WKY/NHsd in the intermediate Str. The SHR/NCrl had faster DA uptake in the ventral Str and NAc versus both control strains, while the WKY/NCrl model of ADHD-PI exhibited faster DA uptake in the NAc versus the SD control. These results suggest that increased surface expression of DA transporters may explain the more rapid uptake of DA in the Str and NAc of these rodent models of ADHD.
Collapse
Affiliation(s)
- Erin M Miller
- Department of Anatomy & Neurobiology, University of Kentucky College of Medicine, 138 Leader Avenue, Lexington, KY 40506, USA
| | | | | | | | | | | |
Collapse
|
8
|
Kim J, Li Y, Buckett PD, Böhlke M, Thompson KJ, Takahashi M, Maher TJ, Wessling-Resnick M. Iron-responsive olfactory uptake of manganese improves motor function deficits associated with iron deficiency. PLoS One 2012; 7:e33533. [PMID: 22479410 PMCID: PMC3316579 DOI: 10.1371/journal.pone.0033533] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/10/2012] [Indexed: 12/12/2022] Open
Abstract
Iron-responsive manganese uptake is increased in iron-deficient rats, suggesting that toxicity related to manganese exposure could be modified by iron status. To explore possible interactions, the distribution of intranasally-instilled manganese in control and iron-deficient rat brain was characterized by quantitative image analysis using T1-weighted magnetic resonance imaging (MRI). Manganese accumulation in the brain of iron-deficient rats was doubled after intranasal administration of MnCl(2) for 1- or 3-week. Enhanced manganese level was observed in specific brain regions of iron-deficient rats, including the striatum, hippocampus, and prefrontal cortex. Iron-deficient rats spent reduced time on a standard accelerating rotarod bar before falling and with lower peak speed compared to controls; unexpectedly, these measures of motor function significantly improved in iron-deficient rats intranasally-instilled with MnCl(2). Although tissue dopamine concentrations were similar in the striatum, dopamine transporter (DAT) and dopamine receptor D(1) (D1R) levels were reduced and dopamine receptor D(2) (D2R) levels were increased in manganese-instilled rats, suggesting that manganese-induced changes in post-synaptic dopaminergic signaling contribute to the compensatory effect. Enhanced olfactory manganese uptake during iron deficiency appears to be a programmed "rescue response" with beneficial influence on motor impairment due to low iron status.
Collapse
Affiliation(s)
- Jonghan Kim
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Yuan Li
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Peter D. Buckett
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Mark Böhlke
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy & Health Sciences, Boston, Massachusetts, United States of America
| | - Khristy J. Thompson
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Masaya Takahashi
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Boston, Massachusetts, United States of America
| | - Timothy J. Maher
- Department of Pharmaceutical Sciences, Massachusetts College of Pharmacy & Health Sciences, Boston, Massachusetts, United States of America
| | - Marianne Wessling-Resnick
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
9
|
Abstract
The neonatal 6-OHDA-lesioned rat, coloboma mouse, DAT-KO mouse, and spontaneously hypertensive rat (SHR) models all bear a phenotypic resemblance to ADHD in that they express hyperactivity, inattention, and/or impulsivity. The models also illustrate the heterogeneity of ADHD: the initial cause (chemical depletion or genetic abnormality) of the ADHD-like behaviors is different for each model. Neurochemical and behavioral studies of the models indicate aberrations in monoaminergic neurotransmission. Hyperdopaminergic neurotransmission is implicated in the abnormal behavior of all models. Norepinephrine has a dual enhancing/inhibitory role in ADHD symptoms, and serotonin acts to inhibit abnormal dopamine and norepinephrine signaling. It is unlikely that symptoms arise from a single neurotransmitter dysfunction. Rather, studies of animal models of ADHD suggest that symptoms develop through the complex interactions of monoaminergic neurotransmitter systems.
Collapse
Affiliation(s)
- Xueliang Fan
- Departments of Pharmacology and Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | | |
Collapse
|
10
|
Gonon F. The dopaminergic hypothesis of attention-deficit/hyperactivity disorder needs re-examining. Trends Neurosci 2008; 32:2-8. [PMID: 18986716 DOI: 10.1016/j.tins.2008.09.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 09/24/2008] [Accepted: 09/26/2008] [Indexed: 11/16/2022]
Abstract
Although psychostimulants alleviate the core symptoms of attention-deficit/hyperactivity disorder (ADHD), recent studies confirm that their impact on the long-term outcomes of ADHD children is null. Psychostimulants enhance extracellular dopamine. Numerous review articles assert that they correct an underlying dopaminergic deficit of genetic origin. This dopamine-deficit theory of ADHD is often based upon an overly simplistic dopaminergic theory of reward. Here, I question the relevance of this theory regarding ADHD. I underline the weaknesses of the neurochemical, genetic, neuropharmacological and imaging data put forward to support the dopamine-deficit hypothesis of ADHD. Therefore, this hypothesis should not be put forward to bias ADHD management towards psychostimulants.
Collapse
Affiliation(s)
- Francois Gonon
- University of Bordeaux, Centre National de la Recherche Scientifique UMR 5227, 146 rue Leo Saignat, Bordeaux, F-33076, France.
| |
Collapse
|
11
|
Ferguson SA, Paule MG, Cada A, Fogle CM, Gray EP, Berry KJ. Baseline behavior, but not sensitivity to stimulant drugs, differs among spontaneously hypertensive, Wistar-Kyoto, and Sprague-Dawley rat strains. Neurotoxicol Teratol 2007; 29:547-61. [PMID: 17689921 DOI: 10.1016/j.ntt.2007.07.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 07/02/2007] [Accepted: 07/02/2007] [Indexed: 11/18/2022]
Abstract
Deficits in temporal processing are implicated in Attention Deficit Hyperactivity Disorder (ADHD) for which the most common rodent model is the Spontaneously Hypertensive Rat (SHR). To assess strain differences in temporal processing, males and females of the SHR, Wistar-Kyoto (WKY), and Sprague-Dawley (SD) strains were compared on two timing tasks: one requiring maintenance of a lever press for 10-14 s (TRD, temporal response differentiation) and the other requiring withholding of a lever press for 10-14 s (DRL, differential reinforcement of low rates). Performance of the progressive ratio (PR) task more directly assessed food-motivated behavior. Strains did not differ in task acquisition; however, steady state TRD and DRL performance of the SHR and WKY strains was less accurate which was related to increased burst (non-timing related) responses in those strains relative to the SD. PR performance demonstrated that the SHR and WKY strains exhibited higher response rates and breakpoints than the SD. Subsequently, methylphenidate (1, 3.25, 4.50, 7.50, and 12.0 mg/kg) and d-amphetamine (0.1, 0.25, 0.65, 1.0, and 2.0 mg/kg) were administered intraperitoneally pre-testing. Both drugs disrupted TRD and DRL performances by increasing burst response frequency; however, the strains were not differentially sensitive to either drug. Strain differences were generally maintained throughout the drug and extinction portions of the study. These results indicate increased similarity between the SHR and WKY strains relative to the SD in performance of timing and motivation tasks. Further, the current results do not support continued use of the SHR as a model for ADHD.
Collapse
Affiliation(s)
- Sherry A Ferguson
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, Jefferson, AR 72079, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Pitcher TL, Wickens JR, Reynolds JNJ. Differences in striatal spiny neuron action potentials between the spontaneously hypertensive and Wistar-Kyoto rat strains. Neuroscience 2007; 146:135-42. [PMID: 17320302 DOI: 10.1016/j.neuroscience.2007.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 12/03/2006] [Accepted: 01/05/2007] [Indexed: 10/23/2022]
Abstract
The spontaneously hypertensive rat (SHR) and the Wistar-Kyoto (WKY) inbred rat strains display behavioral differences characterized by relative increases and decreases in levels of activity. Both strains have subsequently been utilized as animal models of hyperactive and hypoactive behavioral traits. The etiology of these behavioral characteristics is poorly understood, but may stem from alterations in the physiology of selected neural circuits or catecholamine systems. This study investigated the cellular properties of neurons from three genetically related strains: the SHR; WKY; and Wistar (WI). In vivo intracellular recordings were made under urethane anesthesia from spiny projection neurons in the striatum, a brain area involved in behavioral activation. Results obtained from 71 spiny projection neurons indicate that most cellular properties of these neurons were very similar across the three strains. However, the amplitude and half-duration of both spontaneously occurring and current-evoked action potentials were found to be significantly different between the SHR and WKY strains with neurons from the SHR firing action potentials of relatively greater amplitude and shorter duration. Action potential parameters measured from the WI rats were intermediate between the two other strains. These differences in action potentials between two behaviorally distinct strains may reflect altered functioning of particular membrane conductances.
Collapse
Affiliation(s)
- T L Pitcher
- Basal Ganglia Research Group, Department of Anatomy and Structural Biology, School of Medical Sciences, University of Otago, PO Box 913, Dunedin 9054, New Zealand
| | | | | |
Collapse
|
13
|
Long-Term Monitoring of Brain Dopamine Metabolism In Vivo with Carbon Paste Electrodes. SENSORS 2005. [DOI: 10.3390/s5060317] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
14
|
Oades RD, Sadile AG, Sagvolden T, Viggiano D, Zuddas A, Devoto P, Aase H, Johansen EB, Ruocco LA, Russell VA. The control of responsiveness in ADHD by catecholamines: evidence for dopaminergic, noradrenergic and interactive roles. Dev Sci 2005; 8:122-31. [PMID: 15720370 DOI: 10.1111/j.1467-7687.2005.00399.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We explore the neurobiological bases of attention deficit hyperactivity disorder (ADHD) from the viewpoint of the neurochemistry and psychopharmacology of the catecholamine-based behavioural systems. The contributions of dopamine (DA) and noradrenaline (NA) neurotransmission to the motor and cognitive symptoms of ADHD (e.g. hyperactivity, variable and impulsive responses) are studied in rodent and primate models. These models represent elements of the behavioural units observed in subjects with ADHD clinically, or in laboratory settings (e.g. locomotion, changed sensitivity/responsivity to novelty/reinforcement and measures of executive processing). In particular, the models selected emphasize traits that are strongly influenced by mesocorticolimbic DA in the spontaneously hypertensive (SHR) and the Naples high excitability (NHE) rat lines. In this context, the mode of action of methylphenidate treatment is discussed. We also describe current views on the altered control by mesolimbic catecholamines of appropriate and inappropriate goal-directed behaviour, and the tolerance or intolerance of delayed reinforcement in ADHD children and animal models. Recent insights into the previously underestimated role of the NA system in the control of mesocortical DA function, and the frontal role in processing information are elaborated.
Collapse
Affiliation(s)
- Robert D Oades
- Clinic for Child and Adolescent Psychiatry, University of Duisburg-Essen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ferguson SA, Cada AM. Spatial learning/memory and social and nonsocial behaviors in the Spontaneously Hypertensive, Wistar–Kyoto and Sprague–Dawley rat strains. Pharmacol Biochem Behav 2004; 77:583-94. [PMID: 15006470 DOI: 10.1016/j.pbb.2003.12.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2003] [Revised: 12/15/2003] [Accepted: 12/22/2003] [Indexed: 10/26/2022]
Abstract
The Spontaneously Hypertensive rat (SHR) is often described as less behaviorally reactive than its normotensive strain, the Wistar-Kyoto (WKY), although results are somewhat inconsistent across studies. In part, this may be due to the lack of a definitive characterization of "reactivity." Still, results from identical behavioral tests of SHR and WKY across studies are sometimes conflicting. Further, few comparisons with other rodent strains are available and these might provide guidance in outlining the meaning of reactivity. Here, social and nonsocial behaviors and spatial learning and memory were measured in male and female SHR, WKY, and Sprague-Dawley (SD) rats. Systolic blood pressure measurements at adulthood confirmed hypertension in the SHR. Juvenile play behavior indicated that SHRs were more sensitive to the strain of their play partner than were the WKY or SD, playing less with different strain partners than with same strain partners. However, adult dominance behavior (restricted access in a water competition test) indicated no strain differences. The SHR appeared to exhibit attenuated acoustic startle relative to the WKY and SD and their prepulse inhibition was substantially less at higher prepulse decibel intensities; however, this decreased prepulse inhibition was not the result of decreased startle during the test. Anxiety-related behavior in the elevated plus maze was most prominent in the SD strain, possibly as a result of poorer motor coordination as measured by rotarod performance. Elevated plus maze behavior as well as motor coordination did not differ between the SHR and WKY strains. Performance in the NCTR complex maze and the Morris water maze was significantly better in the SHR. These results do not support hypotheses of decreased behavioral reactivity in the SHR strain. Rather, they suggest complex interactions between social and nonsocial environments and the behavioral capabilities and requirements of the rat strain.
Collapse
Affiliation(s)
- Sherry A Ferguson
- Division of Neurotoxicology, National Center for Toxicological Research/FDA, HFT-132, 3900 NCTR Road, Jefferson, AR 72079, USA.
| | | |
Collapse
|