1
|
Yamada K, Wahba AS, Bernatchez JA, Ilina T, Martínez-Montero S, Habibian M, Deleavey GF, Götte M, Parniak MA, Damha MJ. Nucleotide Sugar Pucker Preference Mitigates Excision by HIV-1 RT. ACS Chem Biol 2015; 10:2024-33. [PMID: 26131619 DOI: 10.1021/acschembio.5b00263] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of DNA primers containing nucleotides with various sugar pucker conformations at the 3'-terminus were chemically synthesized by solid-phase synthesis. The ability of wild-type (WT) HIV-1 reverse transcriptase (RT) and AZT-resistant (AZTr) RT to excise the 3'-terminal nucleotide was assessed. Nucleosides with a preference for the North conformation were more refractory to excision by both WT-RT and AZTr-RT. We found that DNA primers that contain North puckered-nucleotides at the 3'-terminus can also affect the translocation status of the RT/template/primer complex, which provides an underlying mechanism to avoid being excised. Together, these results point to a correlation between the sugar conformation of the 3'-terminal nucleotide, the precise position of HIV-1 RT on its nucleic acid substrate, and, in turn, its catalytic function. Nucleotide sugar conformation is therefore an important parameter in defining the susceptibility to RT-catalyzed phosphorolytic excision.
Collapse
Affiliation(s)
- Ken Yamada
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Alexander S. Wahba
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Jean A. Bernatchez
- Department
of Biochemistry, McGill University, 3655 Sir William Osler Promenade, Montreal, Quebec H3G1Y6, Canada
| | - Tatiana Ilina
- Department
of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, Pennsylvania 15219-3143, United States
| | - Saúl Martínez-Montero
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Maryam Habibian
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Glen F. Deleavey
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Matthias Götte
- Department
of Biochemistry, McGill University, 3655 Sir William Osler Promenade, Montreal, Quebec H3G1Y6, Canada
- Department
of Microbiology and Immunology, McGill University, 3775 University, Montreal, Quebec H3A 2B4, Canada
| | - Michael A. Parniak
- Department
of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, Pennsylvania 15219-3143, United States
| | - Masad J. Damha
- Department
of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
2
|
Honarparvar B, Govender T, Maguire GEM, Soliman MES, Kruger HG. Integrated Approach to Structure-Based Enzymatic Drug Design: Molecular Modeling, Spectroscopy, and Experimental Bioactivity. Chem Rev 2013; 114:493-537. [DOI: 10.1021/cr300314q] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Bahareh Honarparvar
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Thavendran Govender
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Glenn E. M. Maguire
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Mahmoud E. S. Soliman
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Hendrik G. Kruger
- Catalysis
and Peptide Research Unit and ‡School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| |
Collapse
|
3
|
Erande N, Gunjal AD, Fernandes M, Gonnade R, Kumar VA. Synthesis and structural studies of S-type/N-type-locked/frozen nucleoside analogues and their incorporation in RNA-selective, nuclease resistant 2'-5' linked oligonucleotides. Org Biomol Chem 2012; 11:746-57. [PMID: 23223853 DOI: 10.1039/c2ob26762d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
2'-endo locked or frozen (S-type)/3'-endo locked or frozen (N-type) nucleoside analogues were synthesized. Conformational analysis based on (3)J(HH) and NOE measurements is presented which is further confirmed by X-ray crystal structural studies. 2'-5'isoDNA oligonucleotides (ON) were synthesized using these modified nucleoside analogues and UV-T(m) studies of the resultant 2'-5'isoDNA : RNA duplexes reflect the site- and sequence-dependent effects and confirm that the S-type sugar conformations were preferred over the N-type sugar geometry in such duplexes.
Collapse
Affiliation(s)
- Namrata Erande
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Homi Bhabha Road, Pune 411008, India
| | | | | | | | | |
Collapse
|
4
|
Lewis M, Meza-Avina ME, Wei L, Crandall IE, Bello AM, Poduch E, Liu Y, Paige CJ, Kain KC, Pai EF, Kotra LP. Novel interactions of fluorinated nucleotide derivatives targeting orotidine 5'-monophosphate decarboxylase. J Med Chem 2011; 54:2891-901. [PMID: 21417464 DOI: 10.1021/jm101642g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Fluorinated nucleosides and nucleotides are of considerable interest to medicinal chemists because of their antiviral, anticancer, and other biological activities. However, their direct interactions at target binding sites are not well understood. A new class of 2'-deoxy-2'-fluoro-C6-substituted uridine and UMP derivatives were synthesized and evaluated as inhibitors of orotidine 5'-monophosphate decarboxylase (ODCase or OMPDCase). These compounds were synthesized from the key intermediate, fully protected 2'-deoxy-2'-fluorouridine. Among the synthesized compounds, 2'-deoxy-2'-fluoro-6-iodo-UMP covalently inhibited human ODCase with a second-order rate constant of 0.62 ± 0.02 M(-1) s(-1). Interestingly, the 6-cyano-2'-fluoro derivative covalently interacted with ODCase defying the conventional thinking, where its ribosyl derivative undergoes transformation into BMP by ODCase. This confirms that the 2'-fluoro moiety influences the chemistry at the C6 position of the nucleotides and thus interactions in the active site of ODCase. Molecular interactions of the 2'-fluorinated nucleotides are compared to those with the 3'-fluorinated nucleotides bound to the corresponding target enzyme, and the carbohydrate moieties were shown to bind in different conformations.
Collapse
Affiliation(s)
- Melissa Lewis
- Center for Molecular Design and Preformulations and Division of Cellular and Molecular Biology, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Chen F, Selvam L, Wang F. Blue shifted intramolecular C−H···O improper hydrogen bonds in conformers of zidovudine. Chem Phys Lett 2010. [DOI: 10.1016/j.cplett.2010.05.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Baumgartner MT, Motura MI, Contreras RH, Pierini AB, Briñón MC. Conformational studies of novel antiretroviral analogs of zidovudine. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2004; 22:45-62. [PMID: 12708800 DOI: 10.1081/ncn-120018622] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Conformational properties of three novel zidovudine analogs, namely 3'-azido-3'-deoxy-5'-O-isonicotinoylthymidine (AZT-Iso, 2), (-)-trans-(5S,6S)-5-bromo-6, 5'-epoxy-5,6-dihydro-3'-azido-3'-deoxythymidine (3) and (+)-trans-(5R,6R)-5-bromo-6,5'-epoxy-5,6-dihydro-3'-azido-3'-deoxythymidine (4), have been investigated by AM1 calculations and NMR studies, and compared with those of the parent nucleoside (AZT, 1). Based on the results obtained the following correlation may be established, a) AZT and AZT-Iso exhibit a conformational behavior analog to other pyrimidinic nucleosides, displaying a dynamic equilibrium in solution where the two conformers (North and South) undergo a constant transformation. b) Compounds 3 and 4 show a different conformational profile. The estimate of the pseudorotation phase angle reveals the rigid structures of the latter compounds, which do not evidence conformational equilibrium in solution; the azide group being the only group free to rotate. c) Diastereoisomers 3 and 4 exhibit an extra conformational parameter compared with other pyrimidinic nucleosides: the chair or boat conformation in the third ring formed between the sugar and the base. In all cases, a reasonable correlation was obtained between theoretical and NMR spectroscopic data.
Collapse
Affiliation(s)
- Maria T Baumgartner
- Departamento de Química Organica-INFIQC, Ciudad Universitaria, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
7
|
Thibaudeau C, Kumar A, Bekiroglu S, Matsuda A, Marquez VE, Chattopadhyaya J. NMR Conformation of (−)-β-d-Aristeromycin and Its 2‘-Deoxy and 3‘-Deoxy Counterparts in Aqueous Solution. J Org Chem 1998. [DOI: 10.1021/jo980364y] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- C. Thibaudeau
- Department of Bioorganic Chemistry, Box 581, Biomedical Center, University of Uppsala, S-751 23 Uppsala, Sweden, Laboratory of Medicinal Chemistry, DPT, DCT, National Cancer Institute, NIH, Bethesda, Maryland 20892, and Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan
| | - A. Kumar
- Department of Bioorganic Chemistry, Box 581, Biomedical Center, University of Uppsala, S-751 23 Uppsala, Sweden, Laboratory of Medicinal Chemistry, DPT, DCT, National Cancer Institute, NIH, Bethesda, Maryland 20892, and Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan
| | - S. Bekiroglu
- Department of Bioorganic Chemistry, Box 581, Biomedical Center, University of Uppsala, S-751 23 Uppsala, Sweden, Laboratory of Medicinal Chemistry, DPT, DCT, National Cancer Institute, NIH, Bethesda, Maryland 20892, and Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan
| | - A. Matsuda
- Department of Bioorganic Chemistry, Box 581, Biomedical Center, University of Uppsala, S-751 23 Uppsala, Sweden, Laboratory of Medicinal Chemistry, DPT, DCT, National Cancer Institute, NIH, Bethesda, Maryland 20892, and Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan
| | - V. E. Marquez
- Department of Bioorganic Chemistry, Box 581, Biomedical Center, University of Uppsala, S-751 23 Uppsala, Sweden, Laboratory of Medicinal Chemistry, DPT, DCT, National Cancer Institute, NIH, Bethesda, Maryland 20892, and Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan
| | - J. Chattopadhyaya
- Department of Bioorganic Chemistry, Box 581, Biomedical Center, University of Uppsala, S-751 23 Uppsala, Sweden, Laboratory of Medicinal Chemistry, DPT, DCT, National Cancer Institute, NIH, Bethesda, Maryland 20892, and Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060, Japan
| |
Collapse
|
8
|
Marquez VE, Ezzitouni A, Russ P, Siddiqui MA, Ford, H, Feldman RJ, Mitsuya H, George C, Barchi JJ. HIV-1 Reverse Transcriptase Can Discriminate between Two Conformationally Locked Carbocyclic AZT Triphosphate Analogues. J Am Chem Soc 1998. [DOI: 10.1021/ja973535+] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Barchi JJ, Jeong LS, Siddiqui MA, Marquez VE. Conformational analysis of the complete series of 2' and 3' monofluorinated dideoxyuridines. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 1997; 34:11-29. [PMID: 9089381 DOI: 10.1016/s0165-022x(96)00032-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The solution conformations of a set of uridine 2',3'-dideoxynucleosides, where each of the hydrogens at the 2'- and 3'-positions of the sugar ring were individually replaced with a fluorine atom, were studied by nuclear magnetic resonance spectroscopy and pseudorotational analysis. The distribution of the north/south (N/S) puckering equilibrium for each compound was calculated by coupling constant analysis aided by the program PSEUROT. The data confirmed that the pseudorotational equilibrium of the fluorinated glycones is governed by the position of the fluorine atom. The preferred rotamer populations about the C4'-C5' (gamma) and C1'-N1' (chi) bonds calculated from coupling constant and NOE analysis, respectively, were also influenced by the presence of fluorine. Proton coupling to the fluorine atom was also used to qualitatively estimate the N/S equilibrium population. Through space, long range 1H-19F coupling constants were observed in compounds where the fluorine atom was above the plane of the ring ('up'). The pseudorotational parameters of the compounds described were tempered by the anomeric effect which drives the pseudorotational equilibrium towards the 2'-exo/3'-endo (northern) pucker. Ab initio calculations using the 3-21 G* basis set yielded a measure of the energy differences between the N and S local minima in each compound. These results agree with previous conformational studies of other fluorinated nucleoside analogues and prove that the furanose ring pucker is governed by the highly electronegative fluorine atom. However, the competing anomeric effect plays a major role in determining the mole fraction of the minor conformer of these compounds in solution.
Collapse
Affiliation(s)
- J J Barchi
- Division of Basic Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
10
|
Reddy DV, Jagannadh B, Kunwar AC. NMR study of dideoxynucleotides with anti-human immunodeficiency virus (HIV) activity. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 1996; 31:113-21. [PMID: 8675954 DOI: 10.1016/0165-022x(95)00027-o] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The molecular structures of 3'-azido-2',3'-dideoxyribosylthymine 5'-triphosphate (AZTTP), 2',3'-dideoxyribosylinosine 5'-triphosphate (ddlTP), 3'-azido-2',3'-dideoxyribosylthymine 5'-monophosphate (AZTMP) and 2',3'-dideoxyribosyladenine 5'-monophosphate (ddAMP) have been studied by NMR to understand their anti-HIV activity. For ddAMP and ddITP, conformations are almost identical with their nucleoside analogues with sugar ring pucker equilibriating between C3'-endo (approximately 75%) and C2'-endo (approximately 25%). AZTMP and AZTTP on the other hand show significant variations in the conformational behaviour compared with 3'-azido-2',3'-dideoxyribosylthymine (AZT). The sugar rings for these nucleotides have a much larger population of C2'-endo (approximately 75%) conformers, like those observed for natural 2'-deoxynucleosides and nucleotides. The major conformers around C5'-O5', C4'-C5' and the glycosidic bonds are the beta 1, gamma + and anti, respectively.
Collapse
Affiliation(s)
- D V Reddy
- Indian Institute of Chemical Technology, Hyderabad, India
| | | | | |
Collapse
|
11
|
A new Program for the Conformational Analysis by NMR of the sugar ring of nucleosides and nucleotides in solution: HETROT. application to the sugar ring of AZT in solution. Tetrahedron 1995. [DOI: 10.1016/0040-4020(95)00599-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Conformational comparative analysis of 2′,3′-dideoxythymidine analogues by molecular mechanics calculations (chem-x) and by semiempirical methods (AM1). J Mol Struct 1995. [DOI: 10.1016/0022-2860(94)08472-t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
el-Barbary AA, Khodair AI, Pedersen EB. Synthesis and antiviral evaluation of hydantoin analogues of AZT. Arch Pharm (Weinheim) 1994; 327:653-5. [PMID: 7826200 DOI: 10.1002/ardp.19943271010] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
3'-Azidonucleosides 4 have been synthesized by condensation of silylated (Z)-5-ethylidenehydantoin and (Z)-5-benzylidenehydantoin with methyl 3-azido-5-O-tert-butyldiphenylsilyl-2,3-dideoxy-D-erythro-pento furanoside (3). The nucleosides 4 were deblocked on treatment with tetrabutylammonium fluoride. The ethylidene group isomerized from Z to E configuration during the nucleoside synthesis. The new nucleosides did not show any appreciable activities against HIV-1 or HSV-1.
Collapse
|
14
|
Jeong LS, Lim BB, Marquez VE. Synthesis of a 2,3-dideoxy-2,3-difluorofuranose with the D-lyxo configuration. An intramolecular rearrangement of methyl 5-O-benzoyl-2,3-dideoxy-2,3-difluoro-D-lyxofuranoside observed during the attempted synthesis of 1-(2,3-dideoxy-2,3-difluoro-beta-D-lyxofuranosyl)thymine. Carbohydr Res 1994; 262:103-14. [PMID: 7954518 DOI: 10.1016/0008-6215(94)84007-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A new sugar, methyl 5-O-benzoyl-2,3-dideoxy-2,3-difluoro-D-lyxofuranoside (8), which features fluorine substituents on adjacent carbon positions above the plane of the tetrahydrofuran ring, was synthesized from 1,2: 5,6-di-O-isopropylidine-alpha-D-allofuranose in seven steps and 22% overall yield. During the synthesis, introduction of the second fluorine atom required conditions more forceful than those normally used with diethylaminosulfur trifluoride (DAST). An attempt to use 8 in the synthesis of the all-cis nucleoside, 1-(2,3-dideoxy-2,3-difluoro-beta-D-lyxofuranosyl)thymine, failed to give the desired product, providing instead 1-(3-deoxy-3-fluoro-2-O-methyl-beta-D-xylofuranosyl)thymine (11), the structure of which was confirmed by an independent synthesis. Formation of the rearranged product occurred with the concurrent loss of fluorine and retention of the methoxy group which was transposed from the anomeric to the 2'-position. The present work highlights the reactive nature of this novel dideoxydifluoro sugar precursor.
Collapse
Affiliation(s)
- L S Jeong
- Laboratory of Medicinal Chemistry, National Cancer Institute, NIH, Bethesda, MD 20892
| | | | | |
Collapse
|
15
|
Structural study of pyrimidine nucleoside analogues. I: Molecular mechanics and semiempirical calculations of 2′-deoxy-2′-fluoroarabinofuranosyluracils. Struct Chem 1994. [DOI: 10.1007/bf02262836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Molina J, Espinosa M. Structural study of β-D-arabinofuranosyluracil derivatives with known antiviral activity. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0166-1280(94)80140-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Hossain N, Papchikhin A, Garg N, Fedorov I, Chattopadhyaya J. Synthesis of 2′,3′-Dideoxy-3′-nitro-2′,3′-didehydrothymidine. Its Use as a General Intermediate for the Preparation of Various 2′,3′-Substituted Nucleosides. ACTA ACUST UNITED AC 1993. [DOI: 10.1080/07328319308021219] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Conformational studies of thymidine dimers containing sulfonate and sulfonamide linkages by NMR spectroscopy. Tetrahedron 1993. [DOI: 10.1016/s0040-4020(01)80372-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Gurjar M, Kunwar AC, Reddy DV, Islam A, Lalitha S, Jagannadh B, Rao AVR. Syntheses and conformational studies on AZT and its deuterated analogues. Tetrahedron 1993. [DOI: 10.1016/s0040-4020(01)85754-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
|
21
|
Plavec J, Koole LH, Chattopadhyaya J. Structural analysis of 2',3'-dideoxyinosine, 2',3'-dideoxyadenosine, 2',3'-dideoxyguanosine and 2',3'-dideoxycytidine by 500-MHz 1H-NMR spectroscopy and ab-initio molecular orbital calculations. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 1992; 25:253-72. [PMID: 1337354 DOI: 10.1016/0165-022x(92)90020-b] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Solution structure of anti-AIDS drug, 2',3'-dideoxyinosine (ddI) has been assessed by NMR spectroscopy and pseudorotational analysis in conjunction with its analogues: 2',3'-dideoxyadenosine (ddA), 2',3'-dideoxyguanosine (ddG) and 2',3'-dideoxycytidine (ddC). The absence of 3'-hydroxyl groups in these compounds has prompted us to establish the relationship between proton-proton and corresponding endocyclic torsion angles in the 2',3'-dideoxyribofuranose moiety on the basis of five available crystal structures of 2',3'-dideoxynucleosides. A subsequent pseudorotational analysis on ddI (1), ddA (2), ddG (3) and ddC (4) shows that the twist C2'exo-C3'-endo forms of sugar are overwhelmingly preferred (75-80%) over the C2'-endo envelope forms. The phase angles (P) for North and South conformers with the corresponding puckering amplitude (psi m) for ddI (1), ddA (2) and ddG (3) are as follows: PN = 0.1 degrees, PS = 161 degrees and psi m = 34.1 degrees for ddI (1); PN = 1.4 degrees, PS = 160 degrees and psi m = 34.2 degrees for ddA (2) and PN = 2.4 degrees, PS = 163 degrees and psi m = 33.6 degrees for ddG (3). The predominant North conformer of ddC (4) is intermediate between twist C2'-exo-C3'-endo and C3'-endo envelope (P = 10.9 degrees) with a psi m of 34.7 degrees. Note that these preponderant North-sugar structures (approx. 75-80%) found in the solution studies of ddI (1), ddA (2), dG (3) and ddC (4) are not reflected in the X-ray crystal structures of 2',3'-dideoxyadenosine and 2',3'-dideoxycytidine. The constituent sugar residues in both of these crystal structures denosine and 2',3'-dideoxycytidine. The constituent sugar residues in both of these crystal structures are found to be in the South-type geometry (ddA crystalizes in C3'-exo envelope form, while ddC adopts the form intermediate between the C3'-exo envelope and C3'-endo-C4'-exo twist form). This means that X-ray structures of ddA (2) and ddC (4) only represent the minor conformer of the overall pseudorotamer population in solution. An assumption that the structure of the pentofuranose sugar (i.e. P and psi m) participating in conformational equilibrium described by the two-state model remains unchanged at different temperatures has been experimentally validated by assessing five unknown pseudorotational parameters with eight unique observables (3J1'2', 3J1'2", 3J2'3', 3J2'3", 3J2"3', 3J2"3", 3J3'4' and 3J3"4') for 2',3'-dideoxynucleosides.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J Plavec
- Department of Bioorganic Chemistry, University of Uppasala, Sweden
| | | | | |
Collapse
|