1
|
Bartsch JC, von Cramon M, Gruber D, Heinemann U, Behr J. Stress-Induced Enhanced Long-Term Potentiation and Reduced Threshold for N-Methyl-D-Aspartate Receptor- and β-Adrenergic Receptor-Mediated Synaptic Plasticity in Rodent Ventral Subiculum. Front Mol Neurosci 2021; 14:658465. [PMID: 33967694 PMCID: PMC8100191 DOI: 10.3389/fnmol.2021.658465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/26/2021] [Indexed: 11/13/2022] Open
Abstract
Stress is a biologically relevant signal and can modulate hippocampal synaptic plasticity. The subiculum is the major output station of the hippocampus and serves as a critical hub in the stress response network. However, stress-associated synaptic plasticity in the ventral subiculum has not been adequately addressed. Therefore, we investigated the impact of a single exposure to an inherently stressful two-way active avoidance conditioning on the induction of long-term potentiation (LTP) at CA1-subiculum synapses in ventral hippocampal slices from young adult rats 1 day after stressor exposure. We found that acute stress enhanced LTP and lowered the induction threshold for a late-onset LTP at excitatory CA1 to subicular burst-spiking neuron synapses. This late-onset LTP was dependent on the activation of β-adrenergic and glutamatergic N-methyl-D-aspartate receptors and independent of D1/D5 dopamine receptor activation. Thereby, we present a cellular mechanism that might contribute to behavioral stress adaptation after acute stressor exposure.
Collapse
Affiliation(s)
- Julia C Bartsch
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Monique von Cramon
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Brandenburg Medical School, Neuruppin, Germany
| | - David Gruber
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Heinemann
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Joachim Behr
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatic Medicine, Brandenburg Medical School, Neuruppin, Germany.,Faculty of Health Sciences Brandenburg, Joint Faculty of the University of Potsdam, Brandenburg University of Technology Cottbus-Senftenberg and Brandenburg Medical School, Potsdam, Germany
| |
Collapse
|
2
|
Segovia-Oropeza M, Santiago-Castañeda C, Orozco-Suárez SA, Concha L, Rocha L. Sodium Cromoglycate Decreases Sensorimotor Impairment and Hippocampal Alterations Induced by Severe Traumatic Brain Injury in Rats. J Neurotrauma 2020; 37:2595-2603. [PMID: 32484040 DOI: 10.1089/neu.2019.6975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Severe traumatic brain injury (TBI) results in significant functional disturbances in the hippocampus. Studies support that sodium cromoglycate (CG) induces neuroprotective effects. This study focused on investigating the effects of post-TBI subchronic administration of CG on hippocampal hyperexcitability and damage as well as on sensorimotor impairment in rats. In contrast to the control group (Sham+SS group), animals undergoing severe TBI (TBI+SS group) showed sensorimotor dysfunction over the experimental post-TBI period (day 2, 55%, p < 0.001; day 23, 39.5%, p < 0.001; day 30, 38.6%, p < 0.01). On day 30 post-TBI, TBI+SS group showed neuronal hyperexcitability (63.3%, p < 0.01). The hippocampus ipsilateral to the injury showed volume reduction (14.4%, p < 0.001) with a volume of damage of 0.15 ± 0.09 mm3. These changes were associated with neuronal loss in the dentate gyrus (ipsilateral, 33%, p < 0.05); hilus (ipsilateral, 77%, p < 0.001; contralateral, 51%, p < 0.001); Cornu Ammonis (CA)1 (ipsilateral, 40%, p < 0.01), and CA3 (ipsilateral, 52%, p < 0.001; contralateral, 34%, p < 0.01). Animals receiving subchronic treatment with CG (50 mg/kg, s.c. daily for 10 days) after TBI (TBI+CG group) displayed a sensorimotor dysfunction less evident than that of the TBI+SS group (p < 0.001). Their hippocampal excitability was similar to that of the Sham+SS group (p = 0.21). The TBI+CG group presented hippocampal volume reduction (12.7%, p = 0.94) and damage (0.10 ± 0.03 mm3, p > 0.99) similar to the TBI+SS group. However, their hippocampal neuronal preservation was similar to that of the Sham+SS group. These results indicate that CG represents an appropriate and novel pharmacological strategy to reduce the long-term sensorimotor impairment and hippocampal damage and hyperexcitability that result as consequences of severe TBI.
Collapse
Affiliation(s)
| | | | | | - Luis Concha
- Institute of Neurobiology, National Autonomous University of Mexico, Campus Juriquilla, Queretaro, Mexico
| | - Luisa Rocha
- Department of Pharmacobiology, Center of Research and Advanced Studies, Mexico City, Mexico
| |
Collapse
|
3
|
Çavdaroğlu B, Toy J, Schumacher A, Carvalho G, Patel M, Ito R. Ventral hippocampus inactivation enhances the extinction of active avoidance responses in the presence of safety signals but leaves discrete trial operant active avoidance performance intact. Hippocampus 2020; 30:913-925. [DOI: 10.1002/hipo.23202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/29/2020] [Accepted: 02/19/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Bilgehan Çavdaroğlu
- Department of Psychology (Scarborough)University of Toronto Toronto Ontario Canada
| | - Jeffrey Toy
- Department of Psychology (Scarborough)University of Toronto Toronto Ontario Canada
| | - Anett Schumacher
- Department of Psychology (Scarborough)University of Toronto Toronto Ontario Canada
| | - Gabriel Carvalho
- Department of Psychology (Scarborough)University of Toronto Toronto Ontario Canada
| | - Mihilkumar Patel
- Department of Psychology (Scarborough)University of Toronto Toronto Ontario Canada
| | - Rutsuko Ito
- Department of Psychology (Scarborough)University of Toronto Toronto Ontario Canada
- Department of Cell and Systems BiologyUniversity of Toronto Toronto Ontario Canada
| |
Collapse
|
4
|
Selective Silencing of Hippocampal Parvalbumin Interneurons Induces Development of Recurrent Spontaneous Limbic Seizures in Mice. J Neurosci 2017; 37:8166-8179. [PMID: 28733354 DOI: 10.1523/jneurosci.3456-16.2017] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 07/10/2017] [Accepted: 07/14/2017] [Indexed: 12/11/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most frequent form of focal epilepsies and is generally associated with malfunctioning of the hippocampal formation. Recently, a preferential loss of parvalbumin (PV) neurons has been observed in the subiculum of TLE patients and in animal models of TLE. To demonstrate a possible causative role of defunct PV neurons in the generation of TLE, we permanently inhibited GABA release selectively from PV neurons of the ventral subiculum by injecting a viral vector expressing tetanus toxin light chain in male mice. Subsequently, mice were subjected to telemetric EEG recording and video monitoring. Eighty-eight percent of the mice presented clusters of spike-wave discharges (C-SWDs; 40.0 ± 9.07/month), and 64% showed spontaneous recurrent seizures (SRSs; 5.3 ± 0.83/month). Mice injected with a control vector presented with neither C-SWDs nor SRSs. No neurodegeneration was observed due to vector injection or SRS. Interestingly, mice that presented with only C-SWDs but no SRSs, developed SRSs upon injection of a subconvulsive dose of pentylenetetrazole after 6 weeks. The initial frequency of SRSs declined by ∼30% after 5 weeks. In contrast to permanent silencing of PV neurons, transient inhibition of GABA release from PV neurons through the designer receptor hM4Di selectively expressed in PV-containing neurons transiently reduced the seizure threshold of the mice but induced neither acute nor recurrent seizures. Our data demonstrate a critical role for perisomatic inhibition mediated by PV-containing interneurons, suggesting that their sustained silencing could be causally involved in the development of TLE.SIGNIFICANCE STATEMENT Development of temporal lobe epilepsy (TLE) generally takes years after an initial insult during which maladaptation of hippocampal circuitries takes place. In human TLE and in animal models of TLE, parvalbumin neurons are selectively lost in the subiculum, the major output area of the hippocampus. The present experiments demonstrate that specific and sustained inhibition of GABA release from parvalbumin-expressing interneurons (mostly basket cells) in sector CA1/subiculum is sufficient to induce hyperexcitability and spontaneous recurrent seizures in mice. As in patients with nonlesional TLE, these mice developed epilepsy without signs of neurodegeneration. The experiments highlight the importance of the potent inhibitory action mediated by parvalbumin cells in the hippocampus and identify a potential mechanism in the development of TLE.
Collapse
|
5
|
Kouvaros S, Papatheodoropoulos C. Theta burst stimulation-induced LTP: Differences and similarities between the dorsal and ventral CA1 hippocampal synapses. Hippocampus 2016; 26:1542-1559. [DOI: 10.1002/hipo.22655] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2016] [Indexed: 12/24/2022]
Affiliation(s)
- Stylianos Kouvaros
- Laboratory of Physiology, Department of Medicine; School of Health Sciences, University of Patras; Rion Greece
| | - Costas Papatheodoropoulos
- Laboratory of Physiology, Department of Medicine; School of Health Sciences, University of Patras; Rion Greece
| |
Collapse
|
6
|
Papatheodoropoulos C. Higher intrinsic network excitability in ventral compared with the dorsal hippocampus is controlled less effectively by GABAB receptors. BMC Neurosci 2015; 16:75. [PMID: 26556486 PMCID: PMC4641374 DOI: 10.1186/s12868-015-0213-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/04/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Elucidating specializations of the intrinsic neuronal network between the dorsal and the ventral hippocampus is a recently emerging area of research that is expected to help us understand the mechanisms underlying large scale functional diversification along the hippocampus. The aim of this study was to characterize spontaneous network activity between the dorsal and the ventral hippocampus induced under conditions of partial or complete blockade of GABAergic inhibition (i.e. disinhibition). RESULTS Using field recordings from the CA3 and CA1 fields of hippocampal slices from adult rats I found that ventral compared with dorsal hippocampus slices displayed higher propensity for and higher frequency of occurrence of spontaneous field potentials (spfps) at every level of disinhibition. Also NMDA receptor-depended spfps (spfps(-nmda)) occurred with higher probability more frequently and were larger in the ventral compared with the dorsal hippocampus. Importantly, blockade of GABA(B) receptors produced a stronger effect in enhancing the probability of generation of spfps and spfps(-nmda) in the dorsal compared with the ventral hippocampal slices and increased spfps(-nmda) only in dorsal slices. CONCLUSION These results demonstrate a higher intrinsic neuronal excitability of the ventral compared with the dorsal local circuitry with the considerable contribution of NMDA receptors. Furthermore, the GABA(B) receptors control the total and the NMDA receptor-dependent excitation much less effectively in the ventral part of the hippocampus. It is proposed that NMDA and GABA(B) receptors significantly contribute to differentiate local network dynamics between the dorsal and the ventral hippocampus with important implications in the information processing performed along the long hippocampal axis.
Collapse
Affiliation(s)
- Costas Papatheodoropoulos
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Patras, Rion, 26504, Patras, Greece.
| |
Collapse
|
7
|
Wang J, Bast T, Wang YC, Zhang WN. Hippocampus and two-way active avoidance conditioning: Contrasting effects of cytotoxic lesion and temporary inactivation. Hippocampus 2015; 25:1517-31. [PMID: 25926084 DOI: 10.1002/hipo.22471] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2015] [Indexed: 11/11/2022]
Abstract
Hippocampal lesions tend to facilitate two-way active avoidance (2WAA) conditioning, where rats learn to cross to the opposite side of a conditioning chamber to avoid a tone-signaled footshock. This classical finding has been suggested to reflect that hippocampus-dependent place/context memory inhibits 2WAA (a crossing response to the opposite side is inhibited by the memory that this is the place where a shock was received on the previous trial). However, more recent research suggests other aspects of hippocampal function that may support 2WAA learning. More specifically, the ventral hippocampus has been shown to contribute to behavioral responses to aversive stimuli and to positively modulate the meso-accumbens dopamine system, whose activation has been implicated in 2WAA learning. Permanent hippocampal lesions may not reveal these contributions because, following complete and permanent loss of hippocampal output, other brain regions may mediate these processes or because deficits could be masked by lesion-induced extra-hippocampal changes, including an upregulation of accumbal dopamine transmission. Here, we re-examined the hippocampal role in 2WAA learning in Wistar rats, using permanent NMDA-induced neurotoxic lesions and temporary functional inhibition by muscimol or tetrodotoxin (TTX) infusion. Complete hippocampal lesions tended to facilitate 2WAA learning, whereas ventral (VH) or dorsal hippocampal (DH) lesions had no effect. In contrast, VH or DH muscimol or TTX infusions impaired 2WAA learning. Ventral infusions caused an immediate impairment, whereas after dorsal infusions rats showed intact 2WAA learning for 40-50 min, before a marked deficit emerged. These data show that functional inhibition of ventral hippocampus disrupts 2WAA learning, while the delayed impairment following dorsal infusions may reflect the time required for drug diffusion to ventral hippocampus. Overall, using temporary functional inhibition, our study shows that the ventral hippocampus contributes to 2WAA learning. Permanent lesions may not reveal these contributions due to functional compensation and extra-hippocampal lesion effects.
Collapse
Affiliation(s)
- Jia Wang
- School of Medicine, JiangSu University, Zhenjiang, Jiangsu Province, 212013, People's Republic of China
| | - Tobias Bast
- School of Psychology, Neuroscience@Nottingham and Brain & Body Centre, University of Nottingham, University Park, Nottingham, Ng7 2RD, United Kingdom
| | - Yu-Cong Wang
- School of Medicine, JiangSu University, Zhenjiang, Jiangsu Province, 212013, People's Republic of China
| | - Wei-Ning Zhang
- School of Medicine, JiangSu University, Zhenjiang, Jiangsu Province, 212013, People's Republic of China
| |
Collapse
|
8
|
Barker-Haliski ML, Friedman D, French JA, White HS. Disease Modification in Epilepsy: From Animal Models to Clinical Applications. Drugs 2015; 75:749-67. [DOI: 10.1007/s40265-015-0395-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Henrich-Noack P, Krautwald K, Reymann KG, Wetzel W. Effects of transient global ischaemia on freezing behaviour and activity in a context-dependent fear conditioning task – Implications for memory investigations. Brain Res Bull 2011; 85:346-53. [DOI: 10.1016/j.brainresbull.2011.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 04/05/2011] [Accepted: 04/09/2011] [Indexed: 10/18/2022]
|
10
|
Bergado JA, Lucas M, Richter-Levin G. Emotional tagging—A simple hypothesis in a complex reality. Prog Neurobiol 2011; 94:64-76. [PMID: 21435370 DOI: 10.1016/j.pneurobio.2011.03.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 02/15/2011] [Accepted: 03/15/2011] [Indexed: 02/06/2023]
Affiliation(s)
- Jorge A Bergado
- Centro Internacional de Restauracion Neurologica, La Habana, Cuba
| | | | | |
Collapse
|
11
|
Tsoory M, Guterman A, Richter-Levin G. âJuvenile stressâ alters maturation-related changes in expression of the neural cell adhesion molecule L1 in the limbic system: Relevance for stress-related psychopathologies. J Neurosci Res 2010; 88:369-80. [DOI: 10.1002/jnr.22203] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Sun QJ, Duan RS, Wang AH, Shang W, Zhang T, Zhang XQ, Chi ZF. Alterations of NR2B and PSD-95 expression in hippocampus of kainic acid-exposed rats with behavioural deficits. Behav Brain Res 2009; 201:292-9. [PMID: 19428647 DOI: 10.1016/j.bbr.2009.02.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 02/19/2009] [Accepted: 02/24/2009] [Indexed: 10/21/2022]
Abstract
Temporal lobe epilepsy (TLE), characterized by spontaneous recurrent seizure (SRS), is associated with behavioural problems, but the underlying molecular mechanisms have not been clearly identified. In the present study, kainic acid (KA) was administered systemically in adult male Wistar rats to induce SRS. Behavioural performance analyses at 2, 4, and 6 weeks post-status epilepticus (post-SE) showed spatial learning memory deficit, anxiety and increased locomotor activity in rats with long-term SRS compared with rats without SRS after normal saline (NS) or KA-valproate (KA-VPA) treatment. No neuronal cell loss was observed in the hippocampus at 6 weeks post-SE. Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot analyses revealed that down-regulation of NMDA receptor subunit 2B (NR2B) and postsynaptic density protein-95 (PSD-95) expression in adult hippocampus was found at 4 weeks post-SE and a further decrease at 6 weeks post-SE compared with rats without SRS after NS or KA-VPA treatment. Furthermore, the decreased expression of NR2B and PSD-95 was correlated with the representatively behavioural deficit. These findings suggest that long-term SRS might decrease NR2B/PSD-95 expression in adult hippocampus and consequently cause behavioural deficits, including spatial learning memory deficit, anxiety and increased locomotor activity. Maintaining the expression of NR2B/PSD-95 might partially contribute to the normal behaviour in rats with long-term SRS.
Collapse
Affiliation(s)
- Qin-Jian Sun
- Department of Neurology, Qianfoshan Hospital, Shandong University, 66 Jingshi Road, Jinan, Shandong 250014, PR China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Liagkouras I, Michaloudi H, Batzios C, Psaroulis D, Georgiadis M, Künzle H, Papadopoulos GC. Pyramidal neurons in the septal and temporal CA1 field of the human and hedgehog tenrec hippocampus. Brain Res 2008; 1218:35-46. [DOI: 10.1016/j.brainres.2008.04.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Revised: 04/17/2008] [Accepted: 04/20/2008] [Indexed: 10/22/2022]
|
14
|
Tsoory M, Guterman A, Richter-Levin G. Exposure to stressors during juvenility disrupts development-related alterations in the PSA-NCAM to NCAM expression ratio: potential relevance for mood and anxiety disorders. Neuropsychopharmacology 2008; 33:378-93. [PMID: 17429411 DOI: 10.1038/sj.npp.1301397] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Childhood trauma is associated with higher rates of both mood and anxiety disorders in adulthood. The exposure of rats to stressors during juvenility has comparable effects, and was suggested as a model of induced predisposition for these disorders. The neural cell adhesion molecule (NCAM) and its polysialylated form PSA-NCAM are critically involved in neural development, activity-dependent synaptic plasticity, and learning processes. We examined the effects of exposure to stressors during juvenility on coping with stressors in adulthood and on NCAM and PSA-NCAM expression within the rat limbic system both soon after the exposure and in adulthood. Exposure to stressors during juvenility reduced novel-setting exploration and impaired two-way shuttle avoidance learning in adulthood. Among naive rats, a development-related decrease of about 50% was evident in the PSA-NCAM to NCAM expression ratio in the basolateral amygdala, in the CA1 and dentate gyrus regions of the hippocampus, and in the entorhinal cortex. In juvenile-stressed rats, we found no such decrease, but rather an increase in the polysialylation of NCAM ( approximately 50%), evident soon after the exposure to juvenile stress and also in adulthood. Our results suggest that exposure to stressors during juvenility alters the maturation of the limbic system, and potentially underlies the predisposition to exhibit stress-related symptoms in adulthood.
Collapse
Affiliation(s)
- Michael Tsoory
- Department of Psychology, The Brain and Behavior Research Center, University of Haifa, Mount Carmel, Haifa, Israel
| | | | | |
Collapse
|
15
|
Howland JG, Hannesson DK, Barnes SJ, Phillips AG. Kindling of basolateral amygdala but not ventral hippocampus or perirhinal cortex disrupts sensorimotor gating in rats. Behav Brain Res 2007; 177:30-6. [PMID: 17141336 DOI: 10.1016/j.bbr.2006.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 11/02/2006] [Accepted: 11/07/2006] [Indexed: 01/01/2023]
Abstract
The neural mechanisms mediating prepulse inhibition (PPI) appear to have relevance to neurological and psychiatric disorders. Patients with temporal lobe epilepsy exhibit psychotic symptoms and disrupted PPI, therefore the present experiments examined the consequences of seizures induced by kindling on PPI. Rats were chronically implanted with an electrode into the basolateral amygdala, perirhinal cortex, or ventral hippocampus and stimulated twice daily until 3 fully generalized, class 5 seizures were elicited. Kindling of basolateral amygdala, but not perirhinal cortex or ventral hippocampus, disrupted PPI when testing began 2min, but not 48h, following the elicitation of the third class 5 seizure. Startle amplitudes were unaffected by kindling. These results suggest that the anatomical origin of seizures is an important factor in determining their potentially disruptive effects on PPI.
Collapse
Affiliation(s)
- John G Howland
- Department of Psychology and the Brain Research Centre, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
16
|
Tsoory MM, Vouimba RM, Akirav I, Kavushansky A, Avital A, Richter-Levin G. Amygdala modulation of memory-related processes in the hippocampus: potential relevance to PTSD. PROGRESS IN BRAIN RESEARCH 2007; 167:35-51. [PMID: 18037005 DOI: 10.1016/s0079-6123(07)67003-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A key assumption in the study of stress-induced cognitive and neurobiological modifications is that alterations in hippocampal functioning after stress are due to an excessive activity exerted by the amygdala on the hippocampus. Research so far focused on stress-induced impairment of hippocampal plasticity and memory but an exposure to stress may simultaneously also result in strong emotional memories. In fact, under normal conditions emotionally charged events are better remembered compared with neutral ones. Results indicate that under these conditions there is an increase in activity within the amygdala that may lead to memory of a different quality. Studying the way emotionality activates the amygdala and the functional impact of this activation we found that the amygdala modulates memory-related processes in other brain areas, such as the hippocampus. However, this modulation is complex, involving both enhancing and suppressing effects, depending on the way the amygdala is activated and the hippocampal subregion examined. The current review summarizes our findings and attempts to put them in context with the impact of an exposure to a traumatic experience, in which there is a mixture of a strong memory of some aspects of the experience but impaired memory of other aspects of that experience. Toward that end, we have recently developed an animal model for the induction of predisposition to stress-related disorders, focusing on the consequences of exposure to stressors during juvenility on the ability to cope with stress in adulthood. Exposing juvenile-stressed rats to an additional stressful challenge in adulthood revealed their impairment to cope with stress and resulted in significant elevation of the amygdala. Interestingly, and similar to our electrophysiological findings, differential effects were observed between the impact of the emotional challenge on CA1 and dentate gyrus subregions of the hippocampus. Taken together, the results indicate that long-term alterations within the amygdala contribute to stress-related mnemonic symptoms and suggest that elucidating further these intra-amygdala alterations and their effects on modulating other brain regions is likely to be beneficial for the development of novel approaches to treat stress-related disorders.
Collapse
Affiliation(s)
- M M Tsoory
- Department of Psychology and the Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
PURPOSE The aim of the study was to define sleep disturbances in pentylenetetrazole (PTZ)-kindled rats and to explore the effects of the nootropic drug piracetam (Pir; 100 mg/kg) and the noncompetitive N-methyl-D-aspartate (NMDA)-antagonist MK-801 (0.3 mg/kg), which normalized learning performance in PTZ-kindled rats, on altered sleep parameters. METHODS This is the first report showing a significant reduction in paradoxical sleep (PS) as a consequence of PTZ kindling. A correlation analysis revealed a significant correlation between seizure severity and PS deficit. RESULTS Pir did not interfere with seizure severity, and the substance did not ameliorate the PS deficit. However, the substance disconnected the correlation between seizure severity and PS deficit. MK-801, which reduced the severity of kindled seizures, counteracted the PS deficit efficaciously. CONCLUSIONS The results suggest that seizure severity and alterations in sleep architecture are two factors in the comprehensive network underlying learning impairments associated with epilepsy. Considering the results obtained in the experiments with Pir, reduction of seizure severity does not guarantee the reduction of impairments in the domain of learning.
Collapse
Affiliation(s)
- Markus Schilling
- O.-v.-Guericke University Magdeburg, Faculty of Medicine, Institute of Pharmacology and Toxicology, Magdeburg, Germany
| | | | | | | |
Collapse
|
18
|
Papatheodoropoulos C, Moschovos C, Kostopoulos G. Greater contribution of N-methyl-D-aspartic acid receptors in ventral compared to dorsal hippocampal slices in the expression and long-term maintenance of epileptiform activity. Neuroscience 2005; 135:765-79. [PMID: 16154282 DOI: 10.1016/j.neuroscience.2005.06.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 06/12/2005] [Accepted: 06/14/2005] [Indexed: 10/25/2022]
Abstract
Functional segregation along the dorso-ventral axis of the hippocampus is a developing concept. The higher susceptibility of the ventral hippocampus to epileptic activity compared with dorsal hippocampus is one of the main features, which still has obscure mechanisms. Using the model of magnesium-free medium and field recordings, single epileptiform discharges displayed higher incidence (77% vs 57%), rate (41.7+/-3.1 vs 13.5+/-0.7 events/min), duration (173.9+/-17.7 vs 116.8+/-13.6 ms) and intensity (coastline, 25.4+/-2.5 vs 9.5+/-1.8) in ventral compared with dorsal rat hippocampal slices. In addition, the decay phase of the evoked synaptic potentials was 110% slower in ventral slices. The N-methyl-D-aspartate (NMDA) receptor antagonist d-(-)-2-amino-5-phosphonopentanoic acid (50-100 microM) decreased the discharge rate and coastline similarly in ventral and dorsal slices, but it shortened the discharges in ventral slices (by 40%) only. The NMDA receptor antagonist 3-((R)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (10 microM) decreased the rate in both groups and additionally shortened discharges in both kinds of slices, an effect which was greater in ventral ones (31% vs 13%). Furthermore, both drugs shortened the evoked potentials more in ventral (77%) than in dorsal slices (52%). On the other hand, 1 microM of 3-((R)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid shortened the discharges and evoked synaptic potentials only in ventral slices, and slowed down the discharge rate only in dorsal slices. Addition of NMDA, in the magnesium-free medium, enhanced activity in both kinds of slices. At 5 and 10 microM of NMDA 51% of the ventral but only 9% of the dorsal slices displayed persistent epileptiform discharges, which were recorded for at least one hour after reintroduction of magnesium in the medium. At 10-20 microM the enhancement of activity was transient, followed by suppression of discharges in 40% and 76% of the ventral and dorsal slices, respectively. Most of the slices having experienced suppression did not develop persistent activity. We propose that the NMDA receptors contribute to the higher susceptibility of the ventral hippocampus to expression and long-term maintenance of epileptiform discharges. This diversification may be related to other aspects of hippocampal dorso-ventral functional segregation.
Collapse
Affiliation(s)
- C Papatheodoropoulos
- Department of Physiology, Medical School, University of Patras, 26500 Patras, Greece.
| | | | | |
Collapse
|
19
|
Nagaraja RY, Grecksch G, Reymann KG, Schroeder H, Becker A. Group I metabotropic glutamate receptors interfere in different ways with pentylenetetrazole seizures, kindling, and kindling-related learning deficits. Naunyn Schmiedebergs Arch Pharmacol 2004; 370:26-34. [PMID: 15241581 DOI: 10.1007/s00210-004-0942-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Accepted: 05/06/2004] [Indexed: 10/26/2022]
Abstract
LY 367385 (mGluR1) and MPEP (mGluR5), which are group I metabotropic glutamate receptor (mGluR) antagonists, were used to investigate their effects on pentylenetetrazole (PTZ) seizures, kindling, and kindling-related learning deficits. Both substances showed anticonvulsant efficacy against seizures induced by lower doses of PTZ (40 mg/kg), but they were ineffective in counteracting seizures evoked by higher PTZ doses. When these substances were given in the course of kindling induction, LY significantly depressed the progression of kindled seizure severity. In contrast, MPEP was ineffective in this experiment. Treatment with either LY or MPEP did not modify the reaction to challenge dose of PTZ. Kindling results in a worsening of shuttle-box learning. LY improved shuttle-box learning when administered in the course of kindling development or when given prior to the learning experiment. This suggests protective and restorative effectiveness. In contrast, MPEP was only effective on the learning performance of kindled rats when given prior to the shuttle-box experiment, which demonstrates restorative effectiveness. Kindling is associated with an increase in glutamate binding. LY counteracted this increase whereas MPEP was ineffective. It was concluded that mGluR1 and mGluR5 play a specific role in the convulsive component of kindling. The beneficial action of the antagonists on kindling-induced impairments in shuttle-box learning may be associated with their effect on glutamatergic synaptic activity.
Collapse
MESH Headings
- Animals
- Avoidance Learning/drug effects
- Avoidance Learning/physiology
- Behavior, Animal/drug effects
- Benzoates/administration & dosage
- Benzoates/pharmacokinetics
- Binding Sites/drug effects
- Binding Sites/physiology
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Epilepsies, Myoclonic/chemically induced
- Epilepsies, Myoclonic/prevention & control
- Glycine/administration & dosage
- Glycine/analogs & derivatives
- Glycine/pharmacokinetics
- Injections, Intraperitoneal
- Injections, Intraventricular
- Kindling, Neurologic/drug effects
- Kindling, Neurologic/pathology
- Learning Disabilities/drug therapy
- Learning Disabilities/physiopathology
- Male
- Pentylenetetrazole/adverse effects
- Pentylenetetrazole/antagonists & inhibitors
- Pyridines/administration & dosage
- Pyridines/pharmacokinetics
- Rats
- Rats, Wistar
- Receptor, Metabotropic Glutamate 5
- Receptors, Metabotropic Glutamate/antagonists & inhibitors
- Receptors, Metabotropic Glutamate/drug effects
- Receptors, Metabotropic Glutamate/physiology
- Time Factors
Collapse
Affiliation(s)
- Raghavendra Y Nagaraja
- Institute of Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke University, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | | | | | | | | |
Collapse
|
20
|
Rodrigues MCA, Beleboni RDO, Coutinho-Netto J, dos Santos WF, Garcia-Cairasco N. Behavioral effects of bicuculline microinjection in the dorsal versus ventral hippocampal formation of rats, and control of seizures by nigral muscimol. Epilepsy Res 2004; 58:155-65. [PMID: 15120746 DOI: 10.1016/j.eplepsyres.2004.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2003] [Revised: 02/04/2004] [Accepted: 02/05/2004] [Indexed: 11/20/2022]
Abstract
This work aims to describe behavioral/electroencephalographic (EEG) seizures induced by bicuculline microinjection intracerebroventricularly (ICV) and in the dorsal hippocampal formation (DHF) or ventral hippocampal formation/amygdala area (VHF-AMY). We also test if GABAergic manipulation in the substantia nigra pars reticulata (SNPR) is capable of controlling those seizures. ICV injection of bicuculline induced a progressive sequence of convulsive responses, jumps and escapes from the open-field. This effect was partially reached by bicuculline injection in the DHF or VHF-AMY injection. Also: muscimol injection, but not GABA uptake blockers (nipecotic acid or a spider venom neurotoxin FrPbA2), into the SNPR abolished seizures induced by bicuculline injection in the DHF. It was concluded that different neuronal circuitry in the hippocampal formation are modulated, at least partially by nigral GABAergic mechanisms.
Collapse
Affiliation(s)
- Marcelo Cairrão Araujo Rodrigues
- Laboratório de Neurobiologia e Peçonhas, Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | |
Collapse
|
21
|
Abstract
Data from experimental models provide evidence that both prolonged and brief seizures can cause irreversible impairment in spatial and emotional learning and memory. Factors related to the severity of the behavioral impairments include genetic background, age at the time of the epileptogenic insult, extent of brain lesion, location of seizure focus, seizure duration, seizure number, brain reserve, and environmental and social living conditions. Further, as in humans, the interval between the last seizure and behavioral testing as well as treatment with antiepileptic drugs can affect the test results.
Collapse
Affiliation(s)
- Katarzyna Majak
- Epilepsy Research Laboratory, Department of Neurobiology, A. I. Virtanen Institute for Molecular Sciences, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland
| | | |
Collapse
|
22
|
Jenkins LW, Peters GW, Dixon CE, Zhang X, Clark RSB, Skinner JC, Marion DW, Adelson PD, Kochanek PM. Conventional and functional proteomics using large format two-dimensional gel electrophoresis 24 hours after controlled cortical impact in postnatal day 17 rats. J Neurotrauma 2002; 19:715-40. [PMID: 12165133 DOI: 10.1089/08977150260139101] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Conventional and functional proteomics have significant potential to expand our understanding of traumatic brain injury (TBI) but have not yet been used. The purpose of the present study was to examine global hippocampal protein changes in postnatal day (PND) 17 immature rats 24 h after moderate controlled cortical impact (CCI). Silver nitrate stains or protein kinase B (PKB) phosphoprotein substrate antibodies were used to evaluate high abundance or PKB pathway signal transduction proteins representing conventional and functional proteomic approaches, respectively. Isoelectric focusing was performed over a nonlinear pH range of 3-10 with immobilized pH gradients (IPG strips) using supernatant from the most soluble cellular protein fraction of hippocampal tissue protein lysates from six paired sham and injured PND 17 rats. Approximately 1,500 proteins were found in each silver stained gel with 40% matching of proteins. Of these 600 proteins, 52% showed a twofold, 20% a fivefold, and 10% a 10-fold decrease or increase. Spot matching with existing protein databases revealed changes in important cytoskeletal and cell signalling proteins. PKB substrate protein phosphorylation was best seen in large format two-dimensional blots and known substrates of PKB such as glucose transporter proteins 3 and 4 and forkhead transcription factors, identified based upon molecular mass and charge, showed altered phosphorylation 24 h after injury. These results suggest that combined conventional and functional proteomic approaches are powerful, complementary and synergistic tools revealing multiple protein changes and posttranslational protein modifications that allow for more specific and comprehensive functional assessments after pediatric TBI.
Collapse
Affiliation(s)
- L W Jenkins
- Department of Neurosurgery, Safar Center for Resuscitation Research and University of Pittsburgh, Pittsburgh, Pennsylvania, USA. ljenkins+@pitt.edu
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Hannesson DK, Mohapel P, Corcoran ME. Dorsal hippocampal kindling selectively impairs spatial learning/short-term memory. Hippocampus 2002; 11:275-86. [PMID: 11769309 DOI: 10.1002/hipo.1042] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Kindling with electrical stimulation of the dorsal hippocampus has been shown to disrupt spatial task performance in rats. The present study investigated the specificity of this effect in terms of the possible contribution of nonmnemonic effects, the presence of a more general mnemonic deficit, and the involvement of learning/short-term memory and/or long-term memory processes. Rats were fully kindled with stimulation of the dorsal hippocampus and subsequently tested for acquisition, 7-day retention, and 28-day retention of a hidden platform (HP) location in the Morris water maze and an object discrimination problem in a modified water maze. To control for nonmnemonic behavioral impairments, testing on both tasks was preceded by training on visible platform control tasks. Kindling impaired acquisition of the HP location but spared performance on all other aspects of testing, indicating a specific impairment of spatial learning/short-term memory. These results suggest that epileptogenesis induced by hippocampal stimulation is indeed associated with a selective disruption of the mechanisms mediating spatial learning/short-term memory.
Collapse
Affiliation(s)
- D K Hannesson
- Department of Psychology and Neuropsychiatric Research Unit, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
24
|
Dorsal hippocampal kindling produces a selective and enduring disruption of hippocampally mediated behavior. J Neurosci 2001. [PMID: 11404431 DOI: 10.1523/jneurosci.21-12-04443.2001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Kindling produces enduring neural changes that are subsequently manifest in enhanced susceptibility to seizure-evoking stimuli and alterations in some types of behavior. The present study investigated the effects of dorsal hippocampal (dHPC) kindling on a variety of behaviors to clarify the nature of previously reported effects on spatial task performance. Rats were kindled twice daily with dHPC stimulation until three fully generalized seizures were evoked. Beginning 7 d later and on successive days, rats were tested in an elevated plus maze, a large circular open field, an open field object exploration task, and a delayed-match-to-place (DMTP) task in a water maze to assess anxiety-related and activity-related behavior (tasks 1 and 2), object recognition memory (task 3), and spatial cognition (task 4). Kindling disrupted performance on the DMTP task in a manner that was not delay dependent and produced a mild enhancement of activity-related behaviors in the open field task but not the elevated plus maze. All other aspects of testing were spared. These findings indicate that dHPC kindling produces enduring and selective effects on behavior that are consistent with a restricted disruption of hippocampally mediated functions. Possible bases for these effects are changes in local NMDA receptor function and/or changes in local inhibition, which might alter the optimal conditions for experience-dependent induction of intrahippocampal plasticity. This preparation may be useful for studying the mechanisms of mnemonic dysfunction associated with temporal lobe epilepsy and may offer unique insights into the mechanisms underlying normal hippocampal function.
Collapse
|
25
|
Genkova-Papazova MG, Petkova B, Shishkova N, Lazarova-Bakarova M. Effect of the calcium channel blockers nifedipine and diltiazem on pentylenetetrazole kindling-provoked amnesia in rats. Eur Neuropsychopharmacol 2001; 11:91-6. [PMID: 11313152 DOI: 10.1016/s0924-977x(00)00120-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A large body of research supports the view that memory disturbance is an integral part of epilepsy. Deficit in various behaviour tasks has been found in rats subjected to experimental epilepsy-pentylenetetrazole (PTZ) kindling. In the present study we examined the effect of post-training administered calcium channel blockers nifedipine (10 and 40 mg/kg) and diltiazem (10 and 30 mg/kg) on amnesia induced by PTZ kindling in shuttle-box- and step-down-trained rats. Retention in nifedipine- or diltiazem-treated kindled animals was significantly improved compared to the kindled controls. The mechanisms of action of calcium antagonists studied is considered. Taken together with the data about calcium channel blocker anticonvulsive activity, the results of this study further suggest that nifedipine and diltiazem might be useful in the treatment of cognitive disorders in epileptic patients.
Collapse
Affiliation(s)
- M G Genkova-Papazova
- Laboratory of CNS Pharmacology, Institute of Physiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria.
| | | | | | | |
Collapse
|
26
|
Abstract
Kindling produces enduring changes in the brain that are evident in not only enhanced susceptibility to seizure-evoking stimuli but also alterations in non-epileptic behaviors or functions. The present review examines the effects of kindling on one class of non-epileptic functions, learning and memory, and explores the dependence of these effects on variables such as the site of kindling, extent of kindling, and interval between kindling and testing. Current research shows that kindling is capable of altering performance on a variety of tasks including those that require spatial cognition, aversive conditioning, and object-related cognition and that non-mnemonic effects are unlikely, in at least some cases, to underlie these effects. Consideration of the conditions under which these effects are observed indicates a distinct relation between specific mnemonic effects and both the site and extent of kindling. Continued characterization of the mnemonic effects of kindling should provide a theoretical framework to guide discovery of their underlying mechanisms, which, in turn, may lead to rational therapy for mnemonic dysfunction associated with epilepsy and insights into the mechanisms of learning and memory.
Collapse
Affiliation(s)
- D K Hannesson
- Department of Psychology and Psychiatry, Neuropsychiatric Research Unit, University of Saskatchewan, 103 Wiggins Road, Sask, S7N 5E4, Saskatoon, Canada
| | | |
Collapse
|
27
|
Genkova-Papazova MG, Petkova B, Shishkova N, Lazarova-Bakarova M. The GABA-B antagonist CGP 36742 prevent PTZ-kindling-provoked amnesia in rats. Eur Neuropsychopharmacol 2000; 10:273-8. [PMID: 10871709 DOI: 10.1016/s0924-977x(00)00082-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Deficit in active and inhibitory avoidance behaviour has been found in pentylenetetrazole (PTZ)-kindled rats. This supports the view that memory deficit is an integral part of epilepsy. In the present study we examined the effect of the GABA B antagonist CGP 36742 on memory deficit induced by PTZ-kindling in shuttle-box- and step-down-trained rats. The retention in CGP 36742-treated animals was significantly improved compared to the kindled controls. The mechanisms of action of CGP 36742 is considered. The favourable effect of the GABA B antagonist in cases of amnesia provoked by PTZ-kindling might be of interest in clinical practice.
Collapse
Affiliation(s)
- M G Genkova-Papazova
- Laboratory CNS Pharmacology, Institute of Physiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 23, 1113, Sofia, Bulgaria.
| | | | | | | |
Collapse
|