1
|
Amorim S, Pashkuleva I, Reis CA, Reis RL, Pires RA. Tunable layer-by-layer films containing hyaluronic acid and their interactions with CD44. J Mater Chem B 2021; 8:3880-3885. [PMID: 32222753 DOI: 10.1039/d0tb00407c] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report on the development of layer-by-layer (LbL) constructs whose viscoelastic properties and bioactivity can be finely tuned by using polyanions of different size and/or crosslinking. As a polyanion we used hyaluronic acid (HA) - a multi-signaling biomolecule whose bioactivity depends on its molecular weight. We investigated the interplay between the mechanical properties of the LbL systems built using HA of different sizes and the specific HA-mediated biochemical interactions. We characterized the assembled materials and their interactions with CD44, the main HA receptor, by Quartz Crystal Microbalance with Dissipation (QCM-D), Surface Plasmon Resonance (SPR) and Atomic Force Microscopy (AFM). We observed that the presence of CD44 resulted in the disruption of the non-crosslinked multilayers, while crosslinked films remain stable and bind CD44 in a HA molecular weight and charge specific fashion.
Collapse
Affiliation(s)
- Sara Amorim
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal and The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Celso A Reis
- i3S, University of Porto, Portugal and IPATIMUP, Porto, Portugal and Department of Pathology and Oncology, Faculty of Medicine, Porto University, Portugal and Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal and The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Ricardo A Pires
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal. and ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal and The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| |
Collapse
|
2
|
Müller-Lierheim WGK. Why Chain Length of Hyaluronan in Eye Drops Matters. Diagnostics (Basel) 2020; 10:E511. [PMID: 32717869 PMCID: PMC7459843 DOI: 10.3390/diagnostics10080511] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/11/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
The chain length of hyaluronan (HA) determines its physical as well as its physiological properties. Results of clinical research on HA eye drops are not comparable without this parameter. In this article methods for the assessment of the average molecular weight of HA in eye drops and a terminology for molecular weight ranges are proposed. The classification of HA eye drops according to their zero shear viscosity and viscosity at 1000 s-1 shear rate is presented. Based on the gradient of mucin MUC5AC concentration within the mucoaqueous layer of the tear film a hypothesis on the consequences of this gradient on the rheological properties of the tear film is provided. The mucoadhesive properties of HA and their dependence on chain length are explained. The ability of HA to bind to receptors on the ocular epithelial cells, and in particular the potential consequences of the interaction between HA and the receptor HARE, responsible for HA endocytosis by corneal epithelial cells is discussed. The physiological function of HA in the framework of ocular surface homeostasis and wound healing are outlined, and the influence of the chain length of HA on the clinical performance of HA eye drops is illustrated. The use of very high molecular weight HA (hylan A) eye drops as drug vehicle for the next generation of ophthalmic drugs with minimized side effects is proposed and its advantages elucidated. Consequences of the diagnosis and treatment of ocular surface disease are discussed.
Collapse
|
3
|
Wang HL, Huang CP, Su CH, Tsai DH. A facile quantification of hyaluronic acid and its crosslinking using gas-phase electrophoresis. Anal Bioanal Chem 2019; 411:1443-1451. [PMID: 30659324 DOI: 10.1007/s00216-019-01584-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/26/2018] [Accepted: 01/03/2019] [Indexed: 12/11/2022]
Abstract
We report a facile, high-resolution approach to quantitatively characterize hyaluronic acid (HA) and study its crosslinking reaction using electrospray-differential mobility analysis (ES-DMA). Mobility size distributions, number concentrations, molecular mass distributions, and polydispersity index of HAs were obtained successfully via a rapid analysis by ES-DMA (< 30 min). The limit of detection, the limit of quantification, and the precision of the mobility size measurement achieve 2.5 nm, 4.0 nm, and 0.3 nm, respectively. Size exclusion chromatography (SEC) was employed as an orthogonal approach, showing that the averaged molecular mass and polydispersity index of HA measured by ES-DMA were close to the results of SEC on a semi-quantitative basis. The 1,4-butanediol diglycidyl ether (BDDE)-induced crosslinking of HA was also able to be successfully characterized through a time-dependent study using ES-DMA, which has shown the promise of direct analysis of solution-based reactions. Both the extent and the rate of HA crosslinking (induced by BDDE) were proportional to reaction temperature and concentration ratio of HA to BDDE. The activation energy of the reaction-limited BDDE-induced crosslinking of HA was found to be ≈ 21 kJ/mol. The prototype study demonstrates ES-DMA as a new method for a rapid quantitative characterization of HA and its derivative product and providing a capability of real-time monitoring of the HA crosslinking during formulation process. Graphical abstract.
Collapse
Affiliation(s)
- Hung-Li Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China
| | - Chin-Ping Huang
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, 31040, Taiwan, Republic of China
| | - Chiu-Hun Su
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu, 31040, Taiwan, Republic of China
| | - De-Hao Tsai
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of China.
| |
Collapse
|
4
|
Svedlund FL, Altiok EI, Healy KE. Branching Analysis of Multivalent Conjugates Using Size Exclusion Chromatography-Multiangle Light Scattering. Biomacromolecules 2016; 17:3162-3171. [PMID: 27548567 DOI: 10.1021/acs.biomac.6b00785] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multivalent conjugates (MVCs) (conjugation of multiple proteins to a linear polymer chain) are powerful for improving the bioactivity and pharmacokinetics of a bioactive molecule. Since this effect is highly dependent upon the valency of the conjugated proteins, it is imperative to have a technique for analysis of the conjugation ratio. Studies of MVCs have used size exclusion chromatography-multiangle light scattering (SEC-MALS), which allows for the separate and individual analysis of the protein and biopolymer components based on their specific refractive index increment and UV extinction coefficient constants to determine the number of proteins bound per biopolymer molecule. In this work, we have applied traditional branching analysis to the SEC-MALS data, with the primary assumption that the polymer backbone can be used as the linear counterpart. We demonstrated good agreement between the branching values and the valency determined by traditional analysis, demonstrating that branching analysis can be used as an alternative technique to approximate the valency of MVCs. The branching analysis method also provides a more complete picture of the distribution of the measured values, provides important branching information about the molecules, and lowers the cost and complexity of the characterization. However, since MVC molecules are both conjugate molecules and branched molecules, the most powerful approach to their characterization would be to use both traditional multivalent conjugate analysis and branching analysis in conjunction.
Collapse
Affiliation(s)
- Felicia L Svedlund
- Department of Materials Science and Engineering and §Department of Bioengineering, University of California at Berkeley , Berkeley, California 94720, United States
| | - Eda I Altiok
- Department of Materials Science and Engineering and §Department of Bioengineering, University of California at Berkeley , Berkeley, California 94720, United States
| | - Kevin E Healy
- Department of Materials Science and Engineering and §Department of Bioengineering, University of California at Berkeley , Berkeley, California 94720, United States
| |
Collapse
|
5
|
Minsky BB, Antoni CH, Boehm H. Controlled Immobilization Strategies to Probe Short Hyaluronan-Protein Interactions. Sci Rep 2016; 6:21608. [PMID: 26883791 PMCID: PMC4756360 DOI: 10.1038/srep21608] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/27/2016] [Indexed: 12/15/2022] Open
Abstract
Well-controlled grafting of small hyaluronan oligosaccharides (sHA) enables novel approaches to investigate biological processes such as angiogenesis, immune reactions and cancer metastasis. We develop two strategies for covalent attachment of sHA, a fast high-density adsorption and a two-layer system that allows tuning the density and mode of immobilization. We monitored the sHA adlayer formation and subsequent macromolecular interactions by label-free quartz crystal microbalance with dissipation (QCM-D). The modified surfaces are inert to unspecific protein adsorption, and yet retain the specific binding capacity of sHA. Thus they are an ideal tool to study the interactions of hyaluronan-binding proteins and short hyaluronan molecules as demonstrated by the specific recognition of LYVE-1 and aggrecan. Both hyaladherins recognize sHA and the binding is independent to the presence of the reducing end.
Collapse
Affiliation(s)
- Burcu Baykal Minsky
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, D-70569 Stuttgart, Germany
- Department of Biophysical Chemistry, University of Heidelberg, INF 253, D-69120 Heidelberg, Germany
| | - Christiane H. Antoni
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, D-70569 Stuttgart, Germany
- Department of Biophysical Chemistry, University of Heidelberg, INF 253, D-69120 Heidelberg, Germany
| | - Heike Boehm
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, D-70569 Stuttgart, Germany
- Department of Biophysical Chemistry, University of Heidelberg, INF 253, D-69120 Heidelberg, Germany
- CSF Biomaterials and Cellular Biophysics, Max Planck Institute for Intelligent Systems
| |
Collapse
|
6
|
Valacchi G, Grisci G, Sticozzi C, Lim Y, Paolino M, Giuliani G, Mendichi R, Belmonte G, Artusi R, Zanardi A, Garofalo P, Giorgi G, Cappelli A, Rovati L. Wound healing properties of hyaluronan derivatives bearing ferulate residues. J Mater Chem B 2015; 3:7037-7045. [DOI: 10.1039/c5tb00661a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The results obtained suggestHAFAgraft copolymers as possible future drugs for the therapeutic treatment of acute and chronic wounds.
Collapse
Affiliation(s)
- Giuseppe Valacchi
- Dipartimento di Scienze della Vita e Biotecnologie
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
- Department of Food and Nutrition
| | - Giorgio Grisci
- Dipartimento di Biotecnologie
- Chimica e Farmacia and European Research Centre for Drug Discovery and Development
- Università degli Studi di Siena
- 53100 Siena
- Italy
| | - Claudia Sticozzi
- Dipartimento di Scienze della Vita e Biotecnologie
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
| | - Yoonsuk Lim
- Department of Food and Nutrition
- Kyung Hee University
- Seoul 130-701
- Republic of Korea
| | - Marco Paolino
- Dipartimento di Biotecnologie
- Chimica e Farmacia and European Research Centre for Drug Discovery and Development
- Università degli Studi di Siena
- 53100 Siena
- Italy
| | - Germano Giuliani
- Dipartimento di Biotecnologie
- Chimica e Farmacia and European Research Centre for Drug Discovery and Development
- Università degli Studi di Siena
- 53100 Siena
- Italy
| | - Raniero Mendichi
- Istituto per lo Studio delle Macromolecole (CNR)
- 20133 Milano
- Italy
| | - Giuseppe Belmonte
- Dipartimento di Scienze della Vita e Biotecnologie
- Università degli Studi di Ferrara
- 44121 Ferrara
- Italy
| | | | | | | | - Gianluca Giorgi
- Dipartimento di Biotecnologie
- Chimica e Farmacia and European Research Centre for Drug Discovery and Development
- Università degli Studi di Siena
- 53100 Siena
- Italy
| | - Andrea Cappelli
- Dipartimento di Biotecnologie
- Chimica e Farmacia and European Research Centre for Drug Discovery and Development
- Università degli Studi di Siena
- 53100 Siena
- Italy
| | | |
Collapse
|
7
|
Effect of Bucillamine on Free-Radical-Mediated Degradation of High-Molar-Mass Hyaluronan Induced in vitro by Ascorbic Acid and Cu(II) Ions. Polymers (Basel) 2014. [DOI: 10.3390/polym6102625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Cappelli A, Grisci G, Paolino M, Giuliani G, Donati A, Mendichi R, Artusi R, Demiranda M, Zanardi A, Giorgi G, Vomero S. Hyaluronan derivatives bearing variable densities of ferulic acid residues. J Mater Chem B 2014; 2:4489-4499. [PMID: 32261551 DOI: 10.1039/c3tb21824d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A synthetic procedure has been developed to conjugate ferulic acid (FA) to an important natural polysaccharide derivative such as hyaluronic acid (HA). The activation of FA with 1,1'-carbonyldiimidazole (CDI) has been investigated. Two reactive intermediates, namely monoimidazolide 2 [i.e. (E)-3-(4-hydroxy-3-methoxyphenyl)-1-(1H-imidazol-1-yl)prop-2-en-1-one] and bisimidazolide 3 [i.e. (E)-4-(3-(1H-imidazol-1-yl)-3-oxoprop-1-enyl)-2-methoxyphenyl 1H-imidazole-1-carboxylate] were characterized from the point of view of their structure and reactivity. The ready isolation of bisimidazolide 3 and its reactivity support its potential usefulness in the feruloylation of molecular or macromolecular materials bearing hydroxyl moieties. Bisimidazolide derivative 3 has been found to be an effective reagent in the feruloylation of HA to give HAFA graft copolymers showing different grafting degrees (GD), which could be modulated by varying the reaction conditions. A series of HAFA derivatives showing different GD values has been prepared and submitted to an extensive macromolecular and rheological characterization in order to ascertain that the grafting of HA with FA does not degrade the polysaccharide backbone and to evaluate the role of GD in affecting solubility and rheological properties. The results suggested that relatively low GD values were sufficient to confer physical cross-linking capabilities resulting in the features of a strong gel of HAFA dispersions.
Collapse
Affiliation(s)
- A Cappelli
- Dipartimento di Biotecnologie, Chimica e Farmacia and European Research Centre for Drug Discovery and Development, Università degli Studi di Siena, Via A. Moro 2, 53100 Siena, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Attili S, Richter RP. Self-assembly and elasticity of hierarchical proteoglycan–hyaluronan brushes ††Electronic supplementary information (ESI) available: Variations in areal mass density upon SLB and SAv monolayer formation determined by SE (Fig. S1). See DOI: 10.1039/c3sm51213dClick here for additional data file. . SOFT MATTER 2013; 9. [PMCID: PMC4080815 DOI: 10.1039/c3sm51213d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We assemble aggrecan-containing hyaluronan brushes to study how the supramolecular structure and dynamics relate to material properties in hyaluronan-rich pericellular matrices.
Spatially confined yet strongly hydrated assemblies made from the proteoglycan aggrecan and the polysaccharide hyaluronan (HA) are major, functionally important components of the pericellular space around chondrocytes, and in cartilage. To better understand, how mechanical properties arise from the supramolecular structure and dynamics of such assemblies, we have studied the effect of aggrecan on the physico-chemical properties of well-defined, planar HA brushes. From interaction studies by quartz crystal microbalance with dissipation monitoring and spectroscopic ellipsometry, and compression studies by combined colloidal probe atomic force/reflection interference contrast microscopy, we find that aggrecan readily intercalates into HA brushes in a reversible manner. Aggrecan induces a drastic swelling of HA brushes, generating self-assembled films of several micrometers in thickness that are highly hydrated (>99%), elastic and very soft. The Young modulus in the linear compression regime is well below 100 Pa, and reaches several kPa at strong compression. The implications of these findings for biological function are discussed.
Collapse
Affiliation(s)
- Seetharamaiah Attili
- CIC biomaGUNE , Biosurfaces Unit , Paseo Miramon 182 , 20009 San Sebastian , Spain . ; Tel: +34 943 0053 29
- Max Planck Institute for Intelligent Systems , Heisenbergstraße 3 , 70569 Stuttgart , Germany
| | - Ralf P. Richter
- CIC biomaGUNE , Biosurfaces Unit , Paseo Miramon 182 , 20009 San Sebastian , Spain . ; Tel: +34 943 0053 29
- Max Planck Institute for Intelligent Systems , Heisenbergstraße 3 , 70569 Stuttgart , Germany
- J. Fourier University , Department of Molecular Chemistry , Laboratory I2BM , 570 Rue de la Chimie , 38041 Grenoble Cedex 9 , France
- University of the Basque Country , Department of Biochemistry and Molecular Biology , Barrio Sarriena s/n , 48940 Leioa , Spain
| |
Collapse
|
10
|
|
11
|
Synthesis of N-alanyl-hyaluronamide with high degree of substitution for enhanced resistance to hyaluronidase-mediated digestion. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2011.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Schanté CE, Zuber G, Herlin C, Vandamme TF. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2011.03.019] [Citation(s) in RCA: 434] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Hyaluronic Acid: Its Function and Degradation in in vivo Systems. BIOACTIVE NATURAL PRODUCTS (PART N) 2008. [DOI: 10.1016/s1572-5995(08)80035-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
14
|
Soltés L, Stankovská M, Kogan G, Mendichi R, Volpi N, Sasinková V, Gemeiner P. Degradation of high-molar-mass hyaluronan by an oxidative system comprising ascorbate, Cu(II), and hydrogen peroxide: Inhibitory action of antiinflammatory drugs—Naproxen and acetylsalicylic acid. J Pharm Biomed Anal 2007; 44:1056-63. [PMID: 17553647 DOI: 10.1016/j.jpba.2007.04.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 04/25/2007] [Accepted: 04/26/2007] [Indexed: 10/23/2022]
Abstract
Changes in dynamic viscosity of the solutions of a high-molar-mass hyaluronan (HA) were monitored using a rotational viscometer. The degradative conditions generated in the HA solutions by a system comprising ascorbate plus Cu(II) plus H(2)O(2) were studied either in the presence or absence of a drug--naproxen or acetylsalicylic acid. Continual decrease of the dynamic viscosity of HA solution was indicative of the polymer degradation. Addition of the drug retarded/inhibited the HA degradation in a concentration-dependent manner. The characteristics of the fragmented polymers were investigated by FT-IR spectroscopy and by two different liquid chromatographic techniques, namely by size-exclusion chromatography equipped with a multi-angle light scattering photometric detector and by high-performance liquid chromatography connected on-line to a spectrofluorometer.
Collapse
Affiliation(s)
- L Soltés
- Institute of Experimental Pharmacology, Slovak Academy of Sciences, SK-84104 Bratislava, Slovakia
| | | | | | | | | | | | | |
Collapse
|
15
|
Soltés L, Kogan G, Stankovska M, Mendichi R, Rychlý J, Schiller J, Gemeiner P. Degradation of High-Molar-Mass Hyaluronan and Characterization of Fragments. Biomacromolecules 2007; 8:2697-705. [PMID: 17691842 DOI: 10.1021/bm070309b] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A sample of high-molar mass hyaluronan was oxidized by seven oxidative systems involving hydrogen peroxide, cupric chloride, ascorbic acid, and sodium hypochlorite in different concentrations and combinations. The process of the oxidative degradation of hyaluronan was monitored by rotational viscometry, while the fragments produced were investigated by size-exclusion chromatography, matrix-assisted laser desorption ionization-time-of-flight mass spectrometry, and non-isothermal chemiluminometry. The results obtained imply that the degradation of hyaluronan by these oxidative systems, some of which resemble the chemical combinations present in vivo in the inflamed joint, proceeds predominantly via hydroxyl radicals. The hyaluronan fragmentation occurred randomly and produced species with rather narrow and unimodal distribution of molar mass. Oxidative degradation not only reduces the molecular size of hyaluronan but also modifies its component monosaccharides, generating polymer fragments that may have properties substantially different from those of the original macromolecule.
Collapse
Affiliation(s)
- L Soltés
- Institute of Experimental Pharmacology, Slovak Academy of Sciences, SK-84104 Bratislava, Slovakia
| | | | | | | | | | | | | |
Collapse
|
16
|
Soltés L, Valachová K, Mendichi R, Kogan G, Arnhold J, Gemeiner P. Solution properties of high-molar-mass hyaluronans: the biopolymer degradation by ascorbate. Carbohydr Res 2007; 342:1071-7. [PMID: 17362893 DOI: 10.1016/j.carres.2007.02.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 01/31/2007] [Accepted: 02/16/2007] [Indexed: 11/24/2022]
Abstract
An accurate molecular characterization, molar mass and size distributions, of 10 hyaluronan (HA) samples was performed by using a multi-angle light scattering detector connected on-line to a size exclusion chromatographic system. The dynamic viscosity eta of the HA solutions was investigated using a rotational viscometer. On monitoring the sample dynamic viscosity for up to 5h, a small however constant increase of the eta value was observed, indicating rheopectic behavior of all 10 HA solutions. Addition of ascorbic acid to the HA solutions caused significant changes in the rheological properties of the samples investigated. The change of eta values in the course of time was explained by the redox reactions (caused by the added ascorbate) that occur during the dynamic viscosity monitoring.
Collapse
Affiliation(s)
- Ladislav Soltés
- Institute of Experimental Pharmacology, Slovak Academy of Sciences, SK-84104 Bratislava, Slovakia.
| | | | | | | | | | | |
Collapse
|
17
|
Rychlý J, Šoltés L, Stankovská M, Janigová I, Csomorová K, Sasinková V, Kogan G, Gemeiner P. Unexplored capabilities of chemiluminescence and thermoanalytical methods in characterization of intact and degraded hyaluronans. Polym Degrad Stab 2006. [DOI: 10.1016/j.polymdegradstab.2006.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Liao YH, Jones SA, Forbes B, Martin GP, Brown MB. Hyaluronan: pharmaceutical characterization and drug delivery. Drug Deliv 2006; 12:327-42. [PMID: 16253949 DOI: 10.1080/10717540590952555] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Hyaluronic acid (HA), is a polyanionic polysaccharide that consists of N-acetyl-D-glucosamine and beta-glucoronic acid. It is most frequently referred to as hyaluronan because it exists in vivo as a polyanion and not in the protonated acid form. HA is distributed widely in vertebrates and presents as a component of the cell coat of many strains of bacteria. Initially the main functions of HA were believed to be mechanical as it has a protective, structure stabilizing and shock-absorbing role in the body. However, more recently the role of HA in the mediation of physiological functions via interaction with binding proteins and cell surface receptors including morphogenesis, regeneration, wound healing, and tumor invasion, as well as in the dynamic regulation of such interactions on cell signaling and behavior has been documented. The unique viscoelastic nature of hyaluronan along with its biocompatibility and nonimmunogenicity has led to its use in a number of cosmetic, medical, and pharmaceutical applications. More recently, HA has been investigated as a drug delivery agent for ophthalmic, nasal, pulmonary, parenteral, and dermal routes. The purpose of our review is to describe the physical, chemical, and biological properties of native HA together with how it can be produced and assayed along with a detailed analysis of its medical and pharmaceutical applications.
Collapse
Affiliation(s)
- Yong-Hong Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | | | | | |
Collapse
|
19
|
Soltés L, Mendichi R, Kogan G, Schiller J, Stankovska M, Arnhold J. Degradative action of reactive oxygen species on hyaluronan. Biomacromolecules 2006; 7:659-68. [PMID: 16529395 DOI: 10.1021/bm050867v] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Many human diseases are associated with harmful action of reactive oxygen species (ROS). These species are involved in the degradation of essential tissue or related components. One of such components is synovial fluid that contains a high-molecular-weight polymer--hyaluronan (HA). Uninhibited and/or inhibited hyaluronan degradation by the action of various ROS has been studied in many in vitro models. In these studies, the change of the molecular weight of HA or a related parameter, such as HA solution viscosity, has been used as a marker of inflicted damage. The aim of the presented review is to briefly summarize the available data. Their correct interpretation could contribute to the implementation of modern methods of evaluation of the antioxidative capacity of natural and synthetic substances and prospective drugs--potential inflammatory disease modifying agents. Another focus of this review is to evaluate briefly the impact of different available analytical techniques currently used to investigate the structure of native high-molecular-weight hyaluronan and/or of its fragments.
Collapse
Affiliation(s)
- L Soltés
- Institute of Experimental Pharmacology, Slovak Academy of Sciences, SK-84104 Bratislava, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
20
|
Cowman MK, Matsuoka S. Experimental approaches to hyaluronan structure. Carbohydr Res 2005; 340:791-809. [PMID: 15780246 DOI: 10.1016/j.carres.2005.01.022] [Citation(s) in RCA: 236] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2004] [Accepted: 01/10/2005] [Indexed: 12/17/2022]
Abstract
A review of the literature describing experimental studies on hyaluronan (HA) is presented. Methods sensitive to the hydrodynamic properties of HA, analyzed in neutral aqueous solution containing NaCl at physiological concentration, can be shown to fit the expected behavior of a high molecular weight linear semi-flexible polymer. The significant nonideality of HA solutions can be predicted by a simple treatment for hydrodynamic interactions between polymer chains. Nuclear magnetic resonance and circular dichroism studies of HA are also in agreement with a model incorporating dynamically formed and broken hydrogen bonds, contributing to the semi-flexibility of the polymer chain, and segmental motions on the nanosecond time scale. HA shows the capability for self-association in the formation of a viscoelastic putty state at pH 2.5 in the presence of salt, and a gel state at pH 2.5 in mixed organic/aqueous solution containing salt. Ordered and associated structures have also been observed for HA on the surfaces, especially in the presence of surface-structured water. These phenomena can be understood in terms of counterion-mediated polyelectrolyte interactions. The possibility that hyaluronan exists in vivo in environments that induce ordered structures and assemblies is discussed.
Collapse
Affiliation(s)
- Mary K Cowman
- Othmer Department of Chemical and Biological Sciences and Engineering, Polytechnic University, 6 Metrotech Center, Brooklyn, NY 11201, USA.
| | | |
Collapse
|
21
|
Furlan S, La Penna G, Perico A, Cesàro A. Hyaluronan chain conformation and dynamics. Carbohydr Res 2005; 340:959-70. [PMID: 15780260 DOI: 10.1016/j.carres.2005.01.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2004] [Accepted: 01/25/2005] [Indexed: 11/20/2022]
Abstract
An overview of the present state of research in the field of hyaluronan chain conformational aspects is presented. The relationship between structure and dynamics are illustrated for a series of hyaluronan oligomers. Conformational characteristics of hyaluronan chains are discussed, together with the dynamic chain patterns, evaluated by using a theoretical approach to diffusive polymer dynamics. The dependence of correlation times and NMR relaxation parameters from the chain dimension are investigated. Topological features and dimensional properties are related to the structural determinants by using classical computational methods of molecular mechanics and Monte Carlo simulation.
Collapse
Affiliation(s)
- Sara Furlan
- Department of Biochemistry, Biophysics and Macromolecular Chemistry, UdR INSTM, University of Trieste, I-34127 Trieste, Italy
| | | | | | | |
Collapse
|
22
|
Mendichi R, Soltés L, Giacometti Schieroni A. Evaluation of Radius of Gyration and Intrinsic Viscosity Molar Mass Dependence and Stiffness of Hyaluronan. Biomacromolecules 2003; 4:1805-10. [PMID: 14606912 DOI: 10.1021/bm0342178] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nine hyaluronan (HA) samples were fractionated by size-exclusion chromatography, and molar mass (M), radius of gyration (Rg), and intrinsic viscosity ([eta]) were measured in 0.15 M NaCl at 37 degrees C by on-line multiangle light scattering and viscometer detectors. Using such method, we investigated the Rg and [eta] molar mass dependence for HA over a very wide range of molar masses: M ranging from 4 x 10(4) to 5.5 x 10(6) g/mol. The Rg and the [eta] molar mass dependence found for HA showed a meaningful difference. The Rg = f(M) power law was substantially linear in the whole range of molar masses explored with a constant slope of 0.6. In contrast, the [eta] = f(M) power law (Mark-Houwink-Sakurada plot) showed a marked curve shape, and a linear regression over the whole range of molar masses does not make sense. Also the persistence length (stiffness) for HA was estimated. The persistence length derived by using both the Odijk's model (7.5 nm from Rg vs M data) and the Bohdanecky's plot (6.8 nm from [eta] vs M data) were quite similar. These persistence length values are congruent with a semistiff conformation of HA macromolecules.
Collapse
Affiliation(s)
- Raniero Mendichi
- Istituto per lo Studio delle Macromolecole (CNR), Via E. Bassini 15, I-20133 Milan, Italy.
| | | | | |
Collapse
|
23
|
Soltés L, Mendichi R, Lath D, Mach M, Bakos D. Molecular characteristics of some commercial high-molecular-weight hyaluronans. Biomed Chromatogr 2002; 16:459-62. [PMID: 12378558 DOI: 10.1002/bmc.185] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Commercially available hyaluronan (HA) samples were investigated by the method of size exclusion chromatography (SEC). The fractions eluted from the SEC column were on-line molecularly characterized by using a multi-angle laser light scattering (MALLS) photometer. Along with the SEC-MALLS technique, the high-molecular-weight HA biopolymers were (off-line) analyzed by capillary viscometry.
Collapse
Affiliation(s)
- L Soltés
- Institute of Experimental Pharmacology, Slovak Academy of Sciences, SK-84216 Bratislava, Slovak Republic.
| | | | | | | | | |
Collapse
|
24
|
Mendichi R, Giacometti Schieroni A. Fractionation and characterization of ultra-high molar mass hyaluronan: 2. On-line size exclusion chromatography methods. POLYMER 2002. [DOI: 10.1016/s0032-3861(02)00586-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|