1
|
Majumder D, Dey A, Ray S, Bhattacharya D, Nag M, Lahiri D. Use of genomics & proteomics in studying lipase producing microorganisms & its application. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100218. [PMID: 39281291 PMCID: PMC11402113 DOI: 10.1016/j.fochms.2024.100218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 09/18/2024]
Abstract
In biotechnological applications, lipases are recognized as the most widely utilized and versatile enzymes, pivotal in biocatalytic processes, predominantly produced by various microbial species. Utilizing omics technology, natural sources can be meticulously screened to find microbial flora which are responsible for oil production. Lipases are versatile biocatalysts. They are used in a variety of bioconversion reactions and are receiving a lot of attention because of the quick development of enzyme technology and its usefulness in industrial operations. This article offers recent insights into microbial lipase sources, including fungi, bacteria, and yeast, alongside traditional and modern methods of purification such as precipitation, immunopurification and chromatographic separation. Additionally, it explores innovative methods like the reversed micellar system, aqueous two-phase system (ATPS), and aqueous two-phase flotation (ATPF). The article deals with the use of microbial lipases in a variety of sectors, including the food, textile, leather, cosmetics, paper, detergent, while also critically analyzing lipase-producing microbes. Moreover, it highlights the role of lipases in biosensors, biodiesel production, tea processing, bioremediation, and racemization. This review provides the concept of the use of omics technique in the mechanism of screening of microbial species those are capable of producing lipase and also find the potential applications.
Collapse
Affiliation(s)
- Debashrita Majumder
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata, West Bengal, India
| | - Ankita Dey
- Department of Chemical Engineering, National Institute of Technology, Agartala, India
| | - Srimanta Ray
- Department of Chemical Engineering, National Institute of Technology, Agartala, India
| | - Debasmita Bhattacharya
- Department of Basic Science and Humanities, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata, West Bengal, India
| | - Moupriya Nag
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata, West Bengal, India
| | - Dibyajit Lahiri
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, University of Engineering and Management, Kolkata, West Bengal, India
| |
Collapse
|
2
|
Martău GA, López-Gómez JP, Călinoiu LF, Coldea TE, Mudura E, Vodnar DC. Editorial: Organic waste and by-products: derived compounds as functional agents from fermentation processes. Front Nutr 2024; 11:1453879. [PMID: 39285868 PMCID: PMC11404320 DOI: 10.3389/fnut.2024.1453879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Affiliation(s)
- Gheorghe Adrian Martău
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - José Pablo López-Gómez
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Potsdam, Germany
- AINIA, Paterna, Valencia, Spain
| | - Lavinia-Florina Călinoiu
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Elena Mudura
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Khizar A, Fatima M, Khan N, Rashid MA. Xylooligosaccharide supplementation in rice protein concentrate based diets: A comprehensive analysis of performance and health of Labeo rohita. J Anim Physiol Anim Nutr (Berl) 2024; 108:1059-1071. [PMID: 38500315 DOI: 10.1111/jpn.13951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
The primary aim of this study was to examine the impact of xylooligosaccharide (XOS) in rice protein concentrate (RPC) based diets on the growth performance, body composition, digestive enzymes, intestinal morphology and blood biochemistry of Labeo rohita fingerlings. Four different XOS levels (0%, 0.5%, 1% and 2%) were used at each RPC (75% and 100%) level. Twenty-five fish per tank with an average initial weight of 25 ± 0.05 g were randomly assigned (Randomised complete block design) to each of the 8 groups in triplicate aquaria (36 × 16 × 12″) and then fed with respective diets @ 3% body weight for 90 days. The results showed significant improvements in growth performance, such as increased weight gain %, specific growth rate, and protein efficiency ratio and improved feed conversion ratio in 1% XOS supplemented diet at 75% RPC. A significant decrease in serum alkaline phosphatase activity (ALP) and plasma melanodialdehyde (MDA) were observed at 1% XOS level in 75% RPC based diets, respectively. Meanwhile, the lowest total cholesterol and highest lysozyme activity were observed in 1% XOS supplemented diet at 75% RPC levels. Moreover, the serum (alanine aminotransferase and aspartate transaminase) and plasma (superoxide dismutase, triglyceride, high density and low density lipoprotein) activities showed nonsignificant effects among the treatments. Furthermore, the digestive enzymes (protease & lipase) and intestinal morphology were significantly influenced at 1% XOS in the 75% RPC-based diet. Polynomial regression analysis showed that 1.25% XOS is the optimum requirement for the growth of rohu fingerlings when fed at 75% RPC based diets. Overall, it was concluded that the 75% RPC diet was efficiently replaced by fishmeal along with 1% XOS addition in L. rohita fingerlings without any negative effect on growth performance and intestinal health.
Collapse
Affiliation(s)
- Ayesha Khizar
- Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mahroze Fatima
- Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Noor Khan
- Institute of Zoology, University of Punjab, Lahore, Pakistan
| | - Muhammad Afzal Rashid
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
4
|
Khizar A, Fatima M, Khan N, Rashid MA. Effects of phytase inclusion in diets containing rice protein concentrate (RPC) on the nutrient digestibility, growth and chemical characteristics of rohu (Labeo rohita). PLoS One 2024; 19:e0302859. [PMID: 38787870 PMCID: PMC11125473 DOI: 10.1371/journal.pone.0302859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/11/2024] [Indexed: 05/26/2024] Open
Abstract
The objective of the current study was to assess the impact of dietary phytase supplementation on Labeo rohita fingerlings and to examine the effects on growth, nutrient digestibility and chemical characteristics of diets containing rice protein concentrate (RPC) as a major protein source. Six experimental diets were made, i.e., a positive control (fishmeal-based diet with no phytase), FM0; a negative control (RPC-based diet with no phytase), RPC0; and four supplemental phytase levels (250, 500, 1000, and 2000 FTU/kg). Fingerlings with an average weight of 9.42 ± 0.02 grams (mean ± SD) were randomly distributed into six experimental groups of three replicates, each containing 25 fish per tank (75 liters of water), provided with experimental diets at a rate equivalent to 5% of their body weight for 90 days, and uneaten feed was collected after 2 hours to determine feed consumption. The feces were collected before feeding to estimate digestibility. Phytase in combination with the RPC-based diet significantly (p < 0.05) enhanced phytate phosphorus in vitro hydrolysis; growth performance; nutrient (crude protein, crude fat, moisture and gross energy) and mineral (P, Ca, Mg, Na, K, Zn, Mn and Cu) digestibility; digestive enzyme (protease, lipase and amylase) activity; and mineral deposition up to 1000 FTU/kg phytase. However, the hepatosomatic and viscerosomatic indices and carcass composition were not influenced (p > 0.05) by phytase supplementation. Increasing phytase supplementation in the RPC-based diets led to a significant (p < 0.05) decrease in the serum biochemical parameters (alkaline phosphatase activity, aspartate aminotransferase, alanine aminotransferase), which resulted in improved liver health. In conclusion, phytase-supplemented RPC-based diets improved the growth, mineral/nutrient digestibility, digestive enzymes, serum biochemistry, and mineral deposition of L. rohita fingerlings up to 1000 FTU/kg. Broken line regression analysis revealed that the optimum phytase concentration in the RPC-based diet for L. rohita was 874.19 FTU/kg.
Collapse
Affiliation(s)
- Ayesha Khizar
- Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mahroze Fatima
- Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Noor Khan
- Institute of Zoology, University of Punjab, Lahore, Pakistan
| | - Muhammad Afzal Rashid
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
5
|
Kreling NE, Fagundes VD, Simon V, Colla LM. Co-production of lipases and biosurfactants by Bacillus methylotrophicus in solid-state fermentation. 3 Biotech 2024; 14:78. [PMID: 38371903 PMCID: PMC10869328 DOI: 10.1007/s13205-023-03910-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/28/2023] [Indexed: 02/20/2024] Open
Abstract
The production of biosurfactants and lipases through solid-state fermentation (SSF) processes remains relatively unexplored, especially in bacterial applications. The use of solid matrices, eliminating the need for precipitation and recovery processes, holds significant potential for facilitating bioremediation. This study aimed to simultaneously produce biocompounds via SSF using Bacillus methylotrophicus and employ the fermented substrate for remediating soil contaminated with 20% biodiesel. Initial efforts focused on determining optimal conditions for concurrent lipase and biosurfactant production during an 8-day fermentation period. The selected conditions, including a substrate mix of wheat bran and corn cob (80/20), 75% moisture, 1% glycerol inducer, 2% nitrogen, and 1% sugarcane molasses, resulted in a 24.61% reduction in surface tension and lipase activity of 3.54 ± 1.20 U. Subsequently, a 90-day bioremediation of clayey soil contaminated with biodiesel showcased notable biodegradation, reaching 72.08 ± 0.36% within the initial 60 days. The incorporation of biocompounds, biostimulation, and bioaugmentation (Test E2) contributed to this efficacy. The use of the fermented substrate as a biostimulant and bioaugmentation agent facilitated in situ biocompound production in the soil, leading to a 23.97% reduction in surface tension and lipase production of 1.52 ± 0.19 U. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03910-7.
Collapse
Affiliation(s)
- Naiara Elisa Kreling
- Institute of Technology, Post-graduation Program in Civil and Environmental Engineering, Universidade de Passo Fundo, Campus I, L1 Building, BR 285, Bairro São José, 611, Passo Fundo, RS CEP: 99052-900 Brazil
| | - Victória Dutra Fagundes
- Institute of Technology, Post-graduation Program in Civil and Environmental Engineering, Universidade de Passo Fundo, Campus I, L1 Building, BR 285, Bairro São José, 611, Passo Fundo, RS CEP: 99052-900 Brazil
| | - Viviane Simon
- Institute of Technology, Post-graduation Program in Civil and Environmental Engineering, Universidade de Passo Fundo, Campus I, L1 Building, BR 285, Bairro São José, 611, Passo Fundo, RS CEP: 99052-900 Brazil
| | - Luciane Maria Colla
- Institute of Technology, Post-graduation Program in Civil and Environmental Engineering, Universidade de Passo Fundo, Campus I, L1 Building, BR 285, Bairro São José, 611, Passo Fundo, RS CEP: 99052-900 Brazil
| |
Collapse
|
6
|
Leykun S, Johansson E, Vetukuri RR, Ceresino EB, Gessesse A. A thermostable organic solvent-tolerant lipase from Brevibacillus sp.: production and integrated downstream processing using an alcohol-salt-based aqueous two-phase system. Front Microbiol 2023; 14:1270270. [PMID: 37901828 PMCID: PMC10612343 DOI: 10.3389/fmicb.2023.1270270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023] Open
Abstract
Lipases are used for the synthesis of different compounds in the chemical, pharmaceutical, and food industries. Most of the reactions are carried out in non-aqueous media and often at elevated temperature, requiring the use of organic solvent-tolerant thermostable lipases. However, most known lipases are not stable in the presence of organic solvents and at elevated temperature. In this study, an organic solvent-tolerant thermostable lipase was obtained from Brevibacillus sp. SHI-160, a moderate thermophile isolated from a hot spring in the East African Rift Valley. The enzyme was optimally active at 65°C and retained over 90% of its activity after 1 h of incubation at 70°C. High lipase activity was measured in the pH range of 6.5 to 9.0 with an optimum pH of 8.5. The enzyme was stable in the presence of both polar and non-polar organic solvents. The stability of the enzyme in the presence of polar organic solvents allowed the development of an efficient downstream processing using an alcohol-salt-based aqueous two-phase system (ATPS). Thus, in the presence of 2% salt, over 98% of the enzyme partitioned to the alcohol phase. The ATPS-recovered enzyme was directly immobilized on a solid support through adsorption and successfully used to catalyze a transesterification reaction between paranitrophenyl palmitate and short-chain alcohols in non-aqueous media. This shows the potential of lipase SHI-160 to catalyze reactions in non-aqueous media for the synthesis of valuable compounds. The integrated approach developed for enzyme production and cheap and efficient downstream processing using ATPS could allow a significant reduction in enzyme production costs. The results also show the potential of extreme environments in the East African Rift Valley as sources of valuable microbial genetic resources for the isolation of novel lipases and other industrially important enzymes.
Collapse
Affiliation(s)
- Senaite Leykun
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Eva Johansson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Ramesh Raju Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Elaine Berger Ceresino
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Amare Gessesse
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
7
|
Yuan X, Gao S, Tan Y, Cao J, Yang S, Zheng B. Production of red yeast rice rich in monacolin K by variable temperature solid fermentation of Monascus purpureus. RSC Adv 2023; 13:27303-27308. [PMID: 37705986 PMCID: PMC10496031 DOI: 10.1039/d3ra04374f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
Hypercholesterolemia represents a serious public health problem as it significantly increases the risk of developing cardiovascular diseases. Monacolin K (MK) in red yeast rice is an active compound that can effectively lower plasma cholesterol. To enhance the yield of MK in solid state fermentation of Monascus purpureus HNU01, the effects of different variables were systematically examined in single-factor experiments. The optimal conditions for the production of red yeast rice rich in MK were as follows: initial pH value 5.5, initial moisture content 40% w/w, glucose 50 g L-1, peptone 20 g L-1, MgSO4 0.5 g L-1, KH2PO4 1 g L-1, variable temperature fermentation (30 °C for the first 3 days and then 24 °C for 15 days), total fermentation time of 18 days, and additional water added at day 4 at 10% w/w. Under the above optimized conditions, the MK content of red yeast rice produced by fermentation was 9.5 mg g-1. No citrinin was detected in any of the batches of fermentation products. The results will be useful for the large-scale production of high-quality red yeast rice with health benefits for consumers.
Collapse
Affiliation(s)
- Xinsong Yuan
- School of Chemistry and Pharmaceutical Engineering, Hefei Normal University Hefei 230601 China
| | - Shan Gao
- School of Chemistry and Pharmaceutical Engineering, Hefei Normal University Hefei 230601 China
| | - Yudie Tan
- School of Chemistry and Pharmaceutical Engineering, Hefei Normal University Hefei 230601 China
| | - Jiyun Cao
- School of Chemistry and Pharmaceutical Engineering, Hefei Normal University Hefei 230601 China
| | - Shiwei Yang
- School of Chemistry and Pharmaceutical Engineering, Hefei Normal University Hefei 230601 China
| | - Bin Zheng
- School of Chemistry and Pharmaceutical Engineering, Hefei Normal University Hefei 230601 China
| |
Collapse
|
8
|
Yang J, Liang R, Mao Y, Dong P, Zhu L, Luo X, Zhang Y, Yang X. Potential inhibitory effect of carbon dioxide on the spoilage behaviors of Pseudomonas fragi in high-oxygen packaged beef during refrigerated storage. Food Microbiol 2023; 112:104229. [PMID: 36906301 DOI: 10.1016/j.fm.2023.104229] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/15/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023]
Abstract
Pseudomonas fragi is a dominant meat spoilage organism under high-oxygen modified atmosphere packaging (HiOx-MAP). This work investigated the effects of CO2 on P. fragi growth and the related spoilage phenomena of HiOx-MAP beef. Minced beef incubated with P. fragi T1, a strain owning the strongest spoilage potential among isolates, was stored under CO2-enriched HiOx-MAP (TMAP; 50% O2/40% CO2/10% N2) or non-CO2 HiOx-MAP (CMAP; 50% O2/50% N2) at 4 °C for 14 days. Compared to CMAP, TMAP maintained sufficient O2 levels to endow beef with higher a* values and meat color stability due to lower P. fragi counts from day 1 (P < 0.05). TMAP samples also showed lower (P < 0.05) lipase activity and protease activity within 14-days and 6-days than CMAP samples respectively. TMAP delayed the significantly increased pH and total volatile basic nitrogen contents occurred in CMAP beef during storage. Despite TMAP markedly promoted the lipid oxidation associated with higher concentrations of hexanal and 2,3-octanedione than CMAP (P < 0.05), TMAP beef retained an acceptable organoleptic odor due to a CO2-inhibition on the microbial-induced 2,3-butanedione and ethyl 2-butenoate formation. This study provided a comprehensive insight into the antibacterial mechanism of CO2 on P. fragi in HiOx-MAP beef.
Collapse
Affiliation(s)
- Jun Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, PR China
| | - Rongrong Liang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, PR China
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, PR China
| | - Pengcheng Dong
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, PR China
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, PR China
| | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, PR China
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, PR China.
| | - Xiaoyin Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
9
|
Asitok A, Ekpenyong M, Ogarekpe N, Antigha R, Takon I, Rao A, Iheanacho J, Antai S. Intracellular-to-extracellular localization switch of acidic lipase in Enterobacter cloacae: evaluation of production kinetics and enantioselective esterification potential for pharmaceutical applications. Prep Biochem Biotechnol 2022; 53:542-556. [PMID: 36018558 DOI: 10.1080/10826068.2022.2114010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Downstream processing is a significant part of a production process and accounts for 50-90% of the production cost of biotechnological products. Post-fermentation localization of a microbial metabolite contributes significantly to the recovery cost of the product. Enterobacter cloacae produced naturally, acidic lipase with a 0.023:1 extracellular localization ratio. This research aimed to re-direct the localization of lipase to the extracellular milieu to reduce recovery costs using multi-objective response surface optimization (MO-RSM). The approach resulted in a 1:0.32 extracellular: intracellular lipase ratio, with product formation kinetics of Luedeking-Piret function showing a significant switch from a completely growth-associated intracellular production to a predominantly non-growth-associated extracellular localization. The enzyme was purified by an aqueous two-phase system which extracted 95.22% lipase with 72.36 purity. Characterization of the enzyme showed a molecular weight of 55.7 kDa, kcat of 68.59 s-1, and a Km of 0.63 mmol. Lipase activity occurred optimally at pH 2.5-3.5 and 50 °C, and was stable in most organic solvents tested. The acidic lipase demonstrated pH-dependent enantioselective esterification in resolving (R, S)-ibuprofen (E = 14, pH 4.5) and (R, S)-Naproxen (E = 13, pH 2.5), with an enantioselective preference for (S)-enantiomer in both drugs thus underpinning its potential for pharmaceutical applications.
Collapse
Affiliation(s)
- Atim Asitok
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria.,University of Calabar Collection of Microorganisms (UCCM), University of Calabar, Calabar, Nigeria
| | - Maurice Ekpenyong
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria.,University of Calabar Collection of Microorganisms (UCCM), University of Calabar, Calabar, Nigeria
| | - Nkpa Ogarekpe
- Environmental Engineering Unit, Department of Civil Engineering, Faculty of Engineering, Cross River University of Technology, Calabar, Nigeria
| | - Richard Antigha
- Environmental Engineering Unit, Department of Civil Engineering, Faculty of Engineering, Cross River University of Technology, Calabar, Nigeria
| | - Iquo Takon
- Industrial Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Anitha Rao
- University of Calabar Collection of Microorganisms (UCCM), University of Calabar, Calabar, Nigeria.,Industrial Microbiology and Biotechnology Unit, Department of Microbiology, Faculty of Biological Sciences, University of Calabar, Calabar, Nigeria
| | - Juliet Iheanacho
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria
| | - Sylvester Antai
- Environmental Microbiology and Biotechnology Unit, Department of Microbiology, University of Calabar, Calabar, Nigeria.,University of Calabar Collection of Microorganisms (UCCM), University of Calabar, Calabar, Nigeria
| |
Collapse
|
10
|
Vivek K, Sandhia GS, Subramaniyan S. Extremophilic lipases for industrial applications: A general review. Biotechnol Adv 2022; 60:108002. [PMID: 35688350 DOI: 10.1016/j.biotechadv.2022.108002] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/09/2022] [Accepted: 06/02/2022] [Indexed: 01/10/2023]
Abstract
With industrialization and development in modern science enzymes and their applications increased widely. There is always a hunt for new proficient enzymes with novel properties to meet specific needs of various industrial sectors. Along with the high efficiency, the green and eco-friendly side of enzymes attracts human attention, as they form a true answer to counter the hazardous and toxic conventional industrial catalyst. Lipases have always earned industrial attention due to the broad range of hydrolytic and synthetic reactions they catalyse. When these catalytic properties get accompanied by features like temperature stability, pH stability, and solvent stability lipases becomes an appropriate tool for use in many industrial processes. Extremophilic lipases offer the same, thermostable: hot and cold active thermophilic and psychrophilic lipases, acid and alkali resistant and active acidophilic and alkaliphilic lipases, and salt tolerant halophilic lipases form excellent biocatalyst for detergent formulations, biofuel synthesis, ester synthesis, food processing, pharmaceuticals, leather, and paper industry. An interesting application of these lipases is in the bioremediation of lipid waste in harsh environments. The review gives a brief account on various extremophilic lipases with emphasis on thermophilic, psychrophilic, halophilic, alkaliphilic, and acidophilic lipases, their sources, biochemical properties, and potential applications in recent decades.
Collapse
Affiliation(s)
- K Vivek
- Postgraduate Department of Botany and Research Centre (University of Kerala), University College, Thiruvananthapuram 695034, India
| | - G S Sandhia
- Postgraduate Department of Botany and Research Centre (University of Kerala), University College, Thiruvananthapuram 695034, India
| | - S Subramaniyan
- Postgraduate Department of Botany and Research Centre (University of Kerala), University College, Thiruvananthapuram 695034, India.
| |
Collapse
|
11
|
Mondal S, Biswal D, Pal K, Rakshit S, Kumar Halder S, Mandavgane SA, Bera D, Hossain M, Chandra Mondal K. Biodeinking of waste papers using combinatorial fungal enzymes and subsequent production of butanol from effluent. BIORESOURCE TECHNOLOGY 2022; 353:127078. [PMID: 35395367 DOI: 10.1016/j.biortech.2022.127078] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
The present study aimed to enzymatic deinking of waste papers and to valorize the effluent for biobutanol production. Application of fungal enzymatic cocktail (cellulase, amylase, xylanase, pectinase, lipase, and ligninase) on office used paper, newspaper, and ballpen written paper leading to improvement in brightness (84.91, 72.51, 76.69 % ISO), InKd (82.89, 68.95, 76.49%), κ-number (12.9, 13.6, and 13.1), opacity (27.91, 30.07, and 2.85%), tensile strength (49.24, 45.31, and 46.98 Nm/g), respectively and indices were consistent with chemical treated pulps. The quality of effluent generated during enzymatic deinking in respect to BOD and COD level was eco-friendlier than the chemical process. The enzyme-treated effluent was employed as supporting substrate for butanol (18.4 g/l) production by Clostridium acetobutylicum ATCC824. Material balance and life cycle assessment of the whole processes were evaluated to validate its industrial and environmental relevance.
Collapse
Affiliation(s)
- Subhadeep Mondal
- Center for Life Sciences, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Divyajyoti Biswal
- Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India
| | - Kalyanbrata Pal
- Department of Microbiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Subham Rakshit
- Department of Microbiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Suman Kumar Halder
- Department of Microbiology, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Sachin A Mandavgane
- Visvesvaraya National Institute of Technology, Nagpur 440010, Maharashtra, India
| | - Debabrata Bera
- Food Technology & Bio-Chemical Engineering, Jadavpur University 700032, Kolkata, India
| | - Maidul Hossain
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Keshab Chandra Mondal
- Department of Microbiology, Vidyasagar University, Midnapore 721102, West Bengal, India.
| |
Collapse
|
12
|
Isolated and fermented orange and grape wastes: Bromatological characterization and phytase, lipase and protease source. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Ghasemzadeh B, Matin AA, Ebadi M, Habibi B. Aspergillus niger based lipase-tween 80 aggregates as interfacial activated biocatalyst for biodiesel production: Optimization using response surface methodology. MAIN GROUP CHEMISTRY 2022. [DOI: 10.3233/mgc-220010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Biodiesel is a renewable energy source, which is produced through transesterification reactions. Despite great attention to develop enzymatic biodiesel production, there are serious obstacles to the industrial development of it such as its cost and slow reaction rate. Along with disadvantages, there are several advantages for enzymatic biodiesel production. Higher purity of fuel and glycerol is known as the most important achievement of enzymatic process. In this study, performance of four different fungi for lipase production was investigated and Aspergillus niger was selected as enzyme source. Lipase production were optimized using experimental design and the optimized factors were determined as pH 5, temperature 30 °C, Potato Dextrose Broth (PDB) 3 % w/v, olive oil 1.50 % v/v, with maximum lipase activity of 42.8±0.51 U/mg. In order to interfacial activation of the lipase, effect of surfactants was studied. Therefore, surfactant-enzyme aggregates were used as biocatalyst for transesterification reaction. Effects of factors on biodiesel yield were studied too. The yield was 96.41±1.20 % at the optimized conditions (methanol/oil molar ratio (5.50:1), enzyme concentration 19 % v/ w, Tween 80 concentration 19 mg L– 1, temperature 40 °C and reaction time 46 h).
Collapse
Affiliation(s)
- Bahar Ghasemzadeh
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Amir Abbas Matin
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
- Molecular Science and Engineering Research Group (MSERG), Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mostafa Ebadi
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Biuck Habibi
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| |
Collapse
|
14
|
de Medeiros WRDB, de Paiva WKV, Diniz DS, Padilha CEDA, de Azevedo WM, de Assis CF, dos Santos ES, de Sousa Junior FC. Low-cost approaches to producing and concentrating stable lipases and the evaluation of inductors. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00223-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
El Sheikha AF, Ray RC. Bioprocessing of Horticultural Wastes by Solid-State Fermentation into Value-Added/Innovative Bioproducts: A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2004161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Aly Farag El Sheikha
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Canada
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, China
| | - Ramesh C. Ray
- ICAR-Central Tuber Crops Research Institute (Regional Centre), Bhubaneswar, India
- Centre for Food Biology & Environment Studies, Bhubaneswar, India
| |
Collapse
|
16
|
OKINO-DELGADO CLARISSAH, PEREIRA MILENESTEFANI, PRADO DÉBORAZDO, FLEURI LUCIANAFRANCISCO. Evaluation of the influence of chemical and physical factors on mixtures of fungal and plant lipases. AN ACAD BRAS CIENC 2022. [DOI: 10.1590/0001-3765202220201268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Kisová Z, Pavlović J, Šefčiková L, Bučková M, Puškárová A, Kraková L, Šišková AO, Kleinová A, Machatová Z, Pangallo D. Removal of overpainting from an historical painting of the XVIII Century: A yeast enzymatic approach. J Biotechnol 2021; 335:55-64. [PMID: 34090948 DOI: 10.1016/j.jbiotec.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/17/2021] [Accepted: 06/01/2021] [Indexed: 11/17/2022]
Abstract
Biocleaning of cultural heritage items is mainly performed using living microorganisms. Approaches utilizing the enzymes of isolated microorganisms have not been frequently investigated. To find an enzymatic alternative for the removal of an oil-based overpainting, we focused on the characterization and use of a yeast Extracellular Enzymatic Mixture (EEM). A historical silk yeast was selected for its lipolytic properties and its EEM was extracted after cultivation on a medium supplemented with linseed oil. The EEM protein content was visualized by SDS-PAGE, its concentration assessed by fluorimeter and the enzymatic activity evaluated by p-NPP spectrophotometric lipase assay. The yeast growth was suppressed by adding diverse metal ions (Cd, Zn, Cr and Cu) in Reasoner's 2A (R2A) broth, while the quantity and activity of EEM were affected by adding Fe and Pb. Various delivery systems (agar-agar, tylose and klucel G) alone or in a combination with EEM were assayed on the historical painting surface. The colorimetric measurements and the ATR-FTIR analysis indicated that the combinations tylose-EEM and klucel G-EEM can be easily and effectively applied as biocleaning procedures to remove oil-based overpainting from fragile and valuable historical painting surfaces.
Collapse
Affiliation(s)
- Zuzana Kisová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Jelena Pavlović
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Lucia Šefčiková
- Academy of Fine Arts and Design in Bratislava, Hviezdoslavovo námestie 18, 814 37 Bratislava, Slovakia
| | - Mária Bučková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Andrea Puškárová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Lucia Kraková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia
| | - Alena Opálková Šišková
- Polymer Institute of Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia; Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 13 Bratislava, Slovakia
| | - Angela Kleinová
- Polymer Institute of Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Zuzana Machatová
- Academy of Fine Arts and Design in Bratislava, Hviezdoslavovo námestie 18, 814 37 Bratislava, Slovakia
| | - Domenico Pangallo
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; Caravella, s.r.o., Tupolevova 2, 851 01 Bratislava, Slovakia.
| |
Collapse
|
18
|
Prevalence of lipase producer Aspergillus niger in nuts and anti-biofilm efficacy of its crude lipase against some human pathogenic bacteria. Sci Rep 2021; 11:7981. [PMID: 33846447 PMCID: PMC8041791 DOI: 10.1038/s41598-021-87079-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Nuts are the natural source of healthy lipids, proteins, and omega-3. They are susceptible to fungal and mycotoxins contamination because of their high nutritional value. Twenty-five species comprising 12 genera were isolated from 80 samples of dried fruits and nuts using the dilution plate method. Peanut recorded the highest level of contamination followed by coconut; almond and raisin were the lowest. Aspergillus was the most prevalent genus and A.niger, was the most dominant species. The morphological identification of the selected A.niger isolates as they were detected in high frequency of occurrence was confirmed by using 18SrRNA sequence. Ochratoxin biosynthesis gene Aopks was detected in the tested isolates. Lipase production by the selected A.niger isolates was determined with enzyme activity index (EAI) ranging from 2.02 to 3.28. A.niger-26 was the highest lipase producer with enzyme activity of 0.6 ± 0.1 U/ml by the trimetric method. Lip2 gene was also detected in the tested isolates. Finally, the antibacterial and antibiofilm efficiency of crude lipase against some human pathogens was monitored. Results exhibited great antibacterial efficacy with minimum bactericidal concentration (MBC) of 20 to 40 µl/100 µl against Escherichiacoli, Pseudomonasaeruginosa, Proteusmirabilis, and Methicillin-resistant Staphylococcusaureus (MRSA). Interestingly, significant anti-biofilm efficacy with inhibition percentages of 95.3, 74.9, 77.1 and 93.6% was observed against the tested pathogens, respectively.
Collapse
|
19
|
Amin M, Bhatti HN, Nawaz S, Bilal M. Penicillium fellutanum lipase as a green and ecofriendly biocatalyst for depolymerization of poly (ɛ-caprolactone): Biochemical, kinetic, and thermodynamic investigations. Biotechnol Appl Biochem 2021; 69:410-419. [PMID: 33559904 DOI: 10.1002/bab.2118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/06/2021] [Indexed: 11/07/2022]
Abstract
Microbial lipases hold a prominent position in biocatalysis by their capability to mediate reactions in aqueous and nonaqueous media. Herein, a lipase from Penicillium fellutanum was biochemically characterized and investigated its potential to degrade poly (ɛ-caprolactone) (PCL). The lipase exhibited stability over a broad pH spectrum and performed best at pH 8.5 and 45 °C. The activation energy was determined to be 66.37 kJ/mol by Arrhenius plot, whereas Km and Vmax for pNPP hydrolysis were 0.75 mM and 83.33 μmol/mL/Min, respectively. A rise in temperature reduced the Gibbs free energy, whereas the enthalpy of thermal unfolding (∆H*) remains the same up to 54 °C following a modest decline at 61 °C. The entropy (∆S*) of the enzyme demonstrated an increasing trend up to 54 °C and dropped at 61 °C. Lipase retained stability by incubation with various industrially relevant organic solvents (benzene, hexanol, ether, and acetone). However, exposure to urea and guanidine hydrochloride influenced its catalytic activity to different extents. Under optimal operating conditions, lipase catalyzed the excellent degradation of PCL film degradation leading to 66% weight loss, increased surface erosion, and crystallinity. Fourier-transform infrared spectrometry, differential scanning calorimetry, and scanning electron microscopy studies monitored the weight loss after enzymatic hydrolysis. The findings indicate that P. fellutanum lipase would be a prospective biocatalytic system for polyesters depolymerization and environmental remediation.
Collapse
Affiliation(s)
- Misbah Amin
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Haq Nawaz Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Sadia Nawaz
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, People's Republic of China
| |
Collapse
|
20
|
Darwish AMG, Abo Nahas HH, Korra YH, Osman AA, El-Kholy WM, Reyes-Córdova M, Saied EM, Abdel-Azeem AM. Fungal Lipases: Insights into Molecular Structures and Biotechnological Applications in Medicine and Dairy Industry. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
21
|
Li C, Zhou J, Du G, Chen J, Takahashi S, Liu S. Developing Aspergillus niger as a cell factory for food enzyme production. Biotechnol Adv 2020; 44:107630. [PMID: 32919011 DOI: 10.1016/j.biotechadv.2020.107630] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 02/06/2023]
Abstract
Aspergillus niger has become one of the most important hosts for food enzyme production due to its unique food safety characteristics and excellent protein secretion systems. A series of food enzymes such as glucoamylase have been commercially produced by A. niger strains, making this species a suitable platform for the engineered of strains with improved enzyme production. However, difficulties in genetic manipulations and shortage of expression strategies limit the progress in this regard. Moreover, several mycotoxins have recently been detected in some A. niger strains, which raises the necessity for a regulatory approval process for food enzyme production. With robust strains, processing engineering strategies are also needed for producing the enzymes on a large scale, which is also challenging for A. niger, since its culture is aerobic, and non-Newtonian fluid properties are developed during submerged culture, making mixing and aeration very energy-intensive. In this article, the progress and challenges of developing A. niger for the production of food enzymes are reviewed, including its genetic manipulations, strategies for more efficient production of food enzymes, and elimination of mycotoxins for product safety.
Collapse
Affiliation(s)
- Cen Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Guocheng Du
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Jian Chen
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Shunji Takahashi
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Song Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
22
|
El-Ghonemy DH, Ali TH, Hassanein NM, Abdellah EM, Fadel M, Awad GEA, Abdou DAM. Thermo-alkali-stable lipase from a novel Aspergillus niger: statistical optimization, enzyme purification, immobilization and its application in biodiesel production. Prep Biochem Biotechnol 2020; 51:225-240. [PMID: 32808876 DOI: 10.1080/10826068.2020.1805759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The influences of nutritional components affecting lipase production from the new Aspergillus niger using wheat bran as substrate were studied by employing Plackett-Burman and central composite statistical designs. Out of the 11 medium components tested, sucrose, KH2PO4 and MgSO4 at final concentrations of 3.0, 1.0 and 0.5 g/L, respectively, were reported to contribute positively to enzyme production (20.09 ± 0.98 U/g ds). The enzyme was purified through ammonium sulfate precipitation followed by Sephadex G-100 gel filtration. Molecular mass of the purified lipase was 57 kDa as evident on SDS-PAGE. Different methods of immobilization were studied and the highest immobilization yield of 81.7 ± 2.18% was reported with agarose (2%) and the optimum temperature was raised from 45 to 50 °C. Immobilized lipase could retain 80% of its original activity at 60 °C after 1 hr of incubation, and was stable at pH values between neutral and alkaline pH. Lipase-catalyzed transesterification process of fungal oil resulted in a fatty acid methyl ester yield consisting of a high percentage of polyunsaturated fatty acids (83.6%), making it appropriate to be used as winter-grade biodiesel. The operational stability studies revealed that the immobilized lipase could keep 70% of its total activity after 5 cycles of the transesterification process.
Collapse
Affiliation(s)
- Dina H El-Ghonemy
- Microbial Chemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, Egypt
| | - Thanaa H Ali
- Microbial Chemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, Egypt
| | - Naziha M Hassanein
- Microbiology Department, Faculty of Science, Ain Shams University, Abbaseyya, Egypt
| | - Eman M Abdellah
- Microbial Chemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, Egypt
| | - Mohamed Fadel
- Microbial Chemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, Egypt
| | - Ghada E A Awad
- Chemistry Natural and Microbial Products Department, Pharmaceutical and Drug Industries Chemistry Division, National Research Centre, Giza, Egypt
| | - Dalia A M Abdou
- Microbiology Department, Faculty of Science, Ain Shams University, Abbaseyya, Egypt
| |
Collapse
|
23
|
Molecular Identification, Production and Optimization of Lipase from Oil Contaminated Soil using Submerged Fermentation. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.35] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Nady D, Zaki A, Raslan M, Hozayen W. Enhancement of microbial lipase activity via immobilization over sodium titanate nanotubes for fatty acid methyl esters production. Int J Biol Macromol 2020; 146:1169-1179. [DOI: 10.1016/j.ijbiomac.2019.09.240] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 11/24/2022]
|
25
|
Zhu SY, Xu Y, Yu XW. Improved Homologous Expression of the Acidic Lipase from Aspergillus niger. J Microbiol Biotechnol 2020; 30:196-205. [PMID: 31752069 PMCID: PMC9728306 DOI: 10.4014/jmb.1906.06028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, the acidic lipase from Aspergillus niger (ANL) was homologously expressed in A. niger. The expression of ANL was significantly improved by the expression of the native ANL with the introns, the addition of the Kozak sequence and the optimization of the signal sequences. When the cDNA sequence of ANL fused with the glaA signal was expressed under the gpdA promoter in A. niger, no lipase activity could be detected. We then tried to improve the expression by using the full-length ANL gene containing three introns, and the lipase activity in the supernatant reached 75.80 U/ml, probably as a result of a more stable mRNA structure. The expression was further improved to 100.60 U/ml by introducing a Kozak sequence around the start codon due to a higher translation efficiency. Finally, the effects of three signal sequences including the cbhI signal, the ANL signal and the glaA signal on the lipase expression were evaluated. The transformant with the cbhI signal showed the highest lipase activity (314.67 U/ml), which was 1.90-fold and 3.13-fold higher than those with the ANL signal and the glaA signal, respectively. The acidic lipase was characterized and its highest activity was detected at pH 3.0 and a temperature of 45°C. These results provided promising strategies for the production of the acidic lipase from A. niger.
Collapse
Affiliation(s)
- Si-Yuan Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China
| | - Xiao-Wei Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China,Corresponding author Phone: +86-510-85918201 Fax: +86-510-85918201 E-mail:
| |
Collapse
|
26
|
de Azevedo WM, de Oliveira LFR, Alcântara MA, Cordeiro AMTDM, Damasceno KSFDSC, Assis CFD, Sousa Junior FCD. Turning cacay butter and wheat bran into substrate for lipase production by Aspergillus terreus NRRL-255. Prep Biochem Biotechnol 2020; 50:689-696. [PMID: 32065557 DOI: 10.1080/10826068.2020.1728698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cacay oil and butter were evaluated as enzymatic inducers for lipase production from Aspergillus terreus NRRL-255 by solid-state fermentation (SSF). Initially, physicochemical characteristics of agro-industrial wastes were evaluated in order to identify a potential solid substrate for lipase production. Higher water absorption index (3.65 g H2O/g substrate), adequate mineral content, great carbon source, and nitrogen concentration were factors that influenced the choice of wheat bran as a solid substrate. Cacay butter presented the highest lipolytic activity (308.14 U g-1) in the screening of lipid inducer. Then, the effects of lipid inducer concentration (cacay butter), temperature, pH, moisture, and fermentation time were evaluated on process performance using multivariate statistical methodology. Under optimal conditions, the highest lipase activity observed was 2,867.18 U g-1. Regarding the lipase characterization, maximum relative activity was obtained at pH 7.0 and at 35 °C. An inhibitory effect was observed for Ca2+, Mn2+, Zn2+, Fe2+, and Cu2+ ions. Lipase activity was increased with the reduction of sodium dodecyl sulfate (SDS) concentration and the increase of Triton X-100. Therefore, the use of wheat bran as a solid substrate combined with cacay butter demonstrated a substantial lipase production, indicating its biotechnological industrial potential.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francisco Caninde de Sousa Junior
- Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Norte, Natal-RN, Brazil.,Department of Pharmacy, Federal University of Rio Grande do Norte, Natal-RN, Brazil
| |
Collapse
|
27
|
EICHLER PAULO, BASTIANI DANIELAC, SANTOS FERNANDOA, AYUB MARCOA. Lipase production by Aspergillus brasiliensis in solid-state cultivation of malt bagasse in different bioreactors configurations. AN ACAD BRAS CIENC 2020; 92:e20180856. [DOI: 10.1590/0001-3765202020180856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/21/2018] [Indexed: 11/22/2022] Open
Affiliation(s)
- PAULO EICHLER
- Universidade Federal do Rio Grande do Sul /UFRGS, Brazil
| | | | | | | |
Collapse
|
28
|
Zhang XF, Ai YH, Xu Y, Yu XW. High-level expression of Aspergillus niger lipase in Pichia pastoris: Characterization and gastric digestion in vitro. Food Chem 2019; 274:305-313. [DOI: 10.1016/j.foodchem.2018.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 08/07/2018] [Accepted: 09/03/2018] [Indexed: 10/28/2022]
|
29
|
OHARA A, SANTOS JGD, ANGELOTTI JAF, BARBOSA PDPM, DIAS FFG, BAGAGLI MP, SATO HH, CASTRO RJSD. A multicomponent system based on a blend of agroindustrial wastes for the simultaneous production of industrially applicable enzymes by solid-state fermentation. FOOD SCIENCE AND TECHNOLOGY 2018. [DOI: 10.1590/1678-457x.17017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
30
|
Okino-Delgado CH, Pereira MS, da Silva JVI, Kharfan D, do Prado DZ, Fleuri LF. Lipases obtained from orange wastes: Commercialization potential and biochemical properties of different varieties and fractions. Biotechnol Prog 2018; 35:e2734. [PMID: 30315734 DOI: 10.1002/btpr.2734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/25/2018] [Indexed: 01/13/2023]
Abstract
Brazil is the world's leading orange supplier for juice production purposes. However, the production process generates high amount of wastes, which leads to disposal problems. Orange wastes can be used for lipases production, incorporating the biorefinery concept into juice industries. Thus, the aim of the present study was to investigate the wastes of orange production chain as source of lipases based on different varieties (Pera, Hamlin, Valencia, and Natal), as well as on different fractions of wastes. The mass balance of the juice/wastes (2007-2016 crops) was evaluated, and lipases from different varieties and fraction were biochemically characterized. Overall, the wastes corresponded to approximately 43% of the fruit mass. All the fractions of all varieties showed lipase activity in emulsified olive oil and in p-nitrophenyl substrates. The highest lipase activities were obtained by Natal pulp in emulsified olive oil, Natal frit, and Hamlin peel in p-NPB and Hamlin frit in p-NPL and p-NPP. The bagasse, peel, and frit lipases from the different orange varieties showed optimum pH from 6.0 to 8.0 and optimal temperature from 30 °C to 60 °C. Thus, it is possible concluding that the orange processing for juice production purposes generates a large amount of wastes, which can be destined to profitable purposes as lipases production. Lipases produced by different fractions and varieties are biochemically diverse, enabling the application a wide range of processes. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2734, 2019.
Collapse
Affiliation(s)
- Clarissa Hamaio Okino-Delgado
- Chemistry and Biochemistry Dept., Inst. of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Milene Stefani Pereira
- Chemistry and Biochemistry Dept., Inst. of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - João Vitor Inácio da Silva
- Chemistry and Biochemistry Dept., Inst. of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Daniela Kharfan
- Research and Development, JBT Food Tech, Araraquara, São Paulo, Brazil
| | - Débora Zanoni do Prado
- Chemistry and Biochemistry Dept., Inst. of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Luciana Francisco Fleuri
- Chemistry and Biochemistry Dept., Inst. of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
31
|
Brothers B, Wang H, Wang T. Free Fatty-Acid Generation and Lipid Oxidation during Dry-Grind Corn Ethanol Fermentation. J AM OIL CHEM SOC 2018. [DOI: 10.1002/aocs.12157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Brett Brothers
- Food Science and Human Nutrition, Center for Crops Utilization Research; Iowa State University; 2312 Food Sciences Building, 536 Farm House Lane, Ames IA 50011-1054 USA
| | - Hui Wang
- Food Science and Human Nutrition, Center for Crops Utilization Research; Iowa State University; 2312 Food Sciences Building, 536 Farm House Lane, Ames IA 50011-1054 USA
| | - Tong Wang
- Food Science and Human Nutrition, Center for Crops Utilization Research; Iowa State University; 2312 Food Sciences Building, 536 Farm House Lane, Ames IA 50011-1054 USA
| |
Collapse
|
32
|
Sperb JGC, Costa TM, Bertoli SL, Tavares LBB. SIMULTANEOUS PRODUCTION OF BIOSURFACTANTS AND LIPASES FROM Aspergillus niger AND OPTIMIZATION BY RESPONSE SURFACE METHODOLOGY AND DESIRABILITY FUNCTIONS. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2018. [DOI: 10.1590/0104-6632.20180353s20160400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
33
|
Witharana A, Manatunge J, Ratnayake N, Nanayakkara CM, Jayaweera M. Rapid degradation of FOG discharged from food industry wastewater by lipolytic fungi as a bioaugmentation application. ENVIRONMENTAL TECHNOLOGY 2018; 39:2062-2072. [PMID: 28662609 DOI: 10.1080/09593330.2017.1349837] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fats, oils and grease (FOG) congregate in grease traps and are a slowly biodegradable particulate organic matter, which may require enzymatic or hydrolytic conversion to form readily biodegradable soluble organic matter. The existing treatment methods employ water-based hydrolysis of FOG to form long-chain fatty acids (LCFAs). The LCFAs discharged into wastewater treatment system create functional difficulties, especially the inhibitory effect caused by accumulation of LCFAs. This study aims to find an effective treatment method for this persistent problem encountered in conventional wastewater treatment system. Solid-state degradation by lipolytic fungi was performed in a tray-type reactor as a novel approach of bioaugmentation. Grease trap waste samples were dried to have moisture content of 25-35% and mixed with coir fiber (1% w/v) for proper aeration. Each 10 mg/g dry weight of substrate was inoculated with 1 mL of spore suspension (1 × 10⁷ spores/mL) of lipolytic fungi. Thereafter, moisture content in the reactor was increased to 65%, and incubated at 30°C. Within 72 h of post incubation, degradation efficiency of about 50% was recorded by fungal isolates. The feasibility of using developed protocol for FOG degradation was tested with a laboratory-scale prototype reactor.
Collapse
Affiliation(s)
- Ayoma Witharana
- a Department of Civil Engineering , University of Moratuwa , Moratuwa , Sri Lanka
| | - Jagath Manatunge
- a Department of Civil Engineering , University of Moratuwa , Moratuwa , Sri Lanka
| | - Niranjanie Ratnayake
- a Department of Civil Engineering , University of Moratuwa , Moratuwa , Sri Lanka
| | | | - Mahesh Jayaweera
- a Department of Civil Engineering , University of Moratuwa , Moratuwa , Sri Lanka
| |
Collapse
|
34
|
Adding value to the oil cake as a waste from oil processing industry: Production of lipase in solid state fermentation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Geoffry K, Achur RN. Screening and production of lipase from fungal organisms. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.03.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Arbab AA, Mengal N, Sahito IA, Memon AA, Jeong SH. An organic route for the synthesis of cationic porous graphite nanomaterial used as photocatalyst and electrocatalyst for dye-sensitized solar cell. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Venkatesagowda B, Ponugupaty E, Barbosa-Dekker AM, Dekker RFH. The Purification and Characterization of Lipases from Lasiodiplodia theobromae, and Their Immobilization and Use for Biodiesel Production from Coconut Oil. Appl Biochem Biotechnol 2017; 185:619-640. [DOI: 10.1007/s12010-017-2670-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/29/2017] [Indexed: 01/13/2023]
|
38
|
Sharma KM, Kumar R, Panwar S, Kumar A. Microbial alkaline proteases: Optimization of production parameters and their properties. J Genet Eng Biotechnol 2017; 15:115-126. [PMID: 30647648 PMCID: PMC6296574 DOI: 10.1016/j.jgeb.2017.02.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 12/25/2016] [Accepted: 02/05/2017] [Indexed: 11/25/2022]
Abstract
Proteases are hydrolytic enzymes capable of degrading proteins into small peptides and amino acids. They account for nearly 60% of the total industrial enzyme market. Proteases are extensively exploited commercially, in food, pharmaceutical, leather and detergent industry. Given their potential use, there has been renewed interest in the discovery of proteases with novel properties and a constant thrust to optimize the enzyme production. This review summarizes a fraction of the enormous reports available on various aspects of alkaline proteases. Diverse sources for isolation of alkaline protease producing microorganisms are reported. The various nutritional and environmental parameters affecting the production of alkaline proteases in submerged and solid state fermentation are described. The enzymatic and physicochemical properties of alkaline proteases from several microorganisms are discussed which can help to identify enzymes with high activity and stability over extreme pH and temperature, so that they can be developed for industrial applications.
Collapse
Affiliation(s)
- Kanupriya Miglani Sharma
- Department of Biotechnology Engineering, University Institute of Engineering and Technology, Kurukshetra University, Kurukshetra 136119, India
| | - Rajesh Kumar
- Department of Biotechnology Engineering, University Institute of Engineering and Technology, Kurukshetra University, Kurukshetra 136119, India
| | - Surbhi Panwar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut 250004, Uttar Pradesh, India
| | - Ashwani Kumar
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh 123029, Haryana, India
| |
Collapse
|
39
|
Optimization of lipase production by solid-state fermentation of olive pomace: from flask to laboratory-scale packed-bed bioreactor. Bioprocess Biosyst Eng 2017; 40:1123-1132. [DOI: 10.1007/s00449-017-1774-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
|
40
|
Costa TM, Hermann KL, Garcia-Roman M, Valle RDCSC, Tavares LBB. LIPASE PRODUCTION BY Aspergillus niger GROWN IN DIFFERENT AGRO-INDUSTRIAL WASTES BY SOLID-STATE FERMENTATION. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2017. [DOI: 10.1590/0104-6632.20170342s20150477] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Oliveira F, Souza CE, Peclat VR, Salgado JM, Ribeiro BD, Coelho MA, Venâncio A, Belo I. Optimization of lipase production by Aspergillus ibericus from oil cakes and its application in esterification reactions. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2017.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
|
43
|
Meng Y, Luan F, Yuan H, Chen X, Li X. Enhancing anaerobic digestion performance of crude lipid in food waste by enzymatic pretreatment. BIORESOURCE TECHNOLOGY 2017; 224:48-55. [PMID: 27839678 DOI: 10.1016/j.biortech.2016.10.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/09/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
Three lipases were applied to hydrolyze the floatable grease (FG) in the food waste for eliminating FG inhibition and enhancing digestion performance in anaerobic process. Lipase-I, Lipase-II, and Lipase-III obtained from different sources were used. Animal fat (AF) and vegetable oil (VO) are major crude lipids in Chinese food waste, therefore, applied as substrates for anaerobic digestion tests. The results showed that Lipase-I and Lipase-II were capable of obviously releasing long chain fatty acid in AF, VO, and FG when hydrolyzed in the conditions of 24h, 1000-1500μL and 40-50°C. Compared to the untreated controls, the biomethane production rate were increased by 80.8-157.7%, 26.9-53.8%, and 37.0-40.7% for AF, VO, and FG, respectively, and the digestion time was shortened by 10-40d. The finding suggests that pretreating lipids with appropriate lipase could be one of effective methods for enhancing anaerobic digestion of food waste rich in crude lipid.
Collapse
Affiliation(s)
- Ying Meng
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Fubo Luan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hairong Yuan
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, China
| | - Xue Chen
- China Power Conservation & Environment Protection CO., LTD, Beijing 100020, China
| | - Xiujin Li
- Department of Environmental Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing 100029, China.
| |
Collapse
|
44
|
Alhelli AM, Abdul Manap MY, Mohammed AS, Mirhosseini H, Suliman E, Shad Z, Mohammed NK, Meor Hussin AS. Use of response surface methodology for partitioning, one-step purification of alkaline extracellular lipase from Penicillium candidum (PCA 1/TT031). J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1039:66-73. [DOI: 10.1016/j.jchromb.2016.10.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/27/2016] [Accepted: 10/26/2016] [Indexed: 10/20/2022]
|
45
|
Gilani SL, Najafpour GD, Moghadamnia A, Kamaruddin AH. Stability of immobilized porcine pancreas lipase on mesoporous chitosan beads: A comparative study. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
46
|
|
47
|
de Almeida AF, Dias KB, da Silva ACC, Terrasan CRF, Tauk-Tornisielo SM, Carmona EC. Agroindustrial Wastes as Alternative for Lipase Production by Candida viswanathii under Solid-State Cultivation: Purification, Biochemical Properties, and Its Potential for Poultry Fat Hydrolysis. Enzyme Res 2016; 2016:1353497. [PMID: 27725884 PMCID: PMC5048095 DOI: 10.1155/2016/1353497] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/15/2016] [Accepted: 07/03/2016] [Indexed: 11/18/2022] Open
Abstract
The aims of this work were to establish improved conditions for lipase production by Candida viswanathii using agroindustrial wastes in solid-state cultivation and to purify and evaluate the application of this enzyme for poultry fat hydrolysis. Mixed wheat bran plus spent barley grain (1 : 1, w/w) supplemented with 25.0% (w/w) olive oil increased the lipase production to 322.4%, compared to the initial conditions. When olive oil was replaced by poultry fat, the highest lipase production found at 40% (w/w) was 31.43 U/gds. By selecting, yeast extract supplementation (3.5%, w/w), cultivation temperature (30°C), and substrate moisture (40%, w/v), lipase production reached 157.33 U/gds. Lipase was purified by hydrophobic interaction chromatography, presenting a molecular weight of 18.5 kDa as determined by SDS-PAGE. The crude and purified enzyme showed optimum activity at pH 5.0 and 50°C and at pH 5.5 and 45°C, respectively. The estimated half-life at 50°C was of 23.5 h for crude lipase and 6.7 h at 40°C for purified lipase. Lipase presented high activity and stability in many organic solvents. Poultry fat hydrolysis was maximum at pH 4.0, reaching initial hydrolysis rate of 33.17 mmol/L/min. Thus, C. viswanathii lipase can be successfully produced by an economic and sustainable process and advantageously applied for poultry fat hydrolysis without an additional acidification step to recover the released fatty acids.
Collapse
Affiliation(s)
- Alex Fernando de Almeida
- Bioprocess Engineering and Biotechnology, Federal University of Tocantins (UFT), Rua Badejós, Chácaras 69/72, Zona Rural, 77402-970 Gurupi, TO, Brazil
| | - Kleydiane Braga Dias
- Bioprocess Engineering and Biotechnology, Federal University of Tocantins (UFT), Rua Badejós, Chácaras 69/72, Zona Rural, 77402-970 Gurupi, TO, Brazil
| | - Ana Carolina Cerri da Silva
- Environmental Studies Center (CEA), Universidade Estadual Paulista (UNESP), Avenida 24-A, 1515 Bela Vista, 13506-900 Rio Claro, SP, Brazil
| | - César Rafael Fanchini Terrasan
- Biochemistry and Microbiology Department, Bioscience Institute (IB), Universidade Estadual Paulista (UNESP), Avenida 24-A, 1515 Bela Vista, 13506-900 Rio Claro, SP, Brazil
| | - Sâmia Maria Tauk-Tornisielo
- Environmental Studies Center (CEA), Universidade Estadual Paulista (UNESP), Avenida 24-A, 1515 Bela Vista, 13506-900 Rio Claro, SP, Brazil
| | - Eleonora Cano Carmona
- Biochemistry and Microbiology Department, Bioscience Institute (IB), Universidade Estadual Paulista (UNESP), Avenida 24-A, 1515 Bela Vista, 13506-900 Rio Claro, SP, Brazil
| |
Collapse
|
48
|
Oliveira F, Moreira C, Salgado JM, Abrunhosa L, Venâncio A, Belo I. Olive pomace valorization by Aspergillus species: lipase production using solid-state fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:3583-3589. [PMID: 26601619 DOI: 10.1002/jsfa.7544] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/10/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Pollution by olive mill wastes is an important problem in the Mediterranean area and novel solutions for their proper management and valorization are needed. The aim of this work was to optimize a solid-state fermentation (SSF) process to produce lipase using olive pomace (OP) as the main source of nutrients by several Aspergillus spp. Optimized variables in two different designs were: ratio between olive pomace and wheat bran (OP:WB), NaNO3 , Czapek nutrients, fermentation time, moisture content (MC) and temperature. RESULTS Results showed that the mixture OP:WB and MC were the most significant factors affecting lipase production for all fungi strains tested. With MC and temperature optimization, a 4.4-fold increase in A. ibericus lipase was achieved (90.5 ± 1.5 U g(-1) ), using a mixture of OP and WB at 1:1 ratio, 0.02 g NaNO3 g(-1) dry substrate, absence of Czapek nutrients, 60% of MC and incubation at 30 °C for 7 days. For A. niger and A. tubingensis, highest lipase activity obtained was 56.6 ± 5.4 and 7.6 ± 0.6 U g(-1) , respectively. CONCLUSION Aspergillus ibericus was found to be the most promising microorganism for lipase production using mixtures of OP and WB. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Felisbela Oliveira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Cláudia Moreira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - José Manuel Salgado
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Luís Abrunhosa
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Armando Venâncio
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Isabel Belo
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| |
Collapse
|
49
|
Silveira EA, Tardioli PW, Farinas CS. Valorization of Palm Oil Industrial Waste as Feedstock for Lipase Production. Appl Biochem Biotechnol 2016; 179:558-71. [PMID: 26892007 DOI: 10.1007/s12010-016-2013-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/10/2016] [Indexed: 11/29/2022]
Abstract
The use of residues from the industrial processing of palm oil as carbon source and inducer for microbial lipase production can be a way to add value to such residues and to contribute to reduced enzyme costs. The aim of this work was to investigate the feasibility of using palm oil industrial waste as feedstock for lipase production in different cultivation systems. Evaluation was made of lipase production by a selected strain of Aspergillus niger cultivated under solid-state (SSF) and submerged fermentation (SmF). Lipase activity levels up to 15.41 IU/mL were achieved under SSF. The effects of pH and temperature on the lipase activity of the SSF extract were evaluated using statistical design methodology, and maximum activities were obtained between pH 4.0 and 6.5 and at temperatures between 37 and 55 °C. This lipase presented good thermal stability up to 60 °C and higher specificity towards long carbon chain substrates. The results demonstrate the potential application of palm oil industrial residues for lipase production and contribute to the technological advances needed to develop processes for industrial enzymes production.
Collapse
Affiliation(s)
- Erick A Silveira
- Embrapa Instrumentation, Rua XV de Novembro 1452, 13560-970, São Carlos, SP, Brazil.,Graduate Program of Biotechnology, Federal University of Sao Carlos, 13565-905, São Carlos, SP, Brazil
| | - Paulo W Tardioli
- Graduate Program of Chemical Engineering, Federal University of Sao Carlos, 13565-905, Sao Carlos, SP, Brazil
| | - Cristiane S Farinas
- Embrapa Instrumentation, Rua XV de Novembro 1452, 13560-970, São Carlos, SP, Brazil. .,Graduate Program of Biotechnology, Federal University of Sao Carlos, 13565-905, São Carlos, SP, Brazil. .,Graduate Program of Chemical Engineering, Federal University of Sao Carlos, 13565-905, Sao Carlos, SP, Brazil.
| |
Collapse
|
50
|
Hu Y, Qin H, Zhan Z, Dun Y, Zhou Y, Peng N, Ling H, Liang Y, Zhao S. Optimization ofSaccharomyces boulardiiproduction in solid-state fermentation with response surface methodology. BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1086689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|