1
|
Molaey R, Appels L, Yesil H, Tugtas AE, Çalli B. Sustainable heavy metal removal from sewage sludge: A review of bioleaching and other emerging technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177020. [PMID: 39427892 DOI: 10.1016/j.scitotenv.2024.177020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/29/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
By 2050, global sewage sludge production is expected to increase by 51 %, rising from its current level of over 45 million tons of dry solids to nearly 68 million tons. This growth is primarily driven by population growth and the implementation of increasingly stringent environmental regulations. This increase in sewage sludge volume poses substantial challenges for sustainable management due to its complex composition. While sewage sludge contains valuable nutrients such as nitrogen (N), phosphorus (P), and potassium (K) that make it suitable for agriculture use, the presence of heavy metals (HMs), including cadmium (Cd), lead (Pb), mercury (Hg), chrome (Cr), copper (Cu), nickel (Ni) and zinc (Zn) creates significant barriers to its safe reuse. Inadequately treated sewage sludge, when repeatedly applied to agricultural soils, can lead to the accumulation of HMs, posing risks to long-term soil fertility, crop productivity, and broader environmental health. This review discusses various techniques for de-metallization of sewage sludge, including aerobic- and anaerobic bioleaching, chemical leaching, electrokinetic treatment, and supercritical fluid extraction. Among these techniques, anaerobic bioleaching is identified as the most environmentally sustainable option, as it offers a lower-energy, less chemically intensive approach to decrease HM content in the solid fraction of sewage sludge. This approach utilizes microbial activity under anaerobic conditions to solubilize and remove HMs, while minimizing nutrient loss and preserving the ecological integrity of the treated sewage sludge. Future research should prioritize the optimizing of anaerobic bioleaching processes to enhance both HM removal efficiency and nutrient retention. Additionally, integrating anaerobic bioleaching with air-assisted ultrasonication as a post treatment technology could further improve metal removal efficiency. This review aims to provide a comprehensive reference for researchers and practitioners seeking environmentally friendly solutions for HM removal from sewage sludge, ensuring its safe reuse in land applications and contributing to a circular agro-economy.
Collapse
Affiliation(s)
- Rahim Molaey
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab., Jan De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium.
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab., Jan De Nayerlaan 5, 2860 Sint-Katelijne-Waver, Belgium.
| | - Hatice Yesil
- Marmara University, Department of Environmental Engineering, Aydinevler, 34854 Maltepe, Istanbul, Turkiye.
| | - A Evren Tugtas
- Marmara University, Department of Environmental Engineering, Aydinevler, 34854 Maltepe, Istanbul, Turkiye.
| | - Bariş Çalli
- Marmara University, Department of Environmental Engineering, Aydinevler, 34854 Maltepe, Istanbul, Turkiye.
| |
Collapse
|
2
|
Chen CX, Koskue V, Duan H, Gao L, Shon HK, Martin GJO, Chen GQ, Freguia S. Impact of nutrient deficiency on biological sewage treatment - Perspectives towards urine source segregation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174174. [PMID: 38925384 DOI: 10.1016/j.scitotenv.2024.174174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Human urine contains 9 g/L of nitrogen (N) and 0.7 g/L of phosphorus (P). The recovery of N and P from urine helps close the nutrient loop and increase resource circularity in the sewage treatment sector. Urine contributes an average of 80 % N and 50 % P in sewage, whereby urine source segregation could reduce the burden of nutrient removal in sewage treatment plants (STPs) but result in N and P deficiency and unintended negative consequences. This review examines the potential impacts of N and P deficiency on the removal of organic carbon and nutrients, sludge characteristics and greenhouse gas emissions in activated sludge processes. The details of how these impacts affect the operation of STPs were also included. This review helps foresee operational challenges that established STPs may face when dealing with nutrient-deficient sewage in a future where source separation of urine is the norm. The findings indicate that the requirement of nitrification-denitrification and biological P removal processes could shrink at urine segregation above 80 % and 100 %, respectively. Organic carbon, N and biological P removal processes can be severely affected under full urine segregation. The decrease in solid retention time due to urine segregation increases treatment capacity up to 48 %. Sludge flocculation and settleability would deteriorate due to changes in extracellular polymeric substances and induce various forms of bulking. Beneficially, N deficiency reduces nitrous oxide emissions. These findings emphasise the importance of considering and preparing for impacts caused by urine source segregation-induced nutrient deficiency in sewage treatment processes.
Collapse
Affiliation(s)
- Chee Xiang Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Veera Koskue
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Haoran Duan
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Li Gao
- South East Water Corporation, 2268, Seaford, VIC 3198, Australia
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), Broadway, NSW 2007, Australia
| | - Gregory J O Martin
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - George Q Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stefano Freguia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
3
|
Hou R, Liu J, Yang P, Liu H, Yuan R, Ji Y, Zhao H, Chen Z, Zhou B, Chen H. Metabolomic reveals the responses of sludge properties and microbial communities to high nitrite stress in denitrifying phosphorus removal systems. ENVIRONMENTAL RESEARCH 2024; 252:118924. [PMID: 38631473 DOI: 10.1016/j.envres.2024.118924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024]
Abstract
Nitrite, as an electron acceptor, plays a good role in denitrifying phosphorus removal (DPR); however, high nitrite concentration has adverse affects on sludge performance. We investigated the precise mechanisms of responses of sludge to high nitrite stress, including surface characteristics, intracellular and extracellular components, microbial and metabolic responses. When the nitrite stress reached 90 mg/L, the sludge settling performance was improved, but the activated sludge was aging. FTIR and XPS analysis revealed a significant increase in the hydrophobicity of the sludge, resulting in improve settling performance. However, the intracellular carbon sources synthesis was inhibited. In addition, the components in the tightly bound extracellular polymeric substances (TB-EPS) of sludge were significantly reduced and indicated the disturb of metabolism. Notably, Exiguobacterium emerged as a new genus when face high nitrite stress that could maintaining survival in hostile environments. Moreover, metabolomic analysis demonstrated strong biological response to nitrite stress further supported above results that include the inhibited of carbohydrate and amino acid metabolism. More importantly, some lipids (PS, PA, LysoPA, LysoPC and LysoPE) were significantly upregulated that related enhanced membrane lipid remodeling. The comprehensive analyses provide novel insights into the high nitrite stress responses mechanisms in activated sludge systems.
Collapse
Affiliation(s)
- Rongrong Hou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiandong Liu
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Peng Yang
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haijun Liu
- School of Resources and Environment, Anqing Normal University, Anqing, China.
| | - Rongfang Yuan
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Ying Ji
- Bureau of Ecology and Environment of Beijing Miyun, Miyun, 101599, China
| | - Hongfei Zhao
- Bureau of Ecology and Environment of Beijing Miyun, Miyun, 101599, China
| | - Zhongbing Chen
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha Suchdol, 16500, Czech Republic
| | - Beihai Zhou
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huilun Chen
- School of Energy and Environmental Engineering, Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
4
|
Zeng Y, Wang Z, Pan Z, Shen L, Teng J, Lin H, Zhang J. Novel thermodynamic mechanisms of co-conditioning with polymeric aluminum chloride and polyacrylamide for improved sludge dewatering: A paradigm shift in the field. ENVIRONMENTAL RESEARCH 2023; 234:116420. [PMID: 37327838 DOI: 10.1016/j.envres.2023.116420] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
This study investigated the combined effects of polymeric aluminum chloride (PAC) and polyacrylamide (PAM) on sludge dewatering, aiming to unveil underlying mechanisms. Co-conditioning with 15 mg g-1 PAC and 1 mg g-1 PAM achieved optimal dewatering, reducing specific filtration resistance (SFR) of co-conditioned sludge to 4.38 × 1012 m-1kg-1, a mere 48.1% of raw sludge's SFR. Compared with the CST of raw sludge (36.45 s), sludge sample can be significantly reduced to 17.7 s. Characterization tests showed enhanced neutralization and agglomeration in co-conditioned sludge. Theoretical calculations revealed elimination of interaction energy barriers between sludge particles post co-conditioning, converting sludge surface from hydrophilic (3.03 mJ m-2) to hydrophobic (-46.20 mJ m-2), facilitating spontaneous agglomeration. Findings explain improved dewatering performance. Based on Flory-Huggins lattice theory, connection between polymer structure and SFR was established. Raw sludge formation triggered significant change in chemical potential, increasing bound water retention capacity and SFR. In contrast, co-conditioned sludge exhibited thinnest gel layer, reducing SFR and significantly improving dewatering. These findings represent a paradigm shift, shedding new light on fundamental thermodynamic mechanisms of sludge dewatering with different chemical conditioning.
Collapse
Affiliation(s)
- Yansha Zeng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Zhe Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Zhenxiang Pan
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| | - Jianzhen Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
5
|
Wu NP, Zhang Q, Tan B, Li M, Lin B, He J, Su JH, Shen HN. Integrated fixed-film activated sludge systems in continuous-flow and batch mode acclimated from low to high aniline concentrations: Performance, mechanism and metabolic pathways. BIORESOURCE TECHNOLOGY 2023; 379:129043. [PMID: 37044153 DOI: 10.1016/j.biortech.2023.129043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Integrated fixed-film activated sludge (IFAS) system has considerable advantages in treating aniline wastewater economically and efficiently. However, the response mechanism of IFAS to aniline needs further study. Herein, IFAS in continuous-flow (CF-IFAS) and batch mode (B-IFAS) were set up to investigate it. The removal efficiency of aniline exceeded 99% under different stress intensities. At low stress intensity (aniline ≈ 200 mg/L), the total nitrogen removal efficiency of B-IFAS was approximately 37.76% higher than CF-IFAS. When the stress intensity increased (aniline ≥ 400 mg/L), both were over 82%. CF-IFAS was restrained by denitrification while nitrification in B-IFAS. The legacy effect of perturbation of B-IFAS made microflora quickly reach new stability. The closer interspecific relationship in B-IFAS and more key species: Leucobacter, Rhodococcus, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Ellin6067 and norank_f_NS9_marine_group. Metabolic and Cell growth and death were the most abundant metabolic pathways, resulting both systems the excellent pollutant removal and stability under high stress intensity.
Collapse
Affiliation(s)
- Nan-Ping Wu
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Bin Tan
- CCCC Second Highway Consultants Co., Ltd., Wuhan 430056, PR China
| | - Meng Li
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Bing Lin
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jing He
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jun-Hao Su
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| | - Hao-Nan Shen
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, PR China
| |
Collapse
|
6
|
Nagabalaji V, Maharaja P, Nishanthi R, Sathish G, Suthanthararajan R, Srinivasan SV. Effect of co-culturing bacteria and microalgae and influence of inoculum ratio during the biological treatment of tannery wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118008. [PMID: 37146488 DOI: 10.1016/j.jenvman.2023.118008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/12/2023] [Accepted: 04/22/2023] [Indexed: 05/07/2023]
Abstract
This present investigation is carried out to study the effect of algal and bacterial inoculum concentrations on the removal of organic pollutants and nutrients from the tannery effluent by the combined symbiotic treatment process. The bacterial and microalgal consortia was developed in laboratory setup and mixed together to perform this study. The Influence of algae and bacteria inoculum concentrations on the removal of pollutants such as Chemical Oxygen Demand (COD) and Total Kjeldahl Nitrogen (TKN) were studied using statistical optimization through Response surface methodology. For the design of experimental set up and optimization, full factorial Central composite design was used. The profiles of pH, Dissolved Oxygen (DO) and nitrate were also monitored and studied. The inoculum concentrations of microalgae and bacteria showed significant effect on Co-culturing on COD, TKN and nitrate removals as major response. The linear effect of bacterial inoculum has positive dominant influence on COD and TKN removal efficiencies. Nitrate utilization by microalgae increases with the increase in microalgal inoculum concentration. The maximum removal efficiencies of COD and TKN with 89.9% and 80.9% were obtained at optimum bacterial and algal inoculum concentrations of 6.7 g/L and 8.0 g/L respectively. These outcomes of this study are immensely favorable for maximizing the COD and nitrogen (nutrients) removal capabilities of microalgae-bacterial consortia in tannery effluent.
Collapse
Affiliation(s)
- Velmurugan Nagabalaji
- Environmental Engineering Department, CSIR-Central Leather Research Institute, Chennai, 600 020, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India.
| | - Pounsamy Maharaja
- Environmental Engineering Department, CSIR-Central Leather Research Institute, Chennai, 600 020, India
| | - Rajendiran Nishanthi
- Environmental Engineering Department, CSIR-Central Leather Research Institute, Chennai, 600 020, India
| | - Ganesan Sathish
- Environmental Engineering Department, CSIR-Central Leather Research Institute, Chennai, 600 020, India
| | | | - Shanmugham Venkatachalam Srinivasan
- Environmental Engineering Department, CSIR-Central Leather Research Institute, Chennai, 600 020, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
7
|
Zhang Y, Zhang J, Zhu DZ, Qian Y. Experimental study on pollution release and sediment scouring of sewage sediment in a drainage pipe considering incubation time. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54945-54960. [PMID: 36881222 DOI: 10.1007/s11356-023-26294-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The pollution release and the antiscourability characteristics of pipe sewage sediments can directly determine the blockage status of pipelines and the treatment burden at the outflow (sewage treatment plant). In this study, sewer environments with different burial depths were designed to explore the impact of incubation time on microbial activity, and the impacts of microbial activity on the physicochemical characteristics, pollution release effect and antiscouring ability of the silted sediment in the drainage pipe were further explored. The results showed that the incubation time, sediment matrix, temperature and dissolved oxygen affected microbial activity, but temperature had a greater influence. These factors affected microbial activity and loosened the superstructure in the sediment. In addition, by measuring the indices of nitrogen and phosphorus in the overlying water, it was found that sediment incubated for a certain time released pollutants into the overlying water, and the release amount was obviously affected by high temperature (e.g. 35 ℃). After a certain time (e.g. 30 days), biofilms appeared on the sediment surface, and the antiscourability of sediment was significantly improved, which was reflected in the increase in the median particle size of sediment left in the pipe.
Collapse
Affiliation(s)
- Yijie Zhang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, China
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Jian Zhang
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, China.
| | - David Z Zhu
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, China
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 2W2, Canada
| | - Yu Qian
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
8
|
Cheng Y, Tian K, Xie P, Ren X, Li Y, Kou Y, Chon K, Hwang MH, Ko MH. Insights into the minimization of excess sludge production in micro-aerobic reactors coupled with a membrane bioreactor: Characteristics of extracellular polymeric substances. CHEMOSPHERE 2022; 292:133434. [PMID: 34973254 DOI: 10.1016/j.chemosphere.2021.133434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
The production of excess sludge by the activated sludge system of wastewater treatment plants is a problem. In this study, the EPS characteristics on production and degradation were investigated in the real-scale food processing wastewater treatment system (i.e., a micro-aerobic reactor coupled with a membrane bioreactor (MAR-MBR)) with a treatment capacity of 150 t d-1, which could cater for the low production of excess sludge (i.e., 9 t·a-1; 76% moisture content). The total organic carbon concentrations in the different EPS fractions were in the following order: soluble EPS (S-EPS) < loosely bound EPS (LB-EPS) < tightly bound EPS (TB-EPS). Although the components (e.g., protein and humic acid-like substances) of each EPS fraction changed significantly throughout the MAR-MBR process owing to the low production of excess sludge, the degrees of change in S-EPS, LB-EPS, and TB-EPS were significantly different from the corresponding change in their relative molecular weights. Furthermore, the microbial community composition was beneficial for the release and degradation of EPS, and the regulation of gene functions via the MAR-MBR enhanced this process.
Collapse
Affiliation(s)
- Yu Cheng
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Kun Tian
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Peng Xie
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xianghao Ren
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Ying Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Yingying Kou
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Kangmin Chon
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea; Department of Integrated Energy and Infra System, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Moon-Hyun Hwang
- Korea Headquarters of Research Plan, Korea University, Seoul, 02841, Republic of Korea
| | - Myung-Han Ko
- ANT21, 34, Gyebaek-ro, Jung-gu, Daejeon, 34899, Republic of Korea
| |
Collapse
|
9
|
Zhang Y, Li T, Tian J, Zhang H, Li F, Pei J. Enhanced dewaterability of waste activated sludge by UV assisted ZVI-PDS oxidation. J Environ Sci (China) 2022; 113:152-164. [PMID: 34963525 DOI: 10.1016/j.jes.2021.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 06/14/2023]
Abstract
Ultraviolet (UV) assisted zero-valent iron (ZVI)-activated sodium persulfate (PDS) oxidation (UV-ZVI-PDS) was used to treat waste activated sludge (WAS) in this study. The dewaterability performance and mechanism of WAS dewatering were analyzed. The results showed that UV-ZVI-PDS can obtain better sludge dewatering performance in a wide pH range (2.0-8.0). When the molar ratio of ZVI/PDS was 0.6, UV was 254nm, PDS dosage was 200 mg/g TS (total solid), pH was 6.54, reaction time was 20 min, the CST (capillary suction time) and SRF (specific resistance to filtration) were decreased by 64.0% and 78.2%, respectively. The molar ratio of ZVI/PDS used in this paper is much lower than that of literatures, and the contents of total Fe and Fe2+ in sludge supernatant remained at a low level, as 3.7 mg/L and 0.0 mg/L. The analysis of extracellular polymeric substances (EPS), scanning electron microscope (SEM) and particle size distribution showed that the EPS could be effectively destroyed by UV-ZVI-PDS, the sludge flocs broken down into smaller particles, cracks and holes appeared, and then the bound water was released. At the same time, the highly hydrophilic tightly bound-EPS (TB-EPS) were converted into loosely bound EPS (LB-EPS) and soluble EPS (S-EPS). During sludge pretreated by UV-ZVI-PDS, positively charged ions, such as Fe2+, Fe3+ and H+, produced in the reaction system could reduce the electronegativity of sludge surface, promote sludge particles aggregation, and then enhanced the sludge dewaterability.
Collapse
Affiliation(s)
- Yanping Zhang
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, China.
| | - Tiantian Li
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, China
| | - Jiayu Tian
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, China
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Fen Li
- College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150000, China
| | - Jiahua Pei
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
10
|
Molaey R, Yesil H, Calli B, Tugtas AE. Enhanced heavy metal leaching from sewage sludge through anaerobic fermentation and air-assisted ultrasonication. CHEMOSPHERE 2021; 279:130548. [PMID: 33878691 DOI: 10.1016/j.chemosphere.2021.130548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/18/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Interest in using stabilized sewage sludge in agriculture is mainly to benefit from its nutrient content, soil conditioning properties, and water holding capacity. Therefore, sludge management practice needs to be directed from treatment liability towards the recovery of chemical assets embedded in sludge. In this study, anaerobic fermentation process integrated with a new treatment method; i.e., air-assisted ultrasonication, was used to assess the leaching of heavy metals (HM) from waste activated sludge (WAS). Fermentation processes resulted in 9390 mg COD/L of volatile fatty acids (VFAs) production, 26% Ni solubilization and up to 3.4% solubilization of other target metals (Cu and Zn). Application of the air-assisted ultrasonication as a post-treatment to fermentation process stimulated the migration and transformation of HMs to the liquid fraction of the digestate. Applying specific energy input greater than 9 kJ/g total solids (TS) through ultrasonication and supplying air with constant flow rate of 0.875 L of air/(L of digestate.min) resulted in leaching of more than 83% of Ni, 82% of Cu and 80% of Zn.
Collapse
Affiliation(s)
- Rahim Molaey
- Department of Environmental Engineering, Marmara University, 34722, Goztepe, Istanbul, Turkey; Kabul Polytechnic University, Kabul, Afghanistan.
| | - Hatice Yesil
- Department of Environmental Engineering, Marmara University, 34722, Goztepe, Istanbul, Turkey.
| | - Baris Calli
- Department of Environmental Engineering, Marmara University, 34722, Goztepe, Istanbul, Turkey.
| | - Adile Evren Tugtas
- Department of Environmental Engineering, Marmara University, 34722, Goztepe, Istanbul, Turkey.
| |
Collapse
|
11
|
Qian J, He X, Wang P, Xu B, Li K, Lu B, Jin W, Tang S. Effects of polystyrene nanoplastics on extracellular polymeric substance composition of activated sludge: The role of surface functional groups. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116904. [PMID: 33765504 DOI: 10.1016/j.envpol.2021.116904] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Here we investigated the acute effects (12 h exposure) of three polystyrene nanoplastics (PS NPs, including PS, PS-COOH and PS-NH2) on extracellular polymeric substance (EPS) composition of activated sludge. Three PS NPs exhibited the significant inhibition in total EPS and protein (PRO) production. The functional groups involved in the interactions between PS NPs and EPS were C-(C, H), and those between PS-NH2 NPs and EPS were CO and O-C-O. In addition, the dewaterability of activated sludge were optimized by three PS NPs, especially PS-NH2 NPs. Three PS NPs caused nonnegligible cellular oxidative stress and cell membrane damage in activated sludge (PS NPs exposure concentration: 100 mg/L). Among them, the cell membrane damage caused by PS-NH2 was the most significant. Overall, the degree of influence on EPS and cytotoxicity of activated sludge varies with the surface functional groups of PS NPs.
Collapse
Affiliation(s)
- Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
| | - Xixian He
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Bin Xu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, No.8 Jiangwangmiao Street, Nanjing, 210042, China
| | - Kun Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Wen Jin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Sijing Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing, 210098, People's Republic of China; College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| |
Collapse
|
12
|
Siddharth T, Sridhar P, Vinila V, Tyagi RD. Environmental applications of microbial extracellular polymeric substance (EPS): A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112307. [PMID: 33798774 DOI: 10.1016/j.jenvman.2021.112307] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/08/2021] [Accepted: 02/28/2021] [Indexed: 05/06/2023]
Abstract
During the last decade, water demand and wastewater generation has increased due to urbanization around the globe which had led to an increase in the utilization of chemicals/synthetic polymers for treating the wastewaters. These synthetic polymers used during the coagulation/flocculation process are non-renewable, non-biodegradable, and have a potential neurotoxic and carcinogenic effect. From the literature it is clear that extracellular polymer substance (EPS) is a potential bioflocculant, moreover it is renewable, biodegradable, eco-friendly, non-toxic as well as economically valued product. The various identification techniques and extraction methods of EPS are elaborated. Further application of EPS as absorbent in removing the dye from the industrial effluent is presented. Moreover EPS as a potential adsorbent for heavy metal removal from the various effluent is discussed. In addition, EPS is also utilized for soil remediation and soil erosion control. Mainly, EPS as bioflocculant in treating raw water, wastewater treatment, leachate and sludge management are summarized in this review.
Collapse
Affiliation(s)
- T Siddharth
- Water and Environment Division, Department of Civil Engineering National Institute of Technology - Warangal, Telangana, India
| | - P Sridhar
- Water and Environment Division, Department of Civil Engineering National Institute of Technology - Warangal, Telangana, India.
| | - V Vinila
- Water and Environment Division, Department of Civil Engineering National Institute of Technology - Warangal, Telangana, India
| | - R D Tyagi
- Chief Scientific Officer, BOSK Bioproducts, Canada
| |
Collapse
|
13
|
Feng C, Lotti T, Canziani R, Lin Y, Tagliabue C, Malpei F. Extracellular biopolymers recovered as raw biomaterials from waste granular sludge and potential applications: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 753:142051. [PMID: 33207449 DOI: 10.1016/j.scitotenv.2020.142051] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Granular sludge (GS) is a special self-aggregation biofilm. Extracellular polymeric substances (EPS) are mainly associated with the architectural structure, rheological behaviour and functional stability of fine granules, given that their significance to the physicochemical features of the biomass catalysing the biological purification process. This review targets the EPS excretion from GS and introduces newly identified EPS components, EPS distribution in different granules, how to effectively extract and recover EPS from granules, key parameters affecting EPS production, and the potential applications of EPS-based biomaterials. GS-based EPS components are highly diverse and a series of new contents are highlighted. Due to high diversity, emerging extraction standards are proposed and recovery process is capturing particular attention. The major components of EPS are found to be polysaccharides and proteins, which manifest a larger diversity of relative abundance, structures, physical and chemical characteristics, leading to the possibility to sustainably recover raw materials. EPS-based biomaterials not only act as alternatives to synthetic polymers in several applications but also figure in innovative industrial/environmental applications, including gel-forming materials for paper industry, biosorbents, cement curing materials, and flame retardant materials. In the upcoming years, it is foreseen that productions of EPS-based biomaterials from renewable origins would make a significant contribution to the advancement of the circular economy.
Collapse
Affiliation(s)
- Cuijie Feng
- Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Tommaso Lotti
- Department of Civil and Environmental Engineering, University of Florence, Via di Santa Marta 3, 50139 Florence, Italy
| | - Roberto Canziani
- Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Yuemei Lin
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Camilla Tagliabue
- Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Francesca Malpei
- Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| |
Collapse
|
14
|
Cai YM. Non-surface Attached Bacterial Aggregates: A Ubiquitous Third Lifestyle. Front Microbiol 2020; 11:557035. [PMID: 33343514 PMCID: PMC7746683 DOI: 10.3389/fmicb.2020.557035] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/13/2020] [Indexed: 01/03/2023] Open
Abstract
Bacteria are now generally believed to adopt two main lifestyles: planktonic individuals, or surface-attached biofilms. However, in recent years medical microbiologists started to stress that suspended bacterial aggregates are a major form of bacterial communities in chronic infection sites. Despite sharing many similarities with surface-attached biofilms and are thus generally defined as biofilm-like aggregates, these non-attached clumps of cells in vivo show much smaller sizes and different formation mechanisms. Furthermore, ex vivo clinical isolates were frequently reported to be less attached to abiotic surfaces when compared to standard type strains. While this third lifestyle is starting to draw heavy attention in clinical studies, it has a long history in natural and environmental sciences. For example, marine gel particles formed by bacteria attachment to phytoplankton exopolymers have been well documented in oceans; large river and lake snows loaded with bacterial aggregates are frequently found in freshwater systems; multispecies bacterial "flocs" have long been used in wastewater treatment. This review focuses on non-attached aggregates found in a variety of natural and clinical settings, as well as some recent technical developments facilitating aggregate research. The aim is to summarise the characteristics of different types of bacterial aggregates, bridging the knowledge gap, provoking new perspectives for researchers from different fields, and highlighting the importance of more research input in this third lifestyle of bacteria closely relevant to our daily life.
Collapse
Affiliation(s)
- Yu-Ming Cai
- National Biofilms Innovation Centre, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
15
|
Zhang X, Kim D, Freedman DL, Karanfil T. Impact of biological wastewater treatment on the reactivity of N-Nitrosodimethylamine precursors. WATER RESEARCH 2020; 186:116315. [PMID: 32846382 DOI: 10.1016/j.watres.2020.116315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/07/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
N-Nitrosodimethylamine (NDMA) is a probable human carcinogen which forms during chloramination of wastewater-impacted drinking waters. Municipal wastewater effluents are considered as major sources of NDMA precursors affecting downstream water quality. To evaluate the deactivation mechanisms and efficiencies of NDMA precursors during secondary treatment with the activated sludge (AS) process, NDMA formation potentials (FPs) of selected model precursor compounds and sewage components (i.e., blackwaters and greywaters) were monitored in batch AS treatment tests. After 24-h incubation with four different types of AS (i.e., domestic rural, domestic urban, textile and lab-grown AS), NDMA FP of trimethylamine (TMA) and minocycline (MNCL) decreased by 77-100%, while there was only 29-46% reduction in NDMA FP of sumatriptan (SMTR). The reduction in NDMA FP associated with ranitidine (RNTD) varied between 34% and 87%. The decrease in NDMA FP of RNTD depended on the AS type, hydraulic retention time (HRT) and solids retention time (SRT). The domestic AS (rural and urban) achieved higher decreases in NDMA FPs of the tested model precursors than the textile AS or lab-grown AS. Increasing the HRT or SRT enhanced NDMA FP decrease for RNTD. Among different processes tested (i.e., biodegradation, biosorption and volatilization), biosorption was the major mechanism responsible for the NDMA FP decrease of RNTD, MNCL and SMTR, while biodegradation was the major NDMA FP reduction mechanism for TMA. The reduction in NDMA FP of RNTD via biodegradation depended on the AS activity which may vary with sampling seasons and SRT. NDMA FPs in all tested sewage components (i.e., blackwaters and greywaters) decreased after 24-h AS treatment. Urine in blackwater was the predominant (i.e., >90%) contributor to NDMA FP in domestic sewage and AS-treated effluents.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
| | - Daekyun Kim
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
| | - David L Freedman
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson, SC 29625, USA.
| |
Collapse
|
16
|
Shrestha S, Kulandaivelu J, Rebosura MJR, Yuan Z, Sharma K. Revealing the variations in physicochemical, morphological, fractal, and rheological properties of digestate during the mesophilic anaerobic digestion of iron-rich waste activated sludge. CHEMOSPHERE 2020; 254:126811. [PMID: 32334260 DOI: 10.1016/j.chemosphere.2020.126811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/05/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Dosing of iron (Fe)-salts in sewers to control odour and corrosion problems have proven to be effective on phosphate and sulfide removal in downstream treatment units. However, the interaction of Fe with sludge may impact the sludge properties during wastewater treatment and sludge digestion. Herein, we investigated the downstream impacts of sewer-dosed Fe-salt on key digestate properties including digestate dewaterability. For this, Fe-salt was dosed to a sewer reactor and resultant iron-rich waste activated sludge (Fe-WAS) was digested in an anaerobic digester (AD) in the experimental line of integrated laboratory system running in parallel to a control system. Iron containing and non-iron containing digestates were sourced from the respective AD reactors of experimental and control lines. Results showed improved dewaterability in iron containing digestate than non-iron containing digestate, which was attributed to the variations in key digestate properties. Compared to non-iron containing digestate, iron containing digestate exhibited the decreased contents of bound water, soluble extracellular polymeric substances (S-EPS), protein, polysaccharide, and monovalent-to-divalent (M+/D++) cations ratio. Likewise, we observed the increased mean particle size (Dv50) for iron containing digestate than the non-iron containing digestate, but fractal dimension (Df) values were comparable. Besides, iron containing digestate exhibited a reduced degree of thixotropy, relative sludge network strength, viscosity, yield stress, flow stress, and storage/loss/complex (G'/G''/G∗) moduli but increased creep compliance and shear strain (%) than non-iron containing digestate. The combined synergistic effects of such favorable changes amongst the key properties of iron containing digestate, might have been responsible for improving it's dewaterability.
Collapse
Affiliation(s)
- Sohan Shrestha
- Advanced Water Management Centre, The School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Jagadeeshkumar Kulandaivelu
- Advanced Water Management Centre, The School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Mario Jr Robles Rebosura
- Advanced Water Management Centre, The School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Keshab Sharma
- Advanced Water Management Centre, The School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
17
|
Wu B, Dai X, Chai X. Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilizations. WATER RESEARCH 2020; 180:115912. [PMID: 32422413 DOI: 10.1016/j.watres.2020.115912] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/21/2020] [Accepted: 05/02/2020] [Indexed: 05/17/2023]
Abstract
Sewage sludge (mainly composed of excessive bio-sludge) is an inevitable by-product of biological wastewater treatment process and contains various toxic substances, such as pathogens, heavy metals, and organic contaminants. The production of sewage sludge may cause serious pollution risks without appropriate disposals. As the essential step of sludge treatment, dewatering plays significant roles in minimizing the sludge volume, facilitating the transportation, increasing the calorific value and even reducing the leachate production in landfill sites. This paper presents a comprehensive review on the issues related to dewatering of sewage sludge. Section 1 starts with the environmental implications of sludge dewatering. Section 2 deals with the concepts and challenges about differentiation of bound water fractions, and also reviews the recent progress of in-situ visualization of water occurrence states in bio-flocs. Section 3 discusses about how various physiochemical properties influence the sludge dewaterability, and the insufficiency in in-situ micro-characterization of sludge constituents is pointed out. Section 4 reviews the existing conditioning technologies for sludge dewaterability improvement, and the advantages/disadvantages of each technology in terms of applicable occasions, material consumption, energy consumption and environmental impacts are evaluated. The last section (section 5) specifically analyzes the feasibility of integrating sludge dewatering and re-utilization, and raises attention to the potential environmental risks of dewatering conditioning. Based on the above discussion, we propose that a unified theory for sludge dewaterability improvement remains to be established. Especially, how the molecular structures of sludge compositions affect the solid-water interface behavior requires to be deepened, which will further unravel the mechanism behind strong water-holding capacities of bio-flocs. Additionally, we believe that the key challenges for sludge dewatering is how to select the appropriate conditioning technique according to the physiochemical properties of target sludge. The reliable indicators for real-time control of conditioning operations are still deficient, e.g., dynamic dosage control of conditioning chemicals. Accordingly, the potential environmental risks of excessive conditioning chemicals should be taken into more consideration.
Collapse
Affiliation(s)
- Boran Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaoli Chai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
18
|
|
19
|
Zeng W, Zhang S, Xia M, Wu X, Qiu G, Shen L. Insights into the production of extracellular polymeric substances of Cupriavidus pauculus 1490 under the stimulation of heavy metal ions. RSC Adv 2020; 10:20385-20394. [PMID: 35520445 PMCID: PMC9054248 DOI: 10.1039/c9ra10560c] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/04/2020] [Indexed: 11/21/2022] Open
Abstract
Three different methods (a sulfuric acid method, sodium chloride method and vibration method) were used to extract extracellular polymeric substances (EPS) from Cupriavidus pauculus 1490 (C. pauculus 1490) in the present study. The sodium chloride method was able to extract the maximum amount of EPS (86.15 ± 1.50 mg g−1-DW), and could ensure minimum cell lysis by detecting glucose-6-phosphate dehydrogenase activity and using scanning electron microscopy. This method was therefore selected as the optimal extraction method and used in subsequent experiments. On this basis, the tolerance of C. pauculus 1490 and variations in EPS secretion after the addition of different metal ions was investigated. The tolerance levels of C. pauculus 1490 to Cd(ii), Ni(ii), Cu(ii) and Co(ii) were 300 mg L−1, 400 mg L−1, 400 mg L−1 and 400 mg L−1, respectively. Low concentrations of these heavy metal ions could promote bacterial growth, while increased concentrations were found to inhibit it. The results show that metal ions, especially Cd(ii), stimulate the secretion of EPS, with an EPS yield reaching 956.12 ± 10.59 mg g−1-DW at 100 mg L−1. Real-time polymerase chain reaction (PCR) analysis showed that the key EPS synthetic genes, epsB, epsP and Wzz, were up-regulated. Fourier transform infrared spectroscopy analysis suggested that abundant functional groups in EPS play an important role in heavy metal ion complexation. These results will contribute to our understanding of the tolerance mechanism of microorganisms in the presence of different types and concentrations of metal ions. Metal ions are shown to stimulate the secretion of EPS components of Cupriavidus pauculus 1490, especially Cd(II).![]()
Collapse
Affiliation(s)
- Weimin Zeng
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
- Key Laboratory of Biometallurgy
| | - Shishi Zhang
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
| | - Mingchen Xia
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
| | - Xueling Wu
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
- Key Laboratory of Biometallurgy
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
- Key Laboratory of Biometallurgy
| | - Li Shen
- School of Minerals Processing and Bioengineering
- Central South University
- Changsha 410083
- China
- Key Laboratory of Biometallurgy
| |
Collapse
|
20
|
Shrestha S, Sharma K, Chen Z, Yuan Z. Unravelling the influences of sewer-dosed iron salts on activated sludge properties with implications on settleability, dewaterability and sludge rheology. WATER RESEARCH 2019; 167:115089. [PMID: 31557710 DOI: 10.1016/j.watres.2019.115089] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/31/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Although the beneficial impacts of iron dosing to sewer on activated sludge unit's performance, especially in relation to phosphate removal, have been reported, the extent of impacts on different sludge properties affecting the operation and performance of the activated sludge unit are not fully understood. In this study, we investigated the influences of iron salt dosing to sewer on both settleability and dewaterability of downstream activated sludge unit. We also examined, based on the comparative assessment of different key activated sludge properties, possible underlying factors responsible for the changes in sludge settleability and dewaterability. For this, iron chloride was dosed to a sewer reactor of integrated laboratory sewer-bioreactor system. The activated sludge samples were obtained from two separate reactors, an experimental sequencing batch reactor (SBR-E) downstream of sewer reactor receiving iron dosing and a control SBR (SBR-C) downstream of a sewer reactor without any iron dosing. Iron-conditioned sludge showed improved settleability and dewaterability over the unconditioned activated sludge. Mean differences in settleability and dewaterability between two sludges were 22.5 ± 7.8 mL/g (p < 0.05) and 7.8 ± 1.2% (p < 0.05), respectively. Iron-conditioned sludge showed lower contents of soluble extracellular polymeric substances (EPS) fractions, protein and polysaccharide contents, and monovalent-to-divalent (M+/D++) cations ratio, but higher humification index as compared to the unconditioned sludge. Iron-conditioned sludge exhibited marginal increment in mean particle size (Dv50) and settleable particle size classes (100-400 μm) but reduction in supracolloidal particle size classes (1-100 μm). In terms of sludge rheology, iron-conditioned sludge exhibited relatively lower relative sludge network strength, viscosity, yield stress, elastic/viscous/complex moduli (G'/G''/G*), and damping factor tan(δ) but increased shear compliance (J) and shear strain (%) with time.The iron-conditioned sludge therefore exhibited relatively weaker deformation resistance and sludge elasticity. Based on the foregoing results, we posit the combined synergistic effect of favourable changes to the key sludge properties, might be responsible for the observed improvement in settleability and dewaterability of iron-conditioned sludge.
Collapse
Affiliation(s)
- Sohan Shrestha
- Advanced Water Management Centre, The School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Keshab Sharma
- Advanced Water Management Centre, The School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia.
| | - Zhongwei Chen
- School of Mechanical and Mining Engineering, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre, The School of Chemical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
21
|
Chen C, Wang Y, Liu S, Feng R, Gu X, Qiao C. Research on the application of compound microorganism preparation in reusing urban reclaimed water in circulating cooling water system. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 80:1763-1773. [PMID: 32039908 DOI: 10.2166/wst.2019.430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A biological method was developed for reusing urban reclaimed water in circulating cooling water systems (CCWS), in which the compound microorganism preparation (CMP) mainly included nitrobacteria, Bacillus subtilis, photosynthetic bacteria and Thiobacillus denitrificans, was used to control the scaling, corrosion and biofouling of CCWS. The abundant carbon, nitrogen and phosphorus in urban reclaimed water met the needs of microbial growth. Compared with chemical agents, CMP had the advantages of high efficiency, no additional chemicals and being more economical. The research results showed that CMP improved water quality and decreased ammonia nitrogen (NH3-N) and chemical oxygen demand (COD). The concentration ratio of CCWS reached 3.87 using CMP. The corrosion inhibition rate of CMP and the removal rate on biofouling achieved 99.69% and 22.21%, respectively. The mechanisms of CMP to control scaling, corrosion and biofouling were discussed, and the surface characteristics and chemical compositions of corrosion products and biofouling were analyzed.
Collapse
Affiliation(s)
- Chuanmin Chen
- Department of Environmental Science and Engineering, North China Electric Power University (Baodong Campus), Baoding 071000, China E-mail:
| | - Yu Wang
- Department of Environmental Science and Engineering, North China Electric Power University (Baodong Campus), Baoding 071000, China E-mail:
| | - Songtao Liu
- Department of Environmental Science and Engineering, North China Electric Power University (Baodong Campus), Baoding 071000, China E-mail:
| | - Rongrong Feng
- Department of Environmental Science and Engineering, North China Electric Power University (Baodong Campus), Baoding 071000, China E-mail:
| | - Xingjia Gu
- Department of Environmental Science and Engineering, North China Electric Power University (Baodong Campus), Baoding 071000, China E-mail:
| | - Chuanxi Qiao
- Department of Environmental Science and Engineering, North China Electric Power University (Baodong Campus), Baoding 071000, China E-mail:
| |
Collapse
|
22
|
Campbell K, Wang J, Daniels M. Assessing activated sludge morphology and oxygen transfer performance using image analysis. CHEMOSPHERE 2019; 223:694-703. [PMID: 30802835 DOI: 10.1016/j.chemosphere.2019.02.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
The morphology of the microbial communities can have dramatic impacts on not only the treatment performance, but also the energy use performance of an activated sludge process. In this research, we developed and calibrated an image analysis technique to determine key morphological parameters such as the floc diameter and the specific filament length (SFL) and discovered that the SFL has significant impacts on sludge floc size, the specific extracellular polymeric substances production, the settleability, mixed liquor viscosity, and oxygen transfer efficiency. When the SFL increased from 2.5 × 109 μm g-1 to 6.0 × 1010 μm g-1, the apparent viscosity normalized by the mixed liquor suspended solids concentration increased by 67%, and the oxygen transfer efficiency decreased by 29%. A long solids retention time (SRT) of 40 day reduced SFL, improved sludge settling performance, and improved oxygen transfer efficiency as compared to shorter SRTs of 10 and 20 day. The findings underscore the need to assess microbial morphology when quantifying the treatment performance and energy performance of activated sludge processes.
Collapse
Affiliation(s)
- Ken Campbell
- Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO, USA
| | - Jianmin Wang
- Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO, USA.
| | - Margo Daniels
- Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO, USA
| |
Collapse
|
23
|
Tian X, Shen Z, Han Z, Zhou Y. The effect of extracellular polymeric substances on exogenous highly toxic compounds in biological wastewater treatment: An overview. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biteb.2018.11.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Liu Y, Lv W, Xia S, Zhang Z. Nitrogen aeration alters the spatial distribution and metal adsorption of extracellular polymeric substances in waste-activated sludge. RSC Adv 2019; 9:33981-33989. [PMID: 35528892 PMCID: PMC9073697 DOI: 10.1039/c9ra07576c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/07/2019] [Indexed: 11/26/2022] Open
Abstract
Extracellular polymeric substances (EPS) extracted from waste-activated sludge (WAS) have the potential to remove heavy metal ions from wastewater; both the spatial distribution and metal adsorption of EPS from WAS after nitrogen aeration were systematically investigated in this study. Compared with air aeration, nitrogen aeration significantly improved the contents of proteins (PN) and polysaccharides (PS) in the Slime-EPS (S-EPS) and loosely-bound EPS (LB-EPS), significantly increased the PS content, and slightly increased the PN content in the tightly-bound EPS (TB-EPS). The variations in the fluorescence intensities (FI) of the peaks I and II for the S-EPS, LB-EPS and TB-EPS were basically consistent with the abovementioned variations in the concentrations of these EPS. Notably, nitrogen aeration dramatically improved the content of protein-like substances in the LB-EPS. For the same aeration time, the Pb2+ reclamation rates obtained by the LB-EPS extracted from the nitrogen-aerated WAS were much higher than those achieved by the LB-EPS extracted from the air-aerated WAS. The FTIR analyses further indicated that nitrogen aeration improved the contents of the functional groups, especially –OH, –COOH and –NH2, responsible for binding heavy metals, in both the LB-EPS and TB-EPS. The SEM analyses verified that the nitrogen scours contributed to the EPS release, and Pb2+ reclamation was achieved via the attachment of Pb2+ onto the edge of the EPS. The influences of the nitrogen aeration on the spatial distribution and metal adsorption of the EPS in WAS were revealed for the first time in this study. Thus, this study lays the foundation for the application of nitrogen aeration in the resource utilization of WAS. Nitrogen aeration was superior to air aeration because of the higher EPS production and Pb2+ adsorption in the utilization of WAS.![]()
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Pollution Control and Resource Reuse
- Key Laboratory of Yangtze River Water Environment
- Ministry of Education
- College of Environmental Science and Engineering
- Tongji University
| | - Wenzhou Lv
- Faculty of Civil and Environmental Engineering
- Ningbo University
- Ningbo 315211
- China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse
- Key Laboratory of Yangtze River Water Environment
- Ministry of Education
- College of Environmental Science and Engineering
- Tongji University
| | - Zhiqiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse
- Key Laboratory of Yangtze River Water Environment
- Ministry of Education
- College of Environmental Science and Engineering
- Tongji University
| |
Collapse
|
25
|
Han F, Ye W, Wei D, Xu W, Du B, Wei Q. Simultaneous nitrification-denitrification and membrane fouling alleviation in a submerged biofilm membrane bioreactor with coupling of sponge and biodegradable PBS carrier. BIORESOURCE TECHNOLOGY 2018; 270:156-165. [PMID: 30218931 DOI: 10.1016/j.biortech.2018.09.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
Simultaneous nitrification-denitrification (SND) was achieved in submerged biofilm membrane bioreactor (SBF-MBR) treating low carbon/nitrogen (C/N) ratio wastewater. A novel bio-carrier coupling of sponge and biodegradable poly(butanediol succinate) (PBS) was applied as external carbon source and biofilm carrier. Result represented that NH4+-N and total nitrogen removal efficiencies were high of 99.1% and 94.3% in the SBF-MBR. Protein (PN) contents from SND-biofilm were reduced by 10.5% and 44.3% in TB-EPS and LB-EPS, while polysaccharides (PS) were reduced by 45.8% and 34.8%, respectively. 3D-EEM spectra indicated that protein-like, humic acid-like and fulvic acid-like substances were the main components in EPS and their peak intensities were reduced. Additionally, membrane fouling of SBF-MBR was improved after the achievement of biofilm. Microbial community analysis showed that Simplicispira, Thauera, Desulfovibrio, Dechlorobacter and Acinetobacter were dominant genus, which indicated co-existence of nitrifying bacteria, heterotrophic denitrifiers and aerobic denitrifiers in the SBF-MBR.
Collapse
Affiliation(s)
- Fei Han
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Wei Ye
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Dong Wei
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China.
| | - Weiying Xu
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Bin Du
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
26
|
Ma B, Li S, Wang S, Gao M, Guo L, She Z, Zhao Y, Jin C, Yu N, Zhao C. Effect of Fe3O4 nanoparticles on composition and spectroscopic characteristics of extracellular polymeric substances from activated sludge. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.08.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
27
|
Wu B, Horvat K, Mahajan D, Chai X, Yang D, Dai X. Free-conditioning dewatering of sewage sludge through in situ propane hydrate formation. WATER RESEARCH 2018; 145:464-472. [PMID: 30189401 DOI: 10.1016/j.watres.2018.08.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/16/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
The propane hydrate formation was proposed to have potentials in realizing free-conditioning dewatering of sewage sludge with implications to simultaneous clean water extraction and highly efficient volume reduction. Primarily, the investigation on phase equilibrium of propane hydrates found that the organic components of sewage sludge promoted the propane hydrate formation in terms of decreasing equilibrium pressure by up to 19.2%, compared with that in pure water. Further, the feasibility of hydrate-based dewatering was verified through the observation of propane hydrate formation in sewage sludge and also the quality analysis of water generated from decomposition of up-floated formed hydrates. The formation of up-floated propane hydrates extracted water molecules from sewage sludge into homogeneous crystal phase, which actually excluded sludge particles from hydrate phase and realized the reduction of water in sludge phase. The efficiency of water conversion into hydrates was determined by monitoring propane pressure, which indicated that 14 batch runs decreased the water content of sludge from 98.81wt.% to 44.3wt.% under free-conditioning conditions. The chemical oxygen demand, total nitrogen and total phosphorus of hydrate-extracted water were measured to be 21 ± 1 mg/L, 10.5 ± 0.2 mg/L and 0.4 ± 0 mg/L, respectively, which reflected the excellent separation performance and also indicated that the hydrate-extracted water can be directly discharged without further treatments. Finally, the unit energy consumption of hydrate-based dewatering process based on a continuous operation mode was calculated to be 2673.96 kW h/t dry solid of sewage sludge, which was nearly half of that in thermal drying process. Therefore, the propane hydrate-based process is believed to maximize the green operation of enhanced sludge dewatering while minimizing the energy and additional material consumption.
Collapse
Affiliation(s)
- Boran Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; College of Engineering and Applied Science, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA; Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA
| | - Kristine Horvat
- College of Engineering and Applied Science, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Devinder Mahajan
- College of Engineering and Applied Science, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, USA
| | - Xiaoli Chai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
28
|
Tang Q, Gu F, Zhang Y, Zhang Y, Mo J. Impact of biological clogging on the barrier performance of landfill liners. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 222:44-53. [PMID: 29800864 DOI: 10.1016/j.jenvman.2018.05.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/25/2018] [Accepted: 05/12/2018] [Indexed: 06/08/2023]
Abstract
The durability of landfill mainly relies on the anti-seepage characteristic of liner system. The accumulation of microbial biomass is effective in reducing the hydraulic conductivity of soils. This study aimed at evaluating the impact of the microorganism on the barrier performance of landfill liners. According to the results, Escherichia coli. produced huge amounts of extracellular polymeric substances and coalesced to form a confluent plugging biofilm. This microorganism eventually resulted in the decrease of soil permeability by 81%-95%. Meanwhile, the increase of surface roughness inside the internal pores improved the adhesion between microorganism colonization and particle surface. Subsequently, an extensive parametric sensitivity analysis was undertaken for evaluating the contaminant transport in landfill liners. Decreasing the hydraulic conductivity from 1 × 10-8 m/s to 1 × 10-10 m/s resulted in the increase of the breakthrough time by 345.2%. This indicates that a low hydraulic conductivity was essential for the liner systems to achieve desirable barrier performance.
Collapse
Affiliation(s)
- Qiang Tang
- School of Rail Transportation, Soochow University, Yangchenghu Campus, Xiangcheng District, Suzhou, 215131, China; Graduate School of Global Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Fan Gu
- National Center for Asphalt Technology, Auburn University, 277 Technology PKWY, Auburn, AL 36830, USA.
| | - Yu Zhang
- School of Rail Transportation, Soochow University, Yangchenghu Campus, Xiangcheng District, Suzhou, 215131, China
| | - Yuqing Zhang
- School of Engineering and Applied Science, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| | - Jialin Mo
- Graduate School of Global Environmental Studies, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
29
|
de Oliveira TS, Corsino SF, Di Trapani D, Torregrossa M, Viviani G. Biological minimization of excess sludge in a membrane bioreactor: Effect of plant configuration on sludge production, nutrient removal efficiency and membrane fouling tendency. BIORESOURCE TECHNOLOGY 2018; 259:146-155. [PMID: 29550667 DOI: 10.1016/j.biortech.2018.03.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Excess sludge minimization was studied in a MBR with pre-denitrification scheme. Sludge minimization, nitrogen removal performance and membrane fouling tendency were investigated in two configurations, characterized by a different position of the sludge retention reactor (SRR). In particular, the SRR was placed: i) in the return activated sludge line (Anaerobic Side-Stream Reactor - ASSR configuration) and ii) in the mainstream between the anoxic and aerobic reactor (Anaerobic Main-Stream Reactor - AMSR configuration). The achieved results demonstrated that the ASSR enabled a higher excess sludge reduction (74% vs 32%), while achieving lower biological nitrogen removal (BNR) (TN = 63% vs 78%) and membrane fouling tendency (FR = 2.1 · 1012 m-1 d-1vs 4.0 · 1011 m-1 d-1) than the AMSR. It was found that metabolism uncoupling, destruction of EPS and endogenous decay simultaneously occurred in the ASSR. Conversely, selective enrichment of bacteria population with low biomass yield was found the main mechanism affecting sludge minimization in the AMSR.
Collapse
Affiliation(s)
- Taissa Silva de Oliveira
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy.
| | - Santo Fabio Corsino
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Daniele Di Trapani
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Michele Torregrossa
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Gaspare Viviani
- Dipartimento di Ingegneria Civile, Ambientale, Aerospaziale, dei Materiali, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
30
|
Zhang L, Yue Q, Yang K, Zhao P, Gao B. Analysis of extracellular polymeric substances (EPS) and ciprofloxacin-degrading microbial community in the combined Fe-C micro-electrolysis-UBAF process for the elimination of high-level ciprofloxacin. CHEMOSPHERE 2018; 193:645-654. [PMID: 29169139 DOI: 10.1016/j.chemosphere.2017.11.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 09/22/2017] [Accepted: 11/12/2017] [Indexed: 05/22/2023]
Abstract
Extracellular polymeric substances (EPS) and ciprofloxacin-degrading microbial community in the combined Fe-C micro-electrolysis and up-flow biological aerated filter (UBAF) process for the treatment of high-level ciprofloxacin (CIP) were analyzed. The research demonstrated a great potential of Fe-C micro-electrolysis-UBAF for the elimination of high-level CIP. Above 90% of CIP removal was achieved through the combined process at 100 mg L-1 of CIP loading. In UBAF, the pollutants were mainly removed at 0-70 cm heights. Three-dimensional fluorescence spectrum (3D-EEM) was used to characterize the chemical structural of loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) extracted from biofilm sample in UBAF. The results showed that the protein-like substances in LB-EPS and TB-EPS had no clear change in the study. Nevertheless, an obvious release of polysaccharides in EPSs was observed during long-term exposure to CIP, which was considered as a protective response of microbial to CIP toxic. The high-throughput sequencing results revealed that the biodiversity of bacteria community became increasingly rich with gradual ciprofloxacin biodegradation in UBAF. The ciprofloxacin-degrading microbial community was mainly dominated by Proteobacteria and Bacteroidetes. Microorganisms from genera Dechloromonas, Brevundimonas, Flavobacterium, Sphingopyxis and Bosea might take a major role in ciprofloxacin degradation. This study provides deep theoretical guidance for real CIP wastewater treatment.
Collapse
Affiliation(s)
- Longlong Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| | - Kunlun Yang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Pin Zhao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
31
|
Liu Y, Lv W, Zhang Z, Xia S. Influencing characteristics of short-time aerobic digestion on spatial distribution and adsorption capacity of extracellular polymeric substances in waste activated sludge. RSC Adv 2018; 8:32172-32177. [PMID: 35547480 PMCID: PMC9086184 DOI: 10.1039/c8ra06277c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/06/2018] [Indexed: 11/21/2022] Open
Abstract
The spatial distribution and adsorption capacity of extracellular polymeric substances (EPS) were systematically investigated for waste activated sludge (WAS) treated by a short-time aerobic digestion (STAD) process.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Pollution Control and Resource Reuse
- Key Laboratory of Yangtze River Water Environment
- Ministry of Education
- College of Environmental Science and Engineering
- Tongji University
| | - Wenzhou Lv
- Faculty of Architectural
- Civil Engineering and the Environment
- Ningbo University
- Ningbo 315211
- China
| | - Zhiqiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse
- Key Laboratory of Yangtze River Water Environment
- Ministry of Education
- College of Environmental Science and Engineering
- Tongji University
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse
- Key Laboratory of Yangtze River Water Environment
- Ministry of Education
- College of Environmental Science and Engineering
- Tongji University
| |
Collapse
|
32
|
Zhang D, Zhou Y, Bugge TV, Mayanti B, Yang A, Poh LS, Gao X, Majid MBA, Ng WJ. Soluble microbial products (SMPs) in a sequencing batch reactor with novel cake filtration system. CHEMOSPHERE 2017; 184:1286-1297. [PMID: 28672727 DOI: 10.1016/j.chemosphere.2017.06.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/18/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
The formation, composition and characteristics of soluble microbial products (SMPs) were investigated in a novel system which coupled a sequencing batch reactor with a cake filtration system. Both suspended solids (SS) and turbidity were significantly removed, resulting in effluent SS of 0.12 mg L-1 and turbidity of 0.72 NTU after cake filtration. The average concentrations of proteins and carbohydrates decreased respectively from 4.0 ± 0.4 and 7.1 ± 0.6 mg/L in the sequencing batch reactor (SBR) mixed liquor, to 0.85 ± 0.21 and 1.39 ± 0.29 mg/L in the cake filtration effluent. Analysis of the molecular weight (MW) distribution of SMPs revealed a substantial reduction in the intensity of high-MW peaks (503 and 22.71 kDa) after cake filtration, which implied the sludge cake layer and the underlying gel layer may play a role in the effectiveness of cake filtration beyond the physical phenomenon. Three-dimensional excitation emission matrix fluorescence spectroscopy indicated that polycarboxylate- and polyaromatic humic acids were the dominant compounds and a noticeable decrease in the fraction of these compounds was observed in the cake filtration effluent. Analysis with GC-MS set for detecting low-MW SMPs identified aromatics, alcohols, alkanes and esters as the dominant compounds. SMPs exhibited both biodegradable and recalcitrant characteristics. More SMPs (total number of 91) were accumulated during the SBR start-up stage. A noticeable increase in the aromatic fractions was seen in the SBR effluent accoutring for 39% of total compounds, compared to the SBR mixed liquor (28%). Fewer compounds (total number of 66) were identified in cake filtration effluent compared to the SBR effluent (total number of 75).
Collapse
Affiliation(s)
- Dongqing Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, #06-10, Singapore, 637141, Singapore.
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, #06-10, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, N1-01a-29, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | | | - Bening Mayanti
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, #06-10, Singapore, 637141, Singapore
| | - Adrian Yang
- Grundfos (Singapore) Pte. Ltd., 25 Jalan Tukang, Singapore, 619264, Singapore
| | - Leong Soon Poh
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, #06-10, Singapore, 637141, Singapore
| | - Xin Gao
- Grundfos (Singapore) Pte. Ltd., 25 Jalan Tukang, Singapore, 619264, Singapore
| | - Maszenan Bin Abdul Majid
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, #06-10, Singapore, 637141, Singapore
| | - Wun Jern Ng
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, #06-10, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, N1-01a-29, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
33
|
Wei D, Yan T, Zhang K, Chen Y, Wu N, Du B, Wei Q. Qualitative and quantitative analysis of extracellular polymeric substances in partial nitrification and full nitrification reactors. BIORESOURCE TECHNOLOGY 2017; 240:171-176. [PMID: 28279609 DOI: 10.1016/j.biortech.2017.02.115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 06/06/2023]
Abstract
In present study, two column-type sequencing batch reactors with alternative anoxic/aerobic phases were operated and compared under partial nitrification and full nitrification modes by controlling different dissolved oxygen (DO) conditions. During steady state, the characterizations of extracellular polymeric substances (EPS) from two reactors were qualitatively and quantitatively analyzed through chemical and spectroscopic approaches. Data implied that partial nitrification reactor had relatively higher total nitrogen (TN) removal efficiency and loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) contents. According to excitation emission matrix (EEM) spectra, LB-EPS and TB-EPS from two kinds of reactors expressed similar fluorescence peak locations but different intensities. Fluorescence regional integration (FRI) further suggested that Region IV was the main fraction in both types of EPS fractions. Moreover, TB-EPS exhibited a greater number of molecular weight fractions than those of LB-EPS. Both EPS fractions had similar functional groups, which represented the complex nature of EPS compositions.
Collapse
Affiliation(s)
- Dong Wei
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Tao Yan
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Keyi Zhang
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Ya Chen
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Na Wu
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Bin Du
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China.
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
34
|
Habib R, Asif MB, Iftekhar S, Khan Z, Gurung K, Srivastava V, Sillanpää M. Influence of relaxation modes on membrane fouling in submerged membrane bioreactor for domestic wastewater treatment. CHEMOSPHERE 2017; 181:19-25. [PMID: 28414955 DOI: 10.1016/j.chemosphere.2017.04.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/02/2017] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
Relaxation and backwashing have become an integral part of membrane bioreactor (MBR) operations for fouling control. This study was carried out on real municipal wastewater to evaluate the influence of different operational strategies on membrane fouling at equivalent water yield. Four relaxation modes (MBR10+0, MBR10+1, MBR10+1.5 and MBR10+2) were tested to analyze membrane fouling behavior. For the optimization of relaxation modes, fouling rate in terms of trans-membrane pressure, hydraulic resistances and characteristics of fouling fractions were analyzed. It has been observed that cake layer resistance was minimum in MBR10+1.5 but pore blockage resistance was increased in all relaxation modes. Moreover, high instantaneous flux contributed significantly to fouling rate at the initial stage of MBR operations. Relaxation modes were also efficient in removing irreversible fouling to some extent. Under all relaxation modes, COD removal efficiency ranged from 92 to 96.5%. Ammonium and TP removal were on the lower side due to the short solids and hydraulic retention time.
Collapse
Affiliation(s)
- Rasikh Habib
- Department of Environmental Engineering, University of Engineering & Technology, Taxila, 47050, Pakistan
| | - Muhammad Bilal Asif
- Department of Environmental Engineering, University of Engineering & Technology, Taxila, 47050, Pakistan; Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong (UOW), NSW, 2522, Australia
| | - Sidra Iftekhar
- Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, FI-50130, Mikkeli, Finland; Department of Environmental Engineering, University of Engineering & Technology, Taxila, 47050, Pakistan.
| | - Zahiruddin Khan
- Punjab Saaf Pani Company, Govt. of Punjab, Lahore, 54000, Pakistan
| | - Khum Gurung
- Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Varsha Srivastava
- Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | - Mika Sillanpää
- Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Sammonkatu 12, FI-50130, Mikkeli, Finland; Department of Civil and Environmental Engineering, Florida International University, Miami, FL, 33174, USA
| |
Collapse
|
35
|
Shi Y, Huang J, Zeng G, Gu Y, Chen Y, Hu Y, Tang B, Zhou J, Yang Y, Shi L. Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments: An overview. CHEMOSPHERE 2017; 180:396-411. [PMID: 28419953 DOI: 10.1016/j.chemosphere.2017.04.042] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/02/2017] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
Extracellular polymeric substances (EPS) are present both outside of the cells and in the interior of microbial aggregates, and account for a main component in microbial aggregates. EPS can influence the properties and functions of microbial aggregates in biological wastewater treatment systems, and specifically EPS are involved in biofilm formation and stability, sludge behaviors as well as sequencing batch reactors (SBRs) granulation whereas they are also responsible for membrane fouling in membrane bioreactors (MBRs). EPS exhibit dual roles in biological wastewater treatments, and hence the control of available EPS can be expected to lead to changes in microbial aggregate properties, thereby improving system performance. In this review, current updated knowledge with regard to EPS basics including their formation mechanisms, important properties, key component functions as well as sub-fraction differentiation is given. EPS roles in biological wastewater treatments are also briefly summarized. Special emphasis is laid on EPS controlling strategies which would have the great potential in promoting microbial aggregates performance and in alleviating membrane fouling, including limitation strategies (inhibition of quorum sensing (QS) systems, regulation of environmental conditions, enzymatic degradation of key components, energy uncoupling etc.) and elevation strategies (enhancement of QS systems, addition of exogenous agents etc.). Those strategies have been confirmed to be feasible and promising to enhance system performance, and they would be a research niche that deserves further study.
Collapse
Affiliation(s)
- Yahui Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China.
| | - Yanling Gu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yaoning Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Yi Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Bi Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Jianxin Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Ying Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| | - Lixiu Shi
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
36
|
Campo R, Capodici M, Di Bella G, Torregrossa M. The role of EPS in the foaming and fouling for a MBR operated in intermittent aeration conditions. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.11.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Wu B, Su L, Song L, Dai X, Chai X. Exploring the potential of iTRAQ proteomics for tracking the transformation of extracellular proteins from enzyme-disintegrated waste activated sludge. BIORESOURCE TECHNOLOGY 2017; 225:75-83. [PMID: 27886632 DOI: 10.1016/j.biortech.2016.11.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 06/06/2023]
Abstract
To characterize the transformation of extracellular proteins extracted from raw and enzyme-disintegrated waste activated sludge (WAS), extracts of extracellular polymeric substances (EPS) were subject to isobaric tags for relative and absolute quantitation (iTRAQ) proteomics analysis. 209 proteins were identified and categorized into three Gene Ontology classifications: "cellular components", "molecular function", and "biological processes". Most identified proteins originated from intracellular components, organelles, or cytoplasm, suggesting that cell decline and lysis represent the main sources of extracellular proteins in WAS. The major protein functions comprised "transporter binding activity", "macromolecule metabolic process", and "biosynthesis enzyme catalytic activity". In total, 15 proteins categorized as "membrane part" and "biological adhesion" and 10 as "organelle" were down- or up-regulated, respectively, implying that the enzyme-disintegration mainly induced WAS floc-structure disintegration via membrane structure and corresponding biological adhesion disruption. The proteomics study will provide valuable clues to better understand EPS changes associated with enzymatic treatment at molecular levels.
Collapse
Affiliation(s)
- Boran Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Lianghu Su
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, 8 Jiangwangmiao Street, Nanjing 210042, China
| | - Liyan Song
- Environmental Microbiology and Ecology Research Center, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Science (CAS), 266 Fangzheng Avenue, Chongqing 400714, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiaoli Chai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
38
|
Heavy Metal Removal from Wastewaters by Biosorption: Mechanisms and Modeling. SUSTAINABLE HEAVY METAL REMEDIATION 2017. [DOI: 10.1007/978-3-319-58622-9_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
39
|
Tan S, Hou Y, Cui C, Chen X, Li W. Real-time monitoring of biofoulants in a membrane bioreactor during saline wastewater treatment for anti-fouling strategies. BIORESOURCE TECHNOLOGY 2017; 224:183-187. [PMID: 27839860 DOI: 10.1016/j.biortech.2016.11.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/03/2016] [Accepted: 11/05/2016] [Indexed: 06/06/2023]
Abstract
This work presents a novel, fast and simple monitoring-responding method at the very early stages of membrane bio-fouling in a membrane bioreactor (MBR) during saline wastewater treatment. The impacts of multiple environmental shocks on membrane fouling were studied. The transmembrane pressure exceeded the critical fouling pressure within 8days in the case of salinity shock or temperature shock. In the case of DO shock, the transmembrane pressure exceeded the critical fouling pressure after 16days, showing the lower impact of DO shock on the MBR. In another study, the membrane fouling was observed within 4days responding to mixed environmental shocks. To decrease the potential of membrane bio-fouling, another bioreactor was integrated immediately with the MBR as a quickly-responded countermeasure, when an early warning of membrane bio-fouling was provided. After the bioreactor enhancement, the time required for membrane fouling increased from 4 to 10days.
Collapse
Affiliation(s)
- Songwen Tan
- Department of Environmental Engineering, Harbin Institute of Technology (Weihai), Weihai 264209, China; Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Yang Hou
- Department of Biological Science, Hunan Normal University, Changsha 410000, China
| | - Chunzhi Cui
- Department of Chemistry, Yanbian University, Yanji 133002, China
| | - Xuncai Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney 2006, Australia
| | - Weiguo Li
- Department of Environmental Engineering, Harbin Institute of Technology (Weihai), Weihai 264209, China.
| |
Collapse
|
40
|
Deepika KV, Raghuram M, Kariali E, Bramhachari PV. Biological responses of symbiotic Rhizobium radiobacter strain VBCK1062 to the arsenic contaminated rhizosphere soils of mung bean. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 134P1:1-10. [PMID: 27566287 DOI: 10.1016/j.ecoenv.2016.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 06/06/2023]
Abstract
The rationale could be that mung bean is cultivated in areas of arsenic contamination and therefore it is worth investigating how Rhizobium is impacted by arsenic exposure. The objective(s) of the study deals with relationship between Rhizobium metal tolerance and its adaptations to metal stressed environment. The selected strain was recovered from root nodules of Vigna radiata, based on viscous EPS production and arsenic tolerant capacity, identified as R. radiobacter by 16S rDNA sequencing. Batch studies were performed to evaluate toxic effects of heavy metal ions in decreasing order of MIC As(V) (10mM), Cu(1.5mM), Pb(0.18mM), Cr(0.1mM), Ni(0.08mM) and Cd(0.04mM). Scanning electron microscopy analysis of Arsenic resistant strain revealed evident changes in cell morphology. SDS-PAGE results showed altered expression of proteins in response to arsenate. One unique protein of approximately 21kDa was highly expressed in 5mM arsenate, but same protein was down regulated in 10mM arsenate. The exopolysaccharide components such as total carbohydrates, proteins and uronic acids were significantly enhanced by 41%, 25% and 33% (P Value <0.05) and also produced EPS under Arsenic stressed conditions. Fourier transformed spectroscopy analysis demonstrated arsenic metal ion-EPS interactions. The results obtained from SEM-EDS analysis clearly revealed mucous nature of Rhizobial-EPS surrounding bacterial cells and confirmed the role of EPS in arsenate sequestration (10% as weight). Interestingly total arsenate uptake by strain VBCK1062 in whole-cell pellet and EPS were 0.045mg and 0.068mgg-1 of biomass respectively. Thus these results significantly contribute to better understanding of plant-metal-microbe interactions, cellular-metabolic changes and As-enhanced EPSs, hence can serve as potential bioremediation agent for As-contaminated agrogeoecosystems.
Collapse
Affiliation(s)
- K V Deepika
- Department of Biotechnology, Krishna University, Machilipatnam 521001, AP, India
| | - M Raghuram
- Department of Botany and Microbiology, Acharya Nagarjuna University, Guntur, India
| | - E Kariali
- School of Life Sciences, Sambalpur University, Odisha, India
| | - P V Bramhachari
- Department of Biotechnology, Krishna University, Machilipatnam 521001, AP, India.
| |
Collapse
|
41
|
Guisado IM, Purswani J, Catón-Alcubierre L, González-López J, Pozo C. Toxicity and biofilm-based selection for methyl tert-butyl ether bioremediation technology. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2016; 74:2889-2897. [PMID: 27997398 DOI: 10.2166/wst.2016.461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Extractive membrane biofilm reactor (EMBFR) technology offers productive solutions for volatile and semi-volatile compound removal from water bodies. In this study, the bacterial strains Paenibacillus etheri SH7T (CECT 8558), Agrobacterium sp. MS2 (CECT 8557) and Rhodococcus ruber strains A5 (CECT 8556), EE6 (CECT 8612) and EE1 (CECT 8555), previously isolated from fuel-contaminated sites, were tested for adherence on tubular semipermeable membranes in laboratory-scale systems designed for methyl tert-butyl ether (MTBE) bioremediation. Biofilm formation on the membrane surface was evaluated through observation by field-emission scanning electron microscope (FESEM) as well as the acute toxicity (as EC50) of the bacterial growth media. Moreover, extracellular polymeric substance (EPS) production for each strain under different MTBE concentrations was measured. Strains A5 and MS2 were biofilm producers and their adherence increased when the MTBE flowed through the inner tubular semipermeable membrane. No biofilm was formed by Paenibacillus etheri SH7T, nevertheless, the latter and strain MS2 exhibited the lowest toxicity after growth on the EMBFR. The results obtained from FESEM and toxicity analysis demonstrate that bacterial strains R. ruber EE6, A5, P. etheri SH7T and Agrobacterium sp. MS2 could be excellent candidates to be used as selective inocula in EMBFR technology for MTBE bioremediation.
Collapse
Affiliation(s)
- I M Guisado
- Environmental Microbiology Group, Department of Microbiology and Institute of Water Research, University of Granada, C/ Ramón y Cajal, n°4, Granada 18071, Spain E-mail:
| | - J Purswani
- Environmental Microbiology Group, Department of Microbiology and Institute of Water Research, University of Granada, C/ Ramón y Cajal, n°4, Granada 18071, Spain E-mail:
| | - L Catón-Alcubierre
- Environmental Microbiology Group, Department of Microbiology and Institute of Water Research, University of Granada, C/ Ramón y Cajal, n°4, Granada 18071, Spain E-mail:
| | - J González-López
- Environmental Microbiology Group, Department of Microbiology and Institute of Water Research, University of Granada, C/ Ramón y Cajal, n°4, Granada 18071, Spain E-mail:
| | - C Pozo
- Environmental Microbiology Group, Department of Microbiology and Institute of Water Research, University of Granada, C/ Ramón y Cajal, n°4, Granada 18071, Spain E-mail:
| |
Collapse
|
42
|
Zhang D, Trzcinski AP, Kunacheva C, Stuckey DC, Liu Y, Tan SK, Ng WJ. Characterization of soluble microbial products (SMPs) in a membrane bioreactor (MBR) treating synthetic wastewater containing pharmaceutical compounds. WATER RESEARCH 2016; 102:594-606. [PMID: 27479293 DOI: 10.1016/j.watres.2016.06.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
This study investigated the behaviour and characteristics of soluble microbial products (SMP) in two anoxic-aerobic membrane bioreactors (MBRs): MBRcontrol and MBRpharma, for treating municipal wastewater. Both protein and polysaccharides measured exhibited higher concentrations in the MBRpharma than the MBRcontrol. Molecular weight (MW) distribution analysis revealed that the presence of pharmaceuticals enhanced the accumulation of SMPs with macro- (13,091 kDa and 1587 kDa) and intermediate-MW (189 kDa) compounds in the anoxic MBRpharma, while a substantial decrease was observed in both MBR effluents. Excitation emission matrix (EEM) fluorescence contours indicated that the exposure to pharmaceuticals seemed to stimulate the production of aromatic proteins containing tyrosine (10.1-32.6%) and tryptophan (14.7-43.1%), compared to MBRcontrol (9.9-29.1% for tyrosine; 11.8-42.5% for tryptophan). Gas chromatography-mass spectrometry (GC-MS) analysis revealed aromatics, long-chain alkanes and esters were the predominant SMPs in the MBRs. More peaks were present in the aerobic MBRpharma (196) than anoxic MBRpharma (133). The SMPs identified exhibited both biodegradability and recalcitrance in the MBR treatment processes. Only 8 compounds in the MBRpharma were the same as in the MBRcontrol. Alkanes were the most dominant SMPs (51%) in the MBRcontrol, while aromatics were dominant (40%) in the MBRpharma. A significant decrease in aromatics (from 16 to 7) in the MBRpharma permeate was observed, compared to the aerobic MBRpharma. Approximately 21% of compounds in the aerobic MBRcontrol were rejected by membrane filtration, while this increased to 28% in the MBRpharma.
Collapse
Affiliation(s)
- Dongqing Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, #06-10, Singapore, 637141, Singapore.
| | - Antoine Prandota Trzcinski
- School of Civil Engineering & Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, 4350 Australia
| | - Chinagarn Kunacheva
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, #06-10, Singapore, 637141, Singapore
| | - David C Stuckey
- School of Civil and Environmental Engineering, Nanyang Technological University, N1-01a-29, 50 Nanyang Avenue, Singapore, 639798, Singapore; Department of Chemical Engineering, Imperial College London, SW7 2AZ, UK
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, #06-10, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, N1-01a-29, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Soon Keat Tan
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, #06-10, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, N1-01a-29, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wun Jern Ng
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, #06-10, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, N1-01a-29, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| |
Collapse
|
43
|
Study of extracellular polymeric substances in the biofilms of a suspended biofilter for nitric oxide removal. Appl Microbiol Biotechnol 2016; 100:9733-9743. [DOI: 10.1007/s00253-016-7824-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 10/21/2022]
|
44
|
Wang X, Li M, Liu J, Qu J. Occurrence, distribution, and potential influencing factors of sewage sludge components derived from nine full-scale wastewater treatment plants of Beijing, China. J Environ Sci (China) 2016; 45:233-239. [PMID: 27372138 DOI: 10.1016/j.jes.2016.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 06/06/2023]
Abstract
Millions of tons of waste activated sludge (WAS) produced from biological wastewater treatment processes cause severe adverse environmental consequences. A better understanding of WAS composition is thus very critical for sustainable sludge management. In this work, the occurrence and distribution of several fundamental sludge constituents were explored in WAS samples from nine full-scale wastewater treatment plants (WWTPs) of Beijing, China. Among all the components investigated, active heterotrophic biomass was dominant in the samples (up to 9478mg/L), followed by endogenous residues (6736mg/L), extracellular polymeric substances (2088mg/L), and intracellular storage products (464mg/L) among others. Moreover, significant differences (p<0.05) were observed in composition profiles of sludge samples among the studied WWTPs. To identify the potential parameters affecting the variable fractions of sludge components, wastewater source as well as design and operational parameters of WWTPs were studied using statistical methods. The findings indicated that the component fraction of sewage sludge depends more on wastewater treatment alternatives than on wastewater characteristics among other parameters. A principal component analysis was conducted, which further indicated that there was a greater proportion of residual inert biomass in the sludge produced by the combined system of the conventional anaerobic/anoxic/oxic process and a membrane bioreactor. Additionally, a much longer solids retention time was also found to influence the sludge composition and induce an increase in both endogenous inert residues and extracellular polymeric substances in the sludge.
Collapse
Affiliation(s)
- Xu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Meiyan Li
- Zhongheronghua Environmental Technology (Beijing) Co. Ltd., Beijing 100085, China
| | - Junxin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
45
|
Wu B, Chai X, Zhao Y. Enhanced dewatering of waste-activated sludge by composite hydrolysis enzymes. Bioprocess Biosyst Eng 2016; 39:627-39. [DOI: 10.1007/s00449-016-1544-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 01/08/2016] [Indexed: 12/07/2022]
|
46
|
Sun P, Hui C, Bai N, Yang S, Wan L, Zhang Q, Zhao Y. Revealing the characteristics of a novel bioflocculant and its flocculation performance in Microcystis aeruginosa removal. Sci Rep 2015; 5:17465. [PMID: 26626432 PMCID: PMC4667227 DOI: 10.1038/srep17465] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/30/2015] [Indexed: 11/09/2022] Open
Abstract
In the present work, a novel bioflocculant, EPS-1, was prepared and used to flocculate the kaolin suspension and Microcystis aeruginosa. We focused on the characteristics and flocculation performance of EPS-1, especially with regard to its protein components. An important attribute of EPS-1 was its protein content, with 18 protein types identified that occupied a total content of 31.70% in the EPS-1. Moreover, the flocculating activity of these protein components was estimated to be no less than 33.93%. Additionally, polysaccharides that occupied 57.12% of the total EPS-1 content consisted of four monosaccharides: maltose, D-xylose, mannose, and D-fructose. In addition, carbonyl, amino, and hydroxyl groups were identified as the main functional groups. Three main elements, namely C1s, N1s, and O1s, were present in EPS-1 with relative atomic percentages of 62.63%, 24.91%, and 10.5%, respectively. Zeta potential analysis indicated that charge neutralization contributed to kaolin flocculation, but was not involved in M. aeruginosa flocculation. The flocculation conditions of EPS-1 were optimized, and the maximum flocculating efficiencies were 93.34% within 2 min for kaolin suspension and 87.98% within 10 min for M. aeruginosa. These results suggest that EPS-1 could be an alternative to chemical flocculants for treating wastewaters and cyanobacterium-polluted freshwater.
Collapse
Affiliation(s)
- Pengfei Sun
- College of Life Sciences, Zhejiang University, 310058 Hangzhou, Zhejiang, PR China
| | - Cai Hui
- College of Life Sciences, Zhejiang University, 310058 Hangzhou, Zhejiang, PR China
| | - Naling Bai
- College of Life Sciences, Zhejiang University, 310058 Hangzhou, Zhejiang, PR China
| | - Shengmao Yang
- Institute of Environment Resource and Soil Fertilizer, Zhejiang Academy of Agriculture Science, 310021 Hangzhou, Zhejiang, China
| | - Li Wan
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, 37235-1604, Nashville, Tennessee, USA
| | - Qichun Zhang
- College of Environmental and Resource Sciences, Zhejiang University, 310058 Hangzhou, Zhejiang, PR China
| | - YuHua Zhao
- College of Life Sciences, Zhejiang University, 310058 Hangzhou, Zhejiang, PR China
| |
Collapse
|
47
|
Basuvaraj M, Fein J, Liss SN. Protein and polysaccharide content of tightly and loosely bound extracellular polymeric substances and the development of a granular activated sludge floc. WATER RESEARCH 2015; 82:104-117. [PMID: 25997747 DOI: 10.1016/j.watres.2015.05.014] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 05/01/2015] [Accepted: 05/03/2015] [Indexed: 06/04/2023]
Abstract
A full-scale (FS) activated sludge system treating wastewater from a meat rendering plant with a long history of sludge management problems (pin-point flocs; >80% of floc <50 μm diameter; poor settling) was the focus of a study that entailed characterization of floc properties. This was coupled with parallel well-controlled lab-scale (LS) sequencing batch reactors (SBRs) treating the same wastewater and operated continuously over 1.5 years. Distinct differences in the proportion of proteins and polysaccharides associated with extracellular polymeric substances (EPS) were observed when comparing the properties of flocs from the FS and the LB systems. Further differences in the proportion of tightly bound (TB) and loosely bound (LB) fractions of EPS were also observed for flocs derived from conditions where differences in settling and dewatering properties of flocs occurred (i.e. FS and LS systems). FS flocs contained higher levels of EPS along with a higher proportion of LB than TB EPS, and possessing characteristics associated with non-filamentous bulking (SVI >150 mL/g). Floc formed in the LS system, following inoculation from sludge taken from the FS system, was markedly larger in size (>70% of floc >300 μm diameter), spherical in shape, compact and firm, and appeared to be granular in form. Flocs formed in the LS system, when an anoxic phase was introduced into the react stage of the SBR cycle, were found to be more hydrophobic and contained more TB and less loosely bound (LB) EPS when compared to the FS floc. TB-EPS contained a greater amount of protein, whereas the polysaccharide content of LB-EPS was larger. Protein was predominantly localized in the core region of granular flocs where cells were compactly packed. When assessing the operating conditions of the FS and LS systems parameters that appear to impact the floc properties and the transition to a granular form include dissolved oxygen (DO) concentration and food to microorganism (F/M) ratio.
Collapse
Affiliation(s)
- Mahendran Basuvaraj
- School of Environmental Studies and Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Jared Fein
- Wastewater Department, Rothsay, Rothsay, A Division of Darling International Canada Inc., Dundas, ON, L9H5G1, Canada
| | - Steven N Liss
- School of Environmental Studies and Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
48
|
Ding Z, Bourven I, Guibaud G, van Hullebusch ED, Panico A, Pirozzi F, Esposito G. Role of extracellular polymeric substances (EPS) production in bioaggregation: application to wastewater treatment. Appl Microbiol Biotechnol 2015; 99:9883-905. [DOI: 10.1007/s00253-015-6964-8] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/23/2015] [Accepted: 08/26/2015] [Indexed: 11/28/2022]
|
49
|
Huang MH, Zhang W, Zheng Y, Zhang W. Correlation among extracellular polymeric substances, tetracycline resistant bacteria and tetracycline resistance genes under trace tetracycline. CHEMOSPHERE 2014; 117:658-662. [PMID: 25461932 DOI: 10.1016/j.chemosphere.2014.09.078] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/19/2014] [Accepted: 09/20/2014] [Indexed: 06/04/2023]
Abstract
Antibiotic resistance occurrences and proliferation in activated sludge have attracted more and more attention nowadays. However, the role which extracellular polymeric substance (EPS) plays on the antibiotic resistance is not clear. The changes and correlation among EPS, tetracycline (TC) resistant bacteria (TRB) and TC resistance genes (TRGs) of sequencing batch reactors (SBRs) were investigated. Performance of SBR without TC was compared with two other SBRs to which different amounts of TC were added. Total average EPS contents were found to increase significantly from 66 mg g−1 VSS to 181 mg g−1 VSS as the TC concentrations increased from 0 to 100 μg L−1. As the EPS content increased, TRB in sludge of the three SBRs increased significantly from 105 to 106 colony forming unit mL−1 after being exposed to TC. In addition, the concentrations of three groups of TRGs (copies mL−1) were determined by real-time fluorescence quantitative polymerase chain reaction and followed the order: efflux pump genes > ribosome protected genes > degradation enzyme genes. The numbers of TRGs in the idle stage were larger than those in the aeration sludge. Correlation coefficients (R2) between EPS and TRB in sludge were 0.823 (p < 0.01) while the correlation between EPS and total TRGs was poor (R2 = 0.463, p > 0.05). But it showed the same tendency that EPS and TRGs in sludge increased with the increasing of TC.
Collapse
Affiliation(s)
- Man-hong Huang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai 201620, China.
| | | | | | | |
Collapse
|
50
|
More TT, Yadav JSS, Yan S, Tyagi RD, Surampalli RY. Extracellular polymeric substances of bacteria and their potential environmental applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2014; 144:1-25. [PMID: 24907407 DOI: 10.1016/j.jenvman.2014.05.010] [Citation(s) in RCA: 426] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 05/02/2014] [Accepted: 05/11/2014] [Indexed: 05/06/2023]
Abstract
Biopolymers are considered a potential alternative to conventional chemical polymers because of their ease of biodegradability, high efficiency, non-toxicity and non-secondary pollution. Recently, extracellular polymeric substances (EPS, biopolymers produced by the microorganisms) have been recognised by many researchers as a potential flocculent for their applications in various water, wastewater and sludge treatment processes. In this context, literature information on EPS is widely dispersed and is very scarce. Thus, this review marginalizes various studies conducted so far about EPS nature-production-recovery, properties, environmental applications and moreover, critically examines future research needs and advanced application prospective of the EPS. One of the most important aspect of chemical composition and structural details of different moieties of EPS in terms of carbohydrates, proteins, extracellular DNA, lipid and surfactants and humic substances are described. These chemical characteristics of EPS in relation to formation and properties of microbial aggregates as well as degradation of EPS in the matrix (biomass, flocs etc) are analyzed. The important engineering properties (based on structural characteristics) such as adsorption, biodegradability, hydrophilicity/hydrophobicity of EPS matrix are also discussed in details. Different aspects of EPS production process such as bacterial strain maintenance; inoculum and factors affecting EPS production were presented. The important factors affecting EPS production include growth phase, carbon and nitrogen sources and their ratio, role of other nutrients (phosphorus, micronutrients/trace elements, and vitamins), impact of pH, temperature, metals, aerobic versus anaerobic conditions and pure and mixed culture. The production of EPS in high concentration with high productivity is essential due to economic reasons. Therefore, the knowledge about all the aspects of EPS production (listed above) is highly essential to formulate a logical and scientific basis for the research and industrial activities. One of the very important issues in the production/application/biodegradation of EPS is how the EPS is extracted from the matrix or a culture broth. Moreover, EPS matrix available in different forms (crude, loosely bound, tightly bound, slime, capsular and purified) can be used as a bioflocculant material. Several chemical and physical methods for the extraction of EPS (crude form or purified form) from different sources have been analyzed and reported. There is ample information available in the literature about various EPS extraction methods. Flocculability, dewaterability and biosorption ability are the very attractive engineering properties of the EPS matrix. Recent information on important aspects of these properties qualitatively as well as quantitatively has been described. Recent information on the mechanism of flocculation mediated by EPS is presented. Potential role of EPS in sludge dewatering and biosorption phenomenon has been discussed in details. Different factors influencing the EPS ability to flocculate and dewaterability of different suspensions have been included. The factors considered for the discussion are cations, different forms of EPS, concentration of EPS, protein and carbohydrate content of EPS, molecular weight of EPS, pH of the suspension, temperature etc. These factors were selected for the study based upon their role in the flocculation and dewatering mechanism as well the most recent available literature findings on these factors. For example, only recently it has been demonstrated that there is an optimum EPS concentration for sludge flocculation/dewatering. High or low concentration of EPS can lead to destabilization of flocs. Role of EPS in environmental applications such as water treatment, wastewater flocculation and settling, colour removal from wastewater, sludge dewatering, metal removal and recovery, removal of toxic organic compounds, landfill leachate treatment, soil remediation and reclamation has been presented based on the most recent available information. However, data available on environmental application of EPS are very limited. Investigations are required for exploring the potential of field applications of EPS. Finally, the limitations in the knowledge gap are outlined and the research needs as well as future perspectives are highlighted.
Collapse
Affiliation(s)
- T T More
- Institut national de la recherche scientifique, Centre Eau, Terre & Environnement, Université du Québec, 490 de la Couronne, Québec, QC G1K 9A9, Canada.
| | - J S S Yadav
- Institut national de la recherche scientifique, Centre Eau, Terre & Environnement, Université du Québec, 490 de la Couronne, Québec, QC G1K 9A9, Canada
| | - S Yan
- Institut national de la recherche scientifique, Centre Eau, Terre & Environnement, Université du Québec, 490 de la Couronne, Québec, QC G1K 9A9, Canada
| | - R D Tyagi
- Institut national de la recherche scientifique, Centre Eau, Terre & Environnement, Université du Québec, 490 de la Couronne, Québec, QC G1K 9A9, Canada.
| | - R Y Surampalli
- U. S. Environmental Protection Agency, P.O. Box 17-2141, Kansas City, KS 66117, USA
| |
Collapse
|