1
|
Gutiérrez-Brito JA, Lomelí-Nieto JÁ, Muñoz-Valle JF, Oregon-Romero E, Corona-Angeles JA, Hernández-Bello J. Sex hormones and allergies: exploring the gender differences in immune responses. FRONTIERS IN ALLERGY 2025; 5:1483919. [PMID: 39840271 PMCID: PMC11747284 DOI: 10.3389/falgy.2024.1483919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/22/2024] [Indexed: 01/23/2025] Open
Abstract
Allergies are closely associated with sex-related hormonal variations that influence immune function, leading to distinct symptom profiles. Similar sex-based differences are observed in other immune disorders, such as autoimmune diseases. In allergies, women exhibit a higher prevalence of atopic conditions, such as allergic asthma and eczema, in comparison to men. However, age-related changes play a significant role because men have a higher incidence of allergies until puberty, and then comes a switch ratio of prevalence and severity in women. Investigations into the mechanisms of how the hormones influence the development of these diseases are crucial to understanding the molecular, cellular, and pathological aspects. Sex hormones control the reproductive system and have several immuno-modulatory effects affecting immune cells, including T and B cell development, antibody production, lymphoid organ size, and lymphocyte death. Moreover, studies have suggested that female sex hormones amplify memory immune responses, which may lead to an excessive immune response impacting the pathogenesis, airway hyperresponsiveness, inflammation of airways, and mucus production of allergic diseases. The evidence suggests that estrogens enhance immune humoral responses, autoimmunity, mast cell reactivity, and delayed IV allergic reactions, while androgens, progesterone, and glucocorticoids suppress them. This review explores the relationship between sex hormones and allergies, including epidemiological data, experimental findings, and insights from animal models. We discuss the general properties of these hormones, their effects on allergic processes, and clinical observations and therapeutic results. Finally, we describe hypersensitivity reactions to these hormones.
Collapse
Affiliation(s)
| | | | | | | | | | - Jorge Hernández-Bello
- Research Institute of Biomedical Sciences, University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico
| |
Collapse
|
2
|
Gu Y, Mu Q, Cheng D. Androgens in cervical cancer: Their role in epidemiology and biology. iScience 2024; 27:110155. [PMID: 39021790 PMCID: PMC11253156 DOI: 10.1016/j.isci.2024.110155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
This comprehensive review delves into the significance of androgens in cervical cancer, examining both epidemiological evidence and the underlying biological mechanisms. Cervical cancer ranks as the fourth most prevalent cancer among women globally, with disproportionately higher incidence and mortality rates in less developed regions where cervical human papillomavirus (HPV) screening remains limited. Recent research highlights the previously underexplored role of androgens in cervical cancer. Notably, cervical tissues house androgen receptors, and elevated levels of endogenous androgens have been linked to an increased risk of cervical cancer. Androgens exert their influence on the development and progression of cervical cancer by impacting key cellular processes, including proliferation, apoptosis, differentiation, and epithelial cell transformation. Furthermore, specific HPV subtypes may interact with androgens, potentially modulating HPV-related cellular degeneration and transformation. In light of these findings, it is evident that androgens assume a crucial role in cervical cancer's pathogenesis. Consequently, further investigations are warranted to deepen our understanding of the intricate relationship between androgens and cervical cancer. Such knowledge advancements can facilitate improved strategies for early prevention and treatment of cervical cancer, especially in regions with limited HPV screening access. This review underscores the importance of considering androgens as a vital component of the multifaceted landscape of cervical cancer etiology and progression, ultimately contributing to more effective clinical interventions.
Collapse
Affiliation(s)
- Yang Gu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China
| | - Qing Mu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China
| | - Dali Cheng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, P.R. China
| |
Collapse
|
3
|
Santana-Sánchez P, Vaquero-García R, Legorreta-Haquet MV, Chávez-Sánchez L, Chávez-Rueda AK. Hormones and B-cell development in health and autoimmunity. Front Immunol 2024; 15:1385501. [PMID: 38680484 PMCID: PMC11045971 DOI: 10.3389/fimmu.2024.1385501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
The development of B cells into antibody-secreting plasma cells is central to the adaptive immune system as they induce protective and specific antibody responses against invading pathogens. Various studies have shown that, during this process, hormones can play important roles in the lymphopoiesis, activation, proliferation, and differentiation of B cells, and depending on the signal given by the receptor of each hormone, they can have a positive or negative effect. In autoimmune diseases, hormonal deregulation has been reported to be related to the survival, activation and/or differentiation of autoreactive clones of B cells, thus promoting the development of autoimmunity. Clinical manifestations of autoimmune diseases have been associated with estrogens, prolactin (PRL), and growth hormone (GH) levels. However, androgens, such as testosterone and progesterone (P4), could have a protective effect. The objective of this review is to highlight the links between different hormones and the immune response mediated by B cells in the etiopathogenesis of systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). The data collected provide insights into the role of hormones in the cellular, molecular and/or epigenetic mechanisms that modulate the B-cell response in health and disease.
Collapse
Affiliation(s)
| | | | | | | | - Adriana Karina Chávez-Rueda
- Unidad de Investigación Médica en Inmunología, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México (CDMX), Mexico
| |
Collapse
|
4
|
Nolasco-Pérez TDJ, Cervantes-Candelas LA, Buendía-González FO, Aguilar-Castro J, Fernández-Rivera O, Salazar-Castañón VH, Legorreta-Herrera M. Immunomodulatory effects of testosterone and letrozole during Plasmodium berghei ANKA infection. Front Cell Infect Microbiol 2023; 13:1146356. [PMID: 37384220 PMCID: PMC10296187 DOI: 10.3389/fcimb.2023.1146356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/15/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Malaria is one of the leading health problems globally. Plasmodium infection causes pronounced sexual dimorphism, and the lethality and severity are more remarkable in males than in females. To study the role of testosterone in the susceptibility and mortality of males in malaria, it is common to increase its concentration. However, this strategy does not consider the enzyme CYP19A1 aromatase, which can transform it into oestrogens. Methods To avoid the interference of oestrogens, we inhibited in vivo CYP19A1 aromatase with letrozole and increased the testosterone level by exogen administration before infection with Plasmodium berghei ANKA. We measured the impact on free testosterone, 17β-oestradiol and dehydroepiandrosterone levels in plasma; additionally, we evaluated parasitaemia, body temperature, body mass, glucose levels and haemoglobin concentration. Furthermore, we evaluated the effects of testosterone on the immune response; we quantified the CD3+/CD4+, CD3+/CD8+, CD19+, Mac-3+ and NK cells in the spleen and the plasma concentrations of the cytokines IL-2, IL-4, IL-6, IFN-, IL-10, TNF-α and IL-17A. Finally, we quantified the levels of antibodies. Results We found that mice treated with the combination of letrozole and testosterone and infected with Plasmodium berghei ANKA had increased concentrations of free testosterone and DHEA but decreased levels of 17β-oestradiol. As a result, parasitaemia increased, leading to severe anaemia. Interestingly, testosterone increased temperature and decreased glucose concentration as a possible testosterone-mediated regulatory mechanism. The severity of symptomatology was related to critical immunomodulatory effects generated by free testosterone; it selectively increased CD3+CD8+ T and CD19+ cells but decreased Mac-3+. Remarkably, it reduced IL-17A concentration and increased IL-4 and TNF-α. Finally, it increased IgG1 levels and the IgG1/IgG2a ratio. In conclusion, free testosterone plays an essential role in pathogenesis in male mice by increasing CD8+ and decreasing Mac3+ cells and mainly reducing IL-17A levels, which is critical in the development of anaemia. Our results are important for understanding the mechanisms that regulate the exacerbated inflammatory response in infectious diseases and would be useful for the future development of alternative therapies to reduce the mortality generated by inflammatory processes.
Collapse
Affiliation(s)
- Teresita de Jesús Nolasco-Pérez
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luis Antonio Cervantes-Candelas
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Fidel Orlando Buendía-González
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jesús Aguilar-Castro
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Omar Fernández-Rivera
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Víctor Hugo Salazar-Castañón
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Martha Legorreta-Herrera
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología en Moléculas de Interés Biológico, División de Estudios de Posgrado e Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
5
|
Yang Q, Kennicott K, Zhu R, Kim J, Wakefield H, Studener K, Liang Y. Sex hormone influence on female-biased autoimmune diseases hints at puberty as an important factor in pathogenesis. Front Pediatr 2023; 11:1051624. [PMID: 36793337 PMCID: PMC9923181 DOI: 10.3389/fped.2023.1051624] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/10/2023] [Indexed: 01/31/2023] Open
Abstract
The majority of autoimmune diseases affect more women than men, suggesting an important role for sex hormones in regulating immune response. Current research supports this idea, highlighting the importance of sex hormones in both immune and metabolic regulation. Puberty is characterized by drastic changes in sex hormone levels and metabolism. These pubertal changes may be what forms the gulf between men and women in sex bias towards autoimmunity. In this review, a current perspective on pubertal immunometabolic changes and their impact on the pathogenesis of a select group of autoimmune diseases is presented. SLE, RA, JIA, SS, and ATD were focused on in this review for their notable sex bias and prevalence. Due to both the scarcity of pubertal autoimmune data and the differences in mechanism or age-of-onset in juvenile analogues often beginning prior to pubertal changes, data on the connection between the specific adult autoimmune diseases and puberty often relies on sex hormone influence in pathogenesis and established sex differences in immunity that begin during puberty.
Collapse
Affiliation(s)
- Qianfan Yang
- School of Medicine and Public Health, Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United
| | - Kameron Kennicott
- Departments of Physiology and Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Runqi Zhu
- Departments of Physiology and Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
| | - Jooyong Kim
- School of Medicine and Public Health, Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United
| | - Hunter Wakefield
- School of Medicine and Public Health, Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United
| | - Katelyn Studener
- School of Medicine and Public Health, Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United
| | - Yun Liang
- Departments of Physiology and Pharmacology and Toxicology, Michigan State University, East Lansing, MI, United States
- Correspondence: Yun Liang
| |
Collapse
|
6
|
Murgia F, Giagnoni F, Lorefice L, Caria P, Dettori T, D’Alterio MN, Angioni S, Hendren AJ, Caboni P, Pibiri M, Monni G, Cocco E, Atzori L. Sex Hormones as Key Modulators of the Immune Response in Multiple Sclerosis: A Review. Biomedicines 2022; 10:biomedicines10123107. [PMID: 36551863 PMCID: PMC9775368 DOI: 10.3390/biomedicines10123107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND A variety of autoimmune diseases, including MS, amplify sex-based physiological differences in immunological responsiveness. Female MS patients experience pathophysiological changes during reproductive phases (pregnancy and menopause). Sex hormones can act on immune cells, potentially enabling them to modify MS risk, activity, and progression, and to play a role in treatment. METHODS Scientific papers (published between 1998 and 2021) were selected through PubMed, Google Scholar, and Web of Science literature repositories. The search was limited to publications analyzing the hormonal profile of male and female MS patients during different life phases, in particular focusing on sex hormone treatment. RESULTS Both men and women with MS have lower testosterone levels compared to healthy controls. The levels of estrogens and progesterone increase during pregnancy and then rapidly decrease after delivery, possibly mediating an immune-stabilizing process. The literature examined herein evidences the neuroprotective effect of testosterone and estrogens in MS, supporting further examinations of their potential therapeutic uses. CONCLUSIONS A correlation has been identified between sex hormones and MS clinical activity. The combination of disease-modifying therapies with estrogen or estrogen plus a progestin receptor modulator promoting myelin repair might represent an important strategy for MS treatment in the future.
Collapse
Affiliation(s)
- Federica Murgia
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
- Correspondence:
| | - Florianna Giagnoni
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Lorena Lorefice
- Multiple Sclerosis Regional Center, ASSL Cagliari, ATS Sardinia, 09126 Cagliari, Italy
| | - Paola Caria
- Department of Biomedical Sciences, Section of Biochemistry, Biology, and Genetics, University of Cagliari, Cittadella Universitaria, 09124 Cagliari, Italy
| | - Tinuccia Dettori
- Department of Biomedical Sciences, Section of Biochemistry, Biology, and Genetics, University of Cagliari, Cittadella Universitaria, 09124 Cagliari, Italy
| | - Maurizio N. D’Alterio
- Division of Gynecology and Obstetrics, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Stefano Angioni
- Division of Gynecology and Obstetrics, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Aran J. Hendren
- Sussex Neuroscience, University of Sussex, Brighton BN1 9QG, UK
| | - Pierluigi Caboni
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Monica Pibiri
- Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| | - Giovanni Monni
- Department of Obstetrics and Gynecology, Prenatal and Preimplantation Genetic Diagnosis, Fetal Therapy, Microcitemico Pediatric Hospital “A. Cao”, 09121 Cagliari, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Regional Center, ASSL Cagliari, ATS Sardinia, Department of Medical Sciences and Public Health, University of Cagliari, 09126 Cagliari, Italy
| | - Luigi Atzori
- Clinical Metabolomics Unit, Department of Biomedical Sciences, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
7
|
Özdemir BC. Androgen Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:169-183. [PMID: 33123999 DOI: 10.1007/978-3-030-47189-7_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The key function of mesenchymal/stromal androgen receptor (AR) signaling for prostate development has been well documented by tissue recombination experiments. Some studies have addressed the expression and function of AR in stromal cells in prostate cancer, yet our understanding of the role of stromal AR in other tissues beyond prostate is still insufficient.Genomic analysis has revealed that cellular responses to androgens differ between epithelial and stromal cells. AR in stromal cells seems not to act via classical AR transcription factors such as FOXA1 but rather depends on the JUN/AP1 complex. Stromal AR appears to have tumor-promoting and tumor-protective functions depending on tumor stage. Loss of AR signaling in fibroblasts has been detected already in premalignant lesions in the skin and prostate and has been associated with tumor induction in xenografts of skin cancer and aggressive disease features and poor patient prognosis in prostate cancer. Moreover, AR expression is found on virtually all tissue-infiltrating immune cells and plays critical roles in immune cell function. These findings suggest a potential deleterious impact of current androgen deprivation therapies which inhibit both epithelial and stromal AR, highlighting the need to develop tissue-specific AR inhibitors.
Collapse
Affiliation(s)
- Berna C Özdemir
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland. .,International Cancer Prevention Institute, Epalinges, Switzerland.
| |
Collapse
|
8
|
Ben-Batalla I, Vargas-Delgado ME, von Amsberg G, Janning M, Loges S. Influence of Androgens on Immunity to Self and Foreign: Effects on Immunity and Cancer. Front Immunol 2020; 11:1184. [PMID: 32714315 PMCID: PMC7346249 DOI: 10.3389/fimmu.2020.01184] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
It is well-known that sex hormones can directly and indirectly influence immune cell function. Different studies support a suppressive role of androgens on different components of the immune system by decreasing antibody production, T cell proliferation, NK cytotoxicity, and stimulating the production of anti-inflammatory cytokines. Androgen receptors have also been detected in many different cells of hematopoietic origin leading to direct effects of their ligands on the development and function of the immune system. The immunosuppressive properties of androgens could contribute to gender dimorphisms in autoimmune and infectious disease and thereby also hamper immune surveillance of tumors. Consistently, females generally are more prone to autoimmunity, while relatively less susceptible to infections, and have lower incidence and mortality of the majority of cancers compared to males. Some studies show that androgen deprivation therapy (ADT) can induce expansion of naïve T cells and increase T-cell responses. Emerging clinical data also reveal that ADT might enhance the efficacy of various immunotherapies including immune checkpoint blockade. In this review, we will discuss the potential role of androgens and their receptors in the immune responses in the context of different diseases. A particular focus will be on cancer, highlighting the effect of androgens on immune surveillance, tumor biology and on the efficacy of anti-cancer therapies including emerging immune therapies.
Collapse
Affiliation(s)
- Isabel Ben-Batalla
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - María Elena Vargas-Delgado
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Janning
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Division of Personalized Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Personalized Oncology, University Hospital Mannheim, Mannheim, Germany
| | - Sonja Loges
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Division of Personalized Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Personalized Oncology, University Hospital Mannheim, Mannheim, Germany
| |
Collapse
|
9
|
Cioni B, Zwart W, Bergman AM. Androgen receptor moonlighting in the prostate cancer microenvironment. Endocr Relat Cancer 2018; 25:R331-R349. [PMID: 29618577 DOI: 10.1530/erc-18-0042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 01/03/2023]
Abstract
Androgen receptor (AR) signaling is vital for the normal development of the prostate and is critically involved in prostate cancer (PCa). AR is not only found in epithelial prostate cells but is also expressed in various cells in the PCa-associated stroma, which constitute the tumor microenvironment (TME). In the TME, AR is expressed in fibroblasts, macrophages, lymphocytes and neutrophils. AR expression in the TME was shown to be decreased in higher-grade and metastatic PCa, suggesting that stromal AR plays a protective role against PCa progression. With that, the functionality of AR in stromal cells appears to deviate from the receptor's classical function as described in PCa cells. However, the biological action of AR in these cells and its effect on cancer progression remains to be fully understood. Here, we systematically review the pathological, genomic and biological literature on AR actions in various subsets of prostate stromal cells and aim to better understand the consequences of AR signaling in the TME in relation to PCa development and progression.
Collapse
Affiliation(s)
- B Cioni
- Division of OncogenomicsThe Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - W Zwart
- Division of OncogenomicsThe Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode InstituteThe Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - A M Bergman
- Division of OncogenomicsThe Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Medical OncologyThe Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
10
|
Nowak J, Pawłowski B, Borkowska B, Augustyniak D, Drulis-Kawa Z. No evidence for the immunocompetence handicap hypothesis in male humans. Sci Rep 2018; 8:7392. [PMID: 29743556 PMCID: PMC5943526 DOI: 10.1038/s41598-018-25694-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 04/26/2018] [Indexed: 12/11/2022] Open
Abstract
The observations that testosterone might be immunosuppressive, form the basis for the immunocompetence handicap hypothesis (ICHH). According to ICHH only high-quality individuals can maintain high levels of testosterone and afford the physiological cost of hormone-derived immunosuppression. The animal and human studies that attempted to support the ICHH by precisely defined impairment of immunity associated with high testosterone levels are inconclusive. Furthermore, human studies have used only selected immune functions and varying testosterone fractions. This is the first study examining the relationship between multiple innate and adaptive immunity and serum levels of free testosterone, total testosterone, DHT and DHEA in ninety-seven healthy men. Free testosterone and marginally DHT levels were positively correlated with the strength of the influenza post-vaccination response. Total testosterone and DHEA showed no immunomodulatory properties. Our findings did not support ICHH assumptions about immunosuppressive function of androgens. In the affluent society studied here, men with higher levels of free testosterone could afford to invest more in adaptive immunity. Since the hormone-immune relationship is complex and may depend on multiple factors, including access to food resources, androgens should be treated as immunomodulators rather than implicit immunosuppressants.
Collapse
Affiliation(s)
- Judyta Nowak
- Department of Human Biology, University of Wroclaw, Kuźnicza 35, 50-138, Wrocław, Poland.
| | - Bogusław Pawłowski
- Department of Human Biology, University of Wroclaw, Kuźnicza 35, 50-138, Wrocław, Poland
| | - Barbara Borkowska
- Department of Human Biology, University of Wroclaw, Kuźnicza 35, 50-138, Wrocław, Poland
| | - Daria Augustyniak
- Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| | - Zuzanna Drulis-Kawa
- Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148, Wrocław, Poland
| |
Collapse
|
11
|
Gubbels Bupp MR, Jorgensen TN. Androgen-Induced Immunosuppression. Front Immunol 2018; 9:794. [PMID: 29755457 PMCID: PMC5932344 DOI: 10.3389/fimmu.2018.00794] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/03/2018] [Indexed: 12/17/2022] Open
Abstract
In addition to determining biological sex, sex hormones are known to influence health and disease via regulation of immune cell activities and modulation of target-organ susceptibility to immune-mediated damage. Systemic autoimmune disorders, such as systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis are more prevalent in females, while cancer shows the opposite pattern. Sex hormones have been repeatedly suggested to play a part in these biases. In this review, we will discuss how androgens and the expression of functional androgen receptor affect immune cells and how this may dampen or alter immune response(s) and affect autoimmune disease incidences and progression.
Collapse
Affiliation(s)
| | - Trine N Jorgensen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
12
|
Lundell AC, Nordström I, Andersson K, Strömbeck A, Ohlsson C, Tivesten Å, Rudin A. Dihydrotestosterone levels at birth associate positively with higher proportions of circulating immature/naïve CD5 + B cells in boys. Sci Rep 2017; 7:15503. [PMID: 29138503 PMCID: PMC5686210 DOI: 10.1038/s41598-017-15836-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/02/2017] [Indexed: 01/17/2023] Open
Abstract
Boys present with higher proportions of immature/naïve CD5+ B cells than girls up to 3 years of age. Boys also have higher fractions of regulatory T cells (Tregs) in early infancy, but the mechanisms for these sex-related differences are unknown. In the prospective FARMFLORA follow-up study of 23 boys and 25 girls, we investigated if these immunological differences remained at 8 years of age. We also examined if testosterone or dihydrotestosterone (DHT) levels at birth and at 8 years of age were associated with immune maturation. Immunological variables and androgen levels were examined and measured in blood samples obtained at birth, 3–5 days and at 8 years of age. Boys had higher proportions of CD5+ and immature/transitional CD24hiCD38hi B cells, whereas girls had higher fractions of B cells with a memory phenotype at 8 years of age. School-aged boys also presented with higher frequencies of Tregs, and a greater capacity to produce T-cell-associated cytokines. Among boys, higher cord blood DHT levels were associated with higher proportions of CD5+ B cells in early infancy and at 8 years of life. These results suggest that DHT actions in utero might be involved in the mechanism for delayed peripheral B-cell maturation in boys.
Collapse
Affiliation(s)
- Anna-Carin Lundell
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Inger Nordström
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kerstin Andersson
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Strömbeck
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- Center for Bone and Arthritis Research (CBAR), Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Åsa Tivesten
- Department of Internal Medicine and Clinical Nutrition, Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Rudin
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Trumble BC, Blackwell AD, Stieglitz J, Thompson ME, Suarez IM, Kaplan H, Gurven M. Associations between male testosterone and immune function in a pathogenically stressed forager-horticultural population. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 161:494-505. [PMID: 27465811 PMCID: PMC5075254 DOI: 10.1002/ajpa.23054] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 06/28/2016] [Accepted: 07/06/2016] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Despite well-known fitness advantages to males who produce and maintain high endogenous testosterone levels, such phenotypes may be costly if testosterone-mediated investment in reproductive effort trade-off against investment in somatic maintenance. Previous studies of androgen-mediated trade-offs in human immune function find mixed results, in part because most studies either focus on a few indicators of immunity, are confounded by phenotypic correlation, or are observational. Here the association between male endogenous testosterone and 13 circulating cytokines are examined before and after ex vivo antigen stimulation with phytohemagglutinin (PHA) and lipopolysaccharides (LPS) in a high pathogen population of Bolivian forager-horticulturalists. MATERIALS AND METHODS A Milliplex 13-plex cytokine panel measured cytokine concentration in whole blood samples from 109 Tsimane men aged 40-89 (median = 50 years) before and after antigen stimulation with PHA and LPS. Urinary testosterone was measured via enzyme immunoassay, demographic, and anthropometric data were collected as part of the Tsimane Health and Life History Project. RESULTS Higher endogenous testosterone was associated with down-regulated responses in all cytokines after PHA stimulation (but significantly in only 2/13 cytokines), controlling for age and body mass index. In contrast, testosterone was not significantly associated with down-regulation of cytokines after LPS stimulation. MANOVAs indicate that men with higher testosterone showed reduced cytokine responses to PHA compared with LPS (p = 0.0098). DISCUSSION Endogenous testosterone appears to be immunomodulatory rather than immunosuppressive. Potentially costlier forms of immune activation like those induced by PHA (largely T-cell biased immune activation) are down-regulated in men with higher testosterone, but testosterone has less impact on potentially less costly immune activation following LPS stimulation (largely B-cell mediated immunity).
Collapse
Affiliation(s)
- Benjamin C Trumble
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA.
- Tsimane Health and Life History Project, San Borja, Bolivia.
| | - Aaron D Blackwell
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA
- Tsimane Health and Life History Project, San Borja, Bolivia
| | - Jonathan Stieglitz
- Tsimane Health and Life History Project, San Borja, Bolivia
- Department of Anthropology, University of New Mexico, Albuquerque, NM
- Institute for Advanced Study in Toulouse, Toulouse, France
| | | | | | - Hillard Kaplan
- Tsimane Health and Life History Project, San Borja, Bolivia
- Department of Anthropology, University of New Mexico, Albuquerque, NM
| | - Michael Gurven
- Department of Anthropology, University of California Santa Barbara, Santa Barbara, CA
- Tsimane Health and Life History Project, San Borja, Bolivia
| |
Collapse
|
14
|
Maselli A, Pierdominici M, Vitale C, Ortona E. Membrane lipid rafts and estrogenic signalling: a functional role in the modulation of cell homeostasis. Apoptosis 2015; 20:671-8. [PMID: 25637184 DOI: 10.1007/s10495-015-1093-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
It has become widely accepted that along with their ability to directly regulate gene expression, estrogens also influence cell signalling and cell function via rapid membrane-initiated events. Many of these signalling processes are dependent on estrogen receptors (ER) localized to the plasma membrane. However, the mechanisms by which ER are able to trigger cell signalling when targeted to the membrane surface have to be determined yet. Lipid rafts seem to be essential for the plasma membrane localization of ER and play a critical role in their membrane-initiated effects. In this review, we briefly recapitulate the localization and function of ER in different cell types and mostly discuss the possible role of lipid rafts in this context. Further studies in this field may disclose new promising therapeutic avenues by the disruption of lipid rafts in those diseases in which membrane ER activation has been demonstrated to play a pathogenetic role.
Collapse
Affiliation(s)
- Angela Maselli
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | | | | | | |
Collapse
|
15
|
Rosvall KA, Peterson MP. Behavioral effects of social challenges and genomic mechanisms of social priming: What's testosterone got to do with it? Curr Zool 2014; 60:791-803. [PMID: 27721823 DOI: 10.1093/czoolo/60.6.791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Social challenges from rival conspecifics are common in the lives of animals, and changes in an animal's social environment can influence physiology and behavior in ways that appear to be adaptive in the face of continued social instability (i.e. social priming). Recently, it has become clear that testosterone, long thought to be the primary mediator of these effects, may not always change in response to social challenges, an observation that highlights gaps in our understanding of the proximate mechanisms by which animals respond to their social environment. Here, our goal is to address the degree to which testosterone mediates organismal responses to social cues. To this end, we review the behavioral and physiological consequences of social challenges, as well as their underlying hormonal and gene regulatory mechanisms. We also present a new case study from a wild songbird, the dark-eyed junco (Junco hyemalis), in which we find largely divergent genome-wide transcriptional changes induced by social challenges and testosterone, respectively, in muscle and liver tissue. Our review underscores the diversity of mechanisms that link the dynamic social environment with an organisms' genomic, hormonal, and behavioral state. This diversity among species, and even among tissues within an organism, reveals new insights into the pattern and process by which evolution may alter proximate mechanisms of social priming.
Collapse
Affiliation(s)
- Kimberly A Rosvall
- Indiana University, Department of Biology and Center for the Integrative Study of Animal Behavior
| | | |
Collapse
|
16
|
Abstract
Sex-specific endocrine and immune responses are widely recognized to account for differential disease outcomes between females and males. Surprisingly, sex-specific risk assessments for influenza, a viral pathogen that affects human populations worldwide through seasonal epidemics and irregular occurring pandemics, are sparse and-if available-ambiguous. To date, this precludes proposing an unequivocal sex-dependent susceptibility to influenza. However, one undisputable observation recurrently confirmed during influenza seasons of the last decades is the significantly increased risk for pregnant women. This increased risk is likely attributable to the contradictory demands for the maternal immune system to adapt to pregnancy and to simultaneously mount an immune response to clear the influenza virus infection. Here, we review published evidence on the potential association between sex on influenza risk and propose that future epidemiologic studies should carefully dissect surveillance data for sex-specific effects. Moreover, we propose potential mechanisms involved in enhanced risk for severe influenza during pregnancy that could be studied to identify causal pathways.
Collapse
Affiliation(s)
- Gülsah Gabriel
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology
| | - Petra Clara Arck
- Department of Obstetrics and Fetal Medicine, Laboratory for Experimental Feto-Maternal Medicine, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
17
|
Tripathi MK, Singh R. Differential suppressive effects of testosterone on immune function in fresh water snake, Natrix piscator: an in vitro study. PLoS One 2014; 9:e104431. [PMID: 25101765 PMCID: PMC4125189 DOI: 10.1371/journal.pone.0104431] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/09/2014] [Indexed: 11/30/2022] Open
Abstract
Reptiles represent the crucial phylogenetic group as they were the ancestors of both birds and mammals hence very important to study. The objectives of the present study were to investigate the potential roles of testosterone in the innate immune responses and splenic lymphocyte proliferation in fresh water snake, Natrix piscator. Animals were mildly anesthetized and spleens were taken out to study the splenic macrophage phagocytosis, super oxide production and nitrite release using in vitro testosterone. Splenic lymphocytes were isolated by density gradient centrifugation and were studied for mitogen induced proliferation in presence of in vitro testosterone. Testosterone suppressed the phagocytosis and nitrite release in a concentration dependent manner. Biphasic suppressive effect of testosterone was observed in superoxide production as judged by reduction of nitroblue tetrazolium salt where salt reduction was suppressed at lower and higher concentrations of testosterone. Mitogen induced splenic lymphocyte proliferation was also suppressed by testosterone. By suppressing immune responses, testosterone may, therefore, act as a physiological mechanism regulating the relative amount of energy invested into either reproductive effort or immunocompetence.
Collapse
Affiliation(s)
- Manish Kumar Tripathi
- Department of Zoology, Udai Pratap Autonomous College, Varanasi, Uttar Pradesh, India
| | - Ramesh Singh
- Department of Zoology, Udai Pratap Autonomous College, Varanasi, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|
18
|
Schneider AE, Kárpáti E, Schuszter K, Tóth EA, Kiss E, Kulcsár M, László G, Matko J. A dynamic network of estrogen receptors in murine lymphocytes: fine-tuning the immune response. J Leukoc Biol 2014; 96:857-72. [PMID: 25070950 DOI: 10.1189/jlb.2a0214-080rr] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The actual level of circulating estrogen (17β-estradiol, E2) has a serious impact on regulation of diverse immune cell functions, where their classical cytoplasmic receptors, ERα and ERβ, act as nuclear transcriptional regulators of multiple target genes. There is growing evidence, however, for rapid, "non-nuclear" regulatory effects of E2 on lymphocytes. Such effects are likely mediated by putative membrane-associated receptor(s) (mER), but the mechanistic details and the involved signaling pathways still remained largely unknown because of their complexity. Here, we show that in lymphocytes, mERs can signalize themselves, and upon ligation, they are able to coordinate translocation of other E2Rs to the PM. Our data firmly imply existence of a complex, dynamic network of at least seven ER forms in murine lymphocytes: cytoplasmic and membrane-linked forms of ERα, ERβ, or GPR30 and a mER that can receive extracellular E2 signals. The latter mERs are likely palmitoylated, as they are enriched in lipid-raft microdomains, and their E2 binding is also cholesterol dependent. The data also support that ligation of mERs can induce rapid regulatory signals to lymphocytes and then internalize and let the E2 liberate in lysosomes. In addition, they can dynamically control the cell-surface linkage of other cytoplasmic ERs. As demonstrated by the differential effects of mER or cytoplasmic ER ligation on the proliferation of activated T and B lymphocytes, such a dynamic E2R network can be considered as a tool to manage accommodation/fine-tuning of lymphocytes to rapidly changing hormone levels.
Collapse
Affiliation(s)
- Andrea E Schneider
- Department of Immunology, Institute of Biology, Eotvos Lorand University, Budapest, Hungary; and
| | - Eva Kárpáti
- Department of Immunology, Institute of Biology, Eotvos Lorand University, Budapest, Hungary; and
| | - Kitti Schuszter
- Department of Immunology, Institute of Biology, Eotvos Lorand University, Budapest, Hungary; and
| | - Eszter A Tóth
- Department of Immunology, Institute of Biology, Eotvos Lorand University, Budapest, Hungary; and
| | - Endre Kiss
- Department of Immunology, Institute of Biology, Eotvos Lorand University, Budapest, Hungary; and
| | - Margit Kulcsár
- Department of Obstetrics and Reproduction, Faculty of Veterinary Science, Szent Istvan University, Budapest, Hungary
| | - Glória László
- Department of Immunology, Institute of Biology, Eotvos Lorand University, Budapest, Hungary; and
| | - Janos Matko
- Department of Immunology, Institute of Biology, Eotvos Lorand University, Budapest, Hungary; and
| |
Collapse
|
19
|
Localization of Estrogen Receptor in the Central Lymphoid Organs of Chickens during the Late Stage of Embryogenesis. Biosci Biotechnol Biochem 2014; 76:2003-7. [DOI: 10.1271/bbb.120182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Dart DA, Waxman J, Aboagye EO, Bevan CL. Visualising androgen receptor activity in male and female mice. PLoS One 2013; 8:e71694. [PMID: 23940781 PMCID: PMC3737126 DOI: 10.1371/journal.pone.0071694] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/08/2013] [Indexed: 11/19/2022] Open
Abstract
Androgens, required for normal development and fertility of males and females, have vital roles in the reproductive tract, brain, cardiovascular system, smooth muscle and bone. Androgens function via the androgen receptor (AR), a ligand-dependent transcription factor. To assay and localise AR activity in vivo we generated the transgenic “ARE-Luc” mouse, expressing a luciferase reporter gene under the control of activated endogenous AR. In vivo imaging of androgen-mediated luciferase activity revealed several strongly expressing tissues in the male mouse as expected and also in certain female tissues. In males the testes, prostate, seminal vesicles and bone marrow all showed high AR activity. In females, strong activity was seen in the ovaries, uterus, omentum tissue and mammary glands. In both sexes AR expression and activity was also found in salivary glands, the eye (and associated glands), adipose tissue, spleen and, notably, regions of the brain. Luciferase protein expression was found in the same cell layers as androgen receptor expression. Additionally, mouse AR expression and activity correlated well with AR expression in human tissues. The anti-androgen bicalutamide reduced luciferase signal in all tissues. Our model demonstrates that androgens can act in these tissues directly via AR, rather than exclusively via androgen aromatisation to estrogens and activation of the estrogen receptor. Additionally, it visually demonstrates the fundamental importance of AR signalling outside the normal role in the reproductive organs. This model represents an important tool for physiological and developmental analysis of androgen signalling, and for characterization of known and novel androgenic or antiandrogenic compounds.
Collapse
Affiliation(s)
- D. Alwyn Dart
- Department of Surgery & Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom
| | - Jonathan Waxman
- Department of Surgery & Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom
| | - Eric O. Aboagye
- Department of Surgery & Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom
| | - Charlotte L. Bevan
- Department of Surgery & Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Analysis of In Vitro Effects of Sex Steroids on Lymphocyte Responsiveness in Murrah Buffaloes (Bubalus bubalis). Vet Med Int 2012; 2012:139589. [PMID: 22619742 PMCID: PMC3350872 DOI: 10.1155/2012/139589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 02/13/2012] [Indexed: 11/18/2022] Open
Abstract
Present study was carried out on forty four apparently healthy Murrah buffaloes of different age groups of both sexes to investigate the effects of sex steroids on cell mediated immunity in vitro. Estrogen inhibited proliferation in mitogen-stimulated lymphocytes from prepubertal but not post pubertal buffaloes of either sex. Estrogen at 100 pg/mL concentration stimulating the proliferation significantly (P < 0.05). in all groups and had higher stimulatory effect in lymphocytes from day 10 than day 0 of estrous cycle. Progesterone inhibited lymphocyte proliferation, and inhibition was directly related to the dose, in all groups of either sex. Testosterone did not inhibit proliferation at any dose level and did not show any consistent and lucid effects on lymphocyte proliferation. Present study revealed that buffalo lymphocytes produce appreciable amounts of NO in culture system after treatment with estradiol. Significantly high levels of NO in culture supernatant were found in prepubertal buffalo calves and least in post pubertal buffaloes, which had an inverse relation with lymphocyte proliferation in presence of estradiol. NO in culture supernatant was high at the lowest dose of progesterone which was proportional to the lymphocyte proliferation when treated with progesterone. No significant difference in NO culture supernatant was observed between different concentrations of testosterone treatment.
Collapse
|
22
|
Macrophage secretions modulate the steroidogenesis of polycystic ovary in rats: effect of testosterone on macrophage pro-inflammatory cytokines. Life Sci 2012; 90:733-9. [PMID: 22480516 DOI: 10.1016/j.lfs.2012.03.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 02/16/2012] [Accepted: 03/16/2012] [Indexed: 11/23/2022]
Abstract
AIMS The macrophage secretions' effect on ovarian steroidogenesis is investigated in a polycystic ovary syndrome rat model (PCO rat). The influence of testosterone environment on the expression of macrophage pro-inflammatory cytokines that participate in ovarian steroidogenesis is studied. MAIN METHODS PCO rats were induced by estradiol valerate. Spleen macrophages were cultured with and without testosterone (10(-6) M) and their secretions were used to stimulate ovaries from PCO and control rats. Ovarian hormones released and ovary mRNA levels of P450 aromatase and 3β-hydroxysteroid dehydrogenase were measured by radioimmunoassay and RT-PCR, respectively. The tumor necrosis factor alpha (TNFα) and nitric oxide (NO) levels in macrophage culture medium, along with the TNFα, interleukin (IL)-6, IL-10 and androgen receptors (AR) mRNA levels in macrophage cells were determined. KEY FINDINGS Macrophages from PCO rats released more TNFα and NO, expressed higher TNFα and IL-6, lower AR, and no change in IL-10 mRNA levels than control macrophages. TNFα, IL-6 and AR changes were greater after macrophage testosterone treatment. Macrophage secretions from PCO rats stimulated androstenedione and decreased estradiol release and ovarian mRNA P450 aromatase expression in PCO rats compared to macrophage secretions from control rats. These effects were greater when macrophages from PCO rats were treated with testosterone. Ovarian progesterone response was unchanged. SIGNIFICANCE The differential steroidogenic ability of macrophage secretions from PCO rats is associated to the in vitro testosterone environment. Testosterone, probably acting on macrophage AR, induces a greater release of TNFα, modifying ovarian response by increasing androstenedione and slightly decreasing estradiol without affecting progesterone.
Collapse
|
23
|
Chen W, Mempel M, Traidl-Hofmann C, Al Khusaei S, Ring J. Gender aspects in skin diseases. J Eur Acad Dermatol Venereol 2011; 24:1378-85. [PMID: 20384686 DOI: 10.1111/j.1468-3083.2010.03668.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Gender differences in medicine have been recognized in anatomy, physiology, as well as in epidemiology and manifestations of various diseases. With respect to skin disorders, males are generally more commonly afflicted with infectious diseases while women are more susceptible to psychosomatic problems, pigmentary disorders, certain hair diseases, and particularly autoimmune as well as allergic diseases. Significantly, more female sex-associated dermatoses can be identified than the male sex-associated dermatoses. Dermatoses in the genital area differ between men and women. Gender differences also exist in the occurrence and prognosis of certain skin malignancies. The mechanisms underlying gender differences in skin diseases remain largely unknown. Differences in the skin structure and physiology, effect of sex hormones, ethnic background, sociocultural behaviour and environmental factors may interact to exert the influences. A better understanding of gender differences in human health and diseases will allow the development of novel concepts for prevention, diagnosis and therapy of skin diseases.
Collapse
Affiliation(s)
- W Chen
- Department of Dermatology and Allergy, Helmholtz Zentrum Munchen/TUM, ZAUM-Center for Allergy and Environment, Technische Universität München, Germany.
| | | | | | | | | |
Collapse
|
24
|
Reply of the Authors. Fertil Steril 2011. [DOI: 10.1016/j.fertnstert.2010.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
González DA, Díaz BB, Rodríguez Pérez MDC, Hernández AG, Chico BND, de León AC. Sex hormones and autoimmunity. Immunol Lett 2010; 133:6-13. [PMID: 20637236 DOI: 10.1016/j.imlet.2010.07.001] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/06/2010] [Accepted: 07/06/2010] [Indexed: 01/12/2023]
Abstract
Autoimmune diseases occur more in women than in men, and this may be attributable to the role of estrogens. Androgens promote autoimmune diseases with a profile of type 1 cytokines, such as rheumatoid arthritis, whereas estrogens promote autoimmune diseases with a type 2 cytokine profile, like systemic lupus erythematosus. Both androgens and estrogens regulate the Th1/Th2 balance. Type 1 autoimmune diseases are improved when decrease type 1 cytokines (i.e. during fasting), or when there is a rise in type 2 cytokines (increased estrogens, as in pregnancy). Type 2 autoimmune diseases improve when type 2 cytokines are diminished (decreased estrogen, as in post-partum period) or when type 1 response is stimulated.
Collapse
|
26
|
Gilliver SC. Sex steroids as inflammatory regulators. J Steroid Biochem Mol Biol 2010; 120:105-15. [PMID: 20045727 DOI: 10.1016/j.jsbmb.2009.12.015] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 12/15/2009] [Accepted: 12/23/2009] [Indexed: 12/21/2022]
Abstract
It is becoming increasingly clear that endogenous sex steroids are key players in a range of inflammatory contexts. Androgens and estrogens have been shown to have a profound influence on the function of inflammatory cells including macrophages and on the secretion and activation of a range of plasma-borne inflammatory mediators. The menopause and polymorphisms in estrogen receptor genes have separately been shown to affect the incidence of a range of inflammatory disorders. Sex steroids themselves have been shown to be protective in certain conditions; harmful in others. This review will summarize their documented effects on inflammatory processes, with particular focus on two areas that have received much recent attention: the antiatherosclerotic properties of estrogens in females and the wound healing effects of sex steroids.
Collapse
|
27
|
Ádori M, Kiss E, Barad Z, Barabás K, Kiszely E, Schneider A, Sziksz E, Ábrahám IM, Matkó J, Sármay G. Estrogen augments the T cell-dependent but not the T-independent immune response. Cell Mol Life Sci 2010; 67:1661-74. [PMID: 20140748 PMCID: PMC11115714 DOI: 10.1007/s00018-010-0270-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Revised: 01/06/2010] [Accepted: 01/13/2010] [Indexed: 11/25/2022]
Abstract
Estrogen plays a critical regulatory role in the development and maintenance of immunity. Its role in the regulation of antibody synthesis in vivo is still not completely clear. Here, we have compared the effect of estrogen on T cell-dependent (TD) and T cell-independent type 2 (TI-2) antibody responses. The results provide the first evidence that estrogen enhances the TD but not the TI-2 response. Ovariectomy significantly decreased, while estrogen re-administration increased the number of hapten-specific IgM- and IgG-producing cells in response to TD antigen. In vitro experiments also show that estrogen may have a direct impact on B and T cells by inducing rapid signaling events, such as Erk and AKT phosphorylation, cell-specific Ca(2+) signal, and NFkappaB activation. These non-transcriptional effects are mediated by classical estrogen receptors and partly by an as yet unidentified plasma membrane estrogen receptor. Such receptor- mediated rapid signals may modulate the in vivo T cell-dependent immune response.
Collapse
Affiliation(s)
- Mónika Ádori
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Endre Kiss
- Immunology Research Group of the Hungarian Academy of Sciences, Eötvös Loránd University, Budapest, Hungary
| | - Zsuzsanna Barad
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
- Department of Physiology, Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Klaudia Barabás
- Proteomics Laboratory, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Edda Kiszely
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Andrea Schneider
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - Erna Sziksz
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
| | - István M. Ábrahám
- Department of Physiology, Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - János Matkó
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
- Immunology Research Group of the Hungarian Academy of Sciences, Eötvös Loránd University, Budapest, Hungary
| | - Gabriella Sármay
- Department of Immunology, Eötvös Loránd University, Budapest, Hungary
- Immunology Research Group of the Hungarian Academy of Sciences, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
28
|
Kurpisz M, Havryluk A, Nakonechnyj A, Chopyak V, Kamieniczna M. Cryptorchidism and long-term consequences. Reprod Biol 2010; 10:19-35. [DOI: 10.1016/s1642-431x(12)60035-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Rubtsov AV, Rubtsova K, Kappler JW, Marrack P. Genetic and hormonal factors in female-biased autoimmunity. Autoimmun Rev 2010; 9:494-8. [PMID: 20144912 DOI: 10.1016/j.autrev.2010.02.008] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Autoimmunity is controlled both by the environment and by genetic factors. One of the most well defined genetic factors is polymorphisms, with some alleles of particular genes promoting autoimmune diseases, whereas other alleles either not affecting susceptibility to disease or, in some cases actually inhibiting the appearance of such illnesses. Another genetically controlled factor, gender, also plays a profound role in the incidence of autoimmune diseases. For example, Systemic Lupus Erythematosus (SLE) occurs much more frequently in females than in males in both mice and man. The genetic differences that make some individuals susceptible to autoimmunity and protect others could act in many ways and affect many tissues. In this review we will discuss how gender may act on the cells of the immune system and thereby influence the predisposition of the host to autoimmune diseases.
Collapse
Affiliation(s)
- Anatoly V Rubtsov
- Howard Hughes Medical Institute and Department of Immunology, National Jewish Health and University of Colorado Health Sciences Center, Denver, 80206, USA.
| | | | | | | |
Collapse
|
30
|
Cervantes-Rebolledo C, Moreno-Mendoza N, Morales-Montor J, De La Torre P, Laclette JP, Carrero JC. Gonadectomy inhibits development of experimental amoebic liver abscess in hamsters through downregulation of the inflammatory immune response. Parasite Immunol 2009; 31:447-56. [PMID: 19646209 DOI: 10.1111/j.1365-3024.2009.01120.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Incidence of amoebic liver abscess (ALA) in human males is considerably higher than in females, suggesting a role for sex hormones in this parasite infection. We describe here the effect of hamster gonadectomization on the development of ALA. After monitoring the decrease of oestradiol in females and testosterone in males to undetectable levels by ELISA and Radio Immuno Assay (RIA) in serum, hamsters were intraportally infected with Entamoeba histolytica trophozoites and killed 7 days later. ALA was absent in 50% of male and 15% of female gonadectomized (Gdx) hamsters, in comparison with 100% infection in non-Gdx controls. This protection against ALA in Gdx hamsters was concomitant to a comparatively scarce inflammatory infiltrate and necrosis surrounding clusters of trophozoites in the liver tissue, as well as to a lack of response of spleen cells to Con A, evaluated in proliferation assays. As tissue damage in ALA has been associated with a local inflammatory Th1 response, we determined the profile of response in hamsters by immunohistochemistry on liver sections. In contrast to strong Th1 responses in non-Gdx animals, Gdx females and males exhibited Th2 and Th3 profiles of cytokines, respectively, suggesting that protection against ALA following gonadectomization, could be related to downregulation of liver Th1 response during amoebic infection.
Collapse
Affiliation(s)
- C Cervantes-Rebolledo
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 México DF, México
| | | | | | | | | | | |
Collapse
|
31
|
Nicot A. Gender and sex hormones in multiple sclerosis pathology and therapy. Front Biosci (Landmark Ed) 2009; 14:4477-515. [PMID: 19273365 DOI: 10.2741/3543] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Several lines of evidence indicate that gender affects the susceptibility and course of multiple sclerosis (MS) with a higher disease prevalence and overall better prognosis in women than men. This sex dimorphism may be explained by sex chromosome effects and effects of sex steroid hormones on the immune system, blood brain barrier or parenchymal central nervous system (CNS) cells. The well known improvement in disease during late pregnancy has also been linked to hormonal changes and has stimulated recent clinical studies to determine the efficacy of and tolerance to sex steroid therapeutic approaches. Both clinical and experimental studies indicate that sex steroid supplementation may be beneficial for MS. This could be related to anti-inflammatory actions on the immune system or CNS and to direct neuroprotective properties. Here, clinical and experimental data are reviewed with respect to the effects of sex hormones or gender in the pathology or therapy of MS or its rodent disease models. The different cellular targets as well as some molecular mechanisms likely involved are discussed.
Collapse
|
32
|
Lutton BV, Callard IP. Morphological relationships and leukocyte influence on steroid production in the epigonal organ-ovary complex of the skate, Leucoraja erinacea. J Morphol 2008; 269:620-9. [PMID: 18302243 DOI: 10.1002/jmor.10614] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In elasmobranchs, a unique association exists between an immune tissue, the epigonal organ (EO), and the gonads. In this study, the histological and vascular relationships of the EO and ovarian follicles of the little skate, Leucoraja erinacea, were assessed. Perfusions of Evans blue dye and Batson's monomer showed a shared vascular pathway from the gonadal artery into the epigonal-ovary complex, with blood first entering the EO and then perfusing the ovarian follicles. Histological studies demonstrated direct cellular contact between epigonal leukocytes and the follicle wall (FW), as well as the presence of leukocytes between the steroidogenic theca and granulosa cells. In vitro analyses demonstrated that epigonal cells co-cultured with FW cells cause a dose-dependent inhibition of estrogen (E2) and testosterone (T) production. In contrast, conditioned media from epigonal leukocytes, stimulated or unstimulated with lipopolysaccharide (10 microg/ml), increase the production of E2 and T from FW cells of the ovaries. These studies provide a basis for further investigations of leukocyte secreted factors and cell contact modulation of follicular steroid production.
Collapse
Affiliation(s)
- B V Lutton
- Transplantation Biology Research Center, Massachusetts General Hospital, MGH East, Building 149-9019 13th Street, Charlestown, Massachusetts 02129, USA.
| | | |
Collapse
|
33
|
Zala SM, Chan BK, Bilbo SD, Potts WK, Nelson RJ, Penn DJ. Genetic resistance to infection influences a male's sexual attractiveness and modulation of testosterone. Brain Behav Immun 2008; 22:381-7. [PMID: 17945466 DOI: 10.1016/j.bbi.2007.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 08/17/2007] [Accepted: 09/06/2007] [Indexed: 11/20/2022] Open
Abstract
Females may be attracted to males genetically resistant to infectious diseases, and one potential mechanism for this mating bias is that such males may be better able to maintain high testosterone. To test these two hypotheses, we collected scent-marks from male house mice (Mus domesticus) genetically resistant and susceptible to Salmonella due to a single locus (Nramp 1, also known as Slc11a1). We tested whether females are more attracted to the scent-marks of resistant males, and whether such males are better able to maintain testosterone concentrations during an experimental Salmonella infection. We found that females preferred the scent-marks of genetically resistant males compared to susceptible ones; but they showed no preferences 5d after males were infected. As predicted, genetically resistant males maintained their testosterone concentrations during the experimental infection, whereas susceptible males showed a significant decline 14 d after inoculation. These differences in the males' ability to modulate testosterone, however, do not explain females' attraction to resistant males. Thus, our results indicate that females sometimes prefer males genetically resistant to infection, and they provide the first evidence that males modulate their testosterone depending upon their genetic resistance to infection; however, we found no evidence to link these two findings.
Collapse
Affiliation(s)
- Sarah M Zala
- Konrad Lorenz Institute for Ethology, Austrian Academy of Sciences, Savoyenstr. 1a, 1160 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
34
|
Hince M, Sakkal S, Vlahos K, Dudakov J, Boyd R, Chidgey A. The role of sex steroids and gonadectomy in the control of thymic involution. Cell Immunol 2008; 252:122-38. [PMID: 18294626 DOI: 10.1016/j.cellimm.2007.10.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 10/30/2007] [Indexed: 01/25/2023]
Abstract
A major underlying cause for aging of the immune system is the structural and functional atrophy of the thymus, and associated decline in T cell genesis. This loss of naïve T cells reduces adaptive immunity to new stimuli and precipitates a peripheral bias to memory cells against prior antigens. Whilst multiple mechanisms may contribute to this process, the temporal alliance of thymic decline with puberty has implicated a causative role for sex steroids. Accordingly ablation of sex steroids induces profound thymic rejuvenation. Although the thymus retains some, albeit highly limited, function in healthy adults, this is insufficient for resurrecting the T cell pool following cytoablative treatments such as chemo- and radiation-therapy and AIDS. Increased risk of opportunistic infections and cancer relapse or appearance, are a direct consequence. Temporary sex steroid ablation may thus provide a clinically effective means to regenerate the thymus and immune system in immunodeficiency states.
Collapse
Affiliation(s)
- Melanie Hince
- Monash Immunology and Stem Cell Laboratories (MISCL), Level 3, Building-75, Monash University, Wellington Road, Clayton, Melbourne 3800, Australia
| | | | | | | | | | | |
Collapse
|
35
|
Lutton BV, Callard IP. Influence of reproductive activity, sex steroids, and seasonality on epigonal organ cellular proliferation in the skate (Leucoraja erinacea). Gen Comp Endocrinol 2008; 155:116-25. [PMID: 17499739 DOI: 10.1016/j.ygcen.2007.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 02/26/2007] [Accepted: 03/20/2007] [Indexed: 10/23/2022]
Abstract
In elasmobranchs, the epigonal organ, a unique leukopoietic immune tissue, is associated with the gonads. As the ovaries increase in size during reproductive activity, the overall mass of the epigonal organ does not change. However, immunohistochemistry (proliferating cell nuclear antigen Ab) demonstrated more proliferative activity and extravasation of epigonal leukocytes from blood vessels in reproductively active (RA) skates (Leucoraja erinacea) than in non-reproductively active (NRA) skates. In addition, [(3)H]thymidine incorporation was greater in epigonal leukocytes from RA skates than in leukocytes from NRA skates. Plasma from RA skates, but not from NRA skates, increased proliferation of epigonal leukocytes in vitro, an effect that was not seen using steroid-free plasma. In contrast to the stimulatory effect of plasma on leukocyte proliferation, addition of steroids (estrogen, progesterone, testosterone, and dexamethasone) in vitro decreased [(3)H]thymidine incorporation. While the inhibitory response to steroids was seasonally variable, (3)[H]thymidine incorporation was always highest in RA animals, in which plasma steroid levels were also consistently highest. These studies suggest functional interactions between reproductive and immune tissues in the skate, and that cellular turnover in epigonal tissue may be influenced by gonadal activity.
Collapse
Affiliation(s)
- B V Lutton
- Department of Biology, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|
36
|
Carlsten H. Interaction with estrogen receptors as treatment of arthritis and osteoporosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 602:83-92. [PMID: 17966392 DOI: 10.1007/978-0-387-72009-8_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Hans Carlsten
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, Göteborg Academy, Göteborg, Sweden
| |
Collapse
|
37
|
Lo KKW, Lee TKM, Lau JSY, Poon WL, Cheng SH. Luminescent Biological Probes Derived from Ruthenium(II) Estradiol Polypyridine Complexes. Inorg Chem 2007; 47:200-8. [DOI: 10.1021/ic701735q] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kenneth Kam-Wing Lo
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Terence Kwok-Ming Lee
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Jason Shing-Yip Lau
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Wing-Lin Poon
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| | - Shuk-Han Cheng
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, People's Republic of China
| |
Collapse
|
38
|
Lutton BV, Callard IP. Effects of reproductive activity and sex hormones on apoptosis in the epigonal organ of the skate (Leucoraja erinacea). Gen Comp Endocrinol 2007; 154:75-84. [PMID: 17714713 DOI: 10.1016/j.ygcen.2007.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 05/31/2007] [Accepted: 06/20/2007] [Indexed: 10/23/2022]
Abstract
In elasmobranchs, a unique association exists between an immune tissue, the epigonal organ, and the gonads. The intimate morphological relationship between these tissues suggests functional interactions. In this study, we used apoptosis to assess differences between epigonal tissues of reproductively active (RA) and non-reproductively active (NRA) skates (Leucoraja erinacea). Plasma steroid levels were significantly higher in RA than in NRA animals, and TUNEL analysis showed that epigonal tissue of RA skates had greater DNA fragmentation than NRA skates. Addition of steroids to epigonal leukocytes in vitro demonstrated that progesterone, testosterone, and dexamethasone, but not estrogen, induced apoptosis of epigonal leukocytes as evidenced by DNA laddering and caspase-3 antibody labeling. This study supports recent evidence that cellular homeostasis of epigonal lymphomyeloid tissue may be influenced by gonadal activity and reproductive steroids in a representative of the most basal gnathastome group.
Collapse
Affiliation(s)
- B V Lutton
- Department of Biology, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|
39
|
French SS, McLemore R, Vernon B, Johnston GIH, Moore MC. Corticosterone modulation of reproductive and immune systems trade-offs in female tree lizards: long-term corticosterone manipulations viainjectable gelling material. J Exp Biol 2007; 210:2859-65. [PMID: 17690234 DOI: 10.1242/jeb.005348] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Physiological trade-offs arise because multiple processes compete for the same limiting resources. While competition for resources has been demonstrated between reproduction and immune function, the regulation of this competition remains unclear. Corticosterone (CORT) is a likely mediator due to its dual role in mobilizing energy stores throughout the body and regulating physiological responses to stressors. We manipulated CORT concentrations and resources in pre-reproductive and reproductive female tree lizards(Urosaurus ornatus) to test the hypothesis that CORT regulates the distribution of limiting resources between the reproductive and immune systems. To manipulate circulating concentrations of CORT we utilized a novel method of hormone implantation, in which a polymeric compound is mixed with hormone and injected in liquid form into the animal. After injection, the liquid quickly gels in situ forming a slow release hormone implant. This method of hormone delivery eliminated the need for substantial wounds to the animal or repeated handling required by other methods. In this study, the hormone-treated animals had plasma CORT concentrations comparable to high physiological concentrations. We found that CORT treatment suppressed immune function, but only when animals were energetically compromised. We assessed immune function by measuring the healing rate of a cutaneous biopsy. Healing was suppressed in all CORT-treated reproductive animals and in all CORT-treated animals (pre-reproductive and reproductive) undergoing food restriction, but CORT had no effect in ad libitum non-reproductive females. The context-dependent action of CORT renders its response adjustable to changing environmental conditions and may allow for the suppression of specific functions depending on resource availability.
Collapse
Affiliation(s)
- Susannah S French
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4601, USA.
| | | | | | | | | |
Collapse
|
40
|
Yu M, Cao X, Wang X, Xu J, Yang M, Ben K. Migration of mouse antibody-secreting hybridoma cells from blood to genital tract and its regulation by sex hormones are associated with the differential expression patterns of adhesion molecules and chemokines in the tract rather than in the antibody-secreting cells. J Reprod Immunol 2007; 74:78-89. [PMID: 17150254 DOI: 10.1016/j.jri.2006.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2006] [Revised: 09/26/2006] [Accepted: 09/27/2006] [Indexed: 10/23/2022]
Abstract
To understand better the molecular mechanisms of differential migration of antibody-secreting cells (ASCs) into mouse genital tracts, and regulation by sex hormones, surface markers, hormone receptors and adhesion molecules in mouse SG2 and PA4 hybridoma cells, respectively, secreting IgG2b and polymeric IgA antibody were detected by flow cytometry or RT-PCR. Semi-quantitative RT-PCR was also used for measuring mRNA expression of adhesion molecules and chemokines (VCAM-1, ICAM-1, P-selectin, JAM-1 and CXCL12) in genital tracts of various adult mouse groups. The mRNAs of androgen receptor, estrogen receptor beta and CXCR4 were expressed in the ASCs. Sex hormones had no effect on expression of these molecules in ASCs. Except for VCAM-1, mRNA of all examined genes was expressed in normal mouse genital tracts. The mean of relative amounts of ICAM-1 and CXCL12 mRNA in all examined organs of females were higher (2.1- and 1.9-fold) than those in males. After orchiectomy or ovariectomy, the expression of ICAM-1, CXCL12 and P-selectin mRNA in the examined organs increased, except JAM-1 in male and CXCL12 in female. Sex hormone treatment recovered the changes to normal levels of mRNA expression in many examined genital tissues. In combination with our previous work, preferential migration of ASCs into female genital tract and regulation of migration by sex hormones are associated with expression patterns of adhesion molecules and chemokines in genital tract rather than in ASCs.
Collapse
Affiliation(s)
- Mingcan Yu
- Laboratory for Molecular and Cell Immunology, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The thymus is a very sensitive target for environmental pollutants, which can affect this organ as well as thymocyte differentiation. A failure in thymocyte development can be due to the exacerbation of apoptosis, arrest of thymocyte maturation, generation of autoreactive T cells, and inhibition or stimulation of the output of recent thymic emigrants to the periphery. Recent data demonstrate that the immune system has the potential to maintain homeostasis under conditions of elevated risk, and the thymus plays a crucial role in this process. Environmental xenobiotics can exert their effects through receptor-mediated interactions or independently on receptor involvement. Under natural conditions organisms are exposed to a variety of xenobiotics. The final effect of such exposure is not related to the action of a single chemical, but to the action of a mixture of chemicals. The toxic effect of environmental xenobiotics on the generation and functions of immune cells may result in suppression or stimulation of the immune response. The most intensive studies have been done on halogenated aromatic hydrocarbons, heavy metals and various chemicals acting as endocrine disrupters. Recently, special interest has focused on the action of air particulate matter.
Collapse
Affiliation(s)
- Nadzieja Drela
- Department of Immunology, Warsaw University, Warsaw, Poland.
| |
Collapse
|
42
|
Jaspan HB, Lawn SD, Safrit JT, Bekker LG. The maturing immune system: implications for development and testing HIV-1 vaccines for children and adolescents. AIDS 2006; 20:483-94. [PMID: 16470112 DOI: 10.1097/01.aids.0000210602.40267.60] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
43
|
Abstract
In addition to its effects on sexual differentiation and reproduction, estrogen has important impact on the immune system and on bone. It has also been evident that the effects of estrogen on bone to a large extent are mediated via its action on immune cells. Estrogen has a dichotomous impact on the immune system by downregulation of inflammatory immune responses but simultaneous upregulation of immunoglobulin production. Consequently, immune-mediated diseases in humans and in animal models are modulated by estrogen. Estrogen deficiency after ovariectomy in mice and after menopause in women is associated with significant bone loss. In rheumatic diseases such as rheumatoid arthritis (RA), osteoporosis is frequent, and in patients with postmenopausal RA, the degree of bone loss is dramatically increased. Hormone replacement therapy (HRT) in murine and human arthritis has beneficial effects on bone loss, as expected, but it also ameliorates inflammation and inflammation-triggered joint destruction. Long-term use of HRT has been associated with increased risk of breast cancer, thrombosis, and possibly also stroke. Accordingly, there is great need for new activators of estrogen receptors (ERs) selectively reproducing only the beneficial effects of estrogen. To achieve this aim, better knowledge of the mechanisms of how activation of ER-alpha and ER-beta modulates the immune system and bone at the cellular and molecular levels is necessary.
Collapse
Affiliation(s)
- Hans Carlsten
- Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy at Göteborg University, Göteborg, Sweden.
| |
Collapse
|
44
|
Cohen-Solal JFG, Jeganathan V, Grimaldi CM, Peeva E, Diamond B. Sex hormones and SLE: influencing the fate of autoreactive B cells. Curr Top Microbiol Immunol 2006; 305:67-88. [PMID: 16724801 DOI: 10.1007/3-540-29714-6_4] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The prevalence of systemic lupus erythematosus (SLE) is far higher in females than in males and numerous investigations to understand this gender bias have been conducted. While it is plausible that some sex-linked genes may contribute to the genetic predisposition for the disease, other likely culprits are the sex hormones estrogen and prolactin. In this chapter we review studies that have addressed the influence of sex hormones in SLE activity and discuss the recent data established in a BALB/c mouse transgenic for the heavy chain of an anti-DNA antibody. These mice are prone to develop lupus following exposure to exogenous sex hormones. We describe how estrogen and prolactin influence B cell maturation and selection, permitting B cells to mature to immunocompetence. Finally, we discuss the relevance and implications of these data for human disease.
Collapse
Affiliation(s)
- J F G Cohen-Solal
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
45
|
Lamote I, Meyer E, De Ketelaere A, Duchateau L, Burvenich C. Expression of the estrogen receptor in blood neutrophils of dairy cows during the periparturient period. Theriogenology 2005; 65:1082-98. [PMID: 16197988 DOI: 10.1016/j.theriogenology.2005.07.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Revised: 07/07/2005] [Accepted: 07/31/2005] [Indexed: 11/18/2022]
Abstract
During the period around parturition, cows experience an increased susceptibility to inflammatory disorders in the mammary gland and uterus. This increased susceptibility has been correlated with a decreased functionality of neutrophils, major components in the innate immune defence. As sex steroid levels vary extensively in the period around parturition, an influence of these changes on the functionality of neutrophils has been suggested. Indeed, it has been shown that 17beta-estradiol affects some functions of bovine neutrophils. In spite of these observations, receptors for 17beta-estradiol have not yet been demonstrated in these cells. The investigation of the presence of estrogen receptors in bovine neutrophils was therefore the main objective of this study. The expression of estrogen receptors was evaluated at the protein level by flow cytometry, and at the mRNA level by polymerase chain reaction. A clear positive signal was obtained using flow cytometry for the estrogen receptor protein in bovine neutrophils. Further discrimination between the estrogen receptor subtypes alpha and beta revealed the expression of the estrogen receptor beta, whereas for the estrogen receptor alpha no reproducible positive signal could be obtained with the available antibodies. Both subtypes were found at the mRNA level. Subsequently, the estrogen receptor protein expression level in neutrophils obtained from cows in early lactation was compared with those from cows in late pregnancy. Additionally, the influence of endogenous 17beta-estradiol and progesterone levels was assessed. No difference was found for the estrogen receptor protein expression in neutrophils from cows in early lactation compared with late gestation neither were the endogenous 17beta-estradiol and progesterone levels correlated with the protein expression.
Collapse
Affiliation(s)
- I Lamote
- Department of Physiology, Biochemistry and Biometrics, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | | | | | | | | |
Collapse
|
46
|
Krücken J, Dkhil MA, Braun JV, Schroetel RMU, El-Khadragy M, Carmeliet P, Mossmann H, Wunderlich F. Testosterone suppresses protective responses of the liver to blood-stage malaria. Infect Immun 2005; 73:436-43. [PMID: 15618182 PMCID: PMC538982 DOI: 10.1128/iai.73.1.436-443.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Testosterone induces a lethal outcome in otherwise self-healing blood-stage malaria caused by Plasmodium chabaudi. Here, we examine possible testosterone effects on the antimalaria effectors spleen and liver in female C57BL/6 mice. Self-healing malaria activates gating mechanisms in the spleen and liver that lead to a dramatic reduction in trapping activity, as measured by quantifying the uptake of 3-mum-diameter fluorescent polystyrol particles. However, testosterone delays malaria-induced closing of the liver, but not the spleen. Coincidently, testosterone causes an approximately 3- to 28-fold depression of the mRNA levels of nine malaria-responsive genes, out of 299 genes tested, only in the liver and not in the spleen, as shown by cDNA arrays and Northern blotting. Among these are the genes encoding plasminogen activator inhibitor (PAI1) and hydroxysteroid sulfotransferase (STA2). STA2, which detoxifies bile acids, is suppressed 10-fold by malaria and an additional 28-fold by testosterone, suggesting a severe perturbation of bile acid metabolism. PAI1 is protective against malaria, since disruption of the PAI1 gene results in partial loss of the ability to control the course of P. chabaudi infections. Collectively, our data indicate that the liver rather than the spleen is a major target organ for testosterone-mediated suppression of resistance against blood-stage malaria.
Collapse
Affiliation(s)
- Jürgen Krücken
- Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Estrogen's role in the sex differences observed in autoimmune diseases such as systemic lupus, multiple sclerosis, and rheumatoid arthritis have remained unclear. Complicating the understanding of the immunomodulatory effects of estrogen are (1) the effects of estrogen on multiple components of the immune response; (2) its varied effects on different systems in which it appears pro-autoimmune, as in murine lupus, or anti-inflammatory, as in EAE; and (3) its effects on other hormones which are potentially immunomodulatory. Recent reports have shed light on the role of estrogen in the modulation of lymphocyte survival and expansion and in the elaboration of Th1 versus Th2 cytokines and on the mechanisms by which estrogen can activate via multiple signaling and genomic pathways in immune cells.
Collapse
Affiliation(s)
- Thomas J Lang
- Division of Rheumatology and Clinical Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
48
|
Bartholome B, Spies CM, Gaber T, Schuchmann S, Berki T, Kunkel D, Bienert M, Radbruch A, Burmester GR, Lauster R, Scheffold A, Buttgereit F. Membrane glucocorticoid receptors (mGCR) are expressed in normal human peripheral blood mononuclear cells and up-regulated after in vitro stimulation and in patients with rheumatoid arthritis. FASEB J 2004; 18:70-80. [PMID: 14718388 DOI: 10.1096/fj.03-0328com] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glucocorticoids mediate their therapeutic actions mostly by genomic effects via cytosolic receptors, but some effects are too rapid to be mediated by changes at the genomic level. The detailed mechanisms of these nongenomic actions are still unclear. Membrane-bound glucocorticoid receptors (mGCR) have been suggested to be involved, although their physiological existence in humans so far is hypothetical. For the first time we demonstrate the existence of mGCR on monocytes and B cells obtained from healthy blood donors using high-sensitivity immunofluorescent staining. Immunostimulation with lipopolysaccharide increases the percentage of mGCR-positive monocytes, which can be prevented by inhibiting the secretory pathway. Overexpression of the human glucocorticoid receptor alpha alone is not sufficient to enhance mGCR expression. These in vitro findings are consistent with our clinical observation that in patients with rheumatoid arthritis the frequency of mGCR positive monocytes is increased and positively correlated with disease activity. We conclude that mGCR are 1) indeed physiologically present in healthy blood donors, but remained unidentified by conventional techniques due to their small number per cell and 2) actively up-regulated and transported through the cell after immunostimulation. These receptors may reflect a feedback mechanism of the organism upon immunostimulation and/or play a role in pathogenesis.
Collapse
Affiliation(s)
- Burkhard Bartholome
- Department of Rheumatology and Clinical Immunology, Charité University Hospital, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Islander U, Erlandsson MC, Hasséus B, Jonsson CA, Ohlsson C, Gustafsson JA, Dahlgren U, Carlsten H. Influence of oestrogen receptor alpha and beta on the immune system in aged female mice. Immunology 2003; 110:149-57. [PMID: 12941152 PMCID: PMC1783017 DOI: 10.1046/j.1365-2567.2003.01704.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oestrogen has a dichotomous effect on the immune system. T and B lymphopoiesis in thymus and bone marrow is suppressed, whereas antibody production is stimulated by oestrogen. In this study the importance of the oestrogen receptors (ER) ER-alpha and ER-beta in the aged immune system was investigated in 18 months old-wild type (WT), ER-alpha (ERKO), ER-beta (BERKO) and double ER-alpha and ER-beta (DERKO) knock-out mice, and compared with 4 months old WT mice. Cell phenotypes in bone marrow, spleen and thymus, and the frequency of immunoglobulin (Ig) spot forming cells (SFC) were determined. We show here that the 17-beta-oestradiol (E2)-induced downregulation of B lymphopoietic cells in bone marrow of young ovariectomized mice can be mediated through both ER-alpha and ER-beta. However, only ER-alpha is required for the age-related increased frequency of immunoglobulin M (IgM) SFC in the bone marrow, as well as for the increased production of interleukin-10 (IL-10) from cultured splenocytes in aged mice. Furthermore, increased age in WT mice resulted in lower levels of both pro- and pre-B cells but increased frequency of IgM SFC in the bone marrow, as well as increased frequency of both IgM and IgA SFC in the spleen. Results from this study provide valuable information regarding the specific functions of ER-alpha and ER-beta in the aged immune system.
Collapse
Affiliation(s)
- U Islander
- Department of Rheumatology, Göteborg University, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Erlandsson MC, Jonsson CA, Islander U, Ohlsson C, Carlsten H. Oestrogen receptor specificity in oestradiol-mediated effects on B lymphopoiesis and immunoglobulin production in male mice. Immunology 2003; 108:346-51. [PMID: 12603601 PMCID: PMC1782901 DOI: 10.1046/j.1365-2567.2003.01599.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oestrogen treatment down-regulates B lymphopoiesis in the bone marrow of mice. Meanwhile it up-regulates immunoglobulin production. To understand better the oestrogen action on bone marrow male mice lacking oestrogen receptor alpha (ERalpha; ERKO mice), lacking ERbeta (BERKO mice), lacking both receptors (DERKO mice) or wild-type (wt) littermates were castrated and treated for 2.5 weeks with 30 microg/kg 17beta-oestradiol (E2) or vehicle oil as controls. The B lymphopoiesis in the bone marrow was examined by flow cytometry and mature B-cell function was studied using an ELISPOT assay enumerating the B cells in bone marrow and spleen that were actively producing immunoglobulins. In wt mice the frequency of B-lymphopoietic (B220+) cells in the bone marrow decreased from 15% to 5% upon E2 treatment. In ERKO and BERKO mice significant reduction was seen but not of the same magnitude. In DERKO mice no reduction of B lymphopoiesis was seen. In addition, our results show that E2 mediated reduction of different steps in B lymphopoiesis require only ERalpha or both receptors. In wt and BERKO mice E2 treatment resulted in significantly increased levels of B cells actively producing immunoglobulin, while in ERKO and DERKO mice no such change was seen. Similar results were found in both bone marrow and spleen. In conclusion our results clearly show that both ERalpha and ERbeta are required for complete down-regulation of B lymphopoiesis while only ERalpha is needed to up-regulate immunoglobulin production in both bone marrow and spleen.
Collapse
Affiliation(s)
- M C Erlandsson
- Department of Rheumatology and Inflammation Research, Department of Internal Medicine, Göteborg University, Guldhedsgatan 10A, S-413 46 Göteborg, Sweden.
| | | | | | | | | |
Collapse
|