1
|
Li XX, Li JP, Zhao X, Li Y, Xiong YZ, Peng GX, Ye L, Yang WR, Zhou K, Fan HH, Yang Y, Li Y, Song L, Jing LP, Zhang L, Zhang FK. [T-large granular lymphocytic leukemia presenting as aplastic anemia: a report of five cases and literature review]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2023; 44:162-165. [PMID: 36948874 PMCID: PMC10033266 DOI: 10.3760/cma.j.issn.0253-2727.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Indexed: 03/24/2023]
Affiliation(s)
- X X Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - J P Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - X Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Y Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Y Z Xiong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - G X Peng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - L Ye
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - W R Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - K Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - H H Fan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Y Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Y Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - L Song
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - L P Jing
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - L Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - F K Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
2
|
Gaudio F, Masciopinto P, Bellitti E, Musto P, Arcuti E, Battisti O, Cazzato G, Solombrino A, Laddaga FE, Specchia G, Maiorano E, Ingravallo G. Molecular Features and Diagnostic Challenges in Alpha/Beta T-Cell Large Granular Lymphocyte Leukemia. Int J Mol Sci 2022; 23:ijms232113392. [PMID: 36362180 PMCID: PMC9657804 DOI: 10.3390/ijms232113392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Large granular lymphocyte leukemia is a rare chronic lymphoproliferative disease of cytotoxic lymphocytes. The diagnosis, according to the WHO, is based on a persistent (>6 months) increase in the number of LGL cells in the peripheral blood without an identifiable cause. A further distinction is made between T-LGL and NK-LGL leukemia. The molecular sign of LGL leukemia is the mutation of STAT3 and other genes associated with the JAK/STAT pathway. The most common clinical features are neutropenia, anemia, and thrombocytopenia, and it is often associated with various autoimmune conditions. It usually has an indolent course. Due to the rarity of the disease, no specific treatment has yet been identified. Immunosuppressive therapy is used and may allow for disease control and long-term survival, but not eradication of the leukemic clone. Here, we discuss the clinical presentation, diagnostic challenges, pathophysiology, and different treatment options available for alpha/beta T-LGL leukemia, which is the most common disease (85%), in order to better understand and manage this often misunderstood disease.
Collapse
Affiliation(s)
- Francesco Gaudio
- Hematology Section, Department of Emergency and Transplantation, University of Bari Medical School, 70124 Bari, Italy
| | - Pierluigi Masciopinto
- Hematology Section, Department of Emergency and Transplantation, University of Bari Medical School, 70124 Bari, Italy
| | - Emilio Bellitti
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Pellegrino Musto
- Hematology Section, Department of Emergency and Transplantation, University of Bari Medical School, 70124 Bari, Italy
| | - Elena Arcuti
- Hematology Section, Department of Emergency and Transplantation, University of Bari Medical School, 70124 Bari, Italy
| | - Olga Battisti
- Hematology Section, Department of Emergency and Transplantation, University of Bari Medical School, 70124 Bari, Italy
| | - Gerardo Cazzato
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Alessandra Solombrino
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
| | | | - Giorgina Specchia
- School of Medicine, University of Bari “Aldo Moro”, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Eugenio Maiorano
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
- Correspondence:
| | - Giuseppe Ingravallo
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
3
|
El-Sharkawi D, Attygalle A, Dearden C. Mature T-Cell leukemias: Challenges in Diagnosis. Front Oncol 2022; 12:777066. [PMID: 35359424 PMCID: PMC8961294 DOI: 10.3389/fonc.2022.777066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022] Open
Abstract
T-cell clones can frequently be identified in peripheral blood. It can be difficult to appreciate whether these are benign and transient or whether they signify a clonal disorder. We review factors that aid in understanding the relevance of T-cell clones. Conversely, obvious pathological T-cell clones can be detected in blood, but there is uncertainty in how to categorize this clonal T cell population, thus, we adopt a multidisciplinary review of the clinical features, diagnostic material and radiology before making the diagnosis. In this review we shall discuss some of these challenges faced when diagnosing mature T-cell leukemias.
Collapse
Affiliation(s)
- Dima El-Sharkawi
- Department of Haematology, The Royal Marsden NHS Foundation Trust, London, United Kingdom.,Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Ayoma Attygalle
- Department of Histopathology, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Claire Dearden
- Department of Haematology, The Royal Marsden NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
4
|
Persistent Large Granular Lymphocyte Clonal Expansions: “The Root of Many Evils”—And of Some Goodness. Cancers (Basel) 2022; 14:cancers14051340. [PMID: 35267648 PMCID: PMC8909662 DOI: 10.3390/cancers14051340] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Large granular lymphocyte leukemia (LGLL) is a chronic disorder of either mature T or NK lymphocytes. As clonal expansions of the immune system cells, difficulties in the distinction between a true neoplasia and a physiological reactive process have been common since its description. We review here the different conditions associated with persistent clonal LGL expansions and discuss their potential origin and whether they can modulate the clinical features. Abstract Large granular lymphocyte leukemia (LGLL) is a chronic disease of either mature phenotype cytotoxic CD3+ T lymphocytes or CD3- NK cells. LGLL diagnosis is hampered by the fact that reactive persistent clonal LGL expansions may fulfill the current criteria for LGLL diagnoses. In addition to the presence of characteristic clinical and hematological signs such as anemia or neutropenia, LGLL/LGL clonal expansions have been associated with an array of conditions/disorders. We review here the presence of these persistent clonal expansions in autoimmune, hematological disorders and solid neoplasms and after hematopoietic stem cell transplantation. These associations are a unique translational research framework to discern whether these persistently expanded LGL clones are causes or consequences of the concomitant clinical settings and, more importantly, when they should be targeted.
Collapse
|
5
|
Isolated anemia in patients with large granular lymphocytic leukemia (LGLL). Blood Cancer J 2022; 12:30. [PMID: 35194022 PMCID: PMC8863822 DOI: 10.1038/s41408-022-00632-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 11/08/2022] Open
Abstract
Patients with large granular lymphocytic leukemia (LGLL) frequently present with neutropenia. When present, anemia is usually accompanied by neutropenia and/or thrombocytopenia and isolated anemia is uncommon. We evaluated a cohort of 244 LGLL patients spanning 15 years and herein report the clinicopathologic features of 34 (14%) with isolated anemia. The patients with isolated anemia showed a significantly male predominance (p = 0.001), a lower level of hemoglobulin (p < 0.0001) and higher MCV (p = 0.017) and were less likely to have rheumatoid arthritis (p = 0.023) compared to the remaining 210 patients. Of the 34 LGLL patients with isolated anemia, 13 (38%) presented with pure red cell aplasia (PRCA), markedly decreased reticulocyte count and erythroid precursors, and more transfusion-dependence when compared to non-PRCA patients. There was no other significant clinicopathologic difference between PRCA and non-PRCA patients. 32 patients were followed for a median duration of 51 months (6-199). 24 patients were treated (11/11 PRCA and 13/21 non-PRCA patients, p < 0.02). The overall response rate to first-line therapy was 83% [8/11 (72.7%) for PRCA, 12/13 (92.3%) for non-PRCA], including 14 showing complete response and 6 showing partial response with a median response duration of 48 months (12-129). Half of non-PRCA patients who were observed experienced progressive anemia. During follow-up, no patients developed neutropenia; however, 5/27 (18.5%) patients developed thrombocytopenia. No significant difference in overall survival was noted between PRCA and non-PRCA patients. In summary, this study demonstrates the unique features of LGLL with isolated anemia and underscores the importance of recognizing LGLL as a potential cause of isolated anemia, which may benefit from disease-specific treatment. LGLL patients with PRCA were more likely to require treatment but demonstrated similar clinicopathologic features, therapeutic responses, and overall survival compared to isolated anemia without PRCA, suggesting PRCA and non-PRCA of T-LGLL belong to a common disease spectrum.
Collapse
|
6
|
Schreiber J, Pichler A, Kornauth C, Kaufmann H, Staber PB, Hopfinger G. T-Cell Large Granular Lymphocyte Leukemia: An Interdisciplinary Issue? Front Oncol 2022; 12:805449. [PMID: 35223485 PMCID: PMC8869758 DOI: 10.3389/fonc.2022.805449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/18/2022] [Indexed: 12/18/2022] Open
Affiliation(s)
- Johanna Schreiber
- Department of Internal Medicine III, Division of Hematology and Oncology, Klinik Favoriten, Vienna, Austria
- Department of Medicine I, Division of Hematology, Medical University of Vienna, Vienna, Austria
| | - Alexander Pichler
- Department of Medicine I, Division of Hematology, Medical University of Vienna, Vienna, Austria
| | | | - Hannes Kaufmann
- Department of Internal Medicine III, Division of Hematology and Oncology, Klinik Favoriten, Vienna, Austria
| | - Philipp B. Staber
- Department of Medicine I, Division of Hematology, Medical University of Vienna, Vienna, Austria
| | - Georg Hopfinger
- Department of Internal Medicine III, Division of Hematology and Oncology, Klinik Favoriten, Vienna, Austria
| |
Collapse
|
7
|
Fattizzo B, Bellani V, Pasquale R, Giannotta JA, Barcellini W. Large Granular Lymphocyte Expansion in Myeloid Diseases and Bone Marrow Failure Syndromes: Whoever Seeks Finds. Front Oncol 2021; 11:748610. [PMID: 34660312 PMCID: PMC8517436 DOI: 10.3389/fonc.2021.748610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/17/2021] [Indexed: 11/29/2022] Open
Abstract
Large granular lymphocytes (LGL) are lymphoid cells characterized by either a T-cell or a natural killer phenotype whose expansion may be reactive to toxic, infectious, and neoplastic conditions, or result from clonal selection. Recently, the higher attention to LGL clones led to their detection in many clinical conditions including myeloid neoplasms and bone marrow failures. In these contexts, it is still unclear whether LGL cells actively contribute to anti-stem cell autoimmunity or are only a reaction to dysplastic/leukemic myelopoiesis. Moreover, some evidence exists about a common clonal origin of LGL and myeloid clones, including the detection of STAT3 mutations, typical of LGL, in myeloid precursors from myelodysplastic patients. In this article we reviewed available literature regarding the association of LGL clones with myeloid neoplasms (myelodysplastic syndromes, myeloproliferative neoplasms, and acute myeloid leukemias) and bone marrow failures (aplastic anemia and pure red cell aplasia, PRCA) focusing on evidence of pathogenic, clinical, and prognostic relevance. It emerged that LGL clones may be found in up to one third of patients, particularly those with PRCA, and are associated with a more cytopenic phenotype and good response to immunosuppression. Pathogenically, LGL clones seem to expand after myeloid therapies, whilst immunosuppression leading to LGL depletion may favor leukemic escape and thus requires caution.
Collapse
Affiliation(s)
- Bruno Fattizzo
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valentina Bellani
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Raffaella Pasquale
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Wilma Barcellini
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
8
|
When Should We Think of Myelodysplasia or Bone Marrow Failure in a Thrombocytopenic Patient? A Practical Approach to Diagnosis. J Clin Med 2021; 10:jcm10051026. [PMID: 33801484 PMCID: PMC7958851 DOI: 10.3390/jcm10051026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Thrombocytopenia can arise from various conditions, including myelodysplastic syndromes (MDS) and bone marrow failure (BMF) syndromes. Meticulous assessment of the peripheral blood smear, identification of accompanying clinical conditions, and characterization of the clinical course are important for initial assessment of unexplained thrombocytopenia. Increased awareness is required to identify patients with suspected MDS or BMF, who are in need of further investigations by a step-wise approach. Bone marrow cytomorphology, histopathology, and cytogenetics are complemented by myeloid next-generation sequencing (NGS) panels. Such panels are helpful to distinguish reactive cytopenia from clonal conditions. MDS are caused by mutations in the hematopoietic stem/progenitor cells, characterized by cytopenia and dysplasia, and an inherent risk of leukemic progression. Aplastic anemia (AA), the most frequent acquired BMF, is immunologically driven and characterized by an empty bone marrow. Diagnosis remains challenging due to overlaps with other hematological disorders. Congenital BMF, certainly rare in adulthood, can present atypically with thrombocytopenia and can be misdiagnosed. Analyses for chromosome fragility, telomere length, and germline gene sequencing are needed. Interdisciplinary expert teams contribute to diagnosis, prognostication, and choice of therapy for patients with suspected MDS and BMF. With this review we aim to increase the awareness and provide practical approaches for diagnosis of these conditions in suspicious cases presenting with thrombocytopenia.
Collapse
|
9
|
Cheon H, Dziewulska KH, Moosic KB, Olson KC, Gru AA, Feith DJ, Loughran TP. Advances in the Diagnosis and Treatment of Large Granular Lymphocytic Leukemia. Curr Hematol Malig Rep 2020; 15:103-112. [PMID: 32062772 PMCID: PMC7234906 DOI: 10.1007/s11899-020-00565-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW The past decade in LGL leukemia research has seen increased pairing of clinical data with molecular markers, shedding new insights on LGL leukemia pathogenesis and heterogeneity. This review summarizes the current standard of care of LGL leukemia, updates from clinical trials, and our congruent improved understanding of LGL pathogenesis. RECENT FINDINGS Various clinical reports have identified associations between stem, bone marrow, and solid organ transplants and incidence of LGL leukemia. There is also a potential for underdiagnosis of LGL leukemia within the rheumatoid arthritis patient population, emphasizing our need for continued study. Preliminary results from the BNZ-1 clinical trial, which targets IL-15 along with IL-2 and IL-9 signaling pathways, show some evidence of clinical response. With advances in our understanding of LGL pathogenesis from both the bench and the clinic, exciting avenues for investigations lie ahead for LGL leukemia.
Collapse
Affiliation(s)
- HeeJin Cheon
- Department of Medicine, Division of Hematology & Oncology, University of Virginia Cancer Center, PO Box 800334, Charlottesville, VA, 22908-0334, USA
- Department of Biochemistry and Molecular Genetics, Charlottesville, VA, 22908, USA
- Medical Scientist Training Program, Charlottesville, VA, 22908, USA
| | - Karolina H Dziewulska
- Department of Medicine, Division of Hematology & Oncology, University of Virginia Cancer Center, PO Box 800334, Charlottesville, VA, 22908-0334, USA
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Katharine B Moosic
- Department of Medicine, Division of Hematology & Oncology, University of Virginia Cancer Center, PO Box 800334, Charlottesville, VA, 22908-0334, USA
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Kristine C Olson
- Department of Medicine, Division of Hematology & Oncology, University of Virginia Cancer Center, PO Box 800334, Charlottesville, VA, 22908-0334, USA
| | - Alejandro A Gru
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - David J Feith
- Department of Medicine, Division of Hematology & Oncology, University of Virginia Cancer Center, PO Box 800334, Charlottesville, VA, 22908-0334, USA
| | - Thomas P Loughran
- Department of Medicine, Division of Hematology & Oncology, University of Virginia Cancer Center, PO Box 800334, Charlottesville, VA, 22908-0334, USA.
| |
Collapse
|
10
|
Zhu YM, Gao QY, Hu J, Liu X, Guan DR, Zhang FK. [Clinical and laboratory analysis of 17 patients with γδT-cell large granular lymphocyte leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2020; 41:112-116. [PMID: 32135626 PMCID: PMC7357950 DOI: 10.3760/cma.j.issn.0253-2727.2020.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
目的 比较γδT细胞大颗粒淋巴细胞白血病(γδT-LGLL)与αβT细胞大颗粒淋巴细胞白血病(αβT-LGLL)的临床及实验室特征。 方法 回顾性分析中国医学科学院血液病医院贫血诊疗中心2009年1月至2019年1月17例γδT-LGLL患者的临床及实验室结果,与同时期91例αβT-LGLL患者进行对比。 结果 17例γδT-LGLL患者中位年龄54(25~73)岁,10例就诊原因为贫血。γδT-LGLL与αβT-LGLL一致,脾大(41%和44%)较为常见,肝大(12%和5%)及淋巴结肿大(6%和8%)较为少见;两者均有较高的抗核抗体阳性率(59%和45%),较低的风湿因子阳性率(6%和10%);两者中性粒细胞绝对值、淋巴细胞绝对值、HGB及PLT差异均无统计学意义(P值均>0.05)。γδT-LGLL患者的典型免疫分型为CD3+/CD4−/CD8−/CD57+/TCRγδ+,CD4−/CD8−双阴性表型显著多于αβT-LGLL患者(P<0.001)。17例γδT-LGLL患者有1例口服泼尼松治疗,3例口服环孢素A治疗,13例口服环孢素A联合泼尼松治疗,治疗4个月后2例获得完全缓解,4例获得部分缓解,总体有效率为35%。 结论 γδT-LGLL是一种少见的成熟T淋巴细胞增殖性疾病,其临床及实验室表现与αβT-LGLL相比除CD4−/CD8−双阴性表型外均无显著差异。环孢素A可作为γδT-LGLL的首选治疗药物。
Collapse
Affiliation(s)
- Y M Zhu
- Department of Therapeutic Center of Anemia, Institute of Hematology & Blood Diseases Hospital, CAMS & PUMC, National Clinical Research Center for Blood Diseases, Tianjin 300020, China
| | | | | | | | | | | |
Collapse
|
11
|
Zhu Y, Gao Q, Hu J, Liu X, Guan D, Zhang F. Clinical features and treatment outcomes in patients with T-cell large granular lymphocytic leukemia: A single-institution experience. Leuk Res 2020; 90:106299. [PMID: 32035354 DOI: 10.1016/j.leukres.2020.106299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/27/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022]
Abstract
AIM Large granular lymphocyte leukemia (LGLL) is a rare lymphoproliferative disorder associated with failure of hematopoiesis and autoimmune diseases. This study describes the clinical features and treatment responses of 108 patients with T-cell large granular lymphocyte leukemia (T-LGLL). METHODS Clinical data were collected from T-LGLL patients treated at an anemia treatment center within the hematology and blood diseases unit of a single hospital from January 2009 to April 2019. RESULTS The majority of patients (78 %) were symptomatic at the time of presentation. Splenomegaly was observed in 41 % of cases, while hepatomegaly and lymphadenopathy were rare (6 % and 7 %, respectively). Cyclosporine (CsA) monotherapy was used as first-line therapy for 16 patients, with an overall response rate (ORR) of 56 %. CsA in combination with steroids was administered in 83 patients, with an ORR of 48 %. Among patients experiencing relapse or resistance to first-line therapy, 10 received antithymocyte globulin (ATG) therapy, with an ORR of 50 %; an additional 9 patients received a modified regimen of high-dose cyclophosphamide (CTX) therapy, yielding an ORR of 78 %. CONCLUSIONS This study provides new information regarding the clinical features and therapeutic strategies for T-LGLL, which can be used to improve clinical decision making for T-LGLL patients. The data presented here indicate the CsA is an effective option for the treatment of T-LGLL, while modified regimens of high-dose CTX or ATG are safe and effective choices for patients with CsA refractory disease.
Collapse
Affiliation(s)
- Yangmin Zhu
- Department of Therapeutic Center of Anemia, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Tianjin, China
| | - Qingyan Gao
- Department of Therapeutic Center of Anemia, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Tianjin, China
| | - Jing Hu
- Department of Therapeutic Center of Anemia, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Tianjin, China
| | - Xu Liu
- Department of Therapeutic Center of Anemia, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Tianjin, China
| | - Dongrui Guan
- Department of Therapeutic Center of Anemia, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Tianjin, China
| | - Fengkui Zhang
- Department of Therapeutic Center of Anemia, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College (CAMS & PUMC), Tianjin, China.
| |
Collapse
|
12
|
Qiu ZY, Qin R, Tian GY, Wang Y, Zhang YQ. Pathophysiologic Mechanisms And Management Of Large Granular Lymphocytic Leukemia Associated Pure Red Cell Aplasia. Onco Targets Ther 2019; 12:8229-8240. [PMID: 31632073 PMCID: PMC6781944 DOI: 10.2147/ott.s222378] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/13/2019] [Indexed: 12/31/2022] Open
Abstract
Large granular lymphocytic leukemia (LGLL) is a chronic clonal lymphoproliferative disease of mature T or NK cells, and produces a variety of hematological abnormalities. Pure red cell aplasia (PRCA) is a rare haematological disease and is one of the most common complications of LGLL. LGLL-associated PRCA may represent a relatively indolent type and may be more common than reported, but its natural history and clinical course have not been well described. The ethnic origin of the patients is an important consideration in determining the relationship between PRCA and LGLL. Guidelines and progresses for management of LGLL-associated PRCA rely on accumulation of empirical experiences, integrative analyses of several cases and clinical trials. The purpose of this review is to evaluate occurrence, possible mechanisms, diagnosis, clinical features, treatments and outcomes of LGLL-associated PRCA.
Collapse
Affiliation(s)
- Zhi-Yuan Qiu
- Department of Oncology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, Jiangsu, People's Republic of China
| | - Rong Qin
- Department of Oncology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, Jiangsu, People's Republic of China
| | - Guang-Yu Tian
- Department of Oncology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, Jiangsu, People's Republic of China
| | - Yan Wang
- Department of Oncology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212002, Jiangsu, People's Republic of China
| | - Ye-Qing Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, Jiangsu, People's Republic of China
| |
Collapse
|
13
|
Wang L, Zhou Y, Tang J, Zhan Q, Liao Y. [CD4(-)/CD8(-)/CD56(+)/TCRγδ(+) T-cell large granular lymphocyte leukemia presenting as aplastic anemia: a case report and literature review]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2019; 40:525-527. [PMID: 31340629 PMCID: PMC7342393 DOI: 10.3760/cma.j.issn.0253-2727.2019.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- L Wang
- Department of Hematology, Chongqing the Fourth Hospital, Chongqing 400014, China
| | - Y Zhou
- Department of Clinical Laboratory, Chongqing the Fourth Hospital, Chongqing 400014, China
| | - J Tang
- Department of Clinical Laboratory, Chongqing the Fourth Hospital, Chongqing 400014, China
| | - Q Zhan
- Clinical Molecular Medicine Testing Center, First Affiliated Hospital of Chongqing Medicial University, Chongqing 400016, China
| | - Y Liao
- Department of Hematology, Chongqing the Fourth Hospital, Chongqing 400014, China
| |
Collapse
|
14
|
Sun H, Wei S, Yang L. Dysfunction of immune system in the development of large granular lymphocyte leukemia. ACTA ACUST UNITED AC 2018; 24:139-147. [PMID: 30334691 DOI: 10.1080/10245332.2018.1535294] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Large granular lymphocyte (LGL) leukemia is a rare type of lymphoproliferative disease caused by clonal antigenic stimulation of T cells and natural killer (NK) cells. METHODS In this review, we focus on the current knowledge of the immunological dysfunctions associated with LGL leukemia and the associated disorders coexistent with this disease. Novel therapeutic options targeting known molecular mechanisms are also discussed. RESULTS AND DISCUSSION The pathogenesis of LGL leukemia involves the accumulation of gene mutations, dysregulated signaling pathways and immunological dysfunction. Mounting evidence indicated that dysregulated survival signaling pathways may be responsible for the immunological dysfunction in LGL leukemia including decreased numbers of neutrophils, dysregulated signal transduction of NK cells, abnormal B-cells, aberrant CD8+ T cells, as well as autoimmune and hematological abnormalities. CONCLUSION A better understanding of the immune dysregulation triggered by LGL leukemia will be beneficial to explore the pathogenesis and potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Houfang Sun
- a Department of Immunology , Tianjin Medical University Cancer Institute and Hospital , Tianjin , People's Republic of China.,b National Clinical Research Center of Cancer , People's Republic of China.,c Key Laboratory of Cancer Immunology and Biotherapy , Tianjin , People's Republic of China.,d Key Laboratory of Cancer Prevention and Therapy , Tianjin , People's Republic of China.,e Tianjin's Clinical Research Center for Cancer , Tianjin , People's Republic of China
| | - Sheng Wei
- f Immunology Program , The H. Lee Moffitt Cancer Center , Tampa , FL , USA
| | - Lili Yang
- a Department of Immunology , Tianjin Medical University Cancer Institute and Hospital , Tianjin , People's Republic of China.,b National Clinical Research Center of Cancer , People's Republic of China.,c Key Laboratory of Cancer Immunology and Biotherapy , Tianjin , People's Republic of China.,d Key Laboratory of Cancer Prevention and Therapy , Tianjin , People's Republic of China.,e Tianjin's Clinical Research Center for Cancer , Tianjin , People's Republic of China
| |
Collapse
|
15
|
Shrader SM, Fish EJ, Pereira MM, Groover ES, Christopherson PW. Pathology in Practice. J Am Vet Med Assoc 2018; 252:1477-1480. [PMID: 29889634 DOI: 10.2460/javma.252.12.1477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Qiu ZY, Fan L, Wang R, Gale RP, Liang HJ, Wang M, Wang L, Wu YJ, Qiao C, Chen YY, Xu W, Qian J, Li JY. Methotrexate therapy of T-cell large granular lymphocytic leukemia impact of STAT3 mutation. Oncotarget 2018; 7:61419-61425. [PMID: 27542218 PMCID: PMC5308661 DOI: 10.18632/oncotarget.11360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 08/09/2016] [Indexed: 11/25/2022] Open
Abstract
T-cell large granular lymphocytic leukemia (T-LGLL) is a rare haematologic neoplasm. Consequntly, there are no large prospective studies of therapy and no uniform therapy recommendations. We analyzed data from 36 subjects receiving methotrexate alone (N = 27) or with prednisone (N = 9) as initial therapy. 31 subjects responded (86%, 95% confidence interval [CI], 73, 95%) with 8 complete responses and 23 partial responses. Median time-to-response was 3 months (range, 1–5 months). Median response duration was 20 months (range, 2–55 months). β2-microoglobulin (β2-MG) and erythrocyte sedimentation rate (ESR) decreased significantly post-therapy (P < 0.0001). Pure red cell aplasia (PRCA) was present in 18 subjects (50%) of our subjects and responded well to methotrexate. 26 subjects (72%) were tested for STAT3 mutation. 9 with a mutation had a median treatment-free survival of 5 months (range, 0.5–13 months), significantly briefer than that of 17 subjects without a STAT3 mutation (19 months, range, 3–97 months; P = 0.012; log-rank test). Methotrexate with or without prednisone is an effective initial therapy of persons with T-LGLL with wild-type STAT3.
Collapse
Affiliation(s)
- Zhi-Yuan Qiu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China.,Department of Oncology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lei Fan
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Rong Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Robert Peter Gale
- Haematology Research Centre, Division of Experimental Medicine, Department of Medicine, Imperial College London, London, United Kingdom
| | - Hua-Jin Liang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Man Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Yu-Jie Wu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Chun Qiao
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Yao-Yu Chen
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| | - Jun Qian
- Department of Hematology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jian-Yong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, China
| |
Collapse
|
17
|
Abstract
Hypoproliferative anemia results from the inability of bone marrow to produce adequate numbers of red blood cells. The list of conditions that cause hypoproliferative anemia is long, starting from common etiologies as iron deficiency to rarer diagnoses of constitutional bone marrow failure syndromes. There is no perfect diagnostic algorithm, and clinical data may not always clearly distinguish "normal" from "abnormal", yet it is important for practicing clinicians to recognize each condition so that treatment can be initiated promptly. This review describes diagnostic approaches to hypoproliferative anemia, with particular emphasis on bone marrow failure syndromes.
Collapse
Affiliation(s)
- Kazusa Ishii
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD.
| | - Neal S Young
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
18
|
Abstract
T-cell lymphomas are a group of predominantly rare hematologic malignancies that tend to recapitulate different stages of T-cell development, in a similar way that B-cell lymphomas do. As opposed to B-cell lymphomas, the understanding of the biology and the classification of T-cell lymphomas are somewhat rudimentary, and numerous entities are still included as 'provisional categories' in the World Health Classification of hematolopoietic malignancies. A relevant and useful classification of these disorders have been difficult to accomplish because of the rarity nature of them, the relative lack of understanding of the molecular pathogenesis, and their morphological and immunophenotypical complexity. Overall, T-cell lymphomas represent only 15 % of all non-Hodgkin lymphomas. This review is focused on addressing the current status of the categories of mature T-cell leukemias and lymphomas (nodal and extranodal) using an approach that incorporates histopathology, immunophenotype, and molecular understanding of the nature of these disorders, using the same philosophy of the most recent revised WHO classification of hematopoietic malignancies.
Collapse
Affiliation(s)
- Alejandro Ariel Gru
- Department of Pathology and Dermatology, Divisions of Hematopathology and Dermatopathology, Cutaneous Lymphoma Program, The Ohio State University Wexner Medical Center, Richard Solove 'The James' Comprehensive Cancer Center, 333 W 10th Ave, Columbus, OH, 43210, USA,
| |
Collapse
|
19
|
Orlova EM, Kareva MA, Melikyan MA, Boyakova E, Peterkova VA, Maschan AA. Response of pure red cell aplasia to cyclophosphamide after failure of mycofenolate mofetil in a patient with polyglandular syndrome type I. J Pediatr Hematol Oncol 2013; 35:e338-40. [PMID: 23128333 DOI: 10.1097/mph.0b013e3182755c52] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A 26-year-old female with the classic major and minor components of autoimmune polyglandular syndrome type 1 was diagnosed as having pure red cell aplasia. Treatment with 1.5 g/d mycofenolate mofetil for 3 months failed to restore erythroid production. Treatment with cyclosporine A produced a good partial response but led to renal toxicity and was therefore substituted with cyclophosphamide, which had a good partial effect and lasted for 18 months. The relapse of anemia was not observed during the 6-month follow-up period after the cessation of treatment.
Collapse
Affiliation(s)
- Elizaveta M Orlova
- *Endocrinology Research Centre, Institute of Pediatric Endocrinology †Federal Research Center for Pediatric Hematology, Oncology, and Immunology, Moscow, Russian Federation
| | | | | | | | | | | |
Collapse
|
20
|
Weinzierl EP, Arber DA. The differential diagnosis and bone marrow evaluation of new-onset pancytopenia. Am J Clin Pathol 2013; 139:9-29. [PMID: 23270895 DOI: 10.1309/ajcp50aeeygrewuz] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
New-onset pancytopenia can be caused by a wide variety of etiologies, leading to a diagnostic dilemma. These etiologies range from congenital bone marrow failure to marrow space-occupying lesions, infection, and peripheral destruction, to name a few. Bone marrow examination, in addition to a detailed clinical history, is often required for an accurate diagnosis. The purpose of this review is to provide a brief overview of many of the causes of new-onset pancytopenia in adults and children, with emphasis on bone marrow findings and recommendations of additional testing and clinical evaluation when needed, with the overall aim of aiding the pathologist's role as a consultant to the patient's treating physician.
Collapse
|
21
|
Zhang M, Hu S, Ashwani N, Li J, Zhao W, He H. Pediatric T-cell acute lymphoblastic leukemia with transient pure red cell aplasia. Pediatr Blood Cancer 2012; 58:1002-3. [PMID: 22294462 DOI: 10.1002/pbc.23407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 09/29/2011] [Indexed: 11/11/2022]
|
22
|
Mohan SR, Clemente MJ, Afable M, Cazzolli HN, Bejanyan N, Wlodarski MW, Lichtin AE, Maciejewski JP. Therapeutic implications of variable expression of CD52 on clonal cytotoxic T cells in CD8+ large granular lymphocyte leukemia. Haematologica 2011; 94:1407-14. [PMID: 19794084 DOI: 10.3324/haematol.2009.009191] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND T-cell large granular lymphocytic leukemia is a clonal proliferation of cytotoxic T-lymphocytes which often results in severe cytopenia. Current treatment options favor chronic immunosuppression. Alemtuzumab, a humanized monoclonal antibody against glycophosphatidylinositol-anchored CD52, is approved for patients refractory to therapy in other lymphoid malignancies. DESIGN AND METHODS We retrospectively examined treatment outcomes in 59 patients with CD8+ T-cell large granular lymphocytic leukemia, 41 of whom required therapy. Eight patients with severe refractory cytopenia despite multiple treatment regimens had been treated with subcutaneous alemtuzumab as salvage therapy. Flow cytometry was used to monitor expression of glycophosphatidylinositol-anchored CD52, CD55, and CD59 as well as to characterize T-cell clonal expansions by T-cell receptor variable beta-chain (Vbeta) repertoire. RESULTS Analysis of the effects of alemtuzumab revealed remissions with restoration of platelets in one of one patient, red blood cell transfusion independence in three of five patients and improvement of neutropenia in one of three, resulting in an overall response rate of 50% (4/8 patients). Clonal large granular lymphocytes exhibited decreased CD52 expression post-therapy in patients refractory to treatment. Samples of large granular lymphocytes collected prior to therapy also unexpectedly had a significant proportion of CD52-negative cells while a healthy control population had no such CD52 deficiency (p=0.026). CONCLUSIONS While alemtuzumab may be highly effective in large granular lymphocytic leukemia, prospective serial monitoring for the presence of CD52-deficient clonal cytotoxic T-lymphocytes should be a component of clinical trials investigating the efficacy of this drug. CD52 deficiency may explain lack of response to alemtuzumab, and such therapy may confer a survival advantage to glycophosphatidylinositol-negative clonal cytotoxic T-lymphocytes.
Collapse
Affiliation(s)
- Sanjay R Mohan
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Song S. A case report: Concurrent chronic myelomonocytic leukemia and T-cell large granular lymphocytic leukemia-type clonal proliferation as detected by multiparametric flow cytometry. CYTOMETRY PART B-CLINICAL CYTOMETRY 2010; 80:126-9. [PMID: 21337493 DOI: 10.1002/cyto.b.20565] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 07/20/2010] [Accepted: 08/04/2010] [Indexed: 11/11/2022]
Abstract
BACKGROUND Chronic myelomonocytic leukemia (CMML) is a subtype of myelodysplastic/myeloproliferative neoplasm. Although several studies have reported concurrent myelodysplastic syndrome (MDS) and T-cell large granular lymphocytic leukemia (T-LGL), coexistence of CMML and T-LGL has not been characterized. We describe here a unique case of CMML plus an underlying T-LGL-type clonal proliferation in a patient with a long standing history of severe anemia and recent pancytopenia. METHODS Multiparametric immunophenotyping by flow cytometry was conducted using fresh peripheral blood collected in EDTA. In addition, morphologic evaluation of the peripheral blood smear and T-cell gene rearrangement studies by polymerase chain reaction (PCR) were performed. RESULTS Flow cytometric analysis revealed abnormal monocytosis with multiple aberrancies including expression of cross-lineage markers CD2 and CD56, plus reduced expression of multiple antigens. In addition, abnormal CD8+ T-cells were identified, demonstrating dim expression of CD5 and dim to complete loss of CD7. In correlation with clinical history and morphologic review, a diagnosis of CMML plus underlying abnormal CD8+ T-cell lymphoproliferation was made. The clonality of these abnormal T-cells was confirmed by T-cell gene rearrangement studies. CONCLUSIONS We have identified a unique case of CMML in association with subclinical T-LGL, neither of which, alone, could fully explain the clinicopathologic features identified. Our findings suggest that the coexistence of these two entities may not be coincidental, and it is likely that they may share a common pathogenic pathway related to immune-dysregulation.
Collapse
Affiliation(s)
- Sophie Song
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA/UCLA Medical Center, Los Angeles, California 90095-1732, USA.
| |
Collapse
|
24
|
Zhang R, Shah MV, Loughran TP. The root of many evils: indolent large granular lymphocyte leukaemia and associated disorders. Hematol Oncol 2010; 28:105-17. [PMID: 19645074 PMCID: PMC4377226 DOI: 10.1002/hon.917] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Large granular lymphocytes (LGL) leukaemia can arise from either natural killer (NK) cells or cytotoxic T lymphocytes (CTL). The T-cell form of LGL leukaemia has significant overlap with other haematological disorders and autoimmune diseases. Here we provide an overview of LGL biology. We also focus discussion on the indolent LGL leukaemia related disorders and their causal relationships. We then discuss the potential relationships and distinctions between indolent LGL leukaemia and non-malignant clonal lymphocyte expansion that occur in otherwise healthy individuals, especially elder people.
Collapse
Affiliation(s)
- Ranran Zhang
- Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | |
Collapse
|
25
|
Bareau B, Rey J, Hamidou M, Donadieu J, Morcet J, Reman O, Schleinitz N, Tournilhac O, Roussel M, Fest T, Lamy T. Analysis of a French cohort of patients with large granular lymphocyte leukemia: a report on 229 cases. Haematologica 2010; 95:1534-41. [PMID: 20378561 DOI: 10.3324/haematol.2009.018481] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Large granular lymphocyte leukemia is a rare lymphoproliferative disorder associated with autoimmune diseases and impaired hematopoiesis. This study describes the clinical and biological characteristics of 229 patients with T-cell or NK-cell large granular lymphocyte leukemia. DESIGN AND METHODS The diagnosis was based on a large granular lymphocyte expansion (> 0.5x10(9)/L) lasting more than 6 months. Monoclonal T-cell receptor gamma gene rearrangement was detected in all the cases of T-cell large granular lymphocyte leukemia. Patients with chronic NK-cell lymphocytosis had an indolent disease, while those with multiorgan large granular lymphocyte infiltration and an aggressive clinical disease were considered to have NK-cell large granular lymphocyte leukemia. RESULTS The diagnosis of T-cell large granular lymphocyte leukemia was confirmed in 201 cases, chronic NK-cell lymphocytosis in 27 cases and NK-cell large granular lymphocyte leukemia in one case. Associated autoimmune diseases or other neoplasms were present in 74 and 32 cases, respectively. One hundred patients (44%) required treatment, mainly for neutropenia-associated infections (n=45), symptomatic autoimmune diseases (n =24), transfusion-dependant anemia (n=18), and other causes (n=13). Patients were treated with steroids (n= 33), methotrexate (n=62), cytoxan (n=32), or cyclosporine (n=24) either as first-, second-, third- or fourth-line therapy. The overall response rate at 3 months and complete response rate for the various treatments were as follows: steroids (12% and 3%), methotrexate (55% and 21%), cytoxan (66% and 47%), cyclosporine (21% and 4%), respectively. Four out of 13 patients responded to splenectomy. Eleven out of 15 patients responded to cytoxan after methotrexate treatment had failed. The mean number of treatments was 3.4 (range, 1-7). There were 15 large granular lymphocyte leukemia-related deaths. CONCLUSIONS Patients with T-cell large granular lymphocyte leukemia and chronic NK-cell lymphocytosis have similar clinical and biological features and responses to treatment. First-line therapy with cytoxan should be tested in a prospective trial.
Collapse
Affiliation(s)
- Benoît Bareau
- Service d'Hématologie Clinique, Hôpital Pontchaillou, CHU de Rennes 35033, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sawada K, Fujishima N, Hirokawa M. Acquired pure red cell aplasia: updated review of treatment. Br J Haematol 2008; 142:505-14. [PMID: 18510682 PMCID: PMC2592349 DOI: 10.1111/j.1365-2141.2008.07216.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pure red cell aplasia (PRCA) is a syndrome characterized by a severe normocytic anaemia, reticulocytopenia, and absence of erythroblasts from an otherwise normal bone marrow. Primary PRCA, or secondary PRCA which has not responded to treatment of the underlying disease, is treated as an immunologically-mediated disease. Although vigorous immunosuppressive treatments induce and maintain remissions in a majority of patients, they carry an increased risk of serious complications. Corticosteroids were used in the treatment of PRCA and this has been considered the treatment of first choice although relapse is not uncommon. Cyclosporine A (CsA) has become established as one of the leading drugs for treatment of PRCA. However, common concerns have been the number of patients treated with CsA who achieve sustained remissions and the number that relapse. This article reviews the current status of CsA therapy and compares it to other treatments for diverse PRCAs.
Collapse
Affiliation(s)
- Kenichi Sawada
- Department of Internal Medicine III, Division of Haematology, Akita University Graduate School of Medicine, Akita, Japan.
| | | | | |
Collapse
|
27
|
Stern M, Buser AS, Lohri A, Tichelli A, Nissen-Druey C. Autoimmunity and malignancy in hematology—More than an association. Crit Rev Oncol Hematol 2007; 63:100-10. [PMID: 17391977 DOI: 10.1016/j.critrevonc.2007.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 01/02/2007] [Accepted: 02/06/2007] [Indexed: 02/01/2023] Open
Abstract
Several associations between hematological malignancies and autoimmunity directed against hematopoietic cells exist. Antibody mediated elimination of mature blood cells such as autoimmune hemolytic anemia (AIHA) and immune thrombocytopenia (ITP) are frequent complications of non-Hodgkin lymphomas, most prominently chronic lymphocytic leukemia. Autoimmunity directed against hematopoietic precursor cells is the hallmark of aplastic anemia, but many features of this disease are shared by two related disorders, paroxysmal nocturnal hemoglobinuria (PNH) and myelodysplastic syndrome (MDS). While the clinical associations between hematological malignancy and autoimmunity have been described many decades ago, only in the last several years have the common pathogenetic mechanisms been elucidated. We summarize the recent progress made in understanding how hematological malignancy gives rise to autoimmunity directed against blood cells and vice versa, and illustrate parallels in the etiology of malignant and autoimmune hematological disorders. Specifically, recent progress in the recognition of the association of lymphoproliferative disorders and autoimmunity against mature blood cells, and common pathogenetic background of aplastic anemia, paroxysmal nocturnal hemoglobinuria, and myelodysplastic syndrome are discussed.
Collapse
Affiliation(s)
- Martin Stern
- Division of Experimental Hematology and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Perugia, Policlinico Monteluce, Perugia, Italy
| | | | | | | | | |
Collapse
|
28
|
Friedman J, Schattner A, Shvidel L, Berrebi A. Characterization of T-cell large granular lymphocyte leukemia associated with Sjogren's syndrome-an important but under-recognized association. Semin Arthritis Rheum 2006; 35:306-11. [PMID: 16616153 DOI: 10.1016/j.semarthrit.2005.07.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Patients with T-cell (CD3+) large granular lymphocyte (LGL) leukemia have a high prevalence of autoantibodies and associated autoimmune diseases. Sjogren's syndrome may not be diagnosed unless specifically looked for. We set to determine the prevalence of Sjogren's syndrome in LGL leukemia and its cytokine profile. METHODS Every patient with a confirmed diagnosis of LGL leukemia diagnosed at a single academic medical center over the last 15 years was evaluated for Sjogren's syndrome by questioning about sicca symptoms. In symptomatic patients, Schirmer's test, rose bengal corneal staining, salivary flow rate measurement, autoantibody screening, and minor salivary gland biopsy were performed. Supernatants obtained from T-LGL leukemic cells following phytohemagglutinin (PHA) activation were analyzed for cytokine production by enzyme-linked immunosorbent assay and patients with or without Sjogren's syndrome were compared with controls. RESULTS Of 48 patients, 21 reported sicca symptoms and were enrolled in the study. In 8 patients Sjogren's syndrome was ruled out. Thirteen patients had clear evidence of Sjogren's syndrome according to accepted criteria (27%). None had rheumatoid arthritis, but 1 had limited scleroderma. Thus, 12/48 patients had primary Sjogren's syndrome. Other autoimmune diseases were frequently present, in particular, immune cytopenias (n=7) or thyroid autoimmunity (n=6). Supernatants of T-LGL leukemia cells incubated with PHA revealed markedly increased levels of multiple cytokines (especially soluble interleukin 2 receptor, tumor necrosis factor alpha, IL-6, IL-8) compared with healthy controls. However, this increase was common to LGL leukemia patients with or without Sjogren's syndrome. CONCLUSIONS Sjogren's syndrome was commonly identified in the patients with T-cell LGL leukemia in this study. Upregulated cytokine production by the neoplastic cells may underlie some of the immune-mediated disorders common in these patients.
Collapse
Affiliation(s)
- Joshua Friedman
- Kaplan Medical Center, Rehovot and Hebrew University Hadassah Medical School, Jerusalem, Israel.
| | | | | | | |
Collapse
|
29
|
Majumder D, Banerjee D, Chandra S, Banerjee S, Chakrabarti A. Red cell morphology in leukemia, hypoplastic anemia and myelodysplastic syndrome. ACTA ACUST UNITED AC 2006; 13:217-25. [PMID: 16876391 DOI: 10.1016/j.pathophys.2006.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Revised: 06/20/2006] [Accepted: 06/23/2006] [Indexed: 11/24/2022]
Abstract
Leukemic patients of different classifications are associated with anemia. Such clinical conditions are often referred to as refractory anemia, paraoxymal nocturnal hemoglobinuria, hemolytic uremia and autoimmune hemolytic anemia, all of which could be categorized as the cancer cachexia. In the present work, we have studied the overall morphology of intact red cells in different leukemic patients along with patients of hypoplastic anemia (HPA) by scanning electron microscopy. We have also studied the ultrastructure of the red cell surface membranes by transmission electron microscopy. For all experiments, erythrocytes from normal individuals served as controls. We have shown direct evidence of the altered red cell (RBC) membrane morphology irrespective of the hemoglobin status of the patients which includes (1) presence of large central holes in RBCs of acute myeloid leukemia (AML), (2) presence of thorn- and horn-like structure in RBCs of acute lymphoblastic leukemia (ALL) and chronic myeloid leukemia (CML) and (3) flaccid appearance of RBCs in chronic lymphocytic leukemia (CLL) patients. A mixture of the above mentioned structures were found in the red cells of patients suffering from myelodysplastic syndrome (MDS) and in case of patients of HPA the RBCs lost the normal biconcave structures. TEM studies revealed presence of pores with diameters ranging from 100 to 200nm on the RBC membrane surface of myeloid leukemia with AML being the most prominent among others. Such pathophysiological alterations of the RBC morphology in leukemic patients could be identified as characteristic signature of the onset of anemia associated with the disease.
Collapse
Affiliation(s)
- Durjoy Majumder
- Biophysics Division, Structural Genomics Section, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India
| | | | | | | | | |
Collapse
|
30
|
Wlodarski MW, Gondek LP, Nearman ZP, Plasilova M, Kalaycio M, Hsi ED, Maciejewski JP. Molecular strategies for detection and quantitation of clonal cytotoxic T-cell responses in aplastic anemia and myelodysplastic syndrome. Blood 2006; 108:2632-41. [PMID: 16614248 PMCID: PMC1895579 DOI: 10.1182/blood-2005-09-3902] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Immune mechanisms are involved in the pathophysiology of aplastic anemia (AA) and myelodysplastic syndrome (MDS). Immune inhibition can result from cytotoxic T cell (CTL) attack against normal hematopoiesis or reflect immune surveillance. We used clonally unique T-cell receptor (TCR) variable beta-chain (VB) CDR3 regions as markers of pathogenic CTL responses and show that while marrow failure syndromes are characterized by polyclonal expansions, overexpanded clones exist in these diseases and can serve as investigative tools. To test the applicability of clonotypic assays, we developed rational molecular methods for the detection of immunodominant clonotypes in blood and in historic marrow biopsies of 35 AA, 37 MDS, and 21 paroxysmal nocturnal hemoglobinuria (PNH) patients, in whom specific CDR3 sequences and clonal sizes were determined. CTL expansions were detected in 81% and 97% of AA and MDS patients, respectively. In total, 81 immunodominant signature clonotypes were identified. Based on the sequence of immunodominant CDR3 clonotypes, we designed quantitative assays for monitoring corresponding clones, including clonotypic Taqman polymerase chain reaction (PCR) and clonotype-specific sequencing. No correlation was found between clonality and disease severity but in patients treated with immunosuppression, truly pathogenic clones were identified based on the decline that paralleled hematologic response. We conclude that immunodominant clonotypes associated with marrow failure may be used to monitor immunosuppressive therapy.
Collapse
Affiliation(s)
- Marcin W Wlodarski
- Experimental Hematology and Hematopoiesis Section, Taussig Cancer Center R/40, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Tanaka Y, Matsui K, Yamashita K, Matsuda K, Shinohara K, Matsutani A. T-gamma delta large granular lymphocyte leukemia preceded by pure red cell aplasia and complicated with hemophagocytic syndrome caused by Epstein-Barr virus infection. Intern Med 2006; 45:631-5. [PMID: 16755095 DOI: 10.2169/internalmedicine.45.1594] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 51-year-old man developed anemia, and was diagnosed with pure red cell aplasia through the absence of erythroid progenitors. Initially, he was treated with cyclosporine and prednisolone for 6 months but they were ineffective. Large granular lymphocyte (LGL) leukemia with the T-cell gamma delta phenotype evolved after 6 months showing CD2+, CD3+, CD8- and CD56- with the T-cell receptor beta gene rearrangement, clonalities of gamma and delta genes and complex chromosome abnormality simultaneously with hemophagocytic syndrome (HPS). Epstein-Barr virus (EBV) genomic DNA was detected in the bone marrow cells. Administration of bolus methylprednisolone was ineffective, and the patient died one month later. In the present patient, it seemed that lymphoproliferative disease of large granular lymphocytes (LDGL) manifested initially as PRCA, gammadelta LGL leukemia evolved, and finally fatal HPS become complicated, presumably caused by the EBV reactivation in the immunodeficiency state with the administration of immunosuppressants.
Collapse
MESH Headings
- Epstein-Barr Virus Infections/complications
- Fatal Outcome
- Humans
- Leukemia, Lymphoid/complications
- Leukemia, Lymphoid/genetics
- Leukemia, Lymphoid/metabolism
- Lymphocytes/metabolism
- Lymphohistiocytosis, Hemophagocytic/complications
- Lymphohistiocytosis, Hemophagocytic/drug therapy
- Lymphohistiocytosis, Hemophagocytic/virology
- Male
- Methylprednisolone/therapeutic use
- Middle Aged
- Phenotype
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Red-Cell Aplasia, Pure/complications
- Treatment Failure
Collapse
Affiliation(s)
- Yoshinori Tanaka
- Division of Hematology, Department of Medicine, Yamaguchi Prefectural Medical Center, Hofu
| | | | | | | | | | | |
Collapse
|
32
|
Wlodarski MW, O'Keefe C, Howe EC, Risitano AM, Rodriguez A, Warshawsky I, Loughran TP, Maciejewski JP. Pathologic clonal cytotoxic T-cell responses: nonrandom nature of the T-cell–receptor restriction in large granular lymphocyte leukemia. Blood 2005; 106:2769-80. [PMID: 15914562 DOI: 10.1182/blood-2004-10-4045] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AbstractT-cell large granular lymphocyte (T-LGL) leukemia is a clonal lymphoproliferation of cytotoxic T cells (CTLs) associated with cytopenias. T-LGL proliferation seems to be triggered/sustained by antigenic drive; it is likely that hematopoietic progenitors are the targets in this process. The antigen-specific portion of the T-cell receptor (TCR), the variable beta (VB)–chain complementarity-determining region 3 (CDR3), can serve as a molecular signature (clonotype) of a T-cell clone. We hypothesized that clonal CTL proliferation develops not randomly but in the context of an autoimmune response. We identified the clonotypic sequence of T-LGL clones in 60 patients, including 56 with known T-LGL and 4 with unspecified neutropenia. Our method also allowed for the measurement of clonal frequencies; a decrease in or loss of the pathogenic clonotype and restoration of the TCR repertoire was found after hematologic remission. We identified 2 patients with identical immunodominant CDR3 sequence. Moreover, we found similarity between multiple immunodominant clonotypes and codominant as well as a nonexpanded, “supporting” clonotypes. The data suggest a nonrandom clonal selection in T-LGL, possibly driven by a common antigen. In contrast, the physiologic clonal CTL repertoire is highly diverse and we were not able to detect any significant clonal sharing in 26 healthy controls.
Collapse
|
33
|
Plasilova M, Risitano AM, O'Keefe CL, Rodriguez A, Wlodarski M, Young NS, Maciejewski J. Shared and individual specificities of immunodominant cytotoxic T-cell clones in paroxysmal nocturnal hemoglobinuria as determined by molecular analysis. Exp Hematol 2004; 32:261-9. [PMID: 15003311 DOI: 10.1016/j.exphem.2003.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Revised: 09/23/2003] [Accepted: 11/20/2003] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Similar immune mechanisms have been suggested to operate in aplastic anemia (AA) and paroxysmal nocturnal hemoglobinuria (PNH), and the presence of PNH clones in AA may indicate that an immune reaction directed against hematopoietic stem cells may be responsible for the immune selection pressure leading to PNH evolution. We previously described expansions of selective cytotoxic T-lymphocyte (CTL) clones in AA patients. MATERIALS AND METHODS We applied a molecular analysis of the T-cell receptor repertoire to study the characteristics of CTL response in patients with various forms of PNH. Immunodominant T-cell clones were detected using combined flow cytometric and molecular analysis of the variable beta (VB) chain and CDR3 representation, followed by determination of the frequency of individual CDR3 clonotypes. Clonotypic polymerase chain reaction (PCR) was performed to establish clonotypic utilization pattern. RESULTS In patients with a past history of AA, and when subgrouped by current blood counts as "hypoproliferative" PNH patients (in contrast to purely hemolytic form of PNH), more pronounced skewing of VB family utilization was found, consistent with T-cell responses involving several immunodominant CTL clones. Sequences of the PNH-derived clonotypes were used to design PCR-based assays for the utilization analysis of individual clones in PNH patients. The clonotypic distribution pattern established by this PCR method indicated that immunodominant T-cell specificities were shared between some patients but also may be found at low frequencies in controls. CONCLUSION Analysis of the CDR3 sequence pattern as a marker for expanded immunodominant clonotypes may have an application in the study of T-cell responses in PNH.
Collapse
MESH Headings
- Adult
- Aged
- Anemia, Aplastic/complications
- Anemia, Aplastic/immunology
- Autoimmune Diseases/immunology
- Clone Cells/immunology
- Complementarity Determining Regions/genetics
- DNA, Complementary/genetics
- Disease Progression
- Female
- Gene Rearrangement, beta-Chain T-Cell Antigen Receptor
- Glycosylphosphatidylinositols/deficiency
- Hemoglobinuria, Paroxysmal/complications
- Hemoglobinuria, Paroxysmal/genetics
- Hemoglobinuria, Paroxysmal/immunology
- Humans
- Immunodominant Epitopes/immunology
- Male
- Membrane Proteins/genetics
- Middle Aged
- Polymerase Chain Reaction
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Magdalena Plasilova
- Experimental Hematology and Hematopoiesis Section, Taussig Cancer Center, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
O'Keefe CL, Plasilova M, Wlodarski M, Risitano AM, Rodriguez AR, Howe E, Young NS, Hsi E, Maciejewski JP. Molecular Analysis of TCR Clonotypes in LGL: A Clonal Model for Polyclonal Responses. THE JOURNAL OF IMMUNOLOGY 2004; 172:1960-9. [PMID: 14734782 DOI: 10.4049/jimmunol.172.3.1960] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Large granular lymphocytic (LGL) leukemia is a clonal lymphoproliferative disorder of CTL associated with cytopenias resulting from an immune and cytokine attack on hemopoietic progenitor cells. Extreme clonality of CTL expansions seen in LGL leukemia makes it an ideal model to study the role of the T cell repertoire in other less-polarized immune-mediated disorders. Complementarity-determining region 3 (CDR3) of the TCR is a unique Ag-specific region that can serve as a molecular marker, or clonotype, of the disease-specific T cells. We studied the variable portion of the beta-chain spectrum in a cohort of LGL leukemia patients. The CDR3 sequences were determined for the immunodominant clones and used to design clonotype-specific primers. By direct and semi-nested amplification, clonotype amplicons were found to be shared by multiple patients and controls. Analysis of the generated sequences demonstrated that the original clonotypes are rarely encountered in normal control samples; however, high levels of homology were found in both controls and patients. Clonotypes derived from individual LGL patients can be used as tumor markers for the malignant clone. More generally, clonotypic analysis and comparison of the variable portion of the beta-chain CDR3-specific sequences from a large number of patients may lead to better subclassification of not only LGL but also other immune-mediated disorders.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Cell Division/drug effects
- Cell Division/genetics
- Cell Division/immunology
- Clone Cells
- Cloning, Molecular/methods
- Complementarity Determining Regions/analysis
- Complementarity Determining Regions/biosynthesis
- Complementarity Determining Regions/genetics
- Humans
- Immunosuppressive Agents/therapeutic use
- Leukemia, Lymphoid/drug therapy
- Leukemia, Lymphoid/genetics
- Leukemia, Lymphoid/immunology
- Leukemia, Lymphoid/pathology
- Leukemia, T-Cell/drug therapy
- Leukemia, T-Cell/genetics
- Leukemia, T-Cell/immunology
- Leukemia, T-Cell/pathology
- Leukopenia/genetics
- Leukopenia/immunology
- Leukopenia/pathology
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Middle Aged
- Polymerase Chain Reaction/methods
- Receptors, Antigen, T-Cell/analysis
- Receptors, Antigen, T-Cell/biosynthesis
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell, alpha-beta/analysis
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/pathology
Collapse
Affiliation(s)
- Christine L O'Keefe
- Experimental Hematology and Hematopoiesis Section, and Hematopathology Section, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|