1
|
Yoshizawa Y, Yokosuka A, Inomata M, Iguchi T, Mimaki Y. Steroidal constituents in the whole plants of Helleborus niger and their cytotoxic activity in vitro. PHYTOCHEMISTRY 2025; 229:114272. [PMID: 39260588 DOI: 10.1016/j.phytochem.2024.114272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Phytochemical investigation of the whole plants of Helleborus niger L. (Ranunculaceae) resulted in the isolation of five undescribed compounds, including one bufadienolide (1), two bufadienolide rhamnosides (2 and 3), and two ecdysteroids (12 and 13), along with eight known compounds (4-11). The chemical structures of 1-3, 12, and 13 were determined by spectroscopic studies, including 2D NMR, and chromatographic and spectroscopic analyses of the hydrolyzed products. Compounds 1-13 were evaluated for their cytotoxic activity against HL-60 human leukemia cells, A549 human lung adenocarcinoma cells, SBC-3 human small-cell lung cancer cells, and TIG-3 human normal diploid lung cells. Compounds 1-12 showed cytotoxic activity against HL-60, A549, and SBC-3 cells, with IC50 values ranging from 0.0016 to 6.1 μM. Bufadienolide rhamnoside 2 exhibited potent cell proliferation inhibitory activity against SBC-3 cells after 24-48 h of treatment and apoptosis-inducing activity in SBC-3 cells via an intrinsic pathway after 72 h of treatment. The JFCR39 panel screening of 2 suggests that the molecular target of 2 is Na+,K+-ATPase.
Collapse
Affiliation(s)
- Yuka Yoshizawa
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Akihito Yokosuka
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Mina Inomata
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Tomoki Iguchi
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yoshihiro Mimaki
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
2
|
Pérez EMS, Matamoros E, Cintas P, Palacios JC. Exploring and Re-Assessing Reverse Anomeric Effect in 2-Iminoaldoses Derived from Mono- and Polynuclear Aromatic Aldehydes. Molecules 2024; 29:4131. [PMID: 39274978 PMCID: PMC11397646 DOI: 10.3390/molecules29174131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
A curious and noticeable structural feature in Schiff bases from 2-aminoaldoses is the fact that imino tautomers arranged equatorially in the most stable ring conformation exhibit a counterintuitive reverse anomeric effect (RAE) in the mutarotational equilibrium, i.e., the most stable and abundant anomer is the equatorial one (β). As shown by our very recent research, this effect arises from the total or partial inhibition of the exo-anomeric effect due to the presence of an intramolecular hydrogen bond between the anomeric hydroxyl and the iminic nitrogen in the axial anomer (α). When the Schiff base adopts either an enamine structure or the imino group is protonated, the exo-anomeric effect is restored, and the axial α-anomer becomes the most stable species. Although the intramolecular H-bonding should appropriately be interpreted as a genuine stereoelectronic effect, the magnitude of the RAE could be affected by other structural parameters. Herein and through a comprehensive analysis of benzylidene, cinnamylidene, naphthalene, phenanthrene, and anthracene aldehydes, we show the robustness of the RAE effect, which is similar in extent to simple aldehydes screened so far, irrespective of the size and/or hydrophobicity of the substituent at the nitrogen atom.
Collapse
Affiliation(s)
- Esther M S Pérez
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and IACYS-Green Chemistry and Sustainable Development Unit, University of Extremadura, 06006 Badajoz, Spain
| | - Esther Matamoros
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and IACYS-Green Chemistry and Sustainable Development Unit, University of Extremadura, 06006 Badajoz, Spain
- Departamento de Química Orgánica, Universidad de Málaga, 29071 Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Plataforma Bionand, Parque Tecnológico de Andalucía, 29590 Málaga, Spain
| | - Pedro Cintas
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and IACYS-Green Chemistry and Sustainable Development Unit, University of Extremadura, 06006 Badajoz, Spain
| | - Juan C Palacios
- Department of Organic and Inorganic Chemistry, Faculty of Sciences, and IACYS-Green Chemistry and Sustainable Development Unit, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
3
|
Matamoros E, Pérez EMS, Light ME, Cintas P, Martínez RF, Palacios JC. A True Reverse Anomeric Effect Does Exist After All: A Hydrogen Bonding Stereocontrolling Effect in 2-Iminoaldoses. J Org Chem 2024; 89:7877-7898. [PMID: 38752850 PMCID: PMC11165589 DOI: 10.1021/acs.joc.4c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 06/13/2024]
Abstract
The reverse anomeric effect is usually associated with the equatorial preference of nitrogen substituents at the anomeric center. Once postulated as another anomeric effect with explanations ranging from electrostatic interactions to delocalization effects, it is now firmly considered to be essentially steric in nature. Through an extensive research on aryl imines from 2-amino-2-deoxyaldoses, spanning nearly two decades, we realized that such substances often show an anomalous anomeric behavior that cannot easily be rationalized on the basis of purely steric grounds. The apparent preference, or stabilization, of the β-anomer takes place to an extent that not only neutralizes but also overcomes the normal anomeric effect. Calculations indicate that there is no stereoelectronic effect opposing the anomeric effect, resulting from the repulsion between electron lone pairs on the imine nitrogen and the endocyclic oxygen. Such data and compelling structural evidence unravel why the exoanomeric effect is largely inhibited. We are now confident, as witnessed by 2-iminoaldoses, that elimination of the exo-anomeric effect in the α-anomer is due to the formation of an intramolecular hydrogen bond between the anomeric hydroxyl and the iminic nitrogen, thereby accounting for a true electronic effect. In addition, discrete solvation may help justify the observed preference for the β-anomer.
Collapse
Affiliation(s)
- Esther Matamoros
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencias, and Instituto del Agua, Cambio Climático y Sostenibilidad
(IACYS), Universidad de Extremadura, 06006 Badajoz, Spain
- Departamento
de Química Orgánica, Universidad
de Málaga, Campus
Teatinos s/n, 29071 Málaga, Spain
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina − IBIMA, Plataforma Bionand, Parque Tecnológico de Andalucía, 29590 Málaga, Spain
| | - Esther M. S. Pérez
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencias, and Instituto del Agua, Cambio Climático y Sostenibilidad
(IACYS), Universidad de Extremadura, 06006 Badajoz, Spain
| | - Mark E. Light
- Department
of Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Pedro Cintas
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencias, and Instituto del Agua, Cambio Climático y Sostenibilidad
(IACYS), Universidad de Extremadura, 06006 Badajoz, Spain
| | - R. Fernando Martínez
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencias, and Instituto del Agua, Cambio Climático y Sostenibilidad
(IACYS), Universidad de Extremadura, 06006 Badajoz, Spain
| | - Juan C. Palacios
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencias, and Instituto del Agua, Cambio Climático y Sostenibilidad
(IACYS), Universidad de Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
4
|
Sano K, Ishiwata A, Takamori H, Kikuma T, Tanaka K, Ito Y, Takeda Y. Synthesis of Sucrose-Mimicking Disaccharide by Intramolecular Aglycone Delivery. Molecules 2024; 29:1771. [PMID: 38675593 PMCID: PMC11051705 DOI: 10.3390/molecules29081771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Rare sugars are known for their ability to suppress postprandial blood glucose levels. Therefore, oligosaccharides and disaccharides derived from rare sugars could potentially serve as functional sweeteners. A disaccharide [α-d-allopyranosyl-(1→2)-β-d-psicofuranoside] mimicking sucrose was synthesized from rare monosaccharides D-allose and D-psicose. Glycosylation using the intermolecular aglycon delivery (IAD) method was employed to selectively form 1,2-cis α-glycosidic linkages of the allopyranose residues. Moreover, β-selective psicofuranosylation was performed using a psicofuranosyl acceptor with 1,3,4,6-tetra-O-benzoyl groups. This is the first report on the synthesis of non-reducing disaccharides comprising only rare d-sugars by IAD using protected ketose as a unique acceptor; additionally, this approach is expected to be applicable to the synthesis of functional sweeteners.
Collapse
Affiliation(s)
- Kanae Sano
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan; (K.S.); (T.K.)
| | - Akihiro Ishiwata
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
| | - Hiroto Takamori
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan; (K.S.); (T.K.)
| | - Takashi Kikuma
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan; (K.S.); (T.K.)
| | - Katsunori Tanaka
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Wako 351-0198, Japan; (K.T.); (Y.I.)
- Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
| | - Yoichi Takeda
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan; (K.S.); (T.K.)
| |
Collapse
|
5
|
Ishii N, Inoue S, Sano K, Takahashi S, Matsuo I. Synthesis of a fluorescent probe for measuring the activity of endo-β-N-acetylglucosaminidases recognizing hybrid-type N-glycans. Bioorg Med Chem 2024; 100:117612. [PMID: 38290307 DOI: 10.1016/j.bmc.2024.117612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
A fluorescence-quenching-based assay system was constructed to determine the hydrolytic activity of endo-β-N-acetylglucosaminidases (ENGases) interacting with hybrid-type N-glycans. This was achieved using a dual-labeled fluorescent probe with a nonasaccharide structure. We produced the nonasaccharide skeleton by the stepwise glycosylation of the galactose residue on a galactosyl chitobiose derivative. Next, we introduced azido and acetoxy groups into the nonasaccharide derivative in a stepwise manner, which led to stereochemistry inversion at both the C-4 and C-2 hydroxy groups on its galactose residue. The protecting groups of the resulting nonasaccharide derivative were removed, and the derivative was labeled with an N-methylanthraniloyl group to obtain a reporter dye and a 2,4-dinitrophenyl group as a quenching molecule to obtain target probe 1. The use of this probe along with a microplate reader enabled a facile evaluation of the hydrolytic activities of ENGases Endo-H, Endo-M, Endo-F3, Endo-S, and Endo-CC. Furthermore, this probe could also assist in the search for novel ENGases that are specific to hybrid-type N-glycans.
Collapse
Affiliation(s)
- Nozomi Ishii
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| | - Shusei Inoue
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Kanae Sano
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Satoshi Takahashi
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Ichiro Matsuo
- Graduate School of Science and Technology, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma 376-8515, Japan.
| |
Collapse
|
6
|
Thota VN, Lowary TL. Synthesis of 6-deoxy-d-ido-heptopyranose-containing fragments of the Campylobacter jejuni strain CG8486 capsular polysaccharide. Carbohydr Res 2024; 536:109058. [PMID: 38354653 DOI: 10.1016/j.carres.2024.109058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Campylobacters are important causes of gastrointestinal illness and the capsular polysaccharides (CPS) they produce are key virulence factors and targets for vaccine development. We report here the synthesis of two fragments of the Campylobacter jejuni CG8486 strain CPS that contain a rare 6-deoxy-d-ido-heptopyranose residue and, in one target, two O-methyl phosphoramidate (MeOPN) motifs. The synthetic approach features the stereoselective construction of the β-d-ido-heptopyranoside linkage via glycosylation with a β-d-galacto-heptopyranoside donor followed by a one-pot sequential C-2 and C-3 inversion. During the syntheses, we uncovered a number of interesting conformational effects with regard to the 6-deoxy-ido-heptopyranose ring, the glycosidic linkage connecting the two monosaccharides, and the MeOPN groups.
Collapse
Affiliation(s)
- V Narasimharao Thota
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Todd L Lowary
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada; Institute of Biological Chemistry, Academia Sinica, Academia Road, Section 2, #128, Nangang, Taipei, 11529, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Section 4, #1, Roosevelt Road, Taipei, 10617, Taiwan.
| |
Collapse
|
7
|
Takahashi S, Hama T, Nogawa T, Ogawa N, Koshino H. Total Synthesis of Clostrienose. ACS OMEGA 2023; 8:35382-35392. [PMID: 37779990 PMCID: PMC10536848 DOI: 10.1021/acsomega.3c05277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/22/2023] [Indexed: 10/03/2023]
Abstract
This paper considers the total synthesis of a cellular differentiation regulator of Clostridium acetobutylicum, clostrienose, which is a unique fatty-acid glycosyl ester consisting of clostrienoic acid, (3R,5E,8E,10E)-3-hydroxy-tetradeca-5,8,10-trienoic acid and α-d-galactofuranosyl-(1 → 2)-α-l-rhamnose. The key features of our synthesis include stereoselective construction of a skipped-triene system in clostrienoic acid and its esterification with a disaccharide residue. The partially protected clostrienoic acid employed for the coupling also served for the preparation of l-rhamnosyl clostrienoate, thus leading to confirmation of the proposed structure unambiguously.
Collapse
Affiliation(s)
- Shunya Takahashi
- RIKEN
Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Takenori Hama
- RIKEN
Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
- Department
of Applied Chemistry, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Toshihiko Nogawa
- RIKEN
Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Narihito Ogawa
- Department
of Applied Chemistry, Meiji University, 1-1-1, Higashimita, Tama-ku, Kawasaki 214-8571, Japan
| | - Hiroyuki Koshino
- RIKEN
Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| |
Collapse
|
8
|
Yan X, Guo Z. Diversity-Oriented Synthesis of Glycosylphosphatidylinositol Probes Based on an Orthogonally Protected Pentasaccharide. Org Lett 2023; 25:2088-2092. [PMID: 36939185 PMCID: PMC10132856 DOI: 10.1021/acs.orglett.3c00448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Two glycosylphosphatidylinositol (GPI) derivatives having an alkynyl group at different positions were derived from the same orthogonally protected pentasaccharide that in turn was assembled by a convergent [3+2] glycosylation strategy. The resultant alkynylated GPIs are useful biological probes and are suitable for further modification by click reaction to obtain other GPI probes. The pentasaccharide is a versatile platform for the synthesis of various uniquely functionalized GPI probes.
Collapse
Affiliation(s)
- Xin Yan
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| |
Collapse
|
9
|
Convergent synthesis of oligomannose-type glycans via step-economical construction of branch structures. Carbohydr Res 2023; 525:108764. [PMID: 36812846 DOI: 10.1016/j.carres.2023.108764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
Oligomannose-type glycans on glycoproteins are important signaling molecules in the glycoprotein quality control system in the endoplasmic reticulum. Recently, free oligomannose-type glycans generated by the hydrolysis of glycoproteins or dolichol pyrophosphate-linked oligosaccharides were recognized as important signals for immunogenicity. Hence, there is a high demand for pure oligomannose-type glycans for biochemical experiments; however, the chemical synthesis of glycans to achieve high-concentration products is laborious. In this study, we demonstrate a simple and efficient synthetic strategy for oligomannose-type glycans. Sequential regioselective α-mannosylation at the C-3 and C-6 positions of 2,3,4,6-unprotected galactose residues in galactosylchitobiose derivatives was demonstrated. Subsequently, the inversion of the configuration of the two hydroxy groups at the C-2 and C-4 positions of the galactose moiety was successfully carried out. This synthetic route reduces the number of the protection-deprotection reactions and is suitable for constructing different branching patterns of oligomannose-type glycans, such as M9, M5A, and M5B.
Collapse
|
10
|
Yagi A, Yamaguchi Y, Kawasaki K, Usui E, Yamazaki H, Uchida R. New piericidin rhamnosides as potentiators of amphotericin B activity against Candida albicans produced by actinomycete strain TMPU-A0287. J Antibiot (Tokyo) 2023; 76:65-74. [PMID: 36460732 DOI: 10.1038/s41429-022-00581-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022]
Abstract
Four new piericidin rhamnosides (2, 4-6) together with three known piericidins (1, 3, 7) were isolated from the culture broth of the unidentified actinomycete strain TMPU-A0287 as potentiators of antifungal amphotericin B (AmB) activity. The structures of piericidins were elucidated by spectroscopic analyses, including NMR and MS. Compounds 2 and 4-6 possessed a ketone at C-10 and one or two methoxy groups on the rhamnose in their structures. Compounds 1-7 did not exhibit antifungal activity against Candida albicans and all potentiated AmB activity. The MIC values of AmB against C. albicans combined with 1-7 (4.0 μg ml-1) decreased from 0.50 to 0.063 or 0.031 μg ml-1, yielding an 8- or 16-fold increase in AmB activity.
Collapse
Affiliation(s)
- Akiho Yagi
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yuga Yamaguchi
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Keiko Kawasaki
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Eri Usui
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Hiroyuki Yamazaki
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Ryuji Uchida
- Division of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
11
|
Lu S, Zhou T, Fukaya K, Harunari E, Oku N, Urabe D, Igarashi Y. Krasilnikolides A and B and Detalosylkrasilnikolide A, Cytotoxic 20-Membered Macrolides from the Genus Krasilnikovia: Assignment of Anomeric Configuration by J-Based Configuration Analysis. JOURNAL OF NATURAL PRODUCTS 2022; 85:2796-2803. [PMID: 36482689 DOI: 10.1021/acs.jnatprod.2c00781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A chemical investigation of strain RD003821, belonging to the underexplored actinomycetes genus Krasilnikovia, led to the discovery of three novel polyketides: two 20-membered glycomacrolides, krasilnikolides A (1) and B (2), and an aglycone of 1, detalosylkrasilnikolide A (3). A major challenge in the structure elucidation of 1 was to determine the anomeric configuration of the α-l-6-deoxytalose (6dTal) unit, which was achieved by J-based configuration analysis (JBCA) that incorporated anomeric carbon- and proton-specific two-bond 13C-1H spin-spin coupling constants as diagnostic parameters. The updated criteria for the conformation/configuration assignment facilitated discrimination of three out of four stereochemical variants at the anomeric and the adjacent C2 positions, which expanded the scope of the JBCA method to determination of the anomeric configuration of aldohexopyranoses. Compounds 1 and 2 are the first macrolides decorated by 6dTal. Compounds 1-3 exhibited cytotoxicity against P388 murine leukemia cells with IC50 values of 14, 8.4, and 3.9 μM, respectively. In addition, 1-3 were antibacterial against the Gram-positive bacterium Kocuria rhizophila with MIC values of 25, 50, and 100 μg/mL. 1 was inhibitory against Staphylococcus aureus with an MIC of 50 μg/mL.
Collapse
Affiliation(s)
- Shiyang Lu
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Tao Zhou
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Keisuke Fukaya
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Enjuro Harunari
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Naoya Oku
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Daisuke Urabe
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
12
|
Convenient synthesis of mixed S–Se-linked pseudodisaccharides by sulfur and selenium exchange. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Chemical synthesis of the pentasaccharide related to the anti-inflammatory oleanane type saponins isolated from medicinal plant Aster tataricus L. f. Carbohydr Res 2022; 516:108563. [DOI: 10.1016/j.carres.2022.108563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/05/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
|
14
|
Yokosuka A, Shimomura T, Yokogawa S, Oguro A, Miyake K, Mimaki Y. Chemical Components in Hedera rhombea Leaves and Their Cytotoxicity. Chem Pharm Bull (Tokyo) 2022; 70:175-181. [PMID: 35110439 DOI: 10.1248/cpb.c21-00907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two novel triterpene glycosides (1 and 2), 17 known triterpene glycosides (3-19), two known flavonoid glycosides (20 and 21), and two known norsesquiterpene glucosides (22 and 23) were isolated from Hedera rhombea (Araliaceae) leaves. The structures of 1 and 2 were determined by spectroscopic analysis, including two-dimensional NMR spectroscopy, and chromatographic analysis of the hydrolyzed products. The cytotoxicity of the isolated triterpene glycosides (1-19) against HL-60 human promyelocytic leukemia cells was evaluated. Compounds 9, 10, and 11 were cytotoxic to HL-60 cells with IC50 values of 7.2, 21.9, and 32.8 µM, respectively. Other compounds isolated from the leaves were not cytotoxic at sample concentrations of 50 μM.
Collapse
Affiliation(s)
- Akihito Yokosuka
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | | | - Shohei Yokogawa
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Airi Oguro
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Katsunori Miyake
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Yoshihiro Mimaki
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
15
|
Zhao SS, Li S, Luo ZH, Zhou ZQ, Li N, Wang Y, Yao XS, Gao H. Bioactive phenylpropanoid derivatives from the fruits of Lycium ruthenicum Murr. Bioorg Chem 2021; 116:105307. [PMID: 34482167 DOI: 10.1016/j.bioorg.2021.105307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/11/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022]
Abstract
Eight new (1-7 and 15) and 18 known (8-14 and 16-26) phenylpropanoid derivatives were isolated from the fruits of Lycium ruthenicum Murr. (black wolfberry). Their structures were determined by comprehensive spectroscopic analyses, chemical methods, and comparisons of spectroscopic data. Four known compounds (16, 17, 24, and 26) were firstly isolated from the genus Lycium. Interestingly, compounds 1/2 and 4/5 were isolated as two pairs of inseparable anomers owing to the tautomerism of the free hemiacetal at C-1'' in solution. The antioxidant, α-glucosidase inhibitory, and acetylcholinesterase (AChE) inhibitory activities of compounds 1-26 were evaluated. Some compounds possessed DPPH radical scavenging activity, and all compounds (1-26) exhibited different levels of oxygen radical absorbance capacity (ORAC). One compound displayed α-glucosidase inhibitory activity with potency close to that of the positive control (acarbose).
Collapse
Affiliation(s)
- Sen-Sen Zhao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Shuang Li
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zhi-Hui Luo
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Zheng-Qun Zhou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China.
| | - Ning Li
- College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, People's Republic of China
| | - Xin-Sheng Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy / Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China; College of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
16
|
Huseman ED, Byl JAW, Chapp SM, Schley ND, Osheroff N, Townsend SD. Synthesis and Cytotoxic Evaluation of Arimetamycin A and Its Daunorubicin and Doxorubicin Hybrids. ACS CENTRAL SCIENCE 2021; 7:1327-1337. [PMID: 34471677 PMCID: PMC8393218 DOI: 10.1021/acscentsci.1c00040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 05/10/2023]
Abstract
The arimetamycin A glycan governs the compound's cytotoxicity (IC50). To study this branched, deoxy-amino disaccharide, we designed and synthesized a modified acyl donor that underwent glycosylation with three anthracycline aglycones: steffimycinone, daunorubicinone, and doxorubicinone. The result of the approach was a synthesis of arimetamycin A and two novel hybrid anthracyclines. Each molecule exhibited enhanced cytotoxicity in comparison to the parent anthracyclines, steffimycin B, daunorubicin, and doxorubicin. An orienting mechanistic evaluation revealed that the daunorubicin hybrid inhibits the ability of human topoisomerase IIα to relax negatively and positively supercoiled DNA.
Collapse
Affiliation(s)
- Eric D. Huseman
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jo Ann W. Byl
- Department of Biochemistry and Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, Tennessee 37215, United States
| | - Scott M. Chapp
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Nathan D. Schley
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Neil Osheroff
- Department of Biochemistry and Department of Medicine (Hematology/Oncology), Vanderbilt University School of Medicine, Nashville, Tennessee 37215, United States
- VA
Tennessee Valley Healthcare System, Nashville, Tennessee 37212, United States
| | - Steven D. Townsend
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
17
|
Kundu M, Misra AK. Direct Synthesis of Unsymmetrical Glycosyl Disulfides from Glycosyl Bromides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Monalisa Kundu
- Bose Institute Division of Molecular Medicine P-1/12, C.I.T. Scheme VII M Kolkata 700054 India
| | - Anup Kumar Misra
- Bose Institute Division of Molecular Medicine P-1/12, C.I.T. Scheme VII M Kolkata 700054 India
| |
Collapse
|
18
|
Structure and composition of blueberry fiber pectin and xyloglucan that bind anthocyanins during fruit puree processing. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106572] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Fujihara K, Shimoyama T, Kawazu R, Sasaki H, Koyama K, Takahashi K, Kinoshita K. Amyloid β aggregation inhibitory activity of triterpene saponins from the cactus Stenocereus pruinosus. J Nat Med 2021; 75:284-298. [PMID: 33231837 PMCID: PMC7684148 DOI: 10.1007/s11418-020-01463-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
Six new triterpene saponins (1-5,7) and 3 known saponins (6,8,9) were isolated from MeOH extracts of the cactus Stenocereus pruinosus. The structures of the isolated saponins were elucidated using MS, IR, and comprehensive NMR measurements. To develop drugs for treating Alzheimer's disease (AD) on the basis of the amyloid cascade hypothesis, the isolated saponins were evaluated for inhibition of BACE1 activity and amyloid beta (Aβ) aggregation using thioflavin-T assay, and triterpenes as an aglycone moiety and an alkaline hydrolysate of the saponins were also evaluated. One saponin, stenoside A (7), exhibited inhibitory activity related to Aβ aggregation and its degree of Aβ aggregation was 40.6% at 100 μM.
Collapse
Affiliation(s)
- Koji Fujihara
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Takuya Shimoyama
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Ryo Kawazu
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Hiroaki Sasaki
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Kiyotaka Koyama
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Kunio Takahashi
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Kaoru Kinoshita
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose-shi, Tokyo, 204-8588, Japan.
| |
Collapse
|
20
|
Loncar J, Bellich B, Parroni A, Reverberi M, Rizzo R, Zjalić S, Cescutti P. Oligosaccharides Derived from Tramesan: Their Structure and Activity on Mycotoxin Inhibition in Aspergillus flavus and Aspergillus carbonarius. Biomolecules 2021; 11:biom11020243. [PMID: 33567727 PMCID: PMC7914814 DOI: 10.3390/biom11020243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Food and feed safety are of paramount relevance in everyday life. The awareness that different chemicals, e.g., those largely used in agriculture, could present both environmental problems and health hazards, has led to a large limitation of their use. Chemicals were also the main tool in a control of fungal pathogens and their secondary metabolites, mycotoxins. There is a drive to develop more environmentally friendly, “green”, approaches to control mycotoxin contamination of foodstuffs. Different mushroom metabolites showed the potential to act as control agents against mycotoxin production. The use of a polysaccharide, Tramesan, extracted from the basidiomycete Trametes versicolor, for controlling biosynthesis of aflatoxin B1 and ochratoxin A, has been previously discussed. In this study, oligosaccharides obtained from Tramesan were evaluated. The purified exopolysaccharide of T. versicolor was partially hydrolyzed and separated by chromatography into fractions from disaccharides to heptasaccharides. Each fraction was individually tested for mycotoxin inhibition in A. flavus and A. carbonarius. Fragments smaller than seven units showed no significant effect on mycotoxin inhibition; heptasaccharides showed inhibitory activity of up to 90% in both fungi. These results indicated that these oligosaccharides could be used as natural alternatives to crop protection chemicals for controlling these two mycotoxins.
Collapse
Affiliation(s)
- Jelena Loncar
- Department of Ecology, Aquaculture and Agriculture, University of Zadar, Mihovila Pavlinovića 1, 23000 Zadar, Croatia;
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.P.); (M.R.)
| | - Barbara Bellich
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, Bdg. C11, 34127 Trieste, Italy; (B.B.); (R.R.); (P.C.)
| | - Alessia Parroni
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.P.); (M.R.)
| | - Massimo Reverberi
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (A.P.); (M.R.)
| | - Roberto Rizzo
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, Bdg. C11, 34127 Trieste, Italy; (B.B.); (R.R.); (P.C.)
| | - Slaven Zjalić
- Department of Ecology, Aquaculture and Agriculture, University of Zadar, Mihovila Pavlinovića 1, 23000 Zadar, Croatia;
- Correspondence: ; Tel.: +39-5994-268-744
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 1, Bdg. C11, 34127 Trieste, Italy; (B.B.); (R.R.); (P.C.)
| |
Collapse
|
21
|
Bellich B, Jou IA, Buriola C, Ravenscroft N, Brady JW, Fazli M, Tolker-Nielsen T, Rizzo R, Cescutti P. The biofilm of Burkholderia cenocepacia H111 contains an exopolysaccharide composed of l-rhamnose and l-mannose: Structural characterization and molecular modelling. Carbohydr Res 2021; 499:108231. [PMID: 33440288 PMCID: PMC9638112 DOI: 10.1016/j.carres.2020.108231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 10/22/2022]
Abstract
Burkholderia cenocepacia belongs to the Burkholderia Cepacia Complex, a group of 22 closely related species both of clinical and environmental origin, infecting cystic fibrosis patients. B. cenocepacia accounts for the majority of the clinical isolates, comprising the most virulent and transmissible strains. The capacity to form biofilms is among the many virulence determinants of B. cenocepacia, a characteristic that confers enhanced tolerance to some antibiotics, desiccation, oxidizing agents, and host defenses. Exopolysaccharides are a major component of biofilm matrices, particularly providing mechanical stability to biofilms. Recently, a water-insoluble exopolysaccharide produced by B. cenocepacia H111 in biofilm was characterized. In the present study, a water-soluble exopolysaccharide was extracted from B. cenocepacia H111 biofilm, and its structure was determined by GLC-MS, NMR and ESI-MS. The repeating unit is a linear rhamno-tetrasaccharide with 50% replacement of a 3-α-L-Rha with a α-3-L-Man. [2)-α-L-Rhap-(1→3)-α-L-[Rhap or Manp]-(1→3)-α-L-Rhap-(1→2)-α-L-Rhap-(1→]n Molecular modelling was used to obtain information about local structural motifs which could give information about the polysaccharide conformation.
Collapse
Affiliation(s)
- Barbara Bellich
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, Bdg. C11, 34127, Trieste, Italy
| | - Ining A Jou
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Buriola
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, Bdg. C11, 34127, Trieste, Italy
| | - Neil Ravenscroft
- Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - John W Brady
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Mustafa Fazli
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Tim Tolker-Nielsen
- Costerton Biofilm Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Roberto Rizzo
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, Bdg. C11, 34127, Trieste, Italy
| | - Paola Cescutti
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, Bdg. C11, 34127, Trieste, Italy.
| |
Collapse
|
22
|
Characterization of two types of polysaccharides from Eremurus hissaricus roots growing in Tajikistan. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105768] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Gucchait A, Shit P, Misra AK. Concise synthesis of a tetrasaccharide related to the repeating unit of the cell wall O-antigen of Salmonella enterica O60. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
24
|
Iguchi T, Yokosuka A, Tamura N, Takano S, Mimaki Y. Bufadienolide glycosides and bufadienolides from the whole plants of Helleborus lividus, and their cytotoxic activity. PHYTOCHEMISTRY 2020; 176:112415. [PMID: 32480062 DOI: 10.1016/j.phytochem.2020.112415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Cytotoxicity-guided fractionation of the MeOH extract of Helleborus lividus Aiton ex Curtis (Ranunculaceae) resulted in the isolation of five undescribed bufadienolide glycosides and two undescribed bufadienolides, along with three known compounds. Their structures were determined by detailed spectroscopic analysis and hydrolysis studies. The isolated compounds showed cytotoxicity against HL-60 human leukemia cells and A549 human lung adenocarcinoma cells, with IC50 values ranging from 2.20 ± 0.01 nM to 0.77 ± 0.01 μM. The undescribed compound 3β-[(O-β-d-glucopyranosyl-(1 → 4)-α-l-rhamnopyranosyl)oxy]-14β,16β-dihydroxy-5β-bufa-20,22-dienolide induced apoptosis in HL-60 cells via a mitochondria-dependent apoptotic pathway. The average IC50 values of bufadienolide monorhamnosides for HL-60 and A549 cells were 10-20 times lower than those for Na+/K+ ATPase, implying that they induce tumor cell death via a mechanism of action other than Na+/K+ ATPase inhibition.
Collapse
Affiliation(s)
- Tomoki Iguchi
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Akihito Yokosuka
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Naoya Tamura
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Shingo Takano
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yoshihiro Mimaki
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
25
|
Determination of the capsular polysaccharide structure of the Klebsiella pneumoniae ST512 representative strain KPB-1 and assignments of the glycosyltransferases functions. Int J Biol Macromol 2020; 155:315-323. [DOI: 10.1016/j.ijbiomac.2020.03.196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 11/22/2022]
|
26
|
Burkholderia cenocepacia H111 Produces a Water-Insoluble Exopolysaccharide in Biofilm: Structural Determination and Molecular Modelling. Int J Mol Sci 2020; 21:ijms21051702. [PMID: 32131450 PMCID: PMC7084887 DOI: 10.3390/ijms21051702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 11/17/2022] Open
Abstract
Biofilms are a multicellular way of life, where bacterial cells are close together and embedded in a hydrated macromolecular matrix which offers a number of advantages to the cells. Extracellular polysaccharides play an important role in matrix setup and maintenance. A water-insoluble polysaccharide was isolated and purified from the biofilm produced by Burkholderiacenocepacia strain H111, a cystic fibrosis pathogen. Its composition and glycosidic linkages were determined using Gas–Liquid Chromatography–Mass Spectrometry (GLC–MS) on appropriate carbohydrate derivatives while its complete structure was unraveled by 1D and 2D NMR spectroscopy in deuterated sodium hydroxide (NaOD) aqueous solutions. All the collected data demonstrated the following repeating unit for the water-insoluble B. cenocepacia biofilm polysaccharide: [3)-α-d-Galp-(1→3)-α-d-Glcp-(1→3)-α-d-Galp-(1→3)-α-d-Manp-(1→]n Molecular modelling was used, coupled with NMR Nuclear Overhauser Effect (NOE) data, to obtain information about local structural motifs which could give hints about the polysaccharide insolubility. Both modelling and NMR data pointed at restricted dynamics of local conformations which were ascribed to the presence of inter-residue hydrogen bonds and to steric restrictions. In addition, the good correlation between NOE data and calculated interatomic distances by molecular dynamics simulations validated potential energy functions used for calculations.
Collapse
|
27
|
Krasnoff SB, Howe KJ, Heck ML, Donzelli BGG. Siderophores from the Entomopathogenic Fungus Beauveria bassiana. JOURNAL OF NATURAL PRODUCTS 2020; 83:296-304. [PMID: 32058711 DOI: 10.1021/acs.jnatprod.9b00698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report NMR- and MS-based structural characterizations of siderophores and related compounds from Beauveria bassiana (Balsamo-Crivelli) Vuillemin, including ten new chemical entities (2-4, 6-9, 11-12, and 15) and five known compounds, (1, 5, 10, 13, and 14). The siderophore mixture from ARSEF strain #2680 included two compounds in which N5-mevalonyl-N5-hydroxyornithine replaces both (2) or one (3) of the N5-anhydromevalonyl-N5-hydroxyornithine units of dimerumic acid (1). Mevalonolactone (14) was present as a degradation product of 2 and 3. ARSEF #2860 also produced compounds that have mannopyranose (5, 6) or 4-O-methyl-mannopyranose units (4, 7), two compounds (8, 9) that can be rationalized as 4-O-methyl-mannopyranosyl analogues of the esterifying acid moieties of metachelins A and B, respectively, and two probable decomposition products of 1, a nitro compound (11) and a formate (12). Beauverichelin A (15), a coprogen-type siderophore that represents the di-4-O-methyl-mannopyranosyl analogue of metachelin A, was detected in crude extracts of ARSEF #2860, but only in trace amounts. ARSEF strains #252 and #1955 yielded beauverichelin A in quantities that were sufficient for NMR analysis. Only the di- (1-7) and trihydroxamate (15) siderophores showed iron-binding activity in the CAS assay and, when ferrated, showed strong ESIMS signals consistent with 1:1 ligand/iron complexes.
Collapse
Affiliation(s)
- Stuart B Krasnoff
- USDA-ARS , Robert W. Holley Center for Agriculture & Health , Ithaca , New York 14853 , United States
| | - Kevin J Howe
- USDA-ARS , Robert W. Holley Center for Agriculture & Health , Ithaca , New York 14853 , United States
| | - Michelle L Heck
- USDA-ARS , Robert W. Holley Center for Agriculture & Health , Ithaca , New York 14853 , United States
- Department of Plant Pathology and Plant-Microbe Biology , Cornell University , Ithaca , New York 14853 , United States
- Boyce Thompson Institute , Ithaca , New York 14853 , United States
| | - Bruno G G Donzelli
- USDA-ARS , Robert W. Holley Center for Agriculture & Health , Ithaca , New York 14853 , United States
| |
Collapse
|
28
|
Polyketide glycosides phialotides A to H, new potentiators of amphotericin B activity, produced by Pseudophialophora sp. BF-0158. J Antibiot (Tokyo) 2020; 73:211-223. [DOI: 10.1038/s41429-019-0276-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 11/08/2022]
|
29
|
Tatsuno S, Iguchi T, Kuroda M, Ishihara M, Sakagami H, Mimaki Y. A new and 23 known cardenolide glycosides from Thevetia neriifolia seeds and their cytotoxic activities against human oral carcinoma cell lines. Nat Prod Res 2020; 35:4388-4393. [PMID: 31967486 DOI: 10.1080/14786419.2020.1716352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Phytochemical analysis of Thevetia neriifolia seeds resulted in the isolation of one new (1) and 23 known (2-24) cardenolide glycosides. The structure of 1 was determined based on one- and two-dimensional NMR spectroscopic analysis and acid hydrolytic cleavage reaction. The effect of the cytotoxic activity of 1-24 on three human oral carcinoma cell lines was assessed. The cell lines included Ca9-22 human gingival carcinoma cells, HSC-2 human mouth carcinoma cells, HSC-4 human tongue carcinoma cells, and HGF human gingival fibroblast cells. The isolated compounds had a cytotoxic effect on the carcinoma cells with IC50 values ranging from 0.004 μM to 64.9 μM. The structure-activity relationship is also discussed.
Collapse
Affiliation(s)
- Satoru Tatsuno
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Tomoki Iguchi
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Minpei Kuroda
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Mai Ishihara
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Hiroshi Sakagami
- Research Institute of Odontology (M-RIO), Meikai University, Sakado, Japan
| | - Yoshihiro Mimaki
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| |
Collapse
|
30
|
Structure of the capsule and lipopolysaccharide O-antigen from the channel catfish pathogen, Aeromonas hydrophila. Carbohydr Res 2019; 486:107858. [PMID: 31683071 DOI: 10.1016/j.carres.2019.107858] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 11/22/2022]
Abstract
A hypervirulent A. hydrophila (vAh) pathotype has been identified as the etiologic agent responsible for disease outbreaks in farmed carp species and channel catfish (Ictalurus punctatus) in China and the Southeastern United States, respectively. The possible route of infection has previously been unknown; however, virulence is believed to be multifactorial, involving the production/secretion of several virulence factors, including a high molecular weight group 4 capsular polysaccharide. Here we present chemical structural evidence of a novel capsule- and LPS-associated O-antigen found present in vAh isolated during these disease outbreaks. In this study, the chemical structure of the vAh O-antigen was determined by chemical analysis, Smith degradation, mass spectrometry, and 2D proton and carbon nuclear magnetic resonance (NMR) spectroscopy and found to be unique among described bacterial O-antigens. The O-antigen consists of hexasaccharide repeating units featuring a 4)-α-l-Fucp-(1-3)-β-d-GlcpNAc-(1-4)-α-l-Fucp-(1-4)-β-d-Glcp-(1- backbone, substituted with single residue side chains of α-d-Glcp and α-d-Quip3NAc linked to O-3 of the two fucose residues. The polysaccharide is partially O-acetylated on O-6 of the 4-substituted β-Glcp residue.
Collapse
|
31
|
Yokosuka A, Takayama H, Mimaki Y. Triterpene Glycosides from the Seeds of Dolichos lablab. Chem Pharm Bull (Tokyo) 2019; 67:604-608. [PMID: 31155567 DOI: 10.1248/cpb.c19-00155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two new triterpene glycosides (1 and 2), together with nine known triterpene glycosides (3-11), were isolated from the seeds of Dolichos lablab (Leguminosae). The structures of the new compounds were determined by spectroscopic analysis, including two-dimensional NMR spectroscopy, and chromatographic analysis of the hydrolyzed products. The isolated compounds did not show cytotoxicity against HL-60 human leukemia cells and HepG2 human hepatoma cells at sample concentrations of 20 µM.
Collapse
Affiliation(s)
- Akihito Yokosuka
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Hiroki Takayama
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Yoshihiro Mimaki
- Department of Medicinal Pharmacognosy, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
32
|
Synthetic directions of acidic hexasaccharide repeating unit of the O-antigen of Cronobacter sakazakii HPB 2855 using one pot glycosylation. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2018.12.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Uchida R, Kondo A, Yagi A, Nonaka K, Masuma R, Kobayashi K, Tomoda H. Simpotentin, a new potentiator of amphotericin B activity against Candida albicans, produced by Simplicillium minatense FKI-4981. J Antibiot (Tokyo) 2018; 72:134-140. [PMID: 30532035 DOI: 10.1038/s41429-018-0128-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/09/2018] [Indexed: 11/09/2022]
Abstract
Simpotentin, a new potentiator of amphotericin B activity against Candida albicans and Cryptococcus neoformans, was isolated from the culture broth of Simplicillium minatense FKI-4981 by Diaion HP-20 column chromatography, centrifugal partition chromatography, and preparative HPLC. The structure of simpotentin was elucidated by spectroscopic analyses including NMR and MS. The compound has a mannose core to which two medium-chain fatty acids are linked. Simpotentin was found to potentiate amphotericin B activity against C. albicans by the microdilution method.
Collapse
Affiliation(s)
- Ryuji Uchida
- Microbial Chemistry and Medical Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.,Department of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Ariko Kondo
- Microbial Chemistry and Medical Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Akiho Yagi
- Microbial Chemistry and Medical Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.,Department of Natural Product Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Kenichi Nonaka
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Rokurou Masuma
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Keisuke Kobayashi
- Microbial Chemistry and Medical Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Hiroshi Tomoda
- Microbial Chemistry and Medical Research Laboratories, Graduate School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
34
|
Pitoux D, Hu Z, Plainchont B, Merlet D, Farjon J, Bonnaffé D, Giraud N. Combining pure shift and J-edited spectroscopies: A strategy for extracting chemical shifts and scalar couplings from highly crowded proton spectra of oligomeric saccharides. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:954-962. [PMID: 29396911 DOI: 10.1002/mrc.4715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/12/2018] [Accepted: 01/16/2018] [Indexed: 06/07/2023]
Abstract
We report the application of pure shift and J-edited nuclear magnetic resonance spectroscopies to the structural analysis of a protected maltotrioside synthetic intermediate whose crowded 1 H spectrum displays highly crowded regions. The analytical strategy is based on the implementation of J-edited and TOCSY experiments whose resolution is optimized by the use of broadband homonuclear decoupling and selective refocusing techniques, to assign and measure chemical shifts and homonuclear scalar couplings with high accuracy. The resulting data show a high level of complementarity, providing a detailed insight into each subunit of this oligomeric saccharide, even for proton sites whose nuclear magnetic resonance signals strongly overlap. This approach allowed for fully assigning proton chemical shifts and extracting 80% of the 3 JHH couplings that are in excellent agreement with those expected for D-gluco-pyranosyl units in 4 C1 conformations.
Collapse
Affiliation(s)
- D Pitoux
- Equipe de RMN en milieu orienté, ICMMO, UMR 8182 (CNRS-UPS), Université Paris-Sud, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - Z Hu
- Equipe Méthodologies, Synthèses et Molécules Thérapeutiques, ICMMO, UMR 8182 (CNRS-UPS), Université Paris-Sud, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - B Plainchont
- Equipe de RMN en milieu orienté, ICMMO, UMR 8182 (CNRS-UPS), Université Paris-Sud, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - D Merlet
- Equipe de RMN en milieu orienté, ICMMO, UMR 8182 (CNRS-UPS), Université Paris-Sud, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - J Farjon
- Equipe de RMN en milieu orienté, ICMMO, UMR 8182 (CNRS-UPS), Université Paris-Sud, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - D Bonnaffé
- Equipe Méthodologies, Synthèses et Molécules Thérapeutiques, ICMMO, UMR 8182 (CNRS-UPS), Université Paris-Sud, Université Paris-Saclay, 91405, Orsay Cedex, France
| | - N Giraud
- Equipe de RMN en milieu orienté, ICMMO, UMR 8182 (CNRS-UPS), Université Paris-Sud, Université Paris-Saclay, 91405, Orsay Cedex, France
| |
Collapse
|
35
|
Peng J, Patil SM, Keire DA, Chen K. Chemical Structure and Composition of Major Glycans Covalently Linked to Therapeutic Monoclonal Antibodies by Middle-Down Nuclear Magnetic Resonance. Anal Chem 2018; 90:11016-11024. [PMID: 30102512 PMCID: PMC7040853 DOI: 10.1021/acs.analchem.8b02637] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycosylation of monoclonal antibodies (mAbs) is a critical quality attribute that can impact mAb drug efficacy and safety. The mAb glycans are inherently heterogeneous in chemical structure and composition of monosaccharides. The established fluorescence or mass-spectrometry (MS) detection methods for glycosylation evaluation may require multiple steps of glycan cleavage or extensive digestion of the mAb, chemical labeling of the glycans, column separation and report the chemical identity of glycans indirectly through retention time and molecular weight values. In demonstrating chemical structure similarity and comparability among mAb drugs, orthogonal analytical methods for measuring glycan chemistry are needed to ensure the quality of drug products. Here, a "middle-down" NMR method is developed as a proof-of-concept approach to measure the domain-specific glycosylation of marketed mAb drugs without cleavage of the glycan moieties. Complete glycan 1H/13C chemical shift assignments were obtained at 13C natural abundance from commercial standard glycans that allowed unambiguous determination of the chemical structure, glycosidic linkage position, and anomeric configuration of each monosaccharide in the major N-glycan scaffolds found in mAb molecules. The analysis of glycan anomeric peaks in two-dimensional (2D) 1H-13C NMR spectra yielded metrics for clinically important mAb quality attributes (i.e., galactosylation (Gal%) and fucosylation (Fuc%)), consistent with literature results using a standard glycan-mapping method. Therefore, the middle-down NMR method provided a facile orthogonal measurement for mAb glycosylation characterization with improved chemical information content on glycan structure determination and quantification, compared to standard approaches.
Collapse
Affiliation(s)
- Jiangnan Peng
- Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Sharadrao M. Patil
- Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - David A. Keire
- Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Kang Chen
- Division of Pharmaceutical Analysis, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| |
Collapse
|
36
|
Dey S, Wong CH. Programmable one-pot synthesis of heparin pentasaccharides enabling access to regiodefined sulfate derivatives. Chem Sci 2018; 9:6685-6691. [PMID: 30310602 PMCID: PMC6115620 DOI: 10.1039/c8sc01743c] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/01/2018] [Indexed: 01/17/2023] Open
Abstract
Heparin (H) and heparan sulfate (HS) belong to the glycosaminoglycan (GAG) family of oligosaccharides, and their sequences and sulfation patterns are known to regulate the functions of various proteins in biological processes. Among these, the 6-O-sulfation of HS/H contributes most significantly to the structural diversity and binding interactions. However, the synthesis of HS with defined sulfation patterns remains a major challenge. Herein, we report a highly efficient and programmable one-pot method for the synthesis of protected heparin pentasaccharides using thioglycoside building blocks with optimized relative reactivities to allow the selective deprotection and preparation of regiodefined sulfate derivatives.
Collapse
Affiliation(s)
- Supriya Dey
- Department of Chemistry , The Scripps Research Institute , 10550 N Torrey Pines Road , La Jolla 92037 , USA
| | - Chi-Huey Wong
- Department of Chemistry , The Scripps Research Institute , 10550 N Torrey Pines Road , La Jolla 92037 , USA
- The Genomics Research Center , Academia Sinica , No. 128, Academia Road, Section 2 , Taipei , Taiwan .
| |
Collapse
|
37
|
Sidoryk K, Cmoch P, Świtalska M, Trzaskowski B, Wietrzyk J, Cybulski M. Efficient glycosylation of natural Danshensu and its enantiomer by sugar and 2-deoxy sugar donors. Carbohydr Res 2018; 460:19-28. [PMID: 29501860 DOI: 10.1016/j.carres.2018.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 11/15/2022]
Abstract
An efficient methodology of the glycosylation process of a secondary plant metabolite (R-Danshensu) and its enantiomer by sugar and 2-deoxy sugar donors was developed. The overall synthesis of the new sugar derivatives involved two steps, starting from the previously synthesized protected R and S Danshensu (1 and 2). The deoxy sugar derivatives of R and S Danshensu were obtained from available tri-O-acetyl-2-deoxy-D-glucal and di-O-acetyl-2-deoxy-D-ramnal. The direct glycosylation of 1 and 2 using glycal activation by an acid catalyst in all cases led to the α-anomers of deoxy sugar derivatives with good yields. As a result, a novel group of sugar and deoxy sugar conjugates with optically pure polyphenolic acids was successfully synthesized and their cytotoxic profile against two cancer cell lines was tested. An advantageous ADME profile and antiproliferative data classified this new group of compounds as a promising scaffold for further modification of more potent and selective anticancer agents.
Collapse
Affiliation(s)
- Katarzyna Sidoryk
- Pharmaceutical Research Institute, 8 Rydygiera Street, 01-793 Warsaw, Poland.
| | - Piotr Cmoch
- Pharmaceutical Research Institute, 8 Rydygiera Street, 01-793 Warsaw, Poland
| | - Marta Świtalska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla Street, 53-114 Wroclaw, Poland
| | - Bartosz Trzaskowski
- University of Warsaw, Centre of New Technologies, 2c S. Banacha Street, 02-097 Warsaw, Poland
| | - Joanna Wietrzyk
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 12 Weigla Street, 53-114 Wroclaw, Poland
| | - Marcin Cybulski
- Pharmaceutical Research Institute, 8 Rydygiera Street, 01-793 Warsaw, Poland
| |
Collapse
|
38
|
Sidoryk K, Rárová L, Oklešťková J, Pakulski Z, Strnad M, Cmoch P, Luboradzki R. Synthesis of 28a-homoselenolupanes and 28a-homoselenolupane saponins. Org Biomol Chem 2018; 14:10238-10248. [PMID: 27735956 DOI: 10.1039/c6ob01938b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A practical synthesis of 28a-homo-28a-selenolupane triterpenes and the corresponding selenosaponins containing d-mannose, l-arabinose, l-rhamnose, and d-idose moieties is described. Selenium containing triterpenes were obtained from the readily available 3-O-allyl-homobetulin mesylate by nucleophilic substitution with the selenocyanate ion which upon reduction of the -SeCN group afforded the free selenol. Glycosylation using classical Schmidt donors gave 1,2-trans selenosaponins as the main product as well as minute amounts of 1,2-cis isomers. This is one of the very few examples of the synthesis of selenoglycosides by direct glycosylation of free selenols. The studied selenol showed high resistance to air oxidation resulting in good stability during the synthesis of selenolupane derivatives. Cytotoxic activities of new homoselenolupane derivatives were also evaluated in vitro and revealed that some triterpenes exhibited an interesting profile against human cancer cell lines.
Collapse
Affiliation(s)
- Katarzyna Sidoryk
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland. and Pharmaceutical Research Institute, Rydygiera 8, 01-793 Warsaw, Poland
| | - Lucie Rárová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jana Oklešťková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Zbigniew Pakulski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Piotr Cmoch
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Roman Luboradzki
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
39
|
Komarova BS, Gerbst AG, Finogenova AM, Dmitrenok AS, Tsvetkov YE, Nifantiev NE. 1,3-syn-Diaxial Repulsion of Typical Protecting Groups Used in Carbohydrate Chemistry in 3-O-Substituted Derivatives of Isopropyl d-Idopyranosides. J Org Chem 2017; 82:8897-8908. [DOI: 10.1021/acs.joc.7b01167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bozhena S. Komarova
- Laboratory of Glycoconjugate
Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Alexey G. Gerbst
- Laboratory of Glycoconjugate
Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Anastasiia M. Finogenova
- Laboratory of Glycoconjugate
Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Andrey S. Dmitrenok
- Laboratory of Glycoconjugate
Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Yury E. Tsvetkov
- Laboratory of Glycoconjugate
Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| | - Nikolay E. Nifantiev
- Laboratory of Glycoconjugate
Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
| |
Collapse
|
40
|
Fujihara K, Koike S, Ogasawara Y, Takahashi K, Koyama K, Kinoshita K. Inhibition of amyloid β aggregation and protective effect on SH-SY5Y cells by triterpenoid saponins from the cactus Polaskia chichipe. Bioorg Med Chem 2017; 25:3377-3383. [DOI: 10.1016/j.bmc.2017.04.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
|
41
|
Konishi N, Shirahata T, Yokoyama M, Katsumi T, Ito Y, Hirata N, Nishino T, Makino K, Sato N, Nagai T, Kiyohara H, Yamada H, Kaji E, Kobayashi Y. Synthesis of Bisdesmosidic Oleanolic Acid Saponins via a Glycosylation-Deprotection Sequence under Continuous Microfluidic/Batch Conditions. J Org Chem 2017; 82:6703-6719. [DOI: 10.1021/acs.joc.7b00841] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Naruki Konishi
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tatsuya Shirahata
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masaki Yokoyama
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tatsuya Katsumi
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yoshikazu Ito
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Nozomu Hirata
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takashi Nishino
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kazuishi Makino
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Noriko Sato
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takayuki Nagai
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroaki Kiyohara
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Haruki Yamada
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Eisuke Kaji
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yoshinori Kobayashi
- School
of Pharmacy and ‡Kitasato Institute for Life Sciences and Graduate School of Infection
Control Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
42
|
Tomshich SV, Kokoulin MS, Kalinovsky AI, Nedashkovskaya OI, Komandrova NA. Structure of the O-specific polysaccharide from a marine bacterium Cellulophaga algicola. Carbohydr Res 2017; 443-444:68-72. [DOI: 10.1016/j.carres.2017.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 11/25/2022]
|
43
|
Takahashi S, Suda Y, Nakamura T, Matsuoka K, Koshino H. Total Synthesis of Kehokorins A-E, Cytotoxic p-Terphenyls. J Org Chem 2017; 82:3159-3166. [PMID: 28267327 DOI: 10.1021/acs.joc.7b00147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This paper describes a general method for the synthesis of kehokorins A-E, novel cytotoxic p-terphenyls. 2,4,6-Trihydroxybenzaldehyde served as a common building block for preparation of the central aromatic ring. Construction of their p-terphenyl skeletons was achieved by a stepwise Suzuki-Miyaura coupling, whereas the phenyldibenzofuran moiety was built up by an intramolecular Ullmann reaction. Introduction of an l-rhamnose residue into partly protected kehokorin B was performed by the trichloroacetimidate method.
Collapse
Affiliation(s)
- Shunya Takahashi
- RIKEN Center for Sustainable Resource Science , Wako, Saitama 351-0198, Japan
| | - Yasuaki Suda
- RIKEN Center for Sustainable Resource Science , Wako, Saitama 351-0198, Japan.,Division of Material Science, Graduate School of Science and Engineering, Saitama University , Saitama 338-8570, Japan
| | - Takemichi Nakamura
- RIKEN Center for Sustainable Resource Science , Wako, Saitama 351-0198, Japan
| | - Koji Matsuoka
- Division of Material Science, Graduate School of Science and Engineering, Saitama University , Saitama 338-8570, Japan
| | - Hiroyuki Koshino
- RIKEN Center for Sustainable Resource Science , Wako, Saitama 351-0198, Japan
| |
Collapse
|
44
|
Harale KR, Rout JK, Chhikara MK, Gill DS, Misra AK. Synthesis and immunochemical evaluation of a novel Neisseria meningitidis serogroup A tetrasaccharide and its conjugate. Org Chem Front 2017. [DOI: 10.1039/c7qo00468k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tetrameric repeating unit of capsular polysaccharide of Neisseria meningitidis serogroup A was synthesized which mimicked natural polysaccharide in immunochemical analysis.
Collapse
Affiliation(s)
- Kishore R. Harale
- MSD Wellcome Trust Hilleman Laboratories Pvt. Ltd
- New Delhi 110062
- India
| | - Jeetendra K. Rout
- MSD Wellcome Trust Hilleman Laboratories Pvt. Ltd
- New Delhi 110062
- India
| | | | - Davinder S. Gill
- MSD Wellcome Trust Hilleman Laboratories Pvt. Ltd
- New Delhi 110062
- India
| | | |
Collapse
|
45
|
Nyman AAT, Aachmann FL, Rise F, Ballance S, Samuelsen ABC. Structural characterization of a branched (1 → 6)-α-mannan and β-glucans isolated from the fruiting bodies of Cantharellus cibarius. Carbohydr Polym 2016; 146:197-207. [DOI: 10.1016/j.carbpol.2016.03.052] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/29/2016] [Accepted: 03/17/2016] [Indexed: 11/28/2022]
|
46
|
Yamanoi T, Oda Y, Katsuraya K, Inazu T, Yamamoto K. Complete NMR assignment of a bisecting hybrid-type oligosaccharide transferred by Mucor hiemalis endo-β-N-acetylglucosaminidase. Carbohydr Res 2016; 427:60-5. [DOI: 10.1016/j.carres.2016.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 11/16/2022]
|
47
|
Cescutti P, De Benedetto G, Rizzo R. Structural determination of the polysaccharide isolated from biofilms produced by a clinical strain of Klebsiella pneumoniae. Carbohydr Res 2016; 430:29-35. [PMID: 27182661 DOI: 10.1016/j.carres.2016.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 05/02/2016] [Accepted: 05/03/2016] [Indexed: 11/17/2022]
Abstract
Klebsiella pneumoniae are Gram negative opportunistic pathogens producing capsular (K) polysaccharides. Seventy-seven different K antigens have been described and they are the basis for K serotyping. Capsular polysaccharides are important virulence factors and have a relevant role for the structure of biofilm communities. Nevertheless, little information is available on the polysaccharides produced in biofilm matrices by Klebsiella spp. In the present study, a clinical isolate of Klebsiella pneumoniae was grown both on cellulose membranes deposited on agar plates, where it formed an adherent biofilm, and in liquid medium, where it formed floating biofilms (flocs). Extraction and purification of the polysaccharide fraction showed that only one main carbohydrate polymer was present in both adherent biofilms and flocs. Composition and linkage analysis, Smith degradation followed by ESI-MS, 1D and 2D NMR spectroscopy revealed that the polysaccharide belong to the type K24 and has the following structure.
Collapse
Affiliation(s)
- Paola Cescutti
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, Bdg. C11, Trieste 34127, Italy.
| | - Gianluigi De Benedetto
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, Bdg. C11, Trieste 34127, Italy
| | - Roberto Rizzo
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, Bdg. C11, Trieste 34127, Italy
| |
Collapse
|
48
|
Kuczynska K, Cmoch P, Rárová L, Oklešťková J, Korda A, Pakulski Z, Strnad M. Influence of intramolecular hydrogen bonds on regioselectivity of glycosylation. Synthesis of lupane-type saponins bearing the OSW-1 saponin disaccharide unit and its isomers. Carbohydr Res 2016; 423:49-69. [PMID: 26878488 DOI: 10.1016/j.carres.2016.01.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/14/2016] [Accepted: 01/21/2016] [Indexed: 10/22/2022]
Abstract
A series of lupane-type saponins bearing OSW-1 disaccharide unit as well as its regio- and stereoisomers were prepared and used for the structure-activity relationships (SAR) study. Unexpected preference for 1→4-linked regioisomers and an unusual inversion of the conformation of the sugar rings were noted. Cytotoxic activity of new lupane compounds was evaluated in vitro and revealed that some saponins exhibited an interesting bioactivity profile against human cancer cell lines. Influence of the protecting groups on the cytotoxicity was investigated. These results open the way to the synthesis of various lupane-type triterpene and saponin derivatives as potential anticancer compounds.
Collapse
Affiliation(s)
- Kinga Kuczynska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piotr Cmoch
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Lucie Rárová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jana Oklešťková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Anna Korda
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Zbigniew Pakulski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
49
|
Sidoryk K, Korda A, Rárová L, Oklešťková J, Pakulski Z, Strnad M, Cmoch P, Gwardiak K, Karczewski R. Synthesis and Cytotoxicity of 28a-Homothiolupanes and 28a-Homothiolupane Saponins. European J Org Chem 2015. [DOI: 10.1002/ejoc.201501147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Heiss C, Wang Z, Black I, Azadi P, Fichorova RN, Singh BN. Novel structural features of the immunocompetent ceramide phospho-inositol glycan core from Trichomonas vaginalis. Carbohydr Res 2015; 419:51-9. [PMID: 26671321 DOI: 10.1016/j.carres.2015.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 12/23/2022]
Abstract
The ceramide phosphoinositol glycan core (CPI-GC) of the lipophosphoglycan of Trichomonas vaginalis is a major virulent factor of this common genitourinary parasite. While its carbohydrate composition has been reported before, its structure has remained largely unknown. We isolated the glycan portions of CPI-GC by nitrous acid deamination and hydrofluoric acid treatment and investigated their structures by methylation analysis and 1- and 2-D NMR. We found that the α-anomer of galactose is a major constituent of CPI-GC. The β-anomer was found exclusively at the non-reducing end of CPI-GC side chains. Furthermore the data showed that the rhamnan backbone is more complex than previously thought and that the inositol residue at the reducing end is linked to a 4-linked α-glucuronic acid (GlcA) residue. This appears to be the most striking and novel feature of this GPI-anchor type molecule.
Collapse
Affiliation(s)
- Christian Heiss
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA.
| | - Zhirui Wang
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Ian Black
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | - Raina N Fichorova
- Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Bibhuti N Singh
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY 13210, USA.
| |
Collapse
|