1
|
Alchera E, Chandrashekar BR, Clemente N, Borroni E, Boldorini R, Carini R. Ischemia/Reperfusion Injury of Fatty Liver Is Protected by A2AR and Exacerbated by A1R Stimulation through Opposite Effects on ASK1 Activation. Cells 2021; 10:3171. [PMID: 34831394 PMCID: PMC8618984 DOI: 10.3390/cells10113171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatic ischemia/reperfusion injury (IRI) is aggravated by steatosis and is a main risk factor in fatty liver transplantation. Adenosine receptors (ARs) are emerging as therapeutic targets in liver diseases. By using cellular and in vivo systems of hepatic steatosis and IRI, here we evaluated the effects of pharmacological A2AR and A1R activation. The A2AR agonist CGS21680 protected the primary steatotic murine hepatocyte from IR damage and the activation of ASK1 and JNK. Such an effect was attributed to a phosphatidylinositol-3-kinase (PI3K)/Akt-dependent inhibition of ASK1. By contrast, the A1R agonist CCPA enhanced IR damage, intracellular steatosis and oxidative species (OS) production, thereby further increasing the lipid/OS-dependent ASK1-JNK stimulation. The CGS2680 and CCPA effects were nullified by a genetic ASK1 downregulation in steatotic hepatoma C1C7 cells. In steatotic mice livers, CGS21680 protected against hepatic IRI and ASK1/JNK activation whereas CCPA aggravated hepatic steatosis and IRI, and enhanced ASK1 and JNK stimulation. These results evidence a novel mechanism of CGS21680-mediated hepatoprotection, i.e., the PI3K/AKT-dependent inhibition of ASK1, and they show that CGS21680 and CCPA reduces and enhances the IRI of fatty liver, respectively, by preventing or increasing the activation of the cytotoxic ASK1/JNK axis. They also indicate the selective employment of A2AR agonists as an effective therapeutic strategy to prevent IRI in human fatty liver surgery.
Collapse
Affiliation(s)
| | | | | | | | | | - Rita Carini
- Department of Health Science, University of Piemonte Orientale, 28100 Novara, Italy; (E.A.); (B.R.C.); (N.C.); (E.B.); (R.B.)
| |
Collapse
|
2
|
Liu H, Man K. New Insights in Mechanisms and Therapeutics for Short- and Long-Term Impacts of Hepatic Ischemia Reperfusion Injury Post Liver Transplantation. Int J Mol Sci 2021; 22:ijms22158210. [PMID: 34360975 PMCID: PMC8348697 DOI: 10.3390/ijms22158210] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Liver transplantation has been identified as the most effective treatment for patients with end-stage liver diseases. However, hepatic ischemia reperfusion injury (IRI) is associated with poor graft function and poses a risk of adverse clinical outcomes post transplantation. Cell death, including apoptosis, necrosis, ferroptosis and pyroptosis, is induced during the acute phase of liver IRI. The release of danger-associated molecular patterns (DAPMs) and mitochondrial dysfunction resulting from the disturbance of metabolic homeostasis initiates graft inflammation. The inflammation in the short term exacerbates hepatic damage, leading to graft dysfunction and a higher incidence of acute rejection. The subsequent changes in the graft immune environment due to hepatic IRI may result in chronic rejection, cancer recurrence and fibrogenesis in the long term. In this review, we mainly focus on new mechanisms of inflammation initiated by immune activation related to metabolic alteration in the short term during liver IRI. The latest mechanisms of cancer recurrence and fibrogenesis due to the long-term impact of inflammation in hepatic IRI is also discussed. Furthermore, the development of therapeutic strategies, including ischemia preconditioning, pharmacological inhibitors and machine perfusion, for both attenuating acute inflammatory injury and preventing late-phase disease recurrence, will be summarized in the context of clinical, translational and basic research.
Collapse
|
3
|
Li S, Liang C, Jiang W, Deng J, Gu R, Li W, Tian F, Tang L, Sun H. Tissue-Specific Hydrogels Ameliorate Hepatic Ischemia/Reperfusion Injury in Rats by Regulating Macrophage Polarization via TLR4/NF-κB Signaling. ACS Biomater Sci Eng 2021; 7:1552-1563. [PMID: 33683856 DOI: 10.1021/acsbiomaterials.0c01610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Injectable acellular matrix hydrogels are proven to be potential translational materials to facilitate the repairment in various tissues. However, their potential to repair hepatic ischemia/reperfusion injury (IRI) has not been explored. In this work, we made hepatic acellular matrix (HAM) hydrogels based on the decellularized process and evaluated the biocompatibility and hepatoprotective effects in a rat IRI model. HAM hydrogels supported viability, proliferation, and attachment of hepatocytes in vitro. Treatment with HAM hydrogels significantly attenuated hepatic damage caused by IRI, as evidenced by hepatic biochemistry, histology, and inflammatory responses. Importantly, HAM hydrogels inhibited macrophage M1 (CD68/CCR7) differentiation but promoted M2 (CD68/CD206) differentiation. Additionally, TLR4/NF-κB signaling was found to be involved in the hepatoprotective effect of HAM hydrogels. Collectively, our study reveals that HAM hydrogels ameliorate hepatic IRI by facilitating M2 polarization via TLR4/NF-κB signaling.
Collapse
Affiliation(s)
- Shuai Li
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu 610083, China.,Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu 610083, China.,College of Medicine, Southwest Jiaotong University, Chengdu 610083, China
| | - Chengxiao Liang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Wen Jiang
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu 610083, China.,Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu 610083, China.,College of Medicine, Southwest Jiaotong University, Chengdu 610083, China
| | - Jie Deng
- College of Medicine, Southwest Jiaotong University, Chengdu 610083, China.,Department of Clinical Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Rui Gu
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Wei Li
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Fuzhou Tian
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Lijun Tang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Hongyu Sun
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu 610083, China.,Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu 610083, China.,College of Medicine, Southwest Jiaotong University, Chengdu 610083, China
| |
Collapse
|
4
|
Tian X, Hu Y, Liu Y, Yang Z, Xie H, Zhou L, Zheng S. Circular RNA Microarray Analyses in Hepatic Ischemia-Reperfusion Injury With Ischemic Preconditioning Prevention. Front Med (Lausanne) 2021; 8:626948. [PMID: 33763433 PMCID: PMC7982475 DOI: 10.3389/fmed.2021.626948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic preconditioning (IPC) represents an effective intervention to relieve hepatic ischemia-reperfusion injury (IRI). Systematic detection of circRNA expression revealing the protection effect of IPC still remains to be elucidated. Here, we applied a microarray to detect circRNA and mRNA expression in ischemic liver with and without IPC (n = 3 in each group). Compared with the sham group, there were 39 circRNAs and 432 mRNAs increased and 38 circRNAs and 254 mRNAs decreased (fold change ≥1.5, P < 0.05) in the group of hepatic IRI. As the result of IPC intervention, 43 circRNAs and 64 mRNAs were increased, and 7 circRNAs and 31 mRNAs were decreased in the IPC group when compared with IRI. We then identified circRNA_017753 as the most possible target that may closely relate to IPC protective signaling and predicted Jade1 as the target related to circRNA_017753. Three possible circRNA-miRNA-mRNA axes were constructed that may play a vital role in protective mechanisms in IPC. The study for the first time systematically detects the dysregulated circRNAs and mRNAs in response to hepatic IRI and IPC intervention. Our profile and bioinformatic analysis provide numerous novel clues to understanding the pathophysiologic mechanism of IPC protection against hepatic IRI.
Collapse
Affiliation(s)
- Xinyao Tian
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Combined Multi-organ Transplantation, National Health Commission of PRC, Hangzhou, China
| | - Yan Hu
- Department of Pharmacy, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuanxing Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhe Yang
- Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Haiyang Xie
- Key Laboratory of Combined Multi-organ Transplantation, National Health Commission of PRC, Hangzhou, China
| | - Lin Zhou
- Key Laboratory of Combined Multi-organ Transplantation, National Health Commission of PRC, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Combined Multi-organ Transplantation, National Health Commission of PRC, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, Department of Liver Transplantation, Shulan (Hangzhou) Hospital, Hangzhou, China
| |
Collapse
|
5
|
Robertson FP, Fuller BJ, Davidson BR. An Evaluation of Ischaemic Preconditioning as a Method of Reducing Ischaemia Reperfusion Injury in Liver Surgery and Transplantation. J Clin Med 2017; 6:jcm6070069. [PMID: 28708111 PMCID: PMC5532577 DOI: 10.3390/jcm6070069] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/22/2017] [Accepted: 07/04/2017] [Indexed: 12/16/2022] Open
Abstract
Liver Ischaemia Reperfusion (IR) injury is a major cause of post-operative liver dysfunction, morbidity and mortality following liver resection surgery and transplantation. There are no proven therapies for IR injury in clinical practice and new approaches are required. Ischaemic Preconditioning (IPC) can be applied in both a direct and remote fashion and has been shown to ameliorate IR injury in small animal models. Its translation into clinical practice has been difficult, primarily by a lack of knowledge regarding the dominant protective mechanisms that it employs. A review of all current studies would suggest that IPC/RIPC relies on creating a small tissue injury resulting in the release of adenosine and l-arginine which act through the Adenosine receptors and the haem-oxygenase and endothelial nitric oxide synthase systems to reduce hepatocyte necrosis and improve the hepatic microcirculation post reperfusion. The next key step is to determine how long the stimulus requires to precondition humans to allow sufficient injury to occur to release the potential mediators. This would open the door to a new therapeutic chapter in this field.
Collapse
Affiliation(s)
- Francis P Robertson
- Division of Surgery and Interventional Science, Royal Free Campus, University College London, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
| | - Barry J Fuller
- Division of Surgery and Interventional Science, Royal Free Campus, University College London, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
| | - Brian R Davidson
- Division of Surgery and Interventional Science, Royal Free Campus, University College London, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
- Department of Hepaticopancreatobiliary Surgery and Liver Transplantation, Royal Free Foundation Trust, 9th Floor, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
| |
Collapse
|
6
|
Iskandarov E, Kadaba Srinivasan P, Xin W, Bleilevens C, Afify M, Hamza A, Wei L, Hata K, Agayev B, Tolba R. Protective Effects of Adenosine Receptor Agonist in a Cirrhotic Liver Resection Model. HEPATITIS MONTHLY 2016; 16:e36821. [PMID: 27799962 PMCID: PMC5075226 DOI: 10.5812/hepatmon.36821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/07/2016] [Accepted: 06/22/2016] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To investigate the role of CGS21680, a selective adenosine A2A receptor agonist, on a bile-duct-ligated cirrhotic liver resection model in rats. METHODS Male Wistar rats were allotted into 3 groups (n = 7 per time-point): the control group, the bile duct ligation + CGS21680 group (BDL + CGS), and the bile duct ligation group (BDL). Biliary cirrhosis had been previously induced by ligature of the common bile duct in the BDL + CGS and BDL groups. After 2 weeks, the animals underwent partial hepatectomy (50%). The BDL + CGS group received a single dose of CGS21680 15 minutes prior to hepatectomy. Blood samples were collected and analyzed. RESULTS Aspartate transaminase levels were found to be lower in the control vs BDL groups (1, 3, and 24 h) (P < 0.01) and the BDL + CGS (1 and 3 hours) (P < 0.01) and BDL + CGS vs BDL (24 hours) (P < 0.05) groups. Hepatic flow was measured and BDL showed significantly lower values at the 3, 24, and 168 h time-points compared to the control (P < 0.01) and BDL + CGS groups (P < 0.05 at 3 and 168 hours; P < 0.01 at 24 h). O2C velocity was reduced in the BDL compared to the control group (P < 0.001 at 3 hours; P < 0.01 at 24 and 168 hours) and the BDL + CGS group (P < 0.01 at 24 hours). Interleukin-6 levels were abrogated in the BDL + CGS (P < 0.05) and control (P < 0.01) groups versus BDL. Histone-bound low-molecular-weight DNA fragments in the BDL + CGS (P < 0.01) and control (P < 0.05) groups were low compared to the BDL group. CONCLUSIONS Administration of CGS21680, an adenosine receptor agonist, after the resection of bile-duct-ligated cirrhotic livers led to improved liver function, regeneration, and microcirculation.
Collapse
Affiliation(s)
- Emil Iskandarov
- Department of Hepato-biliary and Pancreas Surgery, Scientific Center of Surgery named after academician M.A.Topchubashov, Baku, Azerbaijan
| | - Pramod Kadaba Srinivasan
- Institute for Laboratory Animal Science and Experimental Surgery, University Hospital, RWTH Aachen University, Aachen, Germany
- Corresponding Author: Pramod Kadaba Srinivasan, Institute for Laboratory Animal Science and Experimental Surgery, University Hospital RWTH Aachen, Aachen, Germany. Tel: +49-2418089855, Fax: +49-2418082462, E-mail:
| | - Wang Xin
- Tongji Hospital, Tongji Medical College, Department of Surgery, Division of Transplantation, Wuhan, China
| | - Christian Bleilevens
- Department of Anaesthesiology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Mamdouh Afify
- Institute for Laboratory Animal Science and Experimental Surgery, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Astrit Hamza
- Department of Abdominal Surgery, University Clinical Center of Kosovo, Prishtina, Kosovo
| | - Lai Wei
- Tongji Hospital, Tongji Medical College, Department of Surgery, Division of Transplantation, Wuhan, China
| | - Koichiro Hata
- Department of Hepatobiliary, Pancreas and Transplant Surgery, Kyoto University, Yoshidahonmachi, Sakyo Ward, Kyoto, Japan
| | - Boyukkishi Agayev
- Department of Hepato-biliary and Pancreas Surgery, Scientific Center of Surgery named after academician M.A.Topchubashov, Baku, Azerbaijan
| | - Rene Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, University Hospital, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
7
|
Beyond Preconditioning: Postconditioning as an Alternative Technique in the Prevention of Liver Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8235921. [PMID: 27340509 PMCID: PMC4909928 DOI: 10.1155/2016/8235921] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/11/2016] [Accepted: 05/05/2016] [Indexed: 01/04/2023]
Abstract
Liver ischemia/reperfusion injury may significantly compromise hepatic postoperative function. Various hepatoprotective methods have been improvised, aiming at attenuating IR injury. With ischemic preconditioning (IPC), the liver is conditioned with a brief ischemic period followed by reperfusion, prior to sustained ischemia. Ischemic postconditioning (IPostC), consisting of intermittent sequential interruptions of blood flow in the early phase of reperfusion, seems to be a more feasible alternative than IPC, since the onset of reperfusion is more predictable. Regarding the potential mechanisms involved, it has been postulated that the slow intermittent oxygenation through controlled reperfusion decreases the burst production of oxygen free radicals, increases antioxidant activity, suppresses neutrophil accumulation, and modulates the apoptotic cascade. Additionally, favorable effects on mitochondrial ultrastructure and function, and upregulation of the cytoprotective properties of nitric oxide, leading to preservation of sinusoidal structure and maintenance of blood flow through the hepatic circulation could also underlie the protection afforded by postconditioning. Clinical studies are required to show whether biochemical and histological improvements afforded by the reperfusion/reocclusion cycles of postconditioning during early reperfusion can be translated to a substantial clinical benefit in liver resection and transplantation settings or to highlight more aspects of its molecular mechanisms.
Collapse
|
8
|
Pharmacological Preconditioning by Adenosine A2a Receptor Stimulation: Features of the Protected Liver Cell Phenotype. BIOMED RESEARCH INTERNATIONAL 2015; 2015:286746. [PMID: 26539478 PMCID: PMC4619783 DOI: 10.1155/2015/286746] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 04/15/2015] [Indexed: 02/06/2023]
Abstract
Ischemic preconditioning (IP) of the liver by a brief interruption of the blood flow protects the damage induced by a subsequent ischemia/reperfusion (I/R) preventing parenchymal and nonparenchymal liver cell damage. The discovery of IP has shown the existence of intrinsic systems of cytoprotection whose activation can stave off the progression of irreversible tissue damage. Deciphering the molecular mediators that underlie the cytoprotective effects of preconditioning can pave the way to important therapeutic possibilities. Pharmacological activation of critical mediators of IP would be expected to emulate or even to intensify its salubrious effects. In vitro and in vivo studies have demonstrated the role of the adenosine A2a receptor (A2aR) as a trigger of liver IP. This review will provide insight into the phenotypic changes that underline the resistance to death of liver cells preconditioned by pharmacological activation of A2aR and their implications to develop innovative strategies against liver IR damage.
Collapse
|
9
|
YAN YICHAO, LI GUANGYING, TIAN XIAOFENG, YE YINGJIANG, GAO ZHIDONG, YAO JIHONG, ZHANG FENG, WANG SHAN. Ischemic preconditioning increases GSK-3β/β-catenin levels and ameliorates liver ischemia/reperfusion injury in rats. Int J Mol Med 2015; 35:1625-32. [DOI: 10.3892/ijmm.2015.2153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/06/2015] [Indexed: 11/05/2022] Open
|
10
|
Sirtuin 1-Mediated Inhibition of p66shc Expression Alleviates Liver Ischemia/Reperfusion Injury. Crit Care Med 2014; 42:e373-81. [DOI: 10.1097/ccm.0000000000000246] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
11
|
Elias-Miró M, Jiménez-Castro MB, Rodés J, Peralta C. Current knowledge on oxidative stress in hepatic ischemia/reperfusion. Free Radic Res 2013; 47:555-68. [PMID: 23738581 DOI: 10.3109/10715762.2013.811721] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ischemia/reperfusion (I/R) injury associated with hepatic resections and liver transplantation remains a serious complication in clinical practice, despite several attempts to solve the problem. The redox balance, which is pivotal for normal function and integrity of tissues, is dysregulated during I/R, leading to an accumulation of reactive oxygen species (ROS). Formation of ROS and oxidant stress are the disease mechanisms most commonly invoked in hepatic I/R injury. The present review examines published results regarding possible sources of ROS and their effects in the context of I/R injury. We also review the effect of oxidative stress on marginal livers, which are more vulnerable to I/R-induced oxidative stress. Strategies to improve the viability of marginal livers could reduce the risk of dysfunction after surgery and increase the number of organs suitable for transplantation. The review also considers the therapeutic strategies developed in recent years to reduce the oxidative stress induced by hepatic I/R, and we seek to explain why some of them have not been applied clinically. New antioxidant strategies that have yielded promising results for hepatic I/R injury are discussed.
Collapse
Affiliation(s)
- M Elias-Miró
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona (IDIBAPS), Spain
| | | | | | | |
Collapse
|
12
|
Enhancement of liver regeneration by adenosine triphosphate-sensitive K⁺ channel opener (diazoxide) after partial hepatectomy. Transplantation 2012; 93:1094-100. [PMID: 22466787 DOI: 10.1097/tp.0b013e31824ef1d1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Enhancement of liver regeneration is a matter of importance after partial liver transplantation including small-for-size grafting. Mitochondrial adenosine triphosphate (ATP)-sensitive K⁺ (mitoKATP) channel plays an important role in mitochondrial bioenergetics, which is a prerequisite for liver regeneration. However, the ATP-sensitive K⁺ (KATP) channel in hepatocytes is incompletely understood. We investigated the KATP channel in hepatocytes and examined the effects of diazoxide, a potent KATP channel opener, on liver regeneration using a rat model. METHODS Using rat primary hepatocytes, expression and localization of KATP channel subunits, Kir6.x and sulfonylurea receptor (SUR)x, were studied by polymerase chain reaction, Western blotting, and immunostaining. To investigate the role of KATP channel openers in liver regeneration, we allocated rats into four groups: control (vehicle) (n=24), diazoxide (n=24), vehicle plus channel blocker (n=6), and diazoxide plus channel blocker (n=6) groups. After 70% partial hepatectomy, hepatic tissue ATP levels, liver-to-body weight ratio, and proliferation rate of hepatocytes were examined. RESULTS KATP channel subunits, Kir6.1 and SUR1, were detected on hepatic mitochondria. During liver regeneration, liver-to-body weight ratio, proliferation rate of hepatocytes, and the hepatic ATP level were significantly higher in the diazoxide group than the control group at 2 days after partial hepatectomy. These effects of diazoxide were neutralized by a KATP channel blocker. CONCLUSIONS We demonstrated the existence of a mitoKATP channel in hepatocytes composed of Kir6.1 and SUR1. Diazoxide could enhance liver regeneration by keeping a higher ATP content of the liver tissue. These results suggest that diazoxide will sustain the mitochondrial energetics through the mitoKATP channel opening.
Collapse
|
13
|
Jaeschke H, Woolbright BL. Current strategies to minimize hepatic ischemia-reperfusion injury by targeting reactive oxygen species. Transplant Rev (Orlando) 2012; 26:103-14. [PMID: 22459037 DOI: 10.1016/j.trre.2011.10.006] [Citation(s) in RCA: 212] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Accepted: 10/17/2011] [Indexed: 12/15/2022]
Abstract
Ischemia-reperfusion is a major component of injury in vascular occlusion both during liver surgery and during liver transplantation. The pathophysiology of hepatic ischemia-reperfusion includes a number of mechanisms including oxidant stress that contribute to various degrees to the overall organ damage. A large volume of recent research has focused on the use of antioxidants to ameliorate this injury, although results in experimental models have not translated well to the clinic. This review focuses on critical sources and mediators of oxidative stress during hepatic ischemia-reperfusion, the status of current antioxidant interventions, and emerging mechanisms of protection by preconditioning. While recent advances in regulation of antioxidant systems by Nrf2 provide interesting new potential therapeutic targets, an increased focus must be placed on more in-depth mechanistic investigations in hepatic ischemia-reperfusion injury and translational research in order to refine current strategies in disease management.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | |
Collapse
|
14
|
Dal Ponte C, Alchera E, Follenzi A, Imarisio C, Prat M, Albano E, Carini R. Pharmacological postconditioning protects against hepatic ischemia/reperfusion injury. Liver Transpl 2011; 17:474-82. [PMID: 21445931 DOI: 10.1002/lt.22256] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Postconditioning is a procedure based on the induction of intracellular protective reactions immediately after the onset of reperfusion. Because of the growing need to prevent ischemia/reperfusion (I/R) injury during liver surgery and transplantation, we investigated the possibility of pharmacologically inducing hepatic postconditioning. The effects of the adenosine A2A receptor agonist 2p-(2-carboxyethyl)-phenyl-amino-5'-N-ethylcarboxyamido-adenosine (CGS21680; 5 μmol/L) and the phosphatase and tensin homologue deleted from chromosome 10 (PTEN) inhibitor dipotassium bisperoxo-(5-hydroxypyridine-2-carboxyl)-oxovanadate [bpV(HOpic); 250 nmol/L] were investigated in primary rat hepatocytes during reoxygenation after 24 hours of cold storage and in an in vivo model of rat liver warm I/R. The addition of CGS21680 at reoxygenation significantly reduced hepatocyte death through the activation of the phosphoinositide 3-kinase (PI3K)-protein kinase B (PKB)/Akt signal pathway and through the reduction of the intracellular level of PTEN. PTEN lowering was associated with the increased generation of reactive oxygen species after A2A receptor-mediated stimulation of β-nicotinamide adenine dinucleotide phosphate oxidase (NOX). The inhibition of PI3K or NOX with wortmannin or diphenyleneiodonium chloride, respectively, and the addition of the antioxidant N,N'-diphenyl-p-phenylenediamine reversed the effects of CGS21680. The PTEN inhibitor bpV(HOpic) mimicked the protection provided by CGS21680 against reoxygenation damage. An in vivo rat treatment with CGS21680 or bpV(HOpic) during reperfusion after 1 hour of partial hepatic ischemia also promoted PKB/Akt activation and ameliorated alanine aminotransferase release and histological lesions induced by 2 hours of reperfusion. We conclude that adenosine A2A receptor agonists and PTEN inhibitors are possibly useful agents for the pharmacological induction of postconditioning in the liver.
Collapse
Affiliation(s)
- Caterina Dal Ponte
- Department of Medical Sciences, Amedeo Avogadro University of East Piedmont, Novara, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Ischemia/reperfusion (I/R) injury still represents an important cause of morbidity following hepatic surgery and limits the use of marginal livers in hepatic transplantation. Transient blood flow interruption followed by reperfusion protects tissues against damage induced by subsequent I/R. This process known as ischemic preconditioning (IP) depends upon intrinsic cytoprotective systems whose activation can inhibit the progression of irreversible tissue damage. Compared to other organs, liver IP has additional features as it reduces inflammation and promotes hepatic regeneration. Our present understanding of the molecular mechanisms involved in liver IP is still largely incomplete. Experimental studies have shown that the protective effects of liver IP are triggered by the release of adenosine and nitric oxide and the subsequent activation of signal networks involving protein kinases such as phosphatidylinositol 3-kinase, protein kinase C δ/ε and p38 MAP kinase, and transcription factors such as signal transducer and activator of transcription 3, nuclear factor-κB and hypoxia-inducible factor 1. This article offers an overview of the molecular events underlying the preconditioning effects in the liver and points to the possibility of developing pharmacological approaches aimed at activating the intrinsic protective systems in patients undergoing liver surgery.
Collapse
|
16
|
Lin S, Liu K, Wu W, Chen C, Wang Z, Zhang X. Study on pretreatment of FPS-1 in rats with hepatic ischemia-reperfusion injury. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2010; 37:323-37. [PMID: 19507275 DOI: 10.1142/s0192415x09006874] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study was designed to determine whether FPS-1, the water-soluble polysaccharide isolated from fuzi, protected against hepatic damage in hepatic ischemia-reperfusion injury in rats, and its mechanism. SD rats were subjected to 60 min of hepatic ischemia, followed by 120 min reperfusion. FPS-1 (160 mg/kg/day) was administered orally for 5 days before ischemia-reperfusion injury in treatment group. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and albumin (ALB) were assayed to evaluate liver functions. Liver samples were taken for histological examination and determination of malondialdehyde (MDA), superoxide dismutase (SOD), that catalase (CAT) in liver. Na(+)-K(+)-ATPase and Ca(2+)-ATPase in mitochondria were measured with colorimetry method. Morphological changes were also investigated by using both light microscopy and electron microscopy (EM). In addition, apoptosis and oncosis were detected by Annexin V-FITC/PI immunofluorescent flow cytometry analysis. Serum AST and ALT levels were elevated in groups exposed to ischemia-reperfusion (p < 0.05). Ischemia-reperfusion caused a marked increase in MDA level, and significant decreases in hepatic SOD and CAT (p < 0.05). Na(+)-K(+)-ATPase and Ca(2+)-ATPase were reduced in ischemia-reperfusion groups compared to the sham group (p < 0.05). Oncosis and apoptosis were also observed in ischemia-reperfusion groups. Pretreatment with FPS-1 reversed all these biochemical parameters as well as histological alterations, evidently by increased SOD, CAT, reduced MDA and histological scores compared to the model group (p < 0.05). FPS-1 could attenuate the necrotic states by the detection of immunofluorescent flow cytometry analysis. Pretreatment with FPS-1 reduced hepatic ischemia-reperfusion injury through its potent antioxidative effects and attenuation of necrotic states.
Collapse
Affiliation(s)
- Shiqing Lin
- Department of Anesthesiology, The First Affiliated Hospital of Zhongshan University, Guangzhou 510800, China
| | | | | | | | | | | |
Collapse
|
17
|
Hart ML, Gorzolla IC, Schittenhelm J, Robson SC, Eltzschig HK. SP1-dependent induction of CD39 facilitates hepatic ischemic preconditioning. THE JOURNAL OF IMMUNOLOGY 2010; 184:4017-24. [PMID: 20207994 DOI: 10.4049/jimmunol.0901851] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Ischemia/reperfusion injury (IRI) of the liver is an important cause of hepatic dysfunction. Ischemic preconditioning (IP) is associated with adenosine-mediated tissue protection from subsequent IRI. Extracellular nucleotides (e.g., ATP) represent the main source for extracellular adenosine. Therefore, we hypothesized that phosphohydrolysis of ATP/ADP via the ectonucleoside triphosphate diphosphohydrolase-1 (CD39), conversion of ATP/ADP to AMP, mediates IP-dependent liver protection. We found that hepatic IP was associated with significant induction of CD39 transcript, heightened protein expression, and improved outcomes after IRI. Targeted gene deletion or pharmacological inhibition of CD39 abolished hepatoprotection by IP as measured by serum markers of liver injury or histology. Therapeutic studies to mimic IP with i.p. apyrase (a soluble ectonucleoside triphosphate diphosphohydrolase, NTPDase) in the absence of IP attenuated hepatic injury after IRI. In additional in vivo studies, small interfering RNA treatment was used to achieve repression of the transcription factor Sp1, known to be implicated in CD39 transcriptional regulation. In fact, Sp1 small interfering RNA treatment was associated with attenuated CD39 induction and increased hepatic injury in vivo. Our data suggest a Sp1-dependent regulatory pathway for CD39 during hepatic IP. These studies reveal a novel role of CD39 in hepatic protection and suggest soluble apyrase for the treatment of liver ischemia.
Collapse
Affiliation(s)
- Melanie L Hart
- Department of Anesthesiology and Intensive Care Medicine, University of Tübingen, Tübingen, Germany.
| | | | | | | | | |
Collapse
|
18
|
The strategy of combined ischemia preconditioning and salvianolic acid-B pretreatment to prevent hepatic ischemia-reperfusion injury in rats. Dig Dis Sci 2009; 54:2568-76. [PMID: 19156521 DOI: 10.1007/s10620-008-0681-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 12/23/2008] [Indexed: 12/09/2022]
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) is a serious complication of liver surgery, especially for extended hepatectomy and liver transplantation. The aim of this study was to evaluate the protective effect of combined ischemic preconditioning (IPC) and salvianolic acid-B (Sal-B) pretreatment against IRI-induced hepatocellular injury. METHODS Sixty male Wistar rats weighing around 200 g were randomized into five groups (n=12): sham group: only anesthesia and laparotomy; IR group: 90 min sustained ischemia by blocking the left ortal vessels; IPC group: 10 min ischemia and 10 min reperfusion prior to the sustained ischemia; Sal-B group: 10 mg/kg injection of Sal-B intravenously 10 min prior to the sustained ischemia; IPC+Sal-B group: same IPC procedure as in IPC group, but proceeded by intravenous administration of Sal-B 10 min prior to sustained ischemia. After 5 h of reperfusion, serum levels of ALT and AST were measured; the amount of malondialdehyde (MDA) and adenine nucleotides in liver tissue was determined; the expression of Bcl-2 and caspase-3 was detected by immunofluorescent and western blotting techniques; the severity of apoptosis and pathological alterations was evaluated by TUNEL and H&E staining, respectively. RESULTS The serum aminotransferases, hepatic MDA concentration, and apoptotic index in groups IPC, Sal-B, and IPC+Sal-B were significantly lower than those in the IR group (P<0.001), while the IPC+Sal-B group had the lowest values among these groups (P<0.05). Compared with the IR group, groups IPC and Sal-B not only had statistically higher ATP levels and energy charge (EC) values (P<0.01), but also had upregulated Bcl-2 expression and downregulated cleaved caspase-3 expression in liver tissue. All these effects were further augmented in the IPC+Sal-B group. Liver histopathological findings were consistent with these results. CONCLUSIONS Based on these results, the combined IPC and Sal-B pretreatment had a synergistically protective effect on liver tissue against IRI, which might be due to decreased post-ischemic oxidative stress, improved energy metabolism, and reduced hepatocellular apoptosis.
Collapse
|
19
|
Protective effect of liver ischemic preconditioning on rat hepatocytes. ACTA ACUST UNITED AC 2009; 52:836-40. [DOI: 10.1007/s11427-009-0113-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 05/09/2009] [Indexed: 12/26/2022]
|
20
|
Desai KK, Dikdan GS, Shareef A, Koneru B. Ischemic preconditioning of the liver: a few perspectives from the bench to bedside translation. Liver Transpl 2008; 14:1569-77. [PMID: 18975290 DOI: 10.1002/lt.21630] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Utilization of ischemic preconditioning to ameliorate ischemia/reperfusion injury has been extensively studied in various organs and species for the past two decades. While hepatic ischemic preconditioning in animals has been largely beneficial, translational efforts in the two clinical contexts--liver resection and decreased donor liver transplantation--have yielded mixed results. This review is intended to critically examine the translational data and identify some potential reasons for the disparate clinical results, and highlight some issues for further studies.
Collapse
Affiliation(s)
- Kunj K Desai
- Department of Surgery, University of Medicine and Dentistry-New Jersey Medical School, Newark, NJ, USA
| | | | | | | |
Collapse
|
21
|
Hart ML, Much C, Gorzolla IC, Schittenhelm J, Kloor D, Stahl GL, Eltzschig HK. Extracellular adenosine production by ecto-5'-nucleotidase protects during murine hepatic ischemic preconditioning. Gastroenterology 2008; 135:1739-1750.e3. [PMID: 18804111 DOI: 10.1053/j.gastro.2008.07.064] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 06/26/2008] [Accepted: 07/24/2008] [Indexed: 02/02/2023]
Abstract
BACKGROUND & AIMS The liver tolerates ischemia/reperfusion (IR) poorly. The discovery of ischemic preconditioning (IP) has raised hopes that natural pathways could be activated to increase hepatic resistance to ischemia. However, mechanisms of hepatic IP remain largely unknown. Extracellular adenosine has been implicated as an innate anti-inflammatory metabolite, particularly during ischemia. We investigated whether ecto-5'-nucleotidase (CD73), the "pacemaker" enzyme of extracellular adenosine production, is critical for hepatic protection by IP. METHODS Mice were subjected to 4 cycles of portal triad occlusion and reperfusion (3 minutes of ischemia/3 minutes of reperfusion) prior to IR or IR alone. RESULTS Hepatic IP was associated with a significant induction of CD73 transcript and protein. Targeted gene deletion or pharmacologic inhibition of CD73 abolished hepatic protection by IP as measured by lactate dehydrogenase, aspartate aminotransferase, and alanine aminotransferase serum levels or histologic injury. Increases in extracellular adenosine with IP were significantly attenuated in cd73-deficient (cd73(-/-)) mice. Reconstitution of cd73(-/-) mice with soluble 5'-nucleotidase resulted in complete restoration of hepatoprotection by IP, and hepatic injury following ischemia was attenuated by treatment of WT mice with soluble 5'-nucleotidase. Mice deficient in CD73 did not demonstrate the same degree of IP-dependent inhibition of acute phase complement gene expression/activation as did wild-type mice suggesting that extracellular adenosine attenuates hepatic IR via complement regulation. CONCLUSIONS Extracellular adenosine production by CD73 mediates protection during murine hepatic IP. Use of soluble 5'-nucleotidase may be a potential therapeutic for hepatic ischemia.
Collapse
Affiliation(s)
- Melanie L Hart
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Kolachala VL, Bajaj R, Chalasani M, Sitaraman SV. Purinergic receptors in gastrointestinal inflammation. Am J Physiol Gastrointest Liver Physiol 2008; 294:G401-10. [PMID: 18063703 DOI: 10.1152/ajpgi.00454.2007] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Purinergic receptors comprise a family of transmembrane receptors that are activated by extracellular nucleosides and nucleotides. The two major classes of purinergic receptors, P1 and P2, are expressed widely in the gastrointestinal tract as well as immune cells. The purinergic receptors serve a variety of functions from acting as neurotransmitters, to autocoid and paracrine signaling, to cell activation and immune response. Nucleosides and nucleotide agonist of purinergic receptors are released by many cell types in response to specific physiological signals, and their levels are increased during inflammation. In the past decade, the advent of genetic knockout mice and the development of highly potent and selective agonists and antagonists for the purinergic receptors have significantly advanced the understanding of purinergic receptor signaling in health and inflammation. In fact, agonist/antagonists of purinergic receptors are emerging as therapeutic modalities to treat intestinal inflammation. In this article, the distribution of the purinergic receptors in the gastrointestinal tract and their physiological and pathophysiological role in intestinal inflammation will be reviewed.
Collapse
Affiliation(s)
- Vasantha L Kolachala
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
24
|
Yamada F, Saito T, Abe T, Tsuchiya T, Sato Y, Kenjo A, Kimura T, Gotoh M. Ischemic preconditioning enhances regenerative capacity of hepatocytes in long-term ischemically damaged rat livers. J Gastroenterol Hepatol 2007; 22:1971-7. [PMID: 17914979 DOI: 10.1111/j.1440-1746.2006.04711.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND AIMS Ischemic preconditioning (IPC) protects tissues against ischemia and reperfusion (I/R) injury. The aim of this study was to examine the impact of IPC on protection and regeneration of hepatocytes after prolonged I/R injury. METHODS A rat model of segmental (70%) hepatic ischemia was used to determine the effect of 10-min IPC preceding 40, 60, 90, or 120 min of liver ischemia. The effect was assessed by comparing cytolysis markers and necrotic areas of the liver, as well as the regenerative capacity of hepatocytes using the proliferating cell nuclear antigen labeling index (PCNA-LI) and weight of the ischemic liver lobe. Protein kinase B/Akt (Akt) and caspase-9 were investigated immunohistochemically to determine the effect of IPC on activation of survival and anti-apoptotic signals. RESULTS In the model of 40 min I/R, which resulted in focal necrosis of the liver, IPC significantly protected against I/R injury by reducing the area of focal necrosis, level of PCNA-LI and immunoreactivities to Akt and caspase-9. In contrast, IPC did not prevent ischemic damage in the 90- and 120-min ischemic model with massive liver necrosis. However, IPC enhanced the regenerative capacity of the remaining hepatocytes with higher levels of PCNA-LI, number of Akt-positive cells and mean weight of the liver lobe postoperatively than in the controls. CONCLUSIONS In a model of focal necrosis of the liver, IPC protected hepatocytes against I/R injury. In addition, in a model of massive necrosis, IPC maintained the regenerative capacity of the remaining hepatocytes by enhancing the survival signals.
Collapse
Affiliation(s)
- Fumihiko Yamada
- First Department of Surgery, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
León Fernández OS, Ajamieh HH, Berlanga J, Menéndez S, Viebahn-Hánsler R, Re L, Carmona AM. Ozone oxidative preconditioning is mediated by A1 adenosine receptors in a rat model of liver ischemia/ reperfusion. Transpl Int 2007; 21:39-48. [PMID: 17927680 DOI: 10.1111/j.1432-2277.2007.00568.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The liver is damaged by sustained ischemia in liver transplantation, and the reperfusion after ischemia results in further functional impairment. Ozone oxidative preconditioning (OzoneOP) protected the liver against ischemia/reperfusion (I/R) injury. The aim of this study was to investigate the role of A(1) adenosine receptor on the protective actions conferred by OzoneOP in hepatic I/R. By using a specific agonist and antagonist of the A(1) subtype receptor (2-chloro N6 cyclopentyladenosine, CCPA and 8-cyclopentyl-1,3-dipropylxanthine, DPCPX respectively), we studied the role of A(1) receptor in the protective effects of OzoneOP on the liver damage, nitiric oxide (NO) generation, adenosine deaminase activity and preservation of the cellular redox balance. Immunohistochemical analysis of nuclear factor-kappa B (NF-kappaB), tumor necrosis factor alpha (TNF-alpha) and heat shock protein-70 (HSP-70) was performed. OzoneOP prevented and/or ameliorated ischemic damage. CCPA showed a similar effect to OzoneOP + I/R group. A(1)AR antagonist DPCPX blocked the protective effect of OzoneOP. OzoneOP largely reduced the intensity of the p65 expression, diminished TNF-alpha production, and promoted a reduction in HSP-70 immunoreactivity. In summary, OzoneOP exerted protective effects against liver I/R injury through activation of A(1) adenosine receptors (A(1)AR). Adenosine and (.)NO produced by OzoneOP may play a role in the pathways of cellular signalling which promote preservation of the cellular redox balance, mitochondrial function, glutathione pools as well as the regulation of NF-kappaB and HSP-70.
Collapse
Affiliation(s)
- Olga S León Fernández
- Center for Research and Biological Evaluation (CIEB-IFAL), University of Havana, Havana, Cuba
| | | | | | | | | | | | | |
Collapse
|
26
|
Magata S, Taniguchi M, Suzuki T, Shimamura T, Fukai M, Furukawa H, Fujita M, Todo S. The effect of antagonism of adenosine A1 receptor against ischemia and reperfusion injury of the liver. J Surg Res 2007; 139:7-14. [PMID: 17336335 DOI: 10.1016/j.jss.2006.09.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 09/11/2006] [Accepted: 09/18/2006] [Indexed: 01/22/2023]
Abstract
BACKGROUND Adenosine is known to exert protective roles in hepatic ischemia and reperfusion injury, while all adenosine receptors do not play the cytoprotective roles. We have tested our hypothesis that blockage of adenosine binding to A(1) receptor by its antagonist, KW3902 [8-(noradamantan-3-yl)-1,3-dipropylxanthine] attenuates hepatic ischemia-reperfusion injury. METHODS Adult female beagle dogs underwent a 2 h total hepatic vascular exclusion (THVE) with a venovenous bypass. Nontreated animals that underwent THVE with a venovenous bypass alone were used as the control (Group CT, n=6). KW3902 was given to the animals by continuous intraportal infusion for 60 min before ischemia at a dose of 1 microg/kg/min (Group KW, n=6). Two wk survival, hemodynamics, hepatic tissue blood flow (HTBF), liver function, energy metabolism, cAMP concentration, and histopathological findings were studied. RESULTS Two wk animal survival was significantly improved in group KW compared with that in group CT (group CT: 16.7% versus group KW: 83.3%). HTBF, liver function, and hepatic adenine nucleotide concentration were remarkably better in group KW than group CT. In addition, cAMP concentration in group KW was maintained significantly higher than group CT. Histopathological examination revealed preservation of hepatic architecture and suppression of neutrophil infiltration into hepatic tissue in group KW. CONCLUSION Administration of adenosine A(1) receptor antagonist before ischemia attenuates hepatic ischemia-reperfusion injury. To elicit the beneficial effect of adenosine against ischemia and reperfusion injury of the liver, it is important to oppose adenosine A1 receptor activation.
Collapse
Affiliation(s)
- Shinichiro Magata
- Department of Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kume M, Banafsche R, Yamamoto Y, Yamaoka Y, Nobiling R, Gebhard MM, Klar E. Dynamic changes of post-ischemic hepatic microcirculation improved by a pre-treatment of phosphodiesterase-3 inhibitor, milrinone. J Surg Res 2006; 136:209-18. [PMID: 17045613 DOI: 10.1016/j.jss.2006.05.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 05/02/2006] [Accepted: 05/16/2006] [Indexed: 11/25/2022]
Abstract
BACKGROUND Phosphodiesterase-3 inhibition has been shown to attenuate hepatic warm ischemia-reperfusion injury. The aim of this study was to investigate the effect of milrinone, phosphodiesterase-3 inhibitor, on post-ischemic microcirculation of rat livers by intravital microscopy. MATERIALS AND METHODS Male Wistar rats were randomly assigned to three groups; group A, milrinone pre-treatment; group B, ischemic pre-conditioning; and group C, no pre-treatment. All animals underwent a 60-min warm ischemia of the left lateral liver lobe. Microvascular perfusion and leukocyte-endothelial interaction were observed by intravital videomicroscopy. Hepatocellular viability and cellular damage were quantified by adenosine triphosphate tissue concentration as well as alanine aminotransferase and lactate dehydrogenase blood levels, respectively. RESULTS In groups A and B, cyclic AMP hepatic tissue concentration was elevated significantly. After reperfusion, microvascular perfusion in hepatic sinusoids was significantly better maintained, and the number of adherent leukocytes was reduced in sinusoids and in post-sinusoidal venules in these rats. Serum transaminase blood levels were suppressed significantly in these groups compared with controls. CONCLUSION The demonstrated improvement of hepatic microcirculation is certainly derived from milrinone induced cell protection in ischemia reperfusion of the liver. This effect is outlined by improved energy status and reduced liver enzyme liberation and mimics the effect of ischemic pre-conditioning.
Collapse
Affiliation(s)
- Makoto Kume
- Department of General Surgery, University of Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
28
|
Kadono J, Hamada N, Fukueda M, Ishizaki N, Kaieda M, Gejima K, Nishida S, Nakamura K, Yoshida H, Sakata R. Advantage of ischemic preconditioning for hepatic resection in pigs. J Surg Res 2006; 134:173-81. [PMID: 16542680 DOI: 10.1016/j.jss.2006.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 01/25/2006] [Accepted: 02/02/2006] [Indexed: 01/14/2023]
Abstract
BACKGROUND Ischemic preconditioning (IP) and intermittent inflow occlusion (IO) have provided beneficial outcomes in hepatic resection. However, comparison of these two procedures against warm hepatic ischemia-reperfusion injury has not been studied enough. MATERIALS AND METHODS Pigs that had undergone 65% hepatectomy were subjected to Control (120 min continuous ischemia, n = 6), IP (10 min ischemia and 10 min reperfusion, followed by 120 min continuous ischemia, n = 6), and IO (120 min ischemia in the form of eight successive periods of 15 min ischemia and 5 min reperfusion, n = 6). We evaluated hepatocyte injury by aspartate aminotransferase, lactate dehydrogenase and hepaplastin test, hepatic microcirculation by hepatic tissue blood flow (HTBF) and endothelin (ET)-1, inflammatory response by tumor necrosis factor-alpha (TNF-alpha), and histopathology after reperfusion. RESULTS IP prevented hepatocyte injury, HTBF disturbance, and hepatocyte necrosis in histopathology as well as IO. These two groups showed significantly better outcomes than Control. IP produced significantly less ET-1 and TNF-alpha than IO. CONCLUSIONS IP ameliorated hepatic warm ischemia-reperfusion injury. Furthermore, IP gained more advantages in preventing chemokine production such as ET-1 and inflammatory response over IO. IP could take the place of IO for hepatectomy.
Collapse
Affiliation(s)
- Jun Kadono
- Second Department of Surgery, Faculty of Medicine, Kagoshima University, Sakuragaoka, Kagoshima, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ben-Ari Z, Pappo O, Sulkes J, Cheporko Y, Vidne BA, Hochhauser E. Effect of adenosine A2A receptor agonist (CGS) on ischemia/reperfusion injury in isolated rat liver. Apoptosis 2006; 10:955-62. [PMID: 16151631 DOI: 10.1007/s10495-005-0440-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Ischemia/reperfusion injury during liver transplantation is a major cause of primary nonfunctioning graft for which there is no effective treatment other than retransplantation. Adenosine prevents ischemia-reperfusion-induced hepatic injury via its A2A receptors. The aim of this study was to investigate the role of A2A receptor agonist on apoptotic ischemia/reperfusion-induced hepatic injury in rats. Isolated rat livers within University of Wisconsin solution were randomly divided into four groups: (1) continuous perfusion of Krebs-Henseleit solution through the portal vein for 165 minutes (control); (2) 30-minute perfusion followed by 120 minutes of ischemia and 15 minutes of reperfusion; (3) like group 2, but with the administration of CGS 21680, an A2A receptor agonist, 30 microg/100 ml, for 1 minute before ischemia; (4) like group 3, but with administration of SCH 58261, an A2A receptor antagonist. Serum liver enzyme levels were measured by biochemical analysis, and intrahepatic caspase-3 activity was measured by fluorometric assay; apoptotic cells were identified by morphological criteria, the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) fluorometric assay, and immunohistochemistry for caspase-3. Results showed that at 1 minute of reperfusion, there was a statistically significant reduction in liver enzyme levels in the animals pretreated with CGS (p < 0.05). On fluorometric assay, caspase-3 activity was significantly decreased in group 3 compared to group 2 (p < 0.0002). The reduction in postischemic apoptotic hepatic injury in the CGS-treated group was confirmed morphologically, by the significantly fewer apoptotic hepatocyte cells detected (p < 0.05); immunohistochemically, by the significantly weaker activation of caspase-3 compared to the ischemic group (p < 0.05); and by the TUNEL assay (p < 0.05). In conclusion, the administration of A2A receptor agonist before induction of ischemia can attenuate postischemic apoptotic hepatic injury and thereby minimize liver injury. Apoptotic hepatic injury seems to be mediated through caspase-3 activity.
Collapse
Affiliation(s)
- Z Ben-Ari
- Liver Institute and Department of Medicine D, Rabin Medical Center, Beilinson Campus, Petah Tiqva 49100, Israel.
| | | | | | | | | | | |
Collapse
|
30
|
Choukèr A, Martignoni A, Schauer RJ, Rau HG, Volk A, Heizmann O, Dugas M, Messmer K, Peter K, Thiel M. Ischemic preconditioning attenuates portal venous plasma concentrations of purines following warm liver ischemia in man. Eur Surg Res 2005; 37:144-52. [PMID: 16088179 DOI: 10.1159/000085961] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Accepted: 03/15/2005] [Indexed: 01/12/2023]
Abstract
BACKGROUND/AIMS Degradation of adenine nucleotides to adenosine has been suggested to play a critical role in ischemic preconditioning (IPC). Thus, we questioned in patients undergoing partial hepatectomy whether (i) IPC will increase plasma purine catabolites and whether (ii) formation of purines in response to vascular clamping (Pringle maneuver) can be attenuated by prior IPC. METHODS 75 patients were randomly assigned to three groups: group I underwent hepatectomy without vascular clamping; group II was subjected to the Pringle maneuver during resection, and group III was preconditioned (10 min ischemia and 10 min reperfusion) prior to the Pringle maneuver for resection. Central, portal venous and arterial plasma concentrations of adenosine, inosine, hypoxanthine and xanthine were determined by high-performance liquid chromatography. RESULTS Duration of the Pringle maneuver did not differ between patients with or without IPC. Surgery without vascular clamping had only a minor effect on plasma purine concentrations. After IPC, plasma concentrations of purines transiently increased. After the Pringle maneuver alone, purine plasma concentrations were most increased. This strong rise in plasma purines caused by the Pringle maneuver, however, was significantly attenuated by IPC. When portal venous minus arterial concentration difference was calculated for inosine or hypoxanthine, the respective differences became positive in patients subjected to the Pringle maneuver and were completely prevented by preconditioning. CONCLUSION These data demonstrate that (i) IPC increases formation of adenosine, and that (ii) the unwanted degradation of adenine nucleotides to purines caused by the Pringle maneuver can be attenuated by IPC. Because IPC also induces a decrease of portal venous minus arterial purine plasma concentration differences, IPC might possibly decrease disturbances in the energy metabolism in the intestine as well.
Collapse
Affiliation(s)
- A Choukèr
- Clinic of Anesthesiology, Klinikum Grosshadern, Ludwig Maximilians University, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Compagnon P, Lindell S, Ametani MS, Gilligan B, Wang HB, D'Alessandro AM, Southard JH, Mangino MJ. Ischemic preconditioning and liver tolerance to warm or cold ischemia: experimental studies in large animals. Transplantation 2005; 79:1393-400. [PMID: 15912109 DOI: 10.1097/01.tp.0000164146.21136.0b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND In the rodent, ischemic preconditioning (IPC) has been shown to improve the tolerance of the liver to ischemia-reperfusion under normothermic or hypothermic conditions. The aim of the present study was to test this hypothesis in a dog model, which may be more relevant to the human. METHODS Beagle dogs were used in two distinct animal models of hepatic warm ischemia and orthotopic liver transplantation (hypothermic ischemia). IPC consisted of 10 minutes of ischemia followed by 10 minutes of reperfusion. In the first model, livers were exposed to 55 minutes prolonged warm ischemia and reperfused for 3 days (n = 6). In the second model, livers were retrieved and preserved for 48 hours at 4 degrees C in University of Wisconsin solution, transplanted, and reperfused without immunosuppression for 7 days (n = 5). In each model, nonpreconditioned animals served as controls (n = 5 in each group). Also, isolated dog hepatocytes were subjected to warm and cold storage ischemia-reperfusion to model the animal transplant studies using IPC. RESULTS In the first model (warm ischemia), IPC significantly decreased serum aminotransferase activity at 6 and 24 hours post-reperfusion. After 1 hour of reperfusion, preconditioned livers contained more adenosine triphosphate and produced more bile and less myeloperoxidase activity (neutrophils) relative to controls. In the second model (hypothermic preservation), IPC was not protective. Finally, IPC significantly attenuated hepatocyte cell death after cold storage and warm reperfusion in vitro. CONCLUSIONS IPC is effective in large animals for protecting the liver against warm ischemia-reperfusion injury but not injury associated with cold ischemia and reperfusion (preservation injury). However, the IPC effect observed in isolated hepatocytes suggests that preconditioning for preservation is theoretically possible.
Collapse
Affiliation(s)
- Philippe Compagnon
- Department of Surgery, Division of Transplantation, University of Wisconsin School of Medicine, Madison, WI 53792, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Tejima K, Arai M, Ikeda H, Tomiya T, Yanase M, Inoue Y, Nagashima K, Nishikawa T, Watanabe N, Omata M, Fujiwara K. Ischemic preconditioning protects hepatocytes via reactive oxygen species derived from Kupffer cells in rats. Gastroenterology 2004; 127:1488-96. [PMID: 15521017 DOI: 10.1053/j.gastro.2004.07.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND AND AIMS Hepatic ischemic preconditioning decreases sinusoidal endothelial cell injury and Kupffer cell activation after cold ischemia/reperfusion, leading to improved survival of liver transplant recipients in rats. Ischemic preconditioning also protects livers against warm ischemia/reperfusion injury, in which hepatocyte injury is remarkable. We aimed to determine whether ischemic preconditioning directly protects hepatocytes and to elucidate its mechanisms. METHODS Rats were injected with gadolinium chloride to deplete Kupffer cells or with N -acetyl- l -cysteine, superoxide dismutase, or catalase to scavenge reactive oxygen species. Livers were then preconditioned by 10 minutes of ischemia and 10 minutes of reperfusion. Subsequently, livers were subjected to 40 minutes of warm ischemia and 60 minutes of reperfusion in vivo or in a liver perfusion system. In other rats, livers were preconditioned by H(2)O(2) perfusion instead of ischemia. In the other experiments, livers were perfused with nitro blue tetrazolium to detect reactive oxygen species formation. RESULTS Ischemic preconditioning decreased injury in hepatocytes, but not in sinusoidal endothelial cells. Kupffer cell depletion itself did not change hepatocyte injury after ischemia/reperfusion, indicating no contribution of Kupffer cells to ischemia/reperfusion injury. However, Kupffer cell depletion reversed hepatoprotection by ischemic preconditioning. Reactive oxygen species formation occurred in Kupffer cells after ischemic preconditioning. Scavenging of reactive oxygen species reversed the effect of ischemic preconditioning, and H(2)O(2) preconditioning mimicked ischemic preconditioning. CONCLUSIONS Ischemic preconditioning directly protected hepatocytes after warm ischemia/reperfusion, which is not via suppression of changes in sinusoidal cells as in cold ischemia/reperfusion injury. This hepatocyte protection was mediated by reactive oxygen species produced by Kupffer cells.
Collapse
Affiliation(s)
- Kazuaki Tejima
- Department of Gastroenterology, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Glanemann M, Strenziok R, Kuntze R, Münchow S, Dikopoulos N, Lippek F, Langrehr JM, Dietel M, Neuhaus P, Nussler AK. Ischemic preconditioning and methylprednisolone both equally reduce hepatic ischemia/reperfusion injury. Surgery 2004; 135:203-14. [PMID: 14739856 DOI: 10.1016/j.surg.2003.08.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ischemic preconditioning (I/P) and methylprednisolone (MP) have been suggested to protect against ischemia-reperfusion (IR) injury, which results in an increased tolerance against organ hypoxia. METHODS Before 45 minutes of hepatic ischemia, male Wistar rats were pretreated with either I/P (5/30 minutes) or MP (30 mg/kg BW). The degree of IR injury and the postischemic inflammatory (leukocyte infiltration, myeloperoxidase, intercellular adhesion molecule-1) and apoptotic (TUNEL, caspase 3, cytochrome C) activity was measured in both groups and compared with non-pretreated (ischemic) animals. RESULTS Histology and enzyme release revealed that I/P and MP treatment provided significant protection as compared with ischemic controls. TUNEL-positive cells, as well as caspase 3 and cytochrome C expression, were clearly reduced in hepatic tissue of MP-treated animals and partially reduced in I/P-treated animals when compared with ischemic animals. The inflammatory response was considerably reduced in MP- and I/P-treated animals, especially in the early period after ischemia. NF-kappaB/Rel-binding activity was increased after I/P and decreased in MP-treated animals, whereas ischemic controls showed a constant binding activity. CONCLUSIONS MP (probably by downregulation of NF-kappaB-binding activity) and I/P attenuated the postischemic apoptotic and inflammatory response. Both treatments equally reduced IR-related hepatocellular damage, and, thus, may also be applied equally in surgery involving warm organ hypoxia.
Collapse
Affiliation(s)
- Matthias Glanemann
- Department of General, Visceral, and Transplantation Surgery, Charité, Campus Virchow Klinikum, Humboldt University Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Ischemia/reperfusion is the main cause of hepatic damage consequent to temporary clamping of the hepatoduodenal ligament during liver surgery as well as graft failure after liver transplantation. In recent years, a number of animal studies have shown that pre-exposure of the liver to transient ischemia, hyperthermia, or mild oxidative stress increases the tolerance to reperfusion injury, a phenomenon known as hepatic preconditioning. The development of hepatic preconditioning can be differentiated into 2 phases. An immediate phase (early preconditioning) occurs within minutes and involves the direct modulation of energy supplies, pH regulation, Na(+) and Ca(2+) homeostasis, and caspase activation. The subsequent phase (late preconditioning) begins 12-24 hours after the stimulus and requires the synthesis of multiple stress-response proteins, including heat shock proteins HSP70, HSP27, and HSP32/heme oxygenase 1. Hepatic preconditioning is not limited to parenchymal cells but ameliorates sinusoidal perfusion, prevents postischemic neutrophil infiltration, and decreases the production of proinflammatory cytokines by Kupffer cells. This latter effect is important in improving systemic disorders associated with hepatic ischemia/reperfusion. The signals triggering hepatic preconditioning have been partially characterized, showing that adenosine, nitric oxide, and reactive oxygen species can activate multiple protein kinase cascades involving, among others, protein kinase C and p38 mitogen-activated protein kinase. These observations, along with preliminary studies in humans, give a rationale to perform clinical trials aimed at verifying the possible application of hepatic preconditioning in preventing ischemia/reperfusion injury during liver surgery.
Collapse
Affiliation(s)
- Rita Carini
- Department of Medical Sciences, A. Avogdro University of East Piedmont, Via Solaroli 17, 28100 Novara, Italy
| | | |
Collapse
|
35
|
Kim SG, Soltysiak KA, Gao ZG, Chang TS, Chung E, Jacobson KA. Tumor necrosis factor alpha-induced apoptosis in astrocytes is prevented by the activation of P2Y6, but not P2Y4 nucleotide receptors. Biochem Pharmacol 2003; 65:923-31. [PMID: 12623123 PMCID: PMC3402349 DOI: 10.1016/s0006-2952(02)01614-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The physiological role of the uracil nucleotide-preferring P2Y(6) and P2Y(4) receptors is still unclear, although they are widely distributed in various tissues. In an effort to identify their biological functions, we found that activation by UDP of the rat P2Y(6) receptor expressed in 1321N1 human astrocytes significantly reduced cell death induced by tumor necrosis factor alpha (TNF alpha). This effect of UDP was not observed in non-transfected 1321N1 cells. Activation of the human P2Y(4) receptor expressed in 1321N1 cells by UTP did not elicit this protective effect, although both receptors were coupled to phospholipase C. The activation of P2Y(6) receptors prevented the activation of both caspase-3 and caspase-8 resulting from TNF alpha exposure. Even a brief (10-min) incubation with UDP protected the cells against TNF alpha-induced apoptosis. Interestingly, UDP did not protect the P2Y(6)-1321N1 cells from death induced by other methods, i.e. oxidative stress induced by hydrogen peroxide and chemical ischemia. Therefore, it is suggested that P2Y(6) receptors interact rapidly with the TNF alpha-related intracellular signals to prevent apoptotic cell death. This is the first study to describe the cellular protective role of P2Y(6) nucleotide receptor activation.
Collapse
Affiliation(s)
- Seong G. Kim
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 8A, Rm. B1A-19, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Kelly A. Soltysiak
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 8A, Rm. B1A-19, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 8A, Rm. B1A-19, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Tong-Shin Chang
- Laboratory of Cell Signaling, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eunju Chung
- Preclinical Development Scientific Core, Medical Oncology Clinical Research Unit, National Cancer Institute, Bethesda, MD 20892, USA
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bldg. 8A, Rm. B1A-19, National Institutes of Health, Bethesda, MD 20892-0810, USA
- Corresponding author. Tel.: +1-301-496-9024; fax: +1-301-480-8422. (K.A. Jacobson)
| |
Collapse
|
36
|
Schauer RJ, Gerbes AL, Vonier D, op den Winkel M, Fraunberger P, Bilzer M. Induction of cellular resistance against Kupffer cell-derived oxidant stress: a novel concept of hepatoprotection by ischemic preconditioning. Hepatology 2003; 37:286-95. [PMID: 12540778 DOI: 10.1053/jhep.2003.50064] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ischemic preconditioning (IP) triggers protection of the liver from prolonged subsequent ischemia. However, the underlying protective mechanisms are largely unknown. We investigated whether and how IP protects the liver against reperfusion injury caused by Kupffer cell (KC)-derived oxidants. IP before 90 minutes of warm ischemia of rat livers in vivo significantly reduced serum alanine aminotransferase (AST) levels and leukocyte adherence to sinusoids and postsinusoidal venules during reperfusion. This protective effect was mimicked by postischemic intravenous infusion of glutathione (GSH), an antioxidative strategy against KC-derived H(2)O(2). Interestingly, no additional protection was achieved by infusion of GSH to preconditioned animals. These findings and several additional experiments strongly suggest IP mediated antioxidative effects: IP prevented oxidant cell injury in isolated perfused rat livers after selective KC activation by zymosan. Moreover, IP prevented cell injury and pertubations of the intracellular GSH/GSSG redox system caused by direct infusion of H(2)O(2) (0.5 mmol/L). IP-mediated resistance against H(2)O(2) could neither be blocked by the adenosine A2a antagonist DMPX nor mimicked by A2a agonist CGS21680. In contrast, H(2)O(2) resistance was abolished by the p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB203580, but induced when p38 MAPK was directly activated by anisomycin. In conclusion, we propose a novel concept of hepatoprotection by IP: protection of liver cells by enhancing their resistance against KC-derived H(2)O(2). Activation of p38 MAPK and preservation of the intracellular GSH/oxidized glutathione (GSSG) redox system, but not adenosine A2a receptor stimulation, seems to be pivotal for the development of H(2)O(2) resistance in preconditioned livers.
Collapse
Affiliation(s)
- Rolf J Schauer
- Department of Surgery, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Jaeschke H. Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning. Am J Physiol Gastrointest Liver Physiol 2003; 284:G15-26. [PMID: 12488232 DOI: 10.1152/ajpgi.00342.2002] [Citation(s) in RCA: 611] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ischemia-reperfusion injury is, at least in part, responsible for the morbidity associated with liver surgery under total vascular exclusion or after liver transplantation. The pathophysiology of hepatic ischemia-reperfusion includes a number of mechanisms that contribute to various degrees in the overall injury. Some of the topics discussed in this review include cellular mechanisms of injury, formation of pro- and anti-inflammatory mediators, expression of adhesion molecules, and the role of oxidant stress during the inflammatory response. Furthermore, the roles of nitric oxide in preventing microcirculatory disturbances and as a substrate for peroxynitrite formation are reviewed. In addition, emerging mechanisms of protection by ischemic preconditioning are discussed. On the basis of current knowledge, preconditioning or pharmacological interventions that mimic these effects have the greatest potential to improve clinical outcome in liver surgery involving ischemic stress and reperfusion.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock 72205, USA
| |
Collapse
|
38
|
Glanemann M, Vollmar B, Nussler AK, Schaefer T, Neuhaus P, Menger MD. Ischemic preconditioning protects from hepatic ischemia/reperfusion-injury by preservation of microcirculation and mitochondrial redox-state. J Hepatol 2003; 38:59-66. [PMID: 12480561 DOI: 10.1016/s0168-8278(02)00327-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIMS Ischemic preconditioning (IP) is known to protect hepatic tissue from ischemia-reperfusion injury. However, the mechanisms involved are not fully understood yet. METHODS Using intravital multifluorescence microscopy in the rat liver, we studied whether IP exerts its beneficial effect by modulating postischemic Kupffer cell activation, leukocyte-endothelial cell interaction, microvascular no-reflow, mitochondrial redox state, and, thus, tissue oxygenation. RESULTS Portal triad cross-clamping (45 min) followed by reperfusion induced Kupffer cell activation, microvascular leukocyte adherence, sinusoidal perfusion failure (no-reflow) and alteration of mitochondrial redox state (tissue hypoxia) (P<0.05). This resulted in liver dysfunction and parenchymal injury, as indicated by decreased bile flow and increased serum glutamate dehydrogenase (GLDH) levels (P<0.05). IP (5 min ischemia and 30 min intermittent reperfusion) was capable to significantly reduce Kupffer cell activation (P<0.05), which was associated with a slight attenuation of leukocyte adherence. Further, IP markedly ameliorated sinusoidal perfusion failure (P<0.05), and, thereby, preserved adequate mitochondrial redox state (P<0.05). As a consequence, IP prevented the decrease of bile flow (P<0.05) and the increase in serum GLDH levels (P<0.05). CONCLUSIONS IP may exert its beneficial effects on hepatic ischemia-reperfusion injury by preserving mitochondrial redox state, which is guaranteed by the prevention of reperfusion-associated Kupffer cell activation and sinusoidal perfusion failure.
Collapse
Affiliation(s)
- Matthias Glanemann
- Department of General, Visceral and Transplantation Surgery, Charité, Campus Virchow Klinikum, Humboldt University Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Cutrn JC, Perrelli MG, Cavalieri B, Peralta C, Rosell Catafau J, Poli G. Microvascular dysfunction induced by reperfusion injury and protective effect of ischemic preconditioning. Free Radic Biol Med 2002; 33:1200-8. [PMID: 12398928 DOI: 10.1016/s0891-5849(02)01017-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hepatic ischemia/reperfusion injury has immediate and deleterious effects on the outcome of patients after liver surgery. The precise mechanisms leading to the damage have not been completely elucidated. However, there is substantial evidence that the generation of oxygen free radicals and disturbances of the hepatic microcirculation are involved in this clinical syndrome. Microcirculatory dysfunction of the liver seems to be mediated by sinusoidal endothelial cell damage and by the imbalance of vasoconstrictor and vasodilator molecules, such as endothelin (ET), reactive oxygen species (ROS), and nitric oxide (NO). This may lead to no-reflow phenomenon with release of proinflammatory cytokines, sinusoidal plugging of neutrophils, oxidative stress, and as an ultimate consequence, hypoxic cell injury and parenchymal failure. An inducible potent endogenous mechanism against ischemia/reperfusion injury has been termed ischemic preconditioning. It has been suggested that preconditioning could inhibit the effects of different mediators involved in the microcirculatory dysfunction, including endothelin, tumor necrosis factor-alpha, and oxygen free radicals. In this review, we address the mechanisms of liver microcirculatory dysfunction and how ischemic preconditioning could help to provide new surgical and/or pharmacological strategies to protect the liver against reperfusion damage.
Collapse
Affiliation(s)
- Juan C Cutrn
- Laboratory of Experimental Liver Pathology, Department of Clinical and Biological Sciences, University of Torino, Italy.
| | | | | | | | | | | |
Collapse
|
40
|
Shinoda M, Shimazu M, Wakabayashi G, Tanabe M, Hoshino K, Kitajima M. Tumor necrosis factor suppression and microcirculatory disturbance amelioration in ischemia/reperfusion injury of rat liver after ischemic preconditioning. J Gastroenterol Hepatol 2002; 17:1211-9. [PMID: 12453282 DOI: 10.1046/j.1440-1746.2002.02864.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Brief periods of hepatic ischemia produce immediate tolerance for subsequent prolonged ischemia. Although the beneficial effect of this ischemic preconditioning is recognized, the mechanism itself remains poorly understood. METHODS Male Wistar rats were divided into two groups: a control group that was subjected to 30 min of ischemia + following reperfusion, and an ischemic preconditioning group that was subjected to 5 min of ischemia + 5 min of reperfusion + 30 min of ischemia + following reperfusion. By using this model, hepatic damage, microcirculatory disturbances, and tumor necrosis factor-alpha protein production and mRNA expression were analyzed during the course of reperfusion in both groups. For the hepatic damage evaluations, hepatic enzyme levels, histology, apoptosis analysis, and intravital microfluorography for dead cells were examined. For the microcirculatory disturbance analysis, an adhesion molecule and intravital microfluorography for endothelial-adherent leukocytes were examined. RESULTS In the ischemic preconditioning group, ischemia/reperfusion injuries (shown by hepatic enzymes elevation, histological degeneration, and increases in the number of apoptotic cells and microfluorographic dead cells) were markedly reduced. Moreover, microcirculatory disturbances represented by intercellular adhesion molecule-1 expression and leukocyte adhesion on the endothelium were ameliorated. Tumor necrosis factor-alpha protein production and mRNA expression were also suppressed in the ischemic preconditioning group. CONCLUSION The suppression of tumor necrosis factor-alpha and the subsequent amelioration of microcirculatory disturbances were observed, suggesting that the mechanism underlying the protective effect of ischemic preconditioning in hepatic ischemia/reperfusion injuries may involve tumor necrosis factor-alpha and microcirculatory regulation.
Collapse
Affiliation(s)
- Masahiro Shinoda
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
Ricciardi R, Shah SA, Wheeler SM, Quarfordt SH, Callery MP, Meyers WC, Chari RS. Regulation of NFkappaB in hepatic ischemic preconditioning. J Am Coll Surg 2002; 195:319-26. [PMID: 12229938 DOI: 10.1016/s1072-7515(02)01229-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The second messengers tyrosine kinase (TK) and protein kinase C (PKC) have been implicated in mediating the cellular signaling cascade during hepatic ischemic preconditioning (IPC). We evaluated the role of TK and PKC on the modulation of the transcription factor nuclear factor kappa B (NFkappaB) and its inhibitor IkappaB alpha during IPC. STUDY DESIGN Yorkshire pigs underwent routine harvest. IPC livers underwent 15 minutes of ischemia and 15 minutes of in situ perfusion before harvest, with or without pretreatment with a TK inhibitor (genistein) or a PKC inhibitor (chelerythrine). During cold storage and reperfusion, tissue extracts were analyzed for IkappaB alpha phosphorylation and NFkappaB levels and for TK and PKC activity by Western blot. RESULTS Control pig livers demonstrated no change in the levels of TK, PKC, IkappaB alpha, or NFkappaB before cold ischemia. IPC grafts demonstrated activation of TK and PKC with increased IkappaB alpha phosphorylation and NFkappaB levels before cold ischemia. IPC grafts pretreated with genistein demonstrated inhibition of TK activation but not of PKC activation. Genistein-pretreated grafts also demonstrated inhibition of IkappaB alpha phosphorylation and a lack of NFkappaB translocation to the nucleus throughout the entire experiment. IPC grafts pretreated with chelerythrine demonstrated inhibition of PKC activation but not TK activation. Chelerythrine-pretreated grafts also demonstrated IkappaB alpha phosphorylation before cold ischemia and enhanced nuclear levels of NFkappaB. CONCLUSIONS Data suggest that the role of TK in IPC might be mediated in part by NFkappaB, but PKC does not depend on NFkappaB for its effect. Two parallel signaling pathways might explain these data.
Collapse
Affiliation(s)
- Rocco Ricciardi
- Department of Surgery, University of Massachusetts Medical School, Worcester, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Yamaguchi T, Dayton C, Shigematsu T, Carter P, Yoshikawa T, Gute DC, Korthuis RJ. Preconditioning with ethanol prevents postischemic leukocyte-endothelial cell adhesive interactions. Am J Physiol Heart Circ Physiol 2002; 283:H1019-30. [PMID: 12181132 DOI: 10.1152/ajpheart.00173.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long-term ethanol consumption at low to moderate levels exerts cardioprotective effects in the setting of ischemia and reperfusion (I/R). The aims of this study were to determine whether 1) a single orally administered dose of ethanol [ethanol preconditioning (EtOH-PC)] would induce a biphasic temporal pattern of protection (early and late phases) against the inflammatory responses to I/R and 2) adenosine and nitric oxide (NO) act as initiators of the late phase of protection. Ethanol was administered as a bolus to C57BL/6 mice at a dose that achieved a peak plasma concentration of ~45 mg/dl 30 min after gavage and returned to control levels within 60 min of alcohol ingestion. The superior mesenteric artery was occluded for 45 min followed by 60 min of reperfusion beginning 10 min or 1, 2, 3, 4, or 24 h after ethanol ingestion, and the numbers of fluorescently labeled rolling and firmly adherent (stationary) leukocytes in single postcapillary venules of the small intestine were quantified using intravital microscopic approaches. I/R induced marked increases in leukocyte rolling and adhesion, effects that were attenuated by EtOH-PC 2-3 h before I/R (early phase), absent when assessed after 10 min, 1 h, and 4 h of ethanol ingestion, with an even more powerful late phase of protection reemerging when I/R was induced 24 h later. The anti-inflammatory effects of late EtOH-PC were abolished by treatment with adenosine deaminase, an adenosine A(2) (but not A(1)) receptor antagonist, or a NO synthase (NOS) inhibitor during the period of EtOH-PC. Preconditioning with an adenosine A(2) (but not an A(1)) receptor agonist in lieu of ethanol 24 h before I/R mimicked the protective actions of late phase EtOH-PC. Like EtOH-PC, the effect of preconditioning with an adenosine A(2) receptor agonist was abrogated by coincident NOS inhibition. These findings suggest that EtOH-PC induces a biphasic temporal pattern of protection against the proinflammatory effects of I/R. In addition, our observations are consistent with the hypothesis that the late phase of EtOH-PC is triggered by NO formed secondary to adenosine A(2) receptor-dependent activation of NOS during the period of ethanol exposure.
Collapse
Affiliation(s)
- Taiji Yamaguchi
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Peralta C, Bulbena O, Xaus C, Prats N, Cutrin JC, Poli G, Gelpi E, Roselló-Catafau J. Ischemic preconditioning: a defense mechanism against the reactive oxygen species generated after hepatic ischemia reperfusion. Transplantation 2002; 73:1203-11. [PMID: 11981410 DOI: 10.1097/00007890-200204270-00004] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Preconditioning protects against both liver and lung damage after hepatic ischemia-reperfusion (I/R). Xanthine and xanthine oxidase (XOD) may contribute to the development of hepatic I/R. OBJECTIVE To evaluate whether preconditioning could modulate the injurious effects of xanthine/XOD on the liver and lung after hepatic I/R. METHODS Hepatic I/R or preconditioning previous to I/R was induced in rats. Xanthine and xanthine dehydrogenase/xanthine oxidase (XDH/XOD) in liver and plasma were measured. Hepatic injury and inflammatory response in the lung was evaluated. RESULTS Preconditioning reduced xanthine accumulation and conversion of XDH to XOD in liver during sustained ischemia. This could reduce the generation of reactive oxygen species (ROS) from XOD, and therefore, attenuate hepatic I/R injury. Inhibition of XOD prevented postischemic ROS generation and hepatic injury. Administration of xanthine and XOD to preconditioned rats led to hepatic MDA and transaminase levels similar to those found after hepatic I/R. Preconditioning, resulting in low circulating levels of xanthine and XOD activity, reduced neutrophil accumulation, oxidative stress, and microvascular disorders seen in lung after hepatic I/R. Inhibition of XOD attenuated the inflammatory damage in lung after hepatic I/R. Administration of xanthine and XOD abolished the benefits of preconditioning on lung damage. CONCLUSIONS Preconditioning, by blocking the xanthine/XOD pathway for ROS generation, would confer protection against the liver and lung injuries induced by hepatic I/R.
Collapse
Affiliation(s)
- C Peralta
- Department of Clinical and Biological Sciences, Section Genral Pathology, University of Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Ricciardi R, Meyers WC, Schaffer BK, Kim RD, Shah SA, Wheeler SM, Donohue SE, Sheth KR, Callery MP, Chari RS. Protein kinase C inhibition abrogates hepatic ischemic preconditioning responses. J Surg Res 2001; 97:144-9. [PMID: 11341790 DOI: 10.1006/jsre.2001.6139] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION A transient period of warm ischemia prior to a longer ischemic episode (ischemic preconditioning) protects the hepatic graft from cold ischemia. The mechanism for this protection is unknown, as is the role of protein kinase C in ischemic preconditioning responses. METHODS Livers from 40 kg Yorkshire pigs were harvested and subjected to 2 h of cold ischemia (n = 6) (control). Another group of harvested livers was pretreated with a 15-min ischemic period followed by 15 min of in situ perfusion with (n = 5) or without (n = 5) a protein kinase C inhibitor, chelerythrine. Following cold ischemia, all grafts were reperfused on a perfusion circuit and the following variables evaluated: (1) hepatic graft function, (2) graft circulatory impairment, (3) hepatocellular damage, and (4) endothelial cell damage. Protein kinase C levels were also evaluated by Western blot in the cytoplasm of all grafts. RESULTS AND DISCUSSION Ischemic preconditioned grafts demonstrate improved graft function, reduced graft circulatory impairment, and reduced endothelial cell damage as compared to cold ischemia controls. When preconditioned grafts were pretreated with chelerythrine, graft function, graft circulatory impairment, and endothelial cell damage were no different than cold ischemia controls. Ischemic preconditioned grafts demonstrated decreased levels of protein kinase C prior to cold ischemia. There was no change in protein kinase C levels in cold ischemia controls or chelerythrine-pretreated grafts prior to cold ischemia. These data indicate that modulation of protein kinase C is essential for ischemic preconditioning responses in the cold preserved hepatic graft.
Collapse
Affiliation(s)
- R Ricciardi
- Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Cunha RA. Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Int 2001; 38:107-25. [PMID: 11137880 DOI: 10.1016/s0197-0186(00)00034-6] [Citation(s) in RCA: 462] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adenosine exerts two parallel modulatory roles in the CNS, acting as a homeostatic modulator and also as a neuromodulator at the synaptic level. We will present evidence to suggest that these two different modulatory roles are fulfilled by extracellular adenosine originated from different metabolic sources, and involve receptors with different sub-cellular localisation. It is widely accepted that adenosine is an inhibitory modulator in the CNS, a notion that stems from the preponderant role of inhibitory adenosine A(1) receptors in defining the homeostatic modulatory role of adenosine. However, we will review recent data that suggests that the synaptically localised neuromodulatory role of adenosine depend on a balanced activation of inhibitory A(1) receptors and mostly facilitatory A(2A) receptors. This balanced activation of A(1) and A(2A) adenosine receptors depends not only on the transient levels of extracellular adenosine, but also on the direct interaction between A(1) and A(2A) receptors, which control each other's action.
Collapse
Affiliation(s)
- R A Cunha
- Laboratory of Neurosciences, Faculty of Medicine, University of Lisbon, Portugal.
| |
Collapse
|
46
|
Minor T, Akbar S, Yamamoto Y. Adenosine A2 receptor stimulation protects the predamaged liver from cold preservation through activation of cyclic adenosine monophosphate-protein kinase A pathway. Liver Transpl 2000; 6:196-200. [PMID: 10719020 DOI: 10.1002/lt.500060217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The shortage of organ donors has led to reconsideration for the use of non-heart-beating donors (NHBDs). However, graft injury caused by warm ischemia in livers from NHBDs strongly affects posttransplantation outcome. The aim of the present study is to investigate the role of adenosine A2 receptor with regard to hepatic viability after cold preservation of NHBD livers. Cardiac arrest was induced in Wistar rats by phrenotomy of the anesthetized nonheparinized animal. After 60 minutes, the livers were excised and flushed with 60 mL of histidine-tryptophan-ketoglutarate (HTK) and stored submerged in HTK at 4 degrees C for 24 hours. Reperfusion was performed in vitro after all livers were incubated at 22 degrees C in saline solution to account for the period of slow rewarming during surgical implantation in vivo. Addition of the selective A2-receptor agonist (CGS 21680; 30microg/100 mL) to the preservation solution resulted in a significant reduction to one quarter of the parenchymal enzyme release of alanine aminotransferase or lactate dehydrogenase on reperfusion and promoted a 2-fold increase in hepatic bile production. This salutory effect was accompanied by a significant increase (40%) in the activity ratio of protein kinase A (PKA) in the liver tissue and could be abrogated in large part by the PKA inhibitor, Rp-cAMPs. Stimulation of the adenosine A2 receptor during harvest and storage of the graft improves maintenance of tissue integrity in liver grafts. A major part of this effect, which may represent a promising approach for the use of NHBD grafts, seems to be mediated through activation of PKA.
Collapse
Affiliation(s)
- T Minor
- Division of Surgical Research, Clinic of Surgery, University of Bonn, Germany
| | | | | |
Collapse
|