1
|
Hassan MJ, Najeeb A, Zhou M, Raza MA, Ali U, Cheng B, Ling Y, Li Z. Diethyl aminoethyl hexanoate reprogramed accumulations of organic metabolites associated with water balance and metabolic homeostasis in white clover under drought stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1430752. [PMID: 39464286 PMCID: PMC11502329 DOI: 10.3389/fpls.2024.1430752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024]
Abstract
Diethyl aminoethyl hexanoate (DA-6) serving as a non-toxic and low-cost plant growth regulator is used for improving plant growth and stress tolerance, but the DA-6-mediated organic metabolites remodeling in relation to drought tolerance is not well documented in crops. The aims of the present study were to evaluate impacts of DA-6 on physiological functions including osmotic adjustment, photochemical efficiency, oxidative damage, and cell membrane stability as well as organic metabolites remodeling in white clover (Trifolium repens) leaves based on the analysis of metabolomics. Plants were foliarly treated with or without DA-6 and subsequently exposed to drought stress for 8 days. Results demonstrated that foliar application of DA-6 (1.5 mM) could significantly ameliorate drought tolerance, which was linked with better leaf water status, photosynthetic performance, and cell membrane stability as well as lower oxidative injury in leaves. Metabolic profiling of organic metabolites identified a total of 59 metabolites including 17 organic acids, 20 sugars, 12 alcohols, and 10 other metabolites. In response to drought stress, the DA-6 induced accumulations of many sugars and sugar alcohols (erythrulose, arabinose, xylose, inosose, galactose, talopyranose, fucose, erythritol, and ribitol), organic acids (propanoic acid, 2,3-dihydroxybutanoic acid, palmitic acid, linolenic acid, and galacturonic acid), and other metabolites (2-oxazoline, silane, and glycine) in white clover. These altered metabolites induced by the DA-6 could perform critical functions in maintenances of osmo-protection, osmotic adjustment, redox homeostasis, cell wall structure and membrane stability when white clover suffered from water deficit. In addition, the campesterol and stigmasterol significantly accumulated in all plants in spite of the DA-6 pretreatment under drought stress, which could be an important adaptive response to water deficit due to beneficial roles of those two metabolites in regulating cell membrane stability and antioxidant defense. Present findings provide new evidence of DA-6-regulated metabolic homeostasis contributing to drought tolerance in leguminous plants.
Collapse
Affiliation(s)
- Muhammad Jawad Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Atiqa Najeeb
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Min Zhou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Muhammad Ali Raza
- Institute of Soil Fertilizer and Water Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Ummar Ali
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Bizhen Cheng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yao Ling
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Mazumder S, Bhattacharya D, Lahiri D, Nag M. Milletomics: a metabolomics centered integrated omics approach toward genetic progression. Funct Integr Genomics 2024; 24:149. [PMID: 39218822 DOI: 10.1007/s10142-024-01430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/25/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Producing alternative staple foods like millet will be essential to feeding ten billion people by 2050. The increased demand for millet is driving researchers to improve its genetic variation. Millets include protein, dietary fiber, phenolic substances, and flavonoid components. Its climate resilience makes millet an appealing crop for agronomic sustainability. Integrative omics technologies could potentially identify and develop millets with desirable phenotypes that may have high agronomic value. Millets' salinity and drought tolerance have been enhanced using transcriptomics. In foxtail, finger, and pearl millet, proteomics has discovered salt-tolerant protein, phytohormone-focused protein, and drought tolerance. Metabolomics studies have revealed that certain metabolic pathways including those involving lignin, flavonoids, phenylpropanoid, and lysophospholipids are critical for many processes, including seed germination, photosynthesis, energy metabolism, and the synthesis of bioactive chemicals necessary for drought tolerance. Metabolomics integration with other omics revealed metabolome engineering and trait-specific metabolite creation. Integrated metabolomics and ionomics are still in the development stage, but they could potentially assist in comprehending the pathway of ionomers to control nutrient levels and biofortify millet. Epigenomic analysis has shown alterations in DNA methylation patterns and chromatin structure in foxtail and pearl millets in response to abiotic stress. Whole-genome sequencing utilizing next-generation sequencing is the most proficient method for finding stress-induced phytoconstituent genes. New genome sequencing enables novel biotechnological interventions including genome-wide association, mutation-based research, and other omics approaches. Millets can breed more effectively by employing next-generation sequencing and genotyping by sequencing, which may mitigate climate change. Millet marker-assisted breeding has advanced with high-throughput markers and combined genotyping technologies.
Collapse
Affiliation(s)
- Saikat Mazumder
- Department of Biotechnology, Institute of Engineering and Management, University of Engineering and Management, Kolkata, West Bengal, India
- Department of Food Technology, Guru Nanak Institute of Technology, Kolkata, West Bengal, India
| | - Debasmita Bhattacharya
- Department of Basic Science and Humanities, Institute of Engineering and Management, Kolkata University of Engineering and Management, Kolkata, West Bengal, India
| | - Dibyajit Lahiri
- Department of Biotechnology, Institute of Engineering and Management, University of Engineering and Management, Kolkata, West Bengal, India
| | - Moupriya Nag
- Department of Biotechnology, Institute of Engineering and Management, University of Engineering and Management, Kolkata, West Bengal, India.
| |
Collapse
|
3
|
Yin Z, Huang W, Li K, Fernie AR, Yan S. Advances in mass spectrometry imaging for plant metabolomics-Expanding the analytical toolbox. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2168-2180. [PMID: 38990529 DOI: 10.1111/tpj.16924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024]
Abstract
Mass spectrometry imaging (MSI) has become increasingly popular in plant science due to its ability to characterize complex chemical, spatial, and temporal aspects of plant metabolism. Over the past decade, as the emerging and unique features of various MSI techniques have continued to support new discoveries in studies of plant metabolism closely associated with various aspects of plant function and physiology, spatial metabolomics based on MSI techniques has positioned it at the forefront of plant metabolic studies, providing the opportunity for far higher resolution than was previously available. Despite these efforts, profound challenges at the levels of spatial resolution, sensitivity, quantitative ability, chemical confidence, isomer discrimination, and spatial multi-omics integration, undoubtedly remain. In this Perspective, we provide a contemporary overview of the emergent MSI techniques widely used in the plant sciences, with particular emphasis on recent advances in methodological breakthroughs. Having established the detailed context of MSI, we outline both the golden opportunities and key challenges currently facing plant metabolomics, presenting our vision as to how the enormous potential of MSI technologies will contribute to progress in plant science in the coming years.
Collapse
Affiliation(s)
- Zhibin Yin
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
- Institute of Advanced Science Facilities, Shenzhen, 518107, Guangdong, China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Kun Li
- Guangdong Key Laboratory of Crop Genetic Improvement, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, Guangdong, China
| |
Collapse
|
4
|
Wilkinson C, Brooks J, Stander MA, Malgas R, Roodt-Wilding R, Makunga NP. Metabolomic profiling of wild rooibos (Aspalathus linearis) ecotypes and their antioxidant-derived phytopharmaceutical potential. Metabolomics 2024; 20:45. [PMID: 38615312 PMCID: PMC11016507 DOI: 10.1007/s11306-024-02103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/16/2024] [Indexed: 04/15/2024]
Abstract
INTRODUCTION Aspalathus linearis (commonly known as rooibos) is endemic to the Cape Floristic Region of South Africa and is a popular herbal drink and skin phytotherapeutic ingredient, with health benefits derived primarily from its unique phenolic content. Several, seemingly habitat-specific ecotypes from the Cederberg (Western Cape) and Northern Cape have morphological, ecological, genetic and biochemical differences. OBJECTIVES AND METHODS Despite the commercial popularity of the cultivated variety, the uncultivated ecotypes are largely understudied. To address gaps in knowledge about the biochemical constituency, ultra-performance liquid chromatography-mass spectrometry analysis of fifteen populations was performed, enabling high-throughput metabolomic fingerprinting of 50% (v/v) methanolic extracts. Antioxidant screening of selected populations was performed via three assays and antimicrobial activity on two microbial species was assessed. The metabolomic results were corroborated with total phenolic and flavonoid screening of the extracts. RESULTS AND DISCUSSION Site-specific chemical lineages of rooibos ecotypes were confirmed via multivariate data analyses. Important features identified via PLS-DA disclosed higher relative abundances of certain tentative metabolites (e.g., rutin, aspalathin and apiin) present in the Dobbelaarskop, Blomfontein, Welbedacht and Eselbank sites, in comparison to other locations. Several unknown novel metabolites (e.g., m/z 155.0369, 231.0513, 443.1197, 695.2883) are responsible for metabolomic separation of the populations, four of which showed higher amounts of key metabolites and were thus selected for bioactivity analysis. The Welbedacht and Eselbank site 2 populations consistently displayed higher antioxidant activities, with 2,2-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical scavenging activities of 679.894 ± 3.427 µmol Trolox/g dry matter and 635.066 ± 5.140 µmol Trolox/g dry matter, respectively, in correlation with a high number of phenolic and flavonoid compounds. The contribution of the individual metabolites to the pharmacological effectiveness of rooibos remains unknown and as such, further structural elucidation and phytopharmacological testing is thus urgently needed.
Collapse
Affiliation(s)
- C Wilkinson
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7600, South Africa
| | - J Brooks
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7600, South Africa
| | - M A Stander
- Department of Biochemistry, and Mass Spectrometry Unit, Central Analytical Facility, Stellenbosch University, Private Bag X1, Matieland, 7600, South Africa
| | - R Malgas
- Department of Conservation Ecology and Entomology, Stellenbosch University, Private Bag X1, Matieland, 7600, South Africa
| | - R Roodt-Wilding
- Department of Genetics, Stellenbosch University, Private Bag X1, Matieland, 7600, South Africa
| | - N P Makunga
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, 7600, South Africa.
| |
Collapse
|
5
|
Tian X, Wang H, Chen L, Yuan H, Peng C, Wang W. Distinct Changes in Metabolic Profile and Sensory Quality with Different Varieties of Chrysanthemum (Juhua) Tea Measured by LC-MS-Based Untargeted Metabolomics and Electronic Tongue. Foods 2024; 13:1080. [PMID: 38611384 PMCID: PMC11011348 DOI: 10.3390/foods13071080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Chrysanthemum tea, a typical health tea with the same origin as medicine and food, is famous for its unique health benefits and flavor. The taste and sensory quality of chrysanthemum (Juhua) tea are mainly determined by secondary metabolites. Therefore, the present research adopted untargeted metabolomics combined with an electronic tongue system to analyze the correlation between the metabolite profiles and taste characteristics of different varieties of chrysanthemum tea. The results of sensory evaluation showed that there were significant differences in the sensory qualities of five different varieties of chrysanthemum tea, especially bitterness and astringency. The results of principal component analysis (PCA) indicated that there were significant metabolic differences among the five chrysanthemum teas. A total of 1775 metabolites were identified by using untargeted metabolomics based on UPLC-Q-TOF/MS analysis. According to the variable importance in projection (VIP) values of the orthogonal projections to latent structures discriminant analysis (OPLS-DA), 143 VIP metabolites were found to be responsible for metabolic changes between Huangju and Jinsi Huangju tea; among them, 13 metabolites were identified as the key metabolites of the differences in sensory quality between them. Kaempferol, luteolin, genistein, and some quinic acid derivatives were correlated with the "astringency" attributes. In contrast, l-(-)-3 phenyllactic acid and L-malic acid were found to be responsible for the "bitterness" and "umami" attributes in chrysanthemum tea. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the flavonoid and flavonol biosynthesis pathways had important effects on the sensory quality of chrysanthemum tea. These findings provide the theoretical basis for understanding the characteristic metabolites that contribute to the distinctive sensory qualities of chrysanthemum tea.
Collapse
Affiliation(s)
- Xing Tian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (X.T.); (H.W.); (L.C.); (H.Y.); (C.P.)
- Department of Food and Drug Engineering, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
- Engineering Technology Research Center of Hunan Province Xiangnan Area Authentic Chinese Medicinal Materials, Yongzhou 425600, China
| | - Haodong Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (X.T.); (H.W.); (L.C.); (H.Y.); (C.P.)
| | - Liang Chen
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (X.T.); (H.W.); (L.C.); (H.Y.); (C.P.)
| | - Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (X.T.); (H.W.); (L.C.); (H.Y.); (C.P.)
- Engineering Technology Research Center of Hunan Province Xiangnan Area Authentic Chinese Medicinal Materials, Yongzhou 425600, China
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (X.T.); (H.W.); (L.C.); (H.Y.); (C.P.)
- Confucius Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (X.T.); (H.W.); (L.C.); (H.Y.); (C.P.)
| |
Collapse
|
6
|
Kumari M, Yagnik KN, Gupta V, Singh IK, Gupta R, Verma PK, Singh A. Metabolomics-driven investigation of plant defense response against pest and pathogen attack. PHYSIOLOGIA PLANTARUM 2024; 176:e14270. [PMID: 38566280 DOI: 10.1111/ppl.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
The advancement of metabolomics has assisted in the identification of various bewildering characteristics of the biological system. Metabolomics is a standard approach, facilitating crucial aspects of system biology with absolute quantification of metabolites using minimum samples, based on liquid/gas chromatography, mass spectrometry and nuclear magnetic resonance. The metabolome profiling has narrowed the wide gaps of missing information and has enhanced the understanding of a wide spectrum of plant-environment interactions by highlighting the complex pathways regulating biochemical reactions and cellular physiology under a particular set of conditions. This high throughput technique also plays a prominent role in combined analyses of plant metabolomics and other omics datasets. Plant metabolomics has opened a wide paradigm of opportunities for developing stress-tolerant plants, ensuring better food quality and quantity. However, despite advantageous methods and databases, the technique has a few limitations, such as ineffective 3D capturing of metabolites, low comprehensiveness, and lack of cell-based sampling. In the future, an expansion of plant-pathogen and plant-pest response towards the metabolite architecture is necessary to understand the intricacies of plant defence against invaders, elucidation of metabolic pathway operational during defence and developing a direct correlation between metabolites and biotic stresses. Our aim is to provide an overview of metabolomics and its utilities for the identification of biomarkers or key metabolites associated with biotic stress, devising improved diagnostic methods to efficiently assess pest and pathogen attack and generating improved crop varieties with the help of combined application of analytical and molecular tools.
Collapse
Affiliation(s)
- Megha Kumari
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Kalpesh Nath Yagnik
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Vaishali Gupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Indrakant K Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, Republic of Korea
| | - Praveen K Verma
- Plant-Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Archana Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, India
| |
Collapse
|
7
|
Sánchez-Rodríguez DE, Muñoz-Ochoa M, González-Acosta B, Aguila-Ramírez RN. Biofouling inhibition by Staphylococcus aureus extracts and their potential use for paints. Int Microbiol 2024; 27:81-90. [PMID: 37166536 DOI: 10.1007/s10123-023-00371-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
For the control of biofouling, some paints based on compounds that are toxic to marine organisms have been used. There is an intensive search for biodegradable solutions that are friendly to non-target organisms. Bacteria have been shown to be a source of compounds with antifouling potential. In this work, the antifouling activity of a strain of Staphylococcus aureus was evaluated. Extracts activity against biofilm-forming bacteria and the toxicity against Artemia franciscana were evaluated. The extracts were incorporated in a hard gel and a paint matrix, and they were exposed to the sea. In both the laboratory and field, we found that the compounds produced by S. aureus have antifouling activity. The non-toxicity of the tested extracts against Artemia franciscana nauplii suggests that the extracts obtained from S. aureus could have a low ecological impact over non-target organisms. Significant differences were found in the percentage of organisms cover in hard gels with extracts and control. After 90 days, important differences were also observed between the percentage of organisms cover of the paints that contained extracts and the control. Dichloromethane extract is the most effective for the inhibition or delay of the settlement of organisms For this reason, they could be used in matrices with different applications, such as in the shipping industry, aquaculture, or any other in which biofouling is a cause of inconvenience.
Collapse
Affiliation(s)
| | - Mauricio Muñoz-Ochoa
- Instituto Politecnico Nacional-Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, Mexico
| | - Bárbara González-Acosta
- Instituto Politecnico Nacional-Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, Mexico
| | - Ruth Noemí Aguila-Ramírez
- Instituto Politecnico Nacional-Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, Mexico.
| |
Collapse
|
8
|
Palaniyappan S, Sridhar A, Arumugam M, Ramasamy T. Bioactive Analysis of Antibacterial Efficacy and Antioxidant Potential of Aloe barbadensis Miller Leaf Extracts and Exploration of Secondary Metabolites Using GC-MS Profiling. Appl Biochem Biotechnol 2024; 196:729-773. [PMID: 37184725 DOI: 10.1007/s12010-023-04565-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
Aloe barbadensis Miller (ABM) is a traditional medicinal plant all over the world. Numerous studies were conducted to exhibit its medicinal properties and most of them were concentrated on its metabolites against human pathogens. The current research work evaluates the attributes of different polar-based extracts (ethanol, methanol, ethyl acetate, acetone, hexane, and petroleum ether) of dried Aloe barbadensis leaf (ABL) to investigate its phytochemical constituents, antioxidant potential (DPPH, ABTS), phenolic, tannin, flavonoid contents, identification of bioactive compounds, and functional groups by gas chromatography-mass spectrometry (GC-MS) and fourier transform infrared spectroscopy (FT-IR) respectively, and comparing antibacterial efficacy against human pathogens, aquatic bacterial pathogens, and zoonotic bacteria associated with fish and human. The present results showed that the methanolic extract of ABL showed higher antioxidant activity (DPPH-59.73 ± 2.01%; ABTS-74.1 ± 1.29%), total phenolic (10.660 ± 1.242 mg GAE/g), tannin (7.158 ± 0.668 mg TAE/g), and flavonoid content (49.545 ± 1.928 µg QE/g) than that of other solvent extracts. Non-polar solvents hexane and petroleum ether exhibited lesser activity among the extracts. In the case of antibacterial activity, higher inhibition zone was recorded in methanol extract of ABL (25.00 ± 0.70 mm) against Aeromonas salmonicida. Variations in antibacterial activity were observed depending on solvents and extracts. In the current study, polar solvents revealed higher antibacterial activity when compared to the non-polar and the mid-polar solvents. Diverse crucial bioactive compounds were detected in GC-MS analysis. The vital compounds were hexadecanoic acid (30.69%) and 2-pentanone, 4-hydroxy-4-methyl (23.77%) which are responsible for higher antioxidant and antibacterial activity. Similar functional groups were identified in all the solvent extracts of ABL with slight variations in the FT-IR analysis. Polar-based solvent extraction influenced the elution of phytocompounds more than that of the other solvents used in this study. The obtained results suggested that the ABM could be an excellent source for antioxidant and antibacterial activities and can also serve as a potential source of effective bioactive compounds to combat human as well as aquatic pathogens.
Collapse
Affiliation(s)
- Sivagaami Palaniyappan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Arun Sridhar
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium
| | - Manikandan Arumugam
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
9
|
Dagar R, Gautam A, Priscilla K, Sharma V, Gupta P, Kumar R. Sample Preparation from Plant Tissue for Gas Chromatography-Mass Spectrometry (GC-MS)we. Methods Mol Biol 2024; 2788:19-37. [PMID: 38656506 DOI: 10.1007/978-1-0716-3782-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metabolites are intermediate products formed during metabolism. Metabolites play different roles, including providing energy, supporting structure, transmitting signals, catalyzing reactions, enhancing defense, and interacting with other species. Plant metabolomics research aims to detect precisely all metabolites found within tissues of plants through GC-MS. This chapter primarily focuses on extracting metabolites using chemicals such as methanol, chloroform, ribitol, MSTFA, and TMCS. The metabolic analysis method is frequently used according to the specific kind of sample or matrix being investigated and the analysis objective. Chromatography (LC, GC, and CE) with mass spectrometry and NMR spectroscopy is used in modern metabolomics to analyze metabolites from plant samples. The most frequently used method for metabolites analysis is the GC-MS. It is a powerful technique that combines gas chromatography's separation capabilities with mass spectrometry, offering detailed information, including structural identification of each metabolite. This chapter contains an easy-to-follow guide to extract plant-based metabolites. The current protocol provides all the information needed for extracting metabolites from a plant, precautions, and troubleshooting.
Collapse
Affiliation(s)
- Rinku Dagar
- Department of Life Science, School of Life Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| | - Ashish Gautam
- Department of Life Science, School of Life Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| | - Kagolla Priscilla
- Department of Life Science, School of Life Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut, India
| | - Prateek Gupta
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
- Department of Biological Sciences, SRM University-AP, Mangalagiri, India
| | - Rakesh Kumar
- Department of Life Science, School of Life Sciences, Central University of Karnataka, Kalaburagi, Karnataka, India.
| |
Collapse
|
10
|
Park J, Kil YS, Ryoo GH, Jin CH, Hong MJ, Kim JB, Jung CH, Nam JW, Han AR. Phytochemical profile and anti-inflammatory activity of the hull of γ-irradiated wheat mutant lines ( Triticum aestivum L.). Front Nutr 2023; 10:1334344. [PMID: 38188878 PMCID: PMC10771830 DOI: 10.3389/fnut.2023.1334344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Wheat (Triticum aestivum Linn.; Poaceae) is the second most cultivated food crop among all global cereal crop production. The high carbohydrate content of its grains provides energy, multiple nutrients, and dietary fiber. After threshing, a substantial amount of wheat hull is produced, which serves as the non-food component of wheat. For the valorization of these by-products as a new resource from which functional components can be extracted, the hull from the seeds of cultivated wheat mutant lines bred after γ-irradiation were collected. Untargeted metabolite analysis of the hull of the original cultivar (a crossbreeding cultivar., Woori-mil × D-7) and its 983 mutant lines were conducted using ultra-performance liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry technique. A total of 55 molecules were tentatively identified, including 21 compounds found in the Triticum species for the first time and 13 compounds not previously described. Among them, seven flavonolignans with a diastereomeric structure, isolated as a single compound from the hull of T. aestivum in our previous study, were used as the standards in the metabolite analysis. The differences in their collision cross-section values were shown to contribute to the clear distinction between tricine-lignan stereoisomers. To select functionally active agents with anti-inflammatory activity among the identified compounds, the wheat hull samples were evaluated for their inhibitory effect on nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 cells. As a result of multivariate analysis based on the results of chemical and biological profiles of the wheat hull samples, 10 metabolites were identified as key markers, contributing to the distinction between active and inactive mutant lines. Considering that one of the four key markers attributed to anti-inflammatory activity has been identified to be a flavonolignan, the wheat hull could be a valuable source of diverse tricin-lignan type compounds and used as a natural health-promoting product in food supplements.
Collapse
Affiliation(s)
- Jisu Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Yun-Seo Kil
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea
| | - Ga-Hee Ryoo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| | - Chan-Hun Jung
- Jeonju AgroBio-Materials Institute, Jeonju-si, Jeollabuk-do, Republic of Korea
| | - Joo-Won Nam
- College of Pharmacy, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea
| | - Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Jeollabuk-do, Republic of Korea
| |
Collapse
|
11
|
Ye Z, Fang Z, Li D, Lin X, Huang S. Exploring the material basis and mechanism of action of clinacanthus nutans in treating renal cell carcinoma based on metabolomics and network pharmacology. Medicine (Baltimore) 2023; 102:e35675. [PMID: 37861516 PMCID: PMC10589591 DOI: 10.1097/md.0000000000035675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Clinacanthus nutans (for abbreviation thereafter) is often used as medicine in the form of fresh juice in the folk to treat many kinds of cancers, including renal cell carcinoma (RCC). It is speculated that its active ingredient may have heat sensitivity, but there are currently no reports on this aspect. Therefore, based on the folk application for fresh juice of C nutans, this study used metabonomics and network pharmacology to explore the material basis and mechanism of action of C nutans against RCC. METHODS Firstly, untargeted metabolomics profiling was performed by Liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry to screen the metabolites down-regulated by heat in the extract of C nutans. Secondly, we collected the targets of metabolites in the Swiss Target Prediction platform. In addition, the targets of RCC were obtained in the GeneCards database. The "component-target-disease" network was established by Cytoscape3.9.0 software. Then we constructed a protein-protein interaction network in the STRING network platform to screen core targets. The gene ontology and kyoto encyclopedia of genes and genomes enrichment analysis of core targets were carried out to predict the relevant pathway of C nutans in the treatment of RCC. Finally, the molecular docking verification of the core targets were carried out. RESULTS In this study, 35 potential active ingredients and 125 potential targets were obtained. And the core targets were Cellular tumor antigen p53, Signal transducer and activator of transcription 3, and so on. Then, 48 biological processes, 30 cell components, and 36 molecular functions were obtained by gene ontology enrichment analysis. Besides, 44 pathways were obtained by Kyoto encyclopedia of genes and genomes enrichment analysis, including Pathway in cancer, PI3K-Akt signal pathway, P53 signal pathway, and so on. The docking model between the core target and its corresponding components was stable. CONCLUSION This research is based on the folk application of C nutans, showed its potential active ingredients by metabonomics, and predicted the potential mechanism of C nutans in the treatment of RCC by network pharmacology. It provides new references for follow-up research and new drug development.
Collapse
Affiliation(s)
- Zhandong Ye
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiqiang Fang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan Li
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacy, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Xiaogang Lin
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Song Huang
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
12
|
Zhang J, Sun M, Elmaidomy AH, Youssif KA, Zaki AMM, Hassan Kamal H, Sayed AM, Abdelmohsen UR. Emerging trends and applications of metabolomics in food science and nutrition. Food Funct 2023; 14:9050-9082. [PMID: 37740352 DOI: 10.1039/d3fo01770b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The study of all chemical processes involving metabolites is known as metabolomics. It has been developed into an essential tool in several disciplines, such as the study of plant physiology, drug development, human diseases, and nutrition. The field of food science, diagnostic biomarker research, etiological analysis in the field of medical therapy, and raw material quality, processing, and safety have all benefited from the use of metabolomics recently. Food metabolomics includes the use of metabolomics in food production, processing, and human diets. As a result of changing consumer habits and the rising of food industries all over the world, there is a remarkable increase in interest in food quality and safety. It requires the employment of various technologies for the food supply chain, processing of food, and even plant breeding. This can be achieved by understanding the metabolome of food, including its biochemistry and composition. Additionally, Food metabolomics can be used to determine the similarities and differences across crop kinds, as an indicator for tracking the process of ripening to increase crops' shelf life and attractiveness, and identifying metabolites linked to pathways responsible for postharvest disorders. Moreover, nutritional metabolomics is used to investigate the connection between diet and human health through detection of certain biomarkers. This review assessed and compiled literature on food metabolomics research with an emphasis on metabolite extraction, detection, and data processing as well as its applications to the study of food nutrition, food-based illness, and phytochemical analysis. Several studies have been published on the applications of metabolomics in food but further research concerning the use of standard reproducible procedures must be done. The results published showed promising uses in the food industry in many areas such as food production, processing, and human diets. Finally, metabolome-wide association studies (MWASs) could also be a useful predictor to detect the connection between certain diseases and low molecular weight biomarkers.
Collapse
Affiliation(s)
- Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Mingna Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Khayrya A Youssif
- Department of Pharmacognosy, Faculty of Pharmacy, El-Saleheya El Gadida University, Cairo, Egypt
| | - Adham M M Zaki
- Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Hossam Hassan Kamal
- Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, 62513 Beni-Suef, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Almaaqal University, 61014 Basra, Iraq
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| |
Collapse
|
13
|
Blois L, de Miguel M, Bert PF, Ollat N, Rubio B, Voss-Fels KP, Schmid J, Marguerit E. Dissecting the genetic architecture of root-related traits in a grafted wild Vitis berlandieri population for grapevine rootstock breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:223. [PMID: 37838631 PMCID: PMC10576685 DOI: 10.1007/s00122-023-04472-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/25/2023] [Indexed: 10/16/2023]
Abstract
In woody perennial plants, quantitative genetics and association studies remain scarce for root-related traits, due to the time required to obtain mature plants and the complexity of phenotyping. In grapevine, a grafted cultivated plant, most of the rootstocks used are hybrids between American Vitis species (V. rupestris, V. riparia, and V. berlandieri). In this study, we used a wild population of an American Vitis species (V. berlandieri) to analyze the genetic architecture of the root-related traits of rootstocks in a grafted context. We studied a population consisting of 211 genotypes, with one to five replicates each (n = 846 individuals), plus four commercial rootstocks as control genotypes (110R, 5BB, Börner, and SO4). After two independent years of experimentation, the best linear unbiased estimates method revealed root-related traits with a moderate-to-high heritability (0.36-0.82) and coefficient of genetic variation (0.15-0.45). A genome-wide association study was performed with the BLINK model, leading to the detection of 11 QTL associated with four root-related traits (one QTL was associated with the total number of roots, four were associated with the number of small roots (< 1 mm in diameter), two were associated with the number of medium-sized roots (1 mm < diameter < 2 mm), and four were associated with mean diameter) accounting for up to 25.1% of the variance. Three genotypes were found to have better root-related trait performances than the commercial rootstocks and therefore constitute possible new candidates for use in grapevine rootstock breeding programs.
Collapse
Affiliation(s)
- Louis Blois
- EGFV, Bordeaux Sciences Agro, INRAE, ISVV, Univ. Bordeaux, 33882, Villenave d'Ornon, France.
- Department of Grapevine Breeding, Geisenheim University, Von Lade Str. 1, 65366, Geisenheim, Germany.
| | - Marina de Miguel
- EGFV, Bordeaux Sciences Agro, INRAE, ISVV, Univ. Bordeaux, 33882, Villenave d'Ornon, France
| | - Pierre-François Bert
- EGFV, Bordeaux Sciences Agro, INRAE, ISVV, Univ. Bordeaux, 33882, Villenave d'Ornon, France
| | - Nathalie Ollat
- EGFV, Bordeaux Sciences Agro, INRAE, ISVV, Univ. Bordeaux, 33882, Villenave d'Ornon, France
| | - Bernadette Rubio
- EGFV, Bordeaux Sciences Agro, INRAE, ISVV, Univ. Bordeaux, 33882, Villenave d'Ornon, France
| | - Kai P Voss-Fels
- Department of Grapevine Breeding, Geisenheim University, Von Lade Str. 1, 65366, Geisenheim, Germany
| | - Joachim Schmid
- Department of Grapevine Breeding, Geisenheim University, Von Lade Str. 1, 65366, Geisenheim, Germany
| | - Elisa Marguerit
- EGFV, Bordeaux Sciences Agro, INRAE, ISVV, Univ. Bordeaux, 33882, Villenave d'Ornon, France
| |
Collapse
|
14
|
Zhou G, Lu D. Proteomics screening uncovers HMGA1 as a promising negative regulator for γ-globin expression in response to decreased β-globin levels. J Proteomics 2023; 286:104957. [PMID: 37423548 DOI: 10.1016/j.jprot.2023.104957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
Reactivation of fetal hemoglobin (HbF) is a critical goal for the treatment of patients with hemoglobinopathies. β-globin disorders can trigger stress erythropoiesis in red blood cells (RBCs). Cell-intrinsic erythroid stress signals promote erythroid precursors to express high levels of fetal hemoglobin, which is also known as γ-globin. However, the molecular mechanism underlying γ-globin production during cell-intrinsic erythroid stress remains to be elucidated. Here, we utilized CRISPR-Cas9 to model a stressed state caused by reduced levels of adult β-globin in HUDEP2 human erythroid progenitor cells. We found that a decrease in β-globin expression correlates with the upregulation of γ-globin expression. We also identified transcription factor high-mobility group A1 (HMGA1; formerly HMG-I/Y) as a potential γ-globin regulator that responds to reduced β-globin levels. Upon erythroid stress, there is a downregulation of HMGA1, which normally binds -626 to -610 base pairs upstream from the STAT3 promoter, to downregulate STAT3 expression. STAT3 is a known γ-globin repressor, so the downregulation of HMGA1 ultimately upregulates γ-globin expression. SIGNIFICANCE: This study demonstrated HMGA1 as a potential regulator in the poorly understood phenomenon of stress-induced globin compensation, and after further validation these results might inform new strategies to treat patients with sickle cell disease and β-thalassemia.
Collapse
Affiliation(s)
- Guoqiang Zhou
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458, China
| | - Daru Lu
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511458, China; NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning, Science and Technology Research Institute, Chongqing, China.
| |
Collapse
|
15
|
Manzoor M, Naz S, Muhammad HMD, Ahmad R. Smart reprogramming of jujube germplasm against salinity tolerance through molecular tools. Funct Integr Genomics 2023; 23:222. [PMID: 37402037 DOI: 10.1007/s10142-023-01140-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Affiliation(s)
- Meryam Manzoor
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Safina Naz
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | | | - Riaz Ahmad
- Department of Horticulture, The University of Agriculture, Dera Ismail Khan, Pakistan.
| |
Collapse
|
16
|
Hotea I, Sirbu C, Plotuna AM, Tîrziu E, Badea C, Berbecea A, Dragomirescu M, Radulov I. Integrating (Nutri-)Metabolomics into the One Health Tendency-The Key for Personalized Medicine Advancement. Metabolites 2023; 13:800. [PMID: 37512507 PMCID: PMC10384896 DOI: 10.3390/metabo13070800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Metabolomics is an advanced technology, still under development, with multiple research applications, especially in the field of health. Individual metabolic profiles, the functionality of the body, as well as its interaction with the environment, can be established using this technology. The body's response to various external factors, including the food consumed and the nutrients it contains, has increased researchers' interest in nutrimetabolomics. Establishing correlations between diet and the occurrence of various diseases, or even the development of personalized nutrition plans, could contribute to advances in precision medicine. The interdependence between humans, animals, and the environment is of particular importance today, with the dramatic emergence and spread of zoonotic diseases, food, water and soil contamination, and the degradation of resources and habitats. All these events have led to an increase in risk factors for functional diseases, burdening global health. Thus, this study aimed to highlight the importance of metabolomics, and, in particular, nutrimetabolomics, as a technical solution for a holistic, collaborative, and precise approach for the advancement of the One Health strategy.
Collapse
Affiliation(s)
- Ionela Hotea
- Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| | - Catalin Sirbu
- Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| | - Ana-Maria Plotuna
- Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| | - Emil Tîrziu
- Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| | - Corina Badea
- Faculty of Veterinary Medicine, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| | - Adina Berbecea
- Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| | - Monica Dragomirescu
- Faculty of Bioengineering of Animal Resources, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| | - Isidora Radulov
- Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Calea Aradului, No. 119, 300645 Timisoara, Romania
| |
Collapse
|
17
|
Kuendee N, Naladta A, Kulsirirat T, Yimsoo T, Yingmema W, Pansuksan K, Sathirakul K, Sukprasert S. Lysiphyllum strychnifolium (Craib) A. Schmitz Extracts Moderate the Expression of Drug-Metabolizing Enzymes: In Vivo Study to Clinical Propose. Pharmaceuticals (Basel) 2023; 16:237. [PMID: 37259384 PMCID: PMC9961159 DOI: 10.3390/ph16020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 09/14/2024] Open
Abstract
Lysiphyllum strychnifolium (Craib) A. Schmitz (LS) has been traditionally used as a medicinal herb by folk healers in Thailand with rare evidence-based support. Hepatic cytochrome P450s (CYPs450) are well known as the drug-metabolizing enzymes that catalyze all drugs and toxicants. In this study, we investigated the mRNA levels of six clinically important CYPs450, i.e., CYP1A2, 3A2, 2C11, 2D1, 2D2, and 2E1, in rats given LS extracts. Seventy Wistar rats were randomized into seven groups (n = 10). Each group was given LS stem ethanol (SE) and leaf water (LW) extracts orally at doses of 300, 2000, and 5000 mg/kg body weight (mg/kg.bw) for twenty-eight consecutive days. After treatment, the expression of CYPs450 genes was measured using quantitative real-time PCR. The results revealed that SE and LW, which contained quercetin and gallic acid, promoted the upregulation of all CYPs450. Almost all CYPs450 genes were downregulated in all male LW-treated rats but upregulated in female-treated groups, suggesting that CYP gene expressions in LS-treated rats were influenced by gender. Moderate and high doses of the LS extracts had a tendency to induce six CYP450s' transcription levels in both rat genders. CYP2E1 gene showed a unique expression level in male rats receiving SE at a dose of 2000 mg/kg.bw, whereas a low dose of 300 mg/kg.bw was found in the LW-treated female group. As a result, our findings suggest that different doses of LS extracts can moderate the varying mRNA expression of clinically relevant CYP genes. In this study, we provide information about CYP induction and inhibition in vivo, which could be a desirable condition for furthering the practical use of LS extracts in humans.
Collapse
Affiliation(s)
- Natthaporn Kuendee
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-ok, Chonburi 20110, Thailand
| | - Alisa Naladta
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Thitianan Kulsirirat
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Thunyatorn Yimsoo
- Animal Center, Thammasat University (Rangsit Campus), Pathum Thani 12120, Thailand
| | - Werayut Yingmema
- Animal Center, Thammasat University (Rangsit Campus), Pathum Thani 12120, Thailand
| | - Kanoktip Pansuksan
- Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathum Thani 12120, Thailand
| | - Korbtham Sathirakul
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Sophida Sukprasert
- Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Pathum Thani 12120, Thailand
| |
Collapse
|
18
|
Musolino V, Perri MR, Conforti F, Gliozzi M, Marrelli M, Mollace V. Cachrys L. Genus: A Comprehensive Review on Botany, Phytochemistry and Biological Properties. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030565. [PMID: 36771650 PMCID: PMC9921173 DOI: 10.3390/plants12030565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 05/13/2023]
Abstract
The Cachrys L. genus belongs to the Apiaceae family and it is widely distributed in the Mediterranean basin, with plant species being endemic to southern Europe, Asia, and northern Africa. Different studies, focused on the phytochemical composition of Cachrys spp. and the biological properties of their phytocomplexes, have been reported. These works mostly focused on the essential oils obtained from these plants, and pointed out that Cachrys species are a rich source of coumarins, mainly furanocoumarins. Other phytochemicals, such as terpenes, fatty acids, phytosterols, and flavonoids have been also identified. Moreover, a number of biological properties such as antioxidant, antimicrobial, anti-inflammatory, cytotoxic, and photocytotoxic effects have been assessed. Nevertheless, a review of the chemical and pharmacological properties of this genus is not available in the literature. The aim of this paper is to provide an overview of the reports concerning the identified phytochemicals and the biological effects reported for Cachrys spp., and to offer a comprehensive understanding of the potential of this genus as a source of bioactive compounds. The current taxonomy, the traditional uses, and the toxicological aspects of plants belonging to this genus are also reported, and the future research directions are discussed.
Collapse
Affiliation(s)
- Vincenzo Musolino
- Laboratory of Pharmaceutical Biology, Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Rosaria Perri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Correspondence: (F.C.); (M.M.)
| | - Micaela Gliozzi
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Correspondence: (F.C.); (M.M.)
| | - Vincenzo Mollace
- Department of Health Sciences, Institute of Research for Food Safety & Health (IRC-FSH), University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
19
|
UPLC-QTOF-MS-Based Metabolomics and Antioxidant Capacity of Codonopsis lanceolata from Different Geographical Origins. Foods 2023; 12:foods12020267. [PMID: 36673357 PMCID: PMC9858319 DOI: 10.3390/foods12020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Codonopsis lanceolata (C. lanceolata) has been commonly utilized as a therapeutic plant in traditional medicine. In this study, we examined variations in metabolites in C. lanceolata roots grown in different regions using ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). Multivariate analysis showed that the metabolite profiles of plants grown in Hoengseong and Jeongseon were more similar to each other than to that of C. lanceolata grown in Jeju. Most primary metabolites were present at higher levels in C. lanceolata grown in Jeju. In contrast, C. lanceolata grown in Hoengseong and Jeongseon had high levels of secondary metabolites such as phenylpropanoids and triterpenoid saponins, respectively. In addition, the bioactive compound content and antioxidant capacity of in C. lanceolata grown in Hoengseong and Jeongseon were observed to be higher than those of C. lanceolata grown in Jeju. This study suggests that metabolomics is an effective approach to investigate the difference of metabolite profiling in C. lanceolata from different geographical origins, and is useful for evaluating its pharmacological potential.
Collapse
|
20
|
Shen S, Zhan C, Yang C, Fernie AR, Luo J. Metabolomics-centered mining of plant metabolic diversity and function: Past decade and future perspectives. MOLECULAR PLANT 2023; 16:43-63. [PMID: 36114669 DOI: 10.1016/j.molp.2022.09.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Plants are natural experts in organic synthesis, being able to generate large numbers of specific metabolites with widely varying structures that help them adapt to variable survival challenges. Metabolomics is a research discipline that integrates the capabilities of several types of research including analytical chemistry, statistics, and biochemistry. Its ongoing development provides strategies for gaining a systematic understanding of quantitative changes in the levels of metabolites. Metabolomics is usually performed by targeting either a specific cell, a specific tissue, or the entire organism. Considerable advances in science and technology over the last three decades have propelled us into the era of multi-omics, in which metabolomics, despite at an earlier developmental stage than genomics, transcriptomics, and proteomics, offers the distinct advantage of studying the cellular entities that have the greatest influence on end phenotype. Here, we summarize the state of the art of metabolite detection and identification, and illustrate these techniques with four case study applications: (i) comparing metabolite composition within and between species, (ii) assessing spatio-temporal metabolic changes during plant development, (iii) mining characteristic metabolites of plants in different ecological environments and upon exposure to various stresses, and (iv) assessing the performance of metabolomics as a means of functional gene identification , metabolic pathway elucidation, and metabolomics-assisted breeding through analyzing plant populations with diverse genetic variations. In addition, we highlight the prominent contributions of joint analyses of plant metabolomics and other omics datasets, including those from genomics, transcriptomics, proteomics, epigenomics, phenomics, microbiomes, and ion-omics studies. Finally, we discuss future directions and challenges exploiting metabolomics-centered approaches in understanding plant metabolic diversity.
Collapse
Affiliation(s)
- Shuangqian Shen
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Chuansong Zhan
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Chenkun Yang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Jie Luo
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
21
|
Borges RM, Gouveia GJ, das Chagas FO. Advances in Microbial NMR Metabolomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:123-147. [PMID: 37843808 DOI: 10.1007/978-3-031-41741-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Confidently, nuclear magnetic resonance (NMR) is the most informative technique in analytical chemistry and its use as an analytical platform in metabolomics is well proven. This chapter aims to present NMR as a viable tool for microbial metabolomics discussing its fundamental aspects and applications in metabolomics using some chosen examples.
Collapse
Affiliation(s)
- Ricardo Moreira Borges
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gonçalo Jorge Gouveia
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Fernanda Oliveira das Chagas
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Ahmad F, Nadeem H. Mass Spectroscopy as an Analytical Tool to Harness the Production of Secondary Plant Metabolites: The Way Forward for Drug Discovery. Methods Mol Biol 2023; 2575:77-103. [PMID: 36301472 DOI: 10.1007/978-1-0716-2716-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The molecular map of diverse biological molecules linked with structure, function, signaling, and regulation within a cell can be elucidated using an analytically demanding omic approach. The latest trend of using "metabolomics" technologies has explained the natural phenomenon of opening a new avenue to understand and enhance bioactive compounds' production. Examination of sequenced plant genomes has revealed that a considerable portion of these encodes genes of secondary metabolism. In addition to genetic and molecular tools developed in the current era, the ever-increasing knowledge about plant metabolism's biochemistry has initiated an approach for wisely designed, more productive genetic engineering of plant secondary metabolism for improved defense systems and enhanced biosynthesis of beneficial metabolites. Secondary plant metabolites are natural products synthesized by plants that are not directly involved with their average growth and development but play a vital role in plant defense mechanisms. Plant secondary metabolites are classified into four major classes: terpenoids, phenolic compounds, alkaloids, and sulfur-containing compounds. More than 200,000 secondary metabolites are synthesized by plants having a unique and complex structure. Secondary plant metabolites are well characterized and quantified by omics approaches and therefore used by humans in different sectors such as agriculture, pharmaceuticals, chemical industries, and biofuel. The aim is to establish metabolomics as a comprehensive and dynamic model of diverse biological molecules for biomarkers and drug discovery. In this chapter, we aim to illustrate the role of metabolomic technology, precisely liquid chromatography-mass spectrometry, capillary electrophoresis mass spectrometry, gas chromatography-mass spectrometry, and nuclear magnetic resonance spectroscopy, specifically as a research tool in the production and identification of novel bioactive compounds for drug discovery and to obtain a unified insight of secondary metabolism in plants.
Collapse
Affiliation(s)
- Faheem Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| | - Hera Nadeem
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
23
|
Chemical Analysis and Antimicrobial Activity of Moringa oleifera Lam. Leaves and Seeds. Molecules 2022; 27:molecules27248920. [PMID: 36558052 PMCID: PMC9782826 DOI: 10.3390/molecules27248920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Moringa oleifera is a traditional food crop widespread in Asiatic, African, and South American continents. The plant, able to grow in harsh conditions, shows a high nutritional value and medicinal potential evidencing cardioprotective, anti-inflammatory, antioxidant, and antimicrobial properties. The purpose of this study was the phytochemical analysis of M. oleifera and the identification of the antimicrobial compounds by combining a chemical approach with in vitro tests. The metabolite profile of M. oleifera polar and apolar extracts of leaves and seeds were investigated by using Nuclear Magnetic Resonance spectroscopy and Gas Chromatography-Mass Spectrometry. The antimicrobial activity of all of the obtained extract was evaluated against four bacterial pathogens (Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa and Salmonella enterica). The chemical analysis provided a wide set of metabolites that were identified and quantified. Moreover, apolar extracts from seeds showed a significant concentration-dependent antimicrobial activity against S. aureus and S. epidermidis, (4 mg/mL reduced the viability up to 50%) that was associated to the content of specific fatty acids. Our results remarked the advantages of an integrated approach for the identification of plant metabolites and its use in association with biological tests to recognize the compounds responsible for bioactivity without compounds purification.
Collapse
|
24
|
Lanzotti V, Grauso L, Mangoni A, Termolino P, Palomba E, Anzano A, Incerti G, Mazzoleni S. Metabolomics and molecular networking analyses in Arabidopsis thaliana show that extracellular self-DNA affects nucleoside/nucleotide cycles with accumulation of cAMP, cGMP and N6-methyl-AMP. PHYTOCHEMISTRY 2022; 204:113453. [PMID: 36174718 DOI: 10.1016/j.phytochem.2022.113453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/07/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Extracellular DNA (exDNA) widely occurs in the environment due to release by either cell lysis or active secretion. The role of exDNA in plant-soil interactions has been investigated and inhibitory effects on the growth of conspecific individuals by their self-DNA have been reported. Transcriptome analysis in the model plant Arabidopsis thaliana showed a clear recognition by the plant roots of self- and nonself-exDNA, with inhibition occurring only after exposure to the former. In this study, an untargeted metabolomics approach was used to assess at molecular level the plant reactions to exDNA exposure. Thus, the effects on the metabolites profile of A. thaliana after exposure to self- and nonself-exDNA from plants and fish, were studied by NMR, LC-MS, chemometrics and molecular networking analyses. Results show that self-DNA significantly induces the accumulation of RNA constituents (nucleobases, ribonucleosides, dinucleotide and trinucleotide oligomers). Interestingly, AMP and GMP are found along with their cyclic analogues cAMP and cGMP, and in form of cyclic dimers (c-di-AMP and c-di-GMP). Also methylated adenosine monophosphate (m6AMP) and the dimeric dinucleotide N-methyladenylyl-(3'→5') cytidine (m6ApC) increased only in the self-DNA treatment. Such striking evidence of self-DNA effects highlights a major role of exDNA in plant sensing of its environment.
Collapse
Affiliation(s)
- Virginia Lanzotti
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy.
| | - Laura Grauso
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy.
| | - Alfonso Mangoni
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, 80131, Napoli, Italy.
| | - Pasquale Termolino
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), 80055, Portici, Italy.
| | - Emanuela Palomba
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), 80055, Portici, Italy.
| | - Attilio Anzano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy.
| | - Guido Incerti
- Department of Agri-Food, Animal and Environmental Sciences, University of Udine, 33100, Udine, Italy.
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy.
| |
Collapse
|
25
|
NMR-Based Chromatography Readouts: Indispensable Tools to “Translate” Analytical Features into Molecular Structures. Cells 2022; 11:cells11213526. [DOI: 10.3390/cells11213526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Gaining structural information is a must to allow the unequivocal structural characterization of analytes from natural sources. In liquid state, NMR spectroscopy is almost the only possible alternative to HPLC-MS and hyphenating the effluent of an analyte separation device to the probe head of an NMR spectrometer has therefore been pursued for more than three decades. The purpose of this review article was to demonstrate that, while it is possible to use mass spectrometry and similar methods to differentiate, group, and often assign the differentiating variables to entities that can be recognized as single molecules, the structural characterization of these putative biomarkers usually requires the use of NMR spectroscopy.
Collapse
|
26
|
Li G, Jian T, Liu X, Lv Q, Zhang G, Ling J. Application of Metabolomics in Fungal Research. Molecules 2022; 27:7365. [PMID: 36364192 PMCID: PMC9654507 DOI: 10.3390/molecules27217365] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2023] Open
Abstract
Metabolomics is an essential method to study the dynamic changes of metabolic networks and products using modern analytical techniques, as well as reveal the life phenomena and their inherent laws. Currently, more and more attention has been paid to the development of metabolic histochemistry in the fungus field. This paper reviews the application of metabolomics in fungal research from five aspects: identification, response to stress, metabolite discovery, metabolism engineering, and fungal interactions with plants.
Collapse
Affiliation(s)
- Guangyao Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tongtong Jian
- Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaojin Liu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qingtao Lv
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Guoying Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jianya Ling
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
27
|
Lanzotti V, Anzano A, Grauso L, Zotti M, Sacco A, Senatore M, Moreno M, Diano M, Parente M, Esposito S, Termolino P, Palomba E, Zoina A, Mazzoleni S. NMR Metabolomics and Chemometrics of Lettuce, Lactuca sativa L., under Different Foliar Organic Fertilization Treatments. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11162164. [PMID: 36015467 PMCID: PMC9413100 DOI: 10.3390/plants11162164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 06/12/2023]
Abstract
Lettuce plants were grown in a greenhouse affected by the fungal pathogen Fusarium oxysporum to test the effects on plant metabolomics by different organic treatments. Three foliar application treatments were applied: a commercial compost tea made of aerobically fermented plant organic matter, a pure lyophilized microalga Artrospira platensis, commonly named spirulina, and the same microalga previously exposed during its culture to a natural uptake from medium enriched with F. oxysporum fragmented DNA (NAT). The experiment is the first attempt to observe in field conditions, the use and effects of a natural microbial library as a carrier of pathogenic fungal DNA for disease control. Untargeted NMR metabolomics and chemometrics showed that foliar organic application significantly reduced fumaric and formic acids, aromatic amino acids, and nucleosides, while increasing ethanolamine. A strong decrease in phenolic acids and an increase in citric acid and glutamine were specifically observed in the NAT treatment. It is noteworthy that the exposure of a known biostimulant microalga to fungal DNA in its culture medium was sufficient to induce detectable changes in the metabolomic profiles of the fertilized plants. These findings deserve further investigation to assess the potential relevance of the presented approach in the field of crop biostimulation and biocontrol of plant pathogens.
Collapse
Affiliation(s)
- Virginia Lanzotti
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Attilio Anzano
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Laura Grauso
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Maurizio Zotti
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Adriana Sacco
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), 80055 Portici, Italy
| | - Mauro Senatore
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), 80055 Portici, Italy
| | - Mauro Moreno
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Marcello Diano
- M2M Engineering sas, Business Innovation Center, Science Center, Via Coroglio, 80124 Naples, Italy
| | - Maddalena Parente
- M2M Engineering sas, Business Innovation Center, Science Center, Via Coroglio, 80124 Naples, Italy
| | - Serena Esposito
- M2M Engineering sas, Business Innovation Center, Science Center, Via Coroglio, 80124 Naples, Italy
| | - Pasquale Termolino
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), 80055 Portici, Italy
| | - Emanuela Palomba
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), 80055 Portici, Italy
| | - Astolfo Zoina
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| | - Stefano Mazzoleni
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Portici, Italy
| |
Collapse
|
28
|
Iqbal S, Bai Y, Hayat F, Coulibaly D, Khalil-Ur-Rehman M, Shi T, Gao Z. Comprehensive transcriptomic and metabolomic analysis revealed distinct flavonoid biosynthesis regulation during abnormal pistil development in Japanese apricot. Genomics 2022; 114:110451. [PMID: 35988654 DOI: 10.1016/j.ygeno.2022.110451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/06/2022] [Accepted: 08/16/2022] [Indexed: 11/27/2022]
Abstract
Japanese apricot is an imperative stone fruit plant with numerous processing importance. The failure of reproductive system is the most common cause of fruit loss, through which pistil abortion is the fundamental one. To understand this mechanism, we used a combination of transcriptomic and metabolomic approaches to investigate the biochemical and molecular basis of flavonoid biosynthesis. Due to the regulated expression of flavonoid pathway-related genes in plants, flavonoid biosynthesis is largely regulated at the transcriptional level. A total of 2272 differently expressed genes and 215 differential metabolites were found. The expression of the genes and metabolites encoding flavonoid biosynthesis was lower in abnormal pistils that are in line with the flavonoid quantification from abnormal pistils. Besides, a couple of genes were also detected related to MYB, MADS, NAC and bHLH transcription factors. Remarkably, we found 'hydroxycinnamoyl transferase (LOC103323133)' and flavonoid related metabolite '2-hydroxycinnamic acid' was lower expressed in abnormal pistil, proposing the cause of pistil abortion. Collectively, the present study delivers inclusive transcriptional and metabolic datasets that proposed valuable prospects to unravel the genetic mechanism underlying pistil abortion.
Collapse
Affiliation(s)
- Shahid Iqbal
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA.
| | - Yang Bai
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Faisal Hayat
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Daouda Coulibaly
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | | | - Ting Shi
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhihong Gao
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
29
|
Li Q, Yang S, Li B, Zhang C, Li Y, Li J. Exploring critical metabolites of honey peach (Prunus persica (L.) Batsch) from five main cultivation regions in the north of China by UPLC-Q-TOF/MS combined with chemometrics and modeling. Food Res Int 2022; 157:111213. [DOI: 10.1016/j.foodres.2022.111213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 11/04/2022]
|
30
|
Skirycz A, Fernie AR. Past accomplishments and future challenges of the multi-omics characterization of leaf growth. PLANT PHYSIOLOGY 2022; 189:473-489. [PMID: 35325227 PMCID: PMC9157134 DOI: 10.1093/plphys/kiac136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The advent of omics technologies has revolutionized biology and advanced our understanding of all biological processes, including major developmental transitions in plants and animals. Here, we review the vast knowledge accumulated concerning leaf growth in terms of transcriptional regulation before turning our attention to the historically less well-characterized alterations at the protein and metabolite level. We will then discuss how the advent of biochemical methods coupled with metabolomics and proteomics can provide insight into the protein-protein and protein-metabolite interactome of the growing leaves. We finally highlight the substantial challenges in detection, spatial resolution, integration, and functional validation of the omics results, focusing on metabolomics as a prerequisite for a comprehensive understanding of small-molecule regulation of plant growth.
Collapse
Affiliation(s)
- Aleksandra Skirycz
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
- Boyce Thompson Institute, Ithaca, New York 14853, USA
- Cornell University, Ithaca, New York 14853, USA
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| |
Collapse
|
31
|
Carrillo AJ, Halilovic L, Hur M, Kirkwood JS, Borkovich KA. Targeted Metabolomics Using LC-MS in Neurospora crassa. Curr Protoc 2022; 2:e454. [PMID: 35616476 DOI: 10.1002/cpz1.454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The filamentous fungus Neurospora crassa has historically been a model for understanding the relationship between genes and metabolism-auxotrophic mutants of N. crassa were used by Beadle and Tatum to develop the one-gene-one-enzyme hypothesis for which they earned the Nobel Prize in 1958. In the ensuing decades, several techniques have been developed for the systematic analysis of metabolites in N. crassa and other fungi. Untargeted and targeted approaches have been used, with a focus on secondary metabolites over primary metabolism. Here, we describe a pipeline for sample preparation, metabolite extraction, Liquid Chromatography-Mass Spectrometry (LC-MS), and data analysis that can be used for targeted metabolomics of primary metabolites in N. crassa. Liquid cultures are grown with shaking in a defined minimal medium and then collected using filtration. Samples are lyophilized for 2 days at -80°C, pulverized, and mixed with a solution to extract polar metabolites. The metabolites are separated and identified using LC-MS, with downstream analysis using Skyline interpretive software. Relative levels of hundreds of metabolites can be detected and compared across strains. © 2022 Wiley Periodicals LLC. Basic Protocol: Metabolite extraction and detection from Neurospora crassa cell cultures using Liquid Chromatography-Mass Spectrometry.
Collapse
Affiliation(s)
- Alexander J Carrillo
- Department of Microbiology and Plant Pathology, University of California, Riverside, California
| | - Lida Halilovic
- Department of Microbiology and Plant Pathology, University of California, Riverside, California
| | - Manhoi Hur
- Institute for Integrative Genome Biology Metabolomics Core, University of California, Riverside, California
| | - Jay S Kirkwood
- Institute for Integrative Genome Biology Metabolomics Core, University of California, Riverside, California
| | - Katherine A Borkovich
- Department of Microbiology and Plant Pathology, University of California, Riverside, California
| |
Collapse
|
32
|
Zhang Z, Wu X, Zhou M, Qi J, Zhang R, Li X, Wang C, Ruan C, Han Y. Plasma Metabolomics Identifies the Dysregulated Metabolic Profile of Primary Immune Thrombocytopenia (ITP) Based on GC-MS. Front Pharmacol 2022; 13:845275. [PMID: 35685646 PMCID: PMC9170960 DOI: 10.3389/fphar.2022.845275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/06/2022] [Indexed: 12/04/2022] Open
Abstract
ITP is a common autoimmune bleeding disorder with elusive pathogenesis. Our study was implemented to profile the plasma metabolic alterations of patients diagnosed with ITP, aiming at exploring the potential novel biomarkers and partial mechanism of ITP. The metabolomic analysis of plasma samples was conducted using GC-MS on 98 ITP patients and 30 healthy controls (HCs). Age and gender matched samples were selected to enter the training set or test set respectively. OPLS-DA, t-test with FDR correction and ROC analyses were employed to screen out and evaluate the differential metabolites. Possible pathways were enriched based on metabolomics pathway analysis (MetPA). A total of 85 metabolites were investigated in our study and 17 differential metabolites with diagnostic potential were identified between ITP patients and HCs. MetPA showed that the metabolic disorders of ITP patients were mainly related to phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism and glyoxylate and dicarboxylate metabolism. Additionally, we discriminated 6 differential metabolites and 5 enriched pathways in predicting the resistance to glucocorticoids in chronic ITP patients. The distinct metabolites discovered in our study could become novel biomarkers for the auxiliary diagnosis and prognosis prediction of ITP. Besides, the dysregulated pathways might contribute to the development of ITP.
Collapse
Affiliation(s)
- Ziyan Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiaojin Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
| | - Meng Zhou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Jiaqian Qi
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Rui Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xueqian Li
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Chang Wang
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Changgeng Ruan
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- *Correspondence: Yue Han,
| |
Collapse
|
33
|
Rakhesh KV, Ashalatha SN, Mahima K, Baskar V, Thiruvengadam M. Untargeted Metabolomic Approach to Determine the Regulatory Pathways on Salicylic Acid-Mediated Stress Response in Aphanamixis polystachya Seedlings. Molecules 2022; 27:2966. [PMID: 35566316 PMCID: PMC9102903 DOI: 10.3390/molecules27092966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/01/2023] Open
Abstract
Plants thrive under abiotic and biotic stress conditions with the changes in phytohormones like salicylic acid (SA), resulting in the synthesis of secondary metabolites. The present study determines the response of plants in producing secondary metabolites towards different SA concentrations at varying time intervals. Liquid chromatography-mass spectrometry-based metabolomics studies in Aphanamixis polystachya (Wall.) Parker seedlings are grown at 10 mM, 50 mM, and 100 mM SA concentrations, showed the differential expression of metabolites towards the stress. Alkaloids like amaranthin showed a 15-fold increase on the second day, and analog of androvinblastin showed a 20-fold increase on the sixth day in 10 mM SA compared with other groups. Flavanoid cyanidin 3-3 glucosyl was found to be with a 22-fold increment along with terpenoids betavulgaroside (18-fold), asiaticoside (17-fold), mubenin B (20-fold), and deslanoside (22-fold) increment in 50 mM SA on the sixth day. The shock exerted by 100 mM was too harsh, and the lowered metabolite production level was insufficient for the seedlings to survive at this higher SA condition. Arrangement of stressed groups using Pearson correlation studies, principal component analysis, and partial least square analysis placed 10 mM SA and controlled group closer and 50 mM SA and 100 mM SA groups closer to each other. The study observed that SA regulates metabolites that mediate biotic stress responses at low concentrations, and higher concentrations regulate abiotic stress regulating metabolites.
Collapse
Affiliation(s)
| | | | - Karthikeyan Mahima
- Department of Pharmacognosy, Siddha Central Research Institute, Chennai 600106, India;
| | - Venkidasamy Baskar
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, India;
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
34
|
Das S, Tanemura KA, Dinpazhoh L, Keng M, Schumm C, Leahy L, Asef CK, Rainey M, Edison AS, Fernández FM, Merz KM. In Silico Collision Cross Section Calculations to Aid Metabolite Annotation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:750-759. [PMID: 35378036 PMCID: PMC9277703 DOI: 10.1021/jasms.1c00315] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The interpretation of ion mobility coupled to mass spectrometry (IM-MS) data to predict unknown structures is challenging and depends on accurate theoretical estimates of the molecular ion collision cross section (CCS) against a buffer gas in a low or atmospheric pressure drift chamber. The sensitivity and reliability of computational prediction of CCS values depend on accurately modeling the molecular state over accessible conformations. In this work, we developed an efficient CCS computational workflow using a machine learning model in conjunction with standard DFT methods and CCS calculations. Furthermore, we have performed Traveling Wave IM-MS (TWIMS) experiments to validate the extant experimental values and assess uncertainties in experimentally measured CCS values. The developed workflow yielded accurate structural predictions and provides unique insights into the likely preferred conformation analyzed using IM-MS experiments. The complete workflow makes the computation of CCS values tractable for a large number of conformationally flexible metabolites with complex molecular structures.
Collapse
Affiliation(s)
- Susanta Das
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Kiyoto Aramis Tanemura
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Laleh Dinpazhoh
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Mithony Keng
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Christina Schumm
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Lydia Leahy
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| | - Carter K Asef
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Markace Rainey
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Arthur S Edison
- Departments of Genetics and Biochemistry, Institute of Bioinformatics and Complex Carbohydrate Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Kenneth M Merz
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
35
|
Li J, Yan G, Duan X, Zhang K, Zhang X, Zhou Y, Wu C, Zhang X, Tan S, Hua X, Wang J. Research Progress and Trends in Metabolomics of Fruit Trees. FRONTIERS IN PLANT SCIENCE 2022; 13:881856. [PMID: 35574069 PMCID: PMC9106391 DOI: 10.3389/fpls.2022.881856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/01/2022] [Indexed: 06/15/2023]
Abstract
Metabolomics is an indispensable part of modern systems biotechnology, applied in the diseases' diagnosis, pharmacological mechanism, and quality monitoring of crops, vegetables, fruits, etc. Metabolomics of fruit trees has developed rapidly in recent years, and many important research results have been achieved in combination with transcriptomics, genomics, proteomics, quantitative trait locus (QTL), and genome-wide association study (GWAS). These research results mainly focus on the mechanism of fruit quality formation, metabolite markers of special quality or physiological period, the mechanism of fruit tree's response to biotic/abiotic stress and environment, and the genetics mechanism of fruit trait. According to different experimental purposes, different metabolomic strategies could be selected, such as targeted metabolomics, non-targeted metabolomics, pseudo-targeted metabolomics, and widely targeted metabolomics. This article presents metabolomics strategies, key techniques in metabolomics, main applications in fruit trees, and prospects for the future. With the improvement of instruments, analysis platforms, and metabolite databases and decrease in the cost of the experiment, metabolomics will prompt the fruit tree research to achieve more breakthrough results.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Guohua Yan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Xuwei Duan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Kaichun Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Xiaoming Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Yu Zhou
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Chuanbao Wu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Xin Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| | - Shengnan Tan
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China
- Analysis and Test Center, Northeast Forestry University, Harbin, China
| | - Xin Hua
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Jing Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, China
| |
Collapse
|
36
|
Duan X, Zhang W, Li J, Xu H, Hu J, Zhao L, Ma Y. Comparative metabolomics analysis revealed biomarkers and distinct flavonoid biosynthesis regulation in Chrysanthemum mongolicum and C. rhombifolium. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:373-385. [PMID: 34750870 DOI: 10.1002/pca.3095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 09/15/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Chrysanthemums are traditional flowers that originated in China and have high ornamental, economic and medicinal value. They are widely used as herbal remedies and consumed as food or beverages in folk medicine. However, little is known about their metabolic composition. OBJECTIVES The aims of this work were to determine the metabolic composition of and natural variation among different species of Chrysanthemum and to explore new potential resources for drug discovery and sustainable utilisation of wild Chrysanthemum. METHODS The metabolomes of Chrysanthemum mongolicum (Ling) Tzvel. and Chrysanthemum rhombifolium H. Ohashi & Yonek. were compared using a widely targeted metabolomics approach based on liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS In total, 477 metabolites were identified, of which 72 showed significant differences in expression between C. mongolicum and C. rhombifolium, mainly in flavonoids, organic acids and nucleotides. The flavone and flavonol biosynthesis pathway showed significant enrichment among the differentially expressed metabolites. The contents of genkwanin, trigonelline, diosmin, narcissoside, 3,4-dihydroxyphenylacetic acid, linarin, N',N'-p-coumarin, C-hexosyl-tricetin O-pentoside, chrysoeriol, acacetin and kaempferol-3-O-gentiobioside were significantly different between the two species and represent potential biomarkers. CONCLUSION The types of flavonoid-related metabolites in the flavonoid biosynthesis pathway differed between C. mongolicum and C. rhombifolium. The mechanisms underlying the unique adaptations of these two species to their environments may involve variations in the composition and abundance of flavonoids, organic acids, and nucleotides. These methods are promising to identify functional compounds in Chrysanthemum species and can provide potential resources for drug discovery and the sustainable utilisation of Chrysanthemum plants.
Collapse
Affiliation(s)
- Xiaxia Duan
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Wenjie Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jingjing Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Hongyuan Xu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jing Hu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Liang Zhao
- College of Life Sciences, Yangling, China
| | - Yueping Ma
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
37
|
Raza A. Metabolomics: a systems biology approach for enhancing heat stress tolerance in plants. PLANT CELL REPORTS 2022; 41:741-763. [PMID: 33251564 DOI: 10.1007/s00299-020-02635-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/09/2020] [Indexed: 05/22/2023]
Abstract
Comprehensive metabolomic investigations provide a large set of stress-related metabolites and metabolic pathways, advancing crops under heat stress conditions. Metabolomics-assisted breeding, including mQTL and mGWAS boosted our understanding of improving numerous quantitative traits under heat stress. During the past decade, metabolomics has emerged as a fascinating scientific field that includes documentation, evaluation of metabolites, and chemical methods for cell monitoring programs in numerous plant species. A comprehensive metabolome profiling allowed the investigator to handle the comprehensive data groups of metabolites and the equivalent metabolic pathways in an extraordinary manner. Metabolomics, together with transcriptomics, plays an influential role in discovering connections between stress and genes/metabolite, phenotyping, and biomarkers documentation. Further, it helps to decode several metabolic systems connected with heat stress (HS) tolerance in plants. Heat stress is a critical environmental factor that is globally affecting the growth and productivity of plants. Thus, there is an urgent need to exploit modern breeding and biotechnological tools like metabolomics to develop cultivars with improved HS tolerance. Several studies have reported that amino acids, carbohydrates, nitrogen metabolisms, etc. and metabolites involved in the biosynthesis and catalyzing actions play a game-changing role in HS response and help plants to cope with the HS. The use of metabolomics-assisted breeding (MAB) allows a well-organized transmission of higher yield and HS tolerance at the metabolome level with specific properties. Progressive metabolomics systematic techniques have accelerated metabolic profiling. Nonetheless, continuous developments in bioinformatics, statistical tools, and databases are allowing us to produce ever-progressing, comprehensive insights into the biochemical configuration of plants and by what means this is inclined by genetic and environmental cues. Currently, assimilating metabolomics with post-genomic platforms has allowed a significant division of genetic-phenotypic connotation in several plant species. This review highlights the potential of a state-of-the-art plant metabolomics approach for the improvement of crops under HS. The development of plants with specific properties using integrated omics (metabolomics and transcriptomics) and MAB can provide new directions for future research to enhance HS tolerance in plants to achieve a goal of "zero hunger".
Collapse
Affiliation(s)
- Ali Raza
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, 430062, China.
| |
Collapse
|
38
|
Raletsena MV, Mdlalose S, Bodede OS, Assress HA, Woldesemayat AA, Modise DM. 1H-NMR and LC-MS Based Metabolomics Analysis of Potato ( Solanum tuberosum L.) Cultivars Irrigated with Fly Ash Treated Acid Mine Drainage. Molecules 2022; 27:1187. [PMID: 35208975 PMCID: PMC8877823 DOI: 10.3390/molecules27041187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
1H NMR and LC-MS, commonly used metabolomics analytical platforms, were used to annotate the metabolites found in potato (Solanum tuberosum L.) irrigated with four different treatments based on FA to AMD ratios, namely: control (0% AMD; tap water), 1:1 (50% AMD), 3:1 (75% AMD is 75% FA: AMD), and 100% AMD (untreated). The effects of stress on plants were illustrated by the primary metabolite shifts in the region from δH 0.0 to δH 4.0 and secondary metabolites peaks were prominent in the region ranging from δH 4.5 to δH 8.0. The 1:3 irrigation treatment enabled, in two potato cultivars, the production of significantly high concentrations of secondary metabolites due to the 75% FA: AMD content in the irrigation mixture, which induced stress. The findings suggested that 1:1 irrigation treatment induced production of lower amounts of secondary metabolites in all crops compared to crops irrigated with untreated acid mine drainage treatment and with other FA-treated AMD solutions.
Collapse
Affiliation(s)
- Maropeng V. Raletsena
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, Private Bag X6, Florida 1710, South Africa; (S.M.); (O.S.B.)
| | - Samukelisiwe Mdlalose
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, Private Bag X6, Florida 1710, South Africa; (S.M.); (O.S.B.)
| | - Olusola S. Bodede
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, Private Bag X6, Florida 1710, South Africa; (S.M.); (O.S.B.)
| | - Hailemariam A. Assress
- Arkansas Children’s Nutrition Center, 15 Children’s Way, Little Rock, AR 72202, USA;
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Adugna A. Woldesemayat
- Genomics and Bioinformatics Research Unit, Department of Biotechnology, Addis Ababa Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia;
| | - David M. Modise
- Food Security and Safety (FSS), Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mahikeng 2735, South Africa;
| |
Collapse
|
39
|
Sultanbawa Y, Smyth HE, Truong K, Chapman J, Cozzolino D. Insights on the role of chemometrics and vibrational spectroscopy in fruit metabolite analysis. FOOD CHEMISTRY. MOLECULAR SCIENCES 2021; 3:100033. [PMID: 35415666 PMCID: PMC8991517 DOI: 10.1016/j.fochms.2021.100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/23/2021] [Accepted: 07/09/2021] [Indexed: 12/03/2022]
Abstract
The use of vibrational spectroscopy combined with data analytics is discussed. The measure of bioactive compounds metabolites in fruit samples is presented. Advantages and limitations of these techniques are discussed.
The last three decades have demonstrated the ability of combining data analytics (e.g. big data, machine learning) with modern analytical instrumental techniques such as vibrational spectroscopy (VIBSPEC) (e.g. NIR, Raman, MIR) and sensing technologies (e.g. electronic noses and tongues, colorimetric sensors) to analyse, measure and monitor a wide range of properties and samples. Developments in instrumentation, hardware and software have placed VIBSPEC as a useful tool to quantify several bioactive compounds and metabolites in a wide range of fruit and plant samples. With the incorporation of hand-held and portable instrumentation, these techniques have been valuable for the development of in-field and high throughput applications, opened new frontiers of analysis in fruits and plants. This review will present and discuss some of the current applications on the use of VIBSPEC techniques combined with data analytics on the measurement bioactive compounds and plant metabolites in different fruit samples.
Collapse
Affiliation(s)
- Y Sultanbawa
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plains, QLD 4108, Australia.,Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - H E Smyth
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plains, QLD 4108, Australia
| | - K Truong
- Nanobiotechnology Laboratory, School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia
| | - J Chapman
- Nanobiotechnology Laboratory, School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC 3001, Australia
| | - D Cozzolino
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plains, QLD 4108, Australia
| |
Collapse
|
40
|
Puri S, Sahal D, Sharma U. A conversation between hyphenated spectroscopic techniques and phytometabolites from medicinal plants. ANALYTICAL SCIENCE ADVANCES 2021; 2:579-593. [PMID: 38715860 PMCID: PMC10989556 DOI: 10.1002/ansa.202100021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/09/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2024]
Abstract
Medicinal plant metabolomics has emerged as a goldmine for the natural product chemists. It provides a pool of bioactive phytoconstituents leading to accelerated novel discoveries and the elucidation of a variety of biosynthetic pathways. Further, it also acts as an innovative tool for herbal medicine's scientific validation and quality assurance. This review highlights different strategies and analytical techniques employed in the practice of metabolomics. Further, it also discusses several other applications and advantages of metabolomics in the area of natural product chemistry. Additional examples of integrating metabolomics with multivariate data analysis techniques for some Indian medicinal plants are also reviewed. Recent technical advances in mass spectrometry-based hyphenated techniques, nuclear magnetic resonance-based techniques, and comprehensive hyphenated technologies for phytometabolite profiling studies have also been reviewed. Mass Spectral Imaging (MSI) has been presented as a highly promising method for high precision in situ spatiotemporal monitoring of phytometabolites. We conclude by introducing GNPS (Global Natural Products Social Molecular Networking) as an emerging platform to make social networks of related molecules, to explore data and to annotate more metabolites, and expand the networks to novel "predictive" metabolites that can be validated.
Collapse
Affiliation(s)
- Shivani Puri
- Chemical Technology Division CSIR‐IHBTPalampurHimachal Pradesh176061India
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad201002India
| | - Dinkar Sahal
- Malaria Drug Discovery Research GroupInternational Centre for Genetic Engineering and BiotechnologyNew Delhi110067India
| | - Upendra Sharma
- Chemical Technology Division CSIR‐IHBTPalampurHimachal Pradesh176061India
- Academy of Scientific and Innovative Research (AcSIR)Ghaziabad201002India
| |
Collapse
|
41
|
Wang YS, Fang MZ, Zheng SD, Cho JG, Yi TH. Identification of Chinese green tea ( Camellia sinensis) marker metabolites using GC/MS and UPLC-QTOF/MS. Food Sci Biotechnol 2021; 30:1293-1301. [PMID: 34721925 DOI: 10.1007/s10068-021-00970-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/18/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022] Open
Abstract
Tea is one of the most widely consumed aromatic beverages in the world because of its taste and flavor, as well as due to many potential health beneficial properties. Metabolomics focuses on an in-depth analysis of all metabolites in living organisms. In this study, 29 primary metabolites and 25 secondary metabolites were identified using GC/MS and UPLC-QTOF/MS, respectively. Further, PCA analysis showed conspicuous discrimination for the ten varieties of green tea with metabolite profiling. Among them, organic acids, amino acids, flavan-3-ols, and flavonol glycosides varied greatly through checking the VIP values of the PLS-DA model. Moreover, the intrinsic and/or extrinsic factors characterizing each type of green tea were also discussed. The chemical component marker derived here should be used as an important detection index, while evaluating the tea quality, as well as while establishing the tea quality standard. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-021-00970-4.
Collapse
Affiliation(s)
- Yu-Shuai Wang
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030 China
| | - Min-Zhe Fang
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| | - Sheng-Dao Zheng
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| | - Jin-Gyeong Cho
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| | - Tae-Hoo Yi
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 Republic of Korea
| |
Collapse
|
42
|
Unravelling the Anticancer Mechanisms of Traditional Herbal Medicines with Metabolomics. Molecules 2021; 26:molecules26216541. [PMID: 34770949 PMCID: PMC8587539 DOI: 10.3390/molecules26216541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022] Open
Abstract
Metabolite profiling of cancer cells presents many opportunities for anticancer drug discovery. The Chinese, Indian, and African flora, in particular, offers a diverse source of anticancer therapeutics as documented in traditional folklores. In-depth scientific information relating to mechanisms of action, quality control, and safety profile will promote their extensive usage in cancer therapy. Metabolomics may be a more holistic strategy to gain valuable insights into the anticancer mechanisms of action of plants but this has remained largely unexplored. This review, therefore, presents the available metabolomics studies on the anticancer effects of herbal medicines commonly used in Africa and Asia. In addition, we present some scientifically understudied ‘candidate plants’ for cancer metabolomics studies and highlight the relevance of metabolomics in addressing other challenges facing the drug development of anticancer herbs. Finally, we discussed the challenges of using metabolomics to uncover the underlying mechanisms of potential anticancer herbs and the progress made in this regard.
Collapse
|
43
|
Pandohee J, Kyereh E, Kulshrestha S, Xu B, Mahomoodally MF. Review of the recent developments in metabolomics-based phytochemical research. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34672234 DOI: 10.1080/10408398.2021.1993127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Phytochemicals are important bioactive components present in natural products. Although the health benefits of many food products are well-known and accepted as a common knowledge, the identity of the main bioactive molecules and the mechanism by which they interact in the body of human are often unknown. It was only in the last 30 years when the field of metabolomics had matured that the identification of such molecules with bioactivity has been made possible through the development of instruments to separate and computational techniques to characterize complex samples. This in turn has enabled in vitro studies to quantify the biological activity of the respective phytochemical either in mice models or in humans. In this review, the importance of key dietary phytochemicals such as phenolic acids, flavonoids, carotenoids, resveratrol, curcumin, and capsaicinoids are discussed together with their potential functions for human health. Untargeted metabolomics, in particular, liquid chromatography mass spectrometry, is the most used method to isolate, identify and profile bioactive compounds in the study of phytochemicals in foods. The application of metabolomics in drug discovery is a common practice nowadays and has boosted the drug and/or supplement manufacturing sector.HighlightsPhytochemicals are beneficial compounds for human healthPhytochemicals are plant-based bioactive and obtainable from natural productsUntargeted metabolomics has boosted the discovery of phytochemicals from foodTargeted metabolomics is key in the authentication and screening of phytochemicalsMetabolomics of phytochemicals is reshaping the road to drug and supplement manufacture.
Collapse
Affiliation(s)
- Jessica Pandohee
- Centre for Crop and Disease Management, Curtin University, Perth, Western Australia, Australia.,Department of Health Sciences, Faculty of Science, University of Mauritius, Réduit, Mauritius
| | | | - Saurabh Kulshrestha
- School of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Baojun Xu
- Food Science and Technology Program, BNU-HKBU United International College, Zhuhai, Guangdong, China
| | | |
Collapse
|
44
|
Pan Y, Cheng JH, Sun DW. Metabolomic analyses on microbial primary and secondary oxidative stress responses. Compr Rev Food Sci Food Saf 2021; 20:5675-5697. [PMID: 34601780 DOI: 10.1111/1541-4337.12835] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/20/2021] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
Food safety is veryimportant in our daily life. In food processing or disinfection, microorganisms are commonly exposed to oxidative stress perturbations. However, microorganisms can adapt and respond to physicochemical interventions, leading to difficulty and complexity for food safety assurance. Therefore, understanding the response mechanisms of microbes and providing an overview of the responses under oxidative stress conditions are beneficial for ensuring food safety for the industry. The current review takes the metabolomics approach to reveal small metabolite signatures and key pathway alterations during oxidative stress at the molecular and technical levels. These alterations are involved in primary oxidative stress responses due to inactivation treatments such as using hypochlorite (HOCl), hydrogen peroxide (H2 O2 ), electrolyzed water (EW), irradiation, pulsed light (PL), electron beam (EB), and secondary oxidative stress responses due to exposures to excessive conditions such as heat, pressure, acid, and alkaline. Details on the putative origin of exogenous or endogenous reactive oxygen species (ROS) are discussed, with particular attention paid to their effects on lipid, amino acid, nucleotide, and carbohydrate metabolism. In addition, mechanisms on counteracting oxidative stresses, stabilization of cell osmolality as well as energy provision for microbes to survive are also discussed.
Collapse
Affiliation(s)
- Yuanyuan Pan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China
| | - Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China.,Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, China.,Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou, China.,Food Refrigeration and Computerized Food Technology (FRCFT), Agriculture and Food Science Centre, University College Dublin, National University of Ireland, Belfield, Dublin, Ireland
| |
Collapse
|
45
|
Anaraki MT, Lysak DH, Downey K, Kock FVC, You X, Majumdar RD, Barison A, Lião LM, Ferreira AG, Decker V, Goerling B, Spraul M, Godejohann M, Helm PA, Kleywegt S, Jobst K, Soong R, Simpson MJ, Simpson AJ. NMR spectroscopy of wastewater: A review, case study, and future potential. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:121-180. [PMID: 34852923 DOI: 10.1016/j.pnmrs.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
NMR spectroscopy is arguably the most powerful tool for the study of molecular structures and interactions, and is increasingly being applied to environmental research, such as the study of wastewater. With over 97% of the planet's water being saltwater, and two thirds of freshwater being frozen in the ice caps and glaciers, there is a significant need to maintain and reuse the remaining 1%, which is a precious resource, critical to the sustainability of most life on Earth. Sanitation and reutilization of wastewater is an important method of water conservation, especially in arid regions, making the understanding of wastewater itself, and of its treatment processes, a highly relevant area of environmental research. Here, the benefits, challenges and subtleties of using NMR spectroscopy for the analysis of wastewater are considered. First, the techniques available to overcome the specific challenges arising from the nature of wastewater (which is a complex and dilute matrix), including an examination of sample preparation and NMR techniques (such as solvent suppression), in both the solid and solution states, are discussed. Then, the arsenal of available NMR techniques for both structure elucidation (e.g., heteronuclear, multidimensional NMR, homonuclear scalar coupling-based experiments) and the study of intermolecular interactions (e.g., diffusion, nuclear Overhauser and saturation transfer-based techniques) in wastewater are examined. Examples of wastewater NMR studies from the literature are reviewed and potential areas for future research are identified. Organized by nucleus, this review includes the common heteronuclei (13C, 15N, 19F, 31P, 29Si) as well as other environmentally relevant nuclei and metals such as 27Al, 51V, 207Pb and 113Cd, among others. Further, the potential of additional NMR methods such as comprehensive multiphase NMR, NMR microscopy and hyphenated techniques (for example, LC-SPE-NMR-MS) for advancing the current understanding of wastewater are discussed. In addition, a case study that combines natural abundance (i.e. non-concentrated), targeted and non-targeted NMR to characterize wastewater, along with in vivo based NMR to understand its toxicity, is included. The study demonstrates that, when applied comprehensively, NMR can provide unique insights into not just the structure, but also potential impacts, of wastewater and wastewater treatment processes. Finally, low-field NMR, which holds considerable future potential for on-site wastewater monitoring, is briefly discussed. In summary, NMR spectroscopy is one of the most versatile tools in modern science, with abilities to study all phases (gases, liquids, gels and solids), chemical structures, interactions, interfaces, toxicity and much more. The authors hope this review will inspire more scientists to embrace NMR, given its huge potential for both wastewater analysis in particular and environmental research in general.
Collapse
Affiliation(s)
- Maryam Tabatabaei Anaraki
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Daniel H Lysak
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Katelyn Downey
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Flávio Vinicius Crizóstomo Kock
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada; Department of Chemistry, Federal University of São Carlos-SP (UFSCar), São Carlos, SP, Brazil
| | - Xiang You
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Rudraksha D Majumdar
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada; Synex Medical, 2 Bloor Street E, Suite 310, Toronto, ON M4W 1A8, Canada
| | - Andersson Barison
- NMR Center, Federal University of Paraná, CP 19081, 81530-900 Curitiba, PR, Brazil
| | - Luciano Morais Lião
- NMR Center, Institute of Chemistry, Universidade Federal de Goiás, Goiânia 74690-900, Brazil
| | | | - Venita Decker
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | | | - Manfred Spraul
- Bruker Biospin GmbH, Silberstreifen 4, 76287 Rheinstetten, Germany
| | | | - Paul A Helm
- Environmental Monitoring & Reporting Branch, Ontario Ministry of the Environment, Toronto M9P 3V6, Canada
| | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON M4V 1M2, Canada
| | - Karl Jobst
- Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Ronald Soong
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Myrna J Simpson
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada
| | - Andre J Simpson
- Environmental NMR Center, University of Toronto Scarborough, 1265 Military Trail, Toronto M1C1A4, Canada.
| |
Collapse
|
46
|
Maia M, Figueiredo A, Cordeiro C, Sousa Silva M. FT-ICR-MS-based metabolomics: A deep dive into plant metabolism. MASS SPECTROMETRY REVIEWS 2021. [PMID: 34545595 DOI: 10.1002/mas.21731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Metabolomics involves the identification and quantification of metabolites to unravel the chemical footprints behind cellular regulatory processes and to decipher metabolic networks, opening new insights to understand the correlation between genes and metabolites. In plants, it is estimated the existence of hundreds of thousands of metabolites and the majority is still unknown. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) is a powerful analytical technique to tackle such challenges. The resolving power and sensitivity of this ultrahigh mass accuracy mass analyzer is such that a complex mixture, such as plant extracts, can be analyzed and thousands of metabolite signals can be detected simultaneously and distinguished based on the naturally abundant elemental isotopes. In this review, FT-ICR-MS-based plant metabolomics studies are described, emphasizing FT-ICR-MS increasing applications in plant science through targeted and untargeted approaches, allowing for a better understanding of plant development, responses to biotic and abiotic stresses, and the discovery of new natural nutraceutical compounds. Improved metabolite extraction protocols compatible with FT-ICR-MS, metabolite analysis methods and metabolite identification platforms are also explored as well as new in silico approaches. Most recent advances in MS imaging are also discussed.
Collapse
Affiliation(s)
- Marisa Maia
- Departamento de Química e Bioquímica, Laboratório de FTICR e Espectrometria de Massa Estrutural, MARE-Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Grapevine Pathogen Systems Lab (GPS Lab), Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Lisboa, Portugal
| | - Andreia Figueiredo
- Departamento de Biologia Vegetal, Faculdade de Ciências, Grapevine Pathogen Systems Lab (GPS Lab), Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Lisboa, Portugal
| | - Carlos Cordeiro
- Departamento de Química e Bioquímica, Laboratório de FTICR e Espectrometria de Massa Estrutural, MARE-Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Marta Sousa Silva
- Departamento de Química e Bioquímica, Laboratório de FTICR e Espectrometria de Massa Estrutural, MARE-Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
47
|
Xu Y, Liu H, Han D, Ren L, Gong X, Jiang F, Cui Y, Liu X, Ren C, Xue J, Tian X. Metabolomic Alterations in the Digestive System of the Mantis Shrimp Oratosquilla oratoria Following Short-Term Exposure to Cadmium. Front Physiol 2021; 12:706579. [PMID: 34421644 PMCID: PMC8374601 DOI: 10.3389/fphys.2021.706579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/12/2021] [Indexed: 02/02/2023] Open
Abstract
Mantis shrimp Oratosquilla oratoria is an economically critical aquatic species along the coast of China but strongly accumulates marine pollutant cadmium (Cd) in its digestive system. It is necessary to characterize the toxicity of Cd in the digestive system of mantis shrimp. The metabolic process is an essential target of Cd toxicity response. In this work, we used ultra-performance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC-TOF-MS) for untargeted metabolomics to characterize the metabolic changes in the digestive system of O. oratoria, exposed to 0.05 mg/L for 96 h. The aim of this study was to further investigate the effect of O. oratoria on Cd response to toxicity and develop biomarkers. Metabolomics analysis showed the alteration of metabolism in the digestive system of mantis shrimp under Cd stress. A total of 91 metabolites were differentially expressed and their main functions were classified into amino acids, phospholipids, and fatty acid esters. The enrichment results of differential metabolite functional pathways showed that biological processes such as amino acid metabolism, transmembrane transport, energy metabolism, and signal transduction are significantly affected. Based on the above results, the Cd-induced oxidative stress and energy metabolism disorders were characterized by the differential expression of amino acids and ADP in mantis shrimp, while the interference of transmembrane transport and signal transduction was due to the differential expression of phospholipids. Overall, this work initially discussed the toxicological response of Cd stress to O. oratoria from the metabolic level and provided new insights into the mechanism.
Collapse
Affiliation(s)
- Yingjiang Xu
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Huan Liu
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China.,College of Food Sciences and Technology, Shanghai Ocean University, Shanghai, China
| | - Dianfeng Han
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Lihua Ren
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Xianghong Gong
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Fang Jiang
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Yanmei Cui
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Xiaojing Liu
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Chuanbo Ren
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Jinglin Xue
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| | - Xiuhui Tian
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource and Environment Research Institute, Yantai, China
| |
Collapse
|
48
|
Li H, Tang X, Yang X, Zhang H. Comprehensive transcriptome and metabolome profiling reveal metabolic mechanisms of Nitraria sibirica Pall. to salt stress. Sci Rep 2021; 11:12878. [PMID: 34145354 PMCID: PMC8213879 DOI: 10.1038/s41598-021-92317-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/09/2021] [Indexed: 02/05/2023] Open
Abstract
Nitraria sibirica Pall., a typical halophyte that can survive under extreme drought conditions and in saline-alkali environments, exhibits strong salt tolerance and environmental adaptability. Understanding the mechanism of molecular and physiological metabolic response to salt stress of plant will better promote the cultivation and use of halophytes. To explore the mechanism of molecular and physiological metabolic of N. sibirica response to salt stress, two-month-old seedlings were treated with 0, 100, and 400 mM NaCl. The results showed that the differentially expressed genes between 100 and 400 mmol L-1 NaCl and unsalted treatment showed significant enrichment in GO terms such as binding, cell wall, extemal encapsulating structure, extracellular region and nucleotide binding. KEGG enrichment analysis found that NaCl treatment had a significant effect on the metabolic pathways in N. sibirica leaves, which mainly including plant-pathogen interaction, amino acid metabolism of the beta alanine, arginine, proline and glycine metabolism, carbon metabolism of glycolysis, gluconeogenesis, galactose, starch and sucrose metabolism, plant hormone signal transduction and spliceosome. Metabolomics analysis found that the differential metabolites between the unsalted treatment and the NaCl treatment are mainly amino acids (proline, aspartic acid, methionine, etc.), organic acids (oxaloacetic acid, fumaric acid, nicotinic acid, etc.) and polyhydric alcohols (inositol, ribitol, etc.), etc. KEGG annotation and enrichment analysis showed that 100 mmol L-1 NaCl treatment had a greater effect on the sulfur metabolism, cysteine and methionine metabolism in N. sibirica leaves, while various amino acid metabolism, TCA cycle, photosynthetic carbon fixation and sulfur metabolism and other metabolic pathways have been significantly affected by 400 mmol L-1 NaCl treatment. Correlation analysis of differential genes in transcriptome and differential metabolites in metabolome have found that the genes of AMY2, BAM1, GPAT3, ASP1, CML38 and RPL4 and the metabolites of L-cysteine, proline, 4-aminobutyric acid and oxaloacetate played an important role in N. sibirica salt tolerance control. This is a further improvement of the salt tolerance mechanism of N. sibirica, and it will provide a theoretical basis and technical support for treatment of saline-alkali soil and the cultivation of halophytes.
Collapse
Affiliation(s)
- Huanyong Li
- grid.464465.10000 0001 0103 2256Research Institute of Pomology of Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Xiaoqian Tang
- grid.216566.00000 0001 2104 9346Research Center of Saline and Alkali Land of National of Forestry and Grassland Administration, CAF, Beijing, China
| | - Xiuyan Yang
- grid.216566.00000 0001 2104 9346Research Center of Saline and Alkali Land of National of Forestry and Grassland Administration, CAF, Beijing, China
| | - Huaxin Zhang
- grid.216566.00000 0001 2104 9346Research Center of Saline and Alkali Land of National of Forestry and Grassland Administration, CAF, Beijing, China
| |
Collapse
|
49
|
Cassago ALL, Artêncio MM, de Moura Engracia Giraldi J, Da Costa FB. Metabolomics as a marketing tool for geographical indication products: a literature review. Eur Food Res Technol 2021; 247:2143-2159. [PMID: 34149310 PMCID: PMC8204615 DOI: 10.1007/s00217-021-03782-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/30/2022]
Abstract
Geographical indication (GI) is used to identify a product's origin when its characteristics or quality are a result of geographical origin, which includes agricultural products and foodstuff. Metabolomics is an “omics” technique that can support product authentication by providing a chemical fingerprint of a biological system, such as plant and plant-derived products. The main purpose of this article is to verify possible contributions of metabolomic studies to the marketing field, mainly for certified regions, through an integrative review of the literature and maps produced by VOSviewer software. The results indicate that studies based on metabolomics approaches can relate specific food attributes to the region’s terroir and know-how. The evidence of this connection, marketing of GIs and metabolomics methods, is viewed as potential tool for marketing purposes (e.g., to assist communication of positive aspects and quality), and legal protection. In addition, our results provide a taxonomic categorization that can guide future marketing research involving metabolomics. Moreover, the results are also useful to government agencies to improve GIs registration systems and promotion strategies.
Collapse
Affiliation(s)
- Alvaro Luis Lamas Cassago
- Department of Pharmaceutical Sciences, University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, Av. do Café s/n, Ribeirão Preto, SP 14040-903 Brazil
| | - Mateus Manfrin Artêncio
- Department of Business Administration, University of São Paulo, School of Economics, Business Administration and Accounting of Ribeirão Preto, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14040-905 Brazil
| | - Janaina de Moura Engracia Giraldi
- Department of Business Administration, University of São Paulo, School of Economics, Business Administration and Accounting of Ribeirão Preto, Av. Bandeirantes, 3900, Ribeirão Preto, SP 14040-905 Brazil
| | - Fernando Batista Da Costa
- Department of Pharmaceutical Sciences, University of São Paulo (USP), School of Pharmaceutical Sciences of Ribeirão Preto, Av. do Café s/n, Ribeirão Preto, SP 14040-903 Brazil
| |
Collapse
|
50
|
Safo L, Abdelrazig S, Grosse-Honebrink A, Millat T, Henstra AM, Norman R, Thomas NR, Winzer K, Minton NP, Kim DH, Barrett DA. Quantitative Bioreactor Monitoring of Intracellular Bacterial Metabolites in Clostridium autoethanogenum Using Liquid Chromatography-Isotope Dilution Mass Spectrometry. ACS OMEGA 2021; 6:13518-13526. [PMID: 34095647 PMCID: PMC8173575 DOI: 10.1021/acsomega.0c05588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/03/2021] [Indexed: 05/05/2023]
Abstract
We report a liquid chromatography-isotope dilution mass spectrometry method for the simultaneous quantification of 131 intracellular bacterial metabolites of Clostridium autoethanogenum. A comprehensive mixture of uniformly 13C-labeled internal standards (U-13C IS) was biosynthesized from the closely related bacterium Clostridium pasteurianum using 4% 13C-glucose as a carbon source. The U-13C IS mixture combined with 12C authentic standards was used to validate the linearity, precision, accuracy, repeatability, limits of detection, and quantification for each metabolite. A robust-fitting algorithm was employed to reduce the weight of the outliers on the quantification data. The metabolite calibration curves were linear with R 2 ≥ 0.99, limits of detection were ≤1.0 μM, limits of quantification were ≤10 μM, and precision/accuracy was within RSDs of 15% for all metabolites. The method was subsequently applied for the daily monitoring of the intracellular metabolites of C. autoethanogenum during a CO gas fermentation over 40 days as part of a study to optimize biofuel production. The concentrations of the metabolites were estimated at steady states of different pH levels using the robust-fitting mathematical approach, and we demonstrate improved accuracy of results compared to conventional regression. Metabolic pathway analysis showed that reactions of the incomplete (branched) tricarboxylic acid "cycle" were the most affected pathways associated with the pH shift in the bioreactor fermentation of C. autoethanogenum and the concomitant changes in ethanol production.
Collapse
Affiliation(s)
- Laudina Safo
- Centre
for Analytical Bioscience, Advanced Materials and Healthcare Technologies
Division, School of Pharmacy, University
of Nottingham, Nottingham NG7 2RD, U.K.
| | - Salah Abdelrazig
- Centre
for Analytical Bioscience, Advanced Materials and Healthcare Technologies
Division, School of Pharmacy, University
of Nottingham, Nottingham NG7 2RD, U.K.
| | | | - Thomas Millat
- Clostridia
Research Group, BBSRC/EPSCR Synthetic Biology Research Centre (SBRC),
Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Anne M. Henstra
- Clostridia
Research Group, BBSRC/EPSCR Synthetic Biology Research Centre (SBRC),
Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Rupert Norman
- Clostridia
Research Group, BBSRC/EPSCR Synthetic Biology Research Centre (SBRC),
Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Neil R. Thomas
- Biodiscovery
Institute, School of Chemistry, University
of Nottingham, Nottingham NG7 2RD, U.K.
| | - Klaus Winzer
- Clostridia
Research Group, BBSRC/EPSCR Synthetic Biology Research Centre (SBRC),
Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Nigel P. Minton
- Clostridia
Research Group, BBSRC/EPSCR Synthetic Biology Research Centre (SBRC),
Biodiscovery Institute, School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Dong-Hyun Kim
- Centre
for Analytical Bioscience, Advanced Materials and Healthcare Technologies
Division, School of Pharmacy, University
of Nottingham, Nottingham NG7 2RD, U.K.
| | - David A. Barrett
- Centre
for Analytical Bioscience, Advanced Materials and Healthcare Technologies
Division, School of Pharmacy, University
of Nottingham, Nottingham NG7 2RD, U.K.
- . Phone: +44(0)115 9515062
| |
Collapse
|