1
|
Dutta P, Sengupta A, Chakraborty S. Epigenetics: a new warrior against cardiovascular calcification, a forerunner in modern lifestyle diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62093-62110. [PMID: 34601672 DOI: 10.1007/s11356-021-15718-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Arterial and aortic valve calcifications are the most prevalent pathophysiological conditions among all the reported cases of cardiovascular calcifications. It increases with several risk factors like age, hypertension, external stimuli, mechanical forces, lipid deposition, malfunction of genes and signaling pathways, enhancement of naturally occurring calcium inhibitors, and many others. Modern-day lifestyle is affected by numerous environmental factors and harmful toxins that impair our health rather than providing benefits. Applying the combinatorial approach or targeting the exact mechanism could be a new strategy for drug designing or attenuating the severity of calcification. Most of the non-communicable diseases are life-threatening; thus, altering the phenotype and not the genotype may reveal the gateway for fighting with upcoming hurdles. Overall, this review summarizes the reason behind the generation of arterial and aortic valve calcification and its related signaling pathways and also the detrimental effects of calcification. In addition, the individual process of epigenetics and how the implementation of this process becomes a novel approach for diminishing the harmful effect of calcification are discussed. Noteworthy, as epigenetics is linked with genetics and environmental factors necessitates further clinical trials for complete and in-depth understanding and application of this strategy in a more specific and prudent manner.
Collapse
Affiliation(s)
- Parna Dutta
- Department of Life Sciences, Presidency University, 86/1, College Street, Baker building, 2nd floor, Kolkata, West Bengal, 700073, India
| | - Arunima Sengupta
- Department of Life science & Bio-technology, Jadavpur University, Kolkata, 700032, India
| | - Santanu Chakraborty
- Department of Life Sciences, Presidency University, 86/1, College Street, Baker building, 2nd floor, Kolkata, West Bengal, 700073, India.
| |
Collapse
|
2
|
Clewell HJ, Yager JW, Greene TB, Gentry PR. Application of the adverse outcome pathway (AOP) approach to inform mode of action (MOA): A case study with inorganic arsenic. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:893-912. [PMID: 30230972 DOI: 10.1080/15287394.2018.1500326] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to establish a process for deriving a chemical-specific mode of action (MOA) from chemical-agnostic adverse outcome pathway (AOPs), using inorganic arsenic (iAs) as a case study. The AOP developed for this case study are related to disruption of cellular signaling by chemicals that strongly bind to vicinal dithiols in cellular proteins, leading to disruption of inflammatory and oxidative stress signaling along with inhibition of the DNA damage responses. The proposed MOA for iAs incorporates this AOP, overlaid on a background of increasing oxidative stress and/or co-exposure to mutagenic chemicals or radiation. The most challenging aspect of developing a MOA from AOP is the incorporation of metabolism and dose-response, neither of which may be considered in the development of an AOP. The cellular responses to relatively low concentrations (below 100 parts per billion) of iAs in drinking water appear to be secondary to binding of trivalent arsenite and its trivalent metabolite, monomethyl arsenous acid to key cellular vicinal dithiols in target tissues, resulting in a co-carcinogenic MOA. The proposed AOP may also be applied to non-cancer endpoints, enabling an integrated approach to conducting a risk assessment for iAs.
Collapse
|
3
|
Huo Y, Win S, Than TA, Yin S, Ye M, Hu H, Kaplowitz N. Antcin H Protects Against Acute Liver Injury Through Disruption of the Interaction of c-Jun-N-Terminal Kinase with Mitochondria. Antioxid Redox Signal 2017; 26:207-220. [PMID: 27596680 PMCID: PMC5312552 DOI: 10.1089/ars.2016.6833] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIM Antrodia Camphorate (AC) is a mushroom that is widely used in Asian countries to prevent and treat various diseases, including liver diseases. However, the active ingredients that contribute to the biological functions remain elusive. The purpose of the present study is to test the hepatoprotective effect of Antcin H, a major triterpenoid chemical isolated from AC, in murine models of acute liver injury. RESULTS We found that Antcin H pretreatment protected against liver injury in both acetaminophen (APAP) and galactosamine/tumor necrosis factor (TNF)α models. More importantly, Antcin H also offered a significant protection against acetaminophen-induced liver injury when it was given 1 h after acetaminophen. The protection was verified in primary mouse hepatocytes. Antcin H prevented sustained c-Jun-N-terminal kinase (JNK) activation in both models. We excluded an effect of Antcin H on acetaminophen metabolism and TNF receptor signaling and excluded a direct effect as a free radical scavenger or JNK inhibitor. Since the sustained JNK activation through its interaction with mitochondrial Sab, leading to increased mitochondrial reactive oxygen species (ROS), is pivotal in both models, we examined the effect of Antcin H on p-JNK binding to mitochondria and impairment of mitochondrial respiration. Antcin H inhibited the direct effect of p-JNK on isolated mitochondrial function and binding to isolated mitochondria. Innovation and Conclusion: Our study has identified Antcin H as a novel active ingredient that contributes to the hepatoprotective effect of AC, and Antcin H protects against liver injury through disruption of the binding of p-JNK to Sab, which interferes with the ROS-dependent self-sustaining activation of MAPK cascade. Antioxid. Redox Signal. 26, 207-220.
Collapse
Affiliation(s)
- Yazhen Huo
- 1 Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University , Beijing, China .,2 USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Sanda Win
- 2 USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Tin Aung Than
- 2 USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - Shutao Yin
- 1 Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University , Beijing, China
| | - Min Ye
- 3 State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Beijing, China
| | - Hongbo Hu
- 1 Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University , Beijing, China
| | - Neil Kaplowitz
- 2 USC Research Center for Liver Disease, Keck School of Medicine, University of Southern California , Los Angeles, California
| |
Collapse
|
4
|
Chiang HC, Wang CK, Tsou TC. Differential distribution of CYP2A6 and CYP2A13 in the human respiratory tract. Respiration 2012; 84:319-26. [PMID: 22890016 DOI: 10.1159/000339591] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 05/16/2012] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Human CYP2A6 and CYP2A13 play important roles in metabolic activation of many pulmonary carcinogens and thus their expression and distribution may determine the pulmonary susceptibility to metabolically activated carcinogens and the following lung cancer development. Because of the 93.5% of amino acid identity between CYP2A6 and CYP2A13, generation of antibodies specific to CYP2A6 or CYP2A13 has limited immunohistochemical (IHC) analysis of CYP2A6 and CYP2A13 levels in the respiratory tract. OBJECTIVES This study aimed to determine the differential distribution of CYP2A6 and CYP2A13 in human respiratory tissue with IHC analysis. METHODS With computer-aided protein sequence analyses, candidate epitopes of 15 amino acids in the C-terminal domains of CYP2A6 and CYP2A13 were selected for antibody generation. Specificity of these two antibodies was confirmed with immunoblot and immunofluorescence analyses. With these two selective antibodies, the differential distribution of CYP2A6 and CYP2A13 in human respiratory tissues, including tracheae, bronchi, bronchioles and alveoli, was determined. RESULTS IHC results showed that both CYP2A6 and CYP2A13 were markedly expressed in epithelial cells of tracheae and bronchi and that only CYP2A6 was detected in bronchiolar epithelial cells of peripheral lungs. A limitation of the present study is the cross-reactivity of our CYP2A6 antibody to the functional inactive CYP2A7. CONCLUSIONS The differential distribution patterns of CYP2A6 and CYP2A13 in the respiratory tract are of importance in considering the pulmonary susceptibility to carcinogens and the following lung cancer development.
Collapse
Affiliation(s)
- Huai-chih Chiang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Epigenetic modifications are heritable alterations of the genome, which can govern gene expression without altering the DNA sequence. The purpose of this review is to render an overview of the possible mechanisms of epigenetic regulation of gene expression in response to environmental pollutants leading to cardiovascular diseases (CVD). RECENT FINDINGS An era of cataloging epigenetic marks of the various diseased states has recently commenced, including those within the genes responsible for atherosclerosis, ischemia, hypertension and heart failure. From varied study approaches directed either toward the general understanding of the key pathway regulatory genes, or sampling population cohorts for global and gene-specific changes, it has been possible to identify several epigenetic signatures of environmental exposure relevant to CVD. Signatures of epigenetic dysregulation can be detected in peripheral blood samples, even within a few hours of environmental exposure. However, the field now faces the demand for thorough, systematic, rationalized approaches to establish the relation of exposure-driven epigenetic changes to clinical outcomes, by using sophisticated and reliable research designs and tools. SUMMARY An understanding of chromatin remodelling in response to environmental stimuli conducive to CVD is emerging, with the promise of novel diagnostic and therapeutic candidates.
Collapse
Affiliation(s)
- Andrea Baccarelli
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA.
| | | |
Collapse
|
6
|
Lii CK, Lin AH, Lee SL, Chen HW, Wang TS. Oxidative modifications of proteins by sodium arsenite in human umbilical vein endothelial cells. ENVIRONMENTAL TOXICOLOGY 2011; 26:459-471. [PMID: 20196163 DOI: 10.1002/tox.20572] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/07/2010] [Accepted: 01/11/2010] [Indexed: 05/28/2023]
Abstract
Epidemiologic studies have demonstrated that chronic arsenic exposure is associated with the incidence of chronic diseases. This association is partly related to the increase in reactive oxygen species (ROS) overload and protein oxidation that result from arsenic exposure. In this study, we intended to identify proteins susceptible to oxidative carbonylation by sodium arsenite and the impact of carbonylation on the function of these proteins in human umbilical vein endothelial cells (HUVECs). The 2,4-dinitrophenylhydrazine (DNPH) dot-blot assay revealed that arsenite (0-50 μM) dose-dependently increased protein carbonylation. Consistent with these findings, the cellular ROS level as measured by 2',7'-dichlorofluorescein diacetate (DCHF-DA) assay was increased in cells exposed to arsenite. By two-dimensional gel electrophoresis and matrix assist laser desorption ionization time of flight mass spectrometry (MALDI-TOF/MS), one glycolytic enzyme, enolase-α, two cytoskeleton proteins, fascin (F-actin associated protein) and vimentin, and two protein quality control proteins, HSC70 (heat-shock cognate protein 70), and PDIA3 (protein disulfide isomerase family A, member 3) were identified to be arsenic-sensitive carbonlyated proteins. Accompanied by carbonylation, enolase-α activity was dose-dependently decreased and the F-actin filament network was disturbed. Taken together, our results suggest that arsenite exposure results in the generation of carbonylated proteins, and the resultant changes in energy metabolism and in the cytoskeletal network may partly lead to cell damage.
Collapse
Affiliation(s)
- Chong-Kuei Lii
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | | | | | | | | |
Collapse
|
7
|
Wang J, Yu S, Jiao S, Lv X, Ma M, Zhu BZ, Du Y. Characterization of TCHQ-induced genotoxicity and mutagenesis using the pSP189 shuttle vector in mammalian cells. Mutat Res 2011; 729:16-23. [PMID: 21924276 DOI: 10.1016/j.mrfmmm.2011.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 08/17/2011] [Accepted: 08/26/2011] [Indexed: 01/29/2023]
Abstract
Tetrachlorohydroquinone (TCHQ) is a major toxic metabolite of the widely used wood preservative, pentachlorophenol (PCP), and it has also been implicated in PCP genotoxicity. However, the underlying mechanisms of genotoxicity and mutagenesis induced by TCHQ remain unclear. In this study, we examined the genotoxicity of TCHQ by using comet assays to detect DNA breakage and formation of TCHQ-DNA adducts. Then, we further verified the levels of mutagenesis by using the pSP189 shuttle vector in A549 human lung carcinoma cells. We demonstrated that TCHQ causes significant genotoxicity by inducing DNA breakage and forming DNA adducts. Additionally, DNA sequence analysis of the TCHQ-induced mutations revealed that 85.36% were single base substitutions, 9.76% were single base insertions, and 4.88% were large fragment deletions. More than 80% of the base substitutions occurred at G:C base pairs, and the mutations were G:C to C:G, G:C to T:A or G:C to A:T transversions and transitions. The most common types of mutations in A549 cells were G:C to A:T (37.14%) and A:T to C:G transitions (14.29%) and G:C to C:G (34.29%) and G:C to T:A (11.43%) transversions. We identified hotspots at nucleotides 129, 141, and 155 in the supF gene of plasmid pSP189. These mutation hotspots accounted for 63% of all single base substitutions. We conclude that TCHQ induces sequence-specific DNA mutations at high frequencies. Therefore, the safety of using this product would be carefully examined.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, PR China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Gentry PR, McDonald TB, Sullivan DE, Shipp AM, Yager JW, Clewell HJ. Analysis of genomic dose-response information on arsenic to inform key events in a mode of action for carcinogenicity. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:1-14. [PMID: 19551812 DOI: 10.1002/em.20505] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A comprehensive literature search was conducted to identify information on gene expression changes following exposures to inorganic arsenic compounds. This information was organized by compound, exposure, dose/concentration, species, tissue, and cell type. A concentration-related hierarchy of responses was observed, beginning with changes in gene/protein expression associated with adaptive responses (e.g., preinflammatory responses, delay of apoptosis). Between 0.1 and 10 microM, additional gene/protein expression changes related to oxidative stress, proteotoxicity, inflammation, and proliferative signaling occur along with those related to DNA repair, cell cycle G2/M checkpoint control, and induction of apoptosis. At higher concentrations (10-100 microM), changes in apoptotic genes dominate. Comparisons of primary cell results with those obtained from immortalized or tumor-derived cell lines were also evaluated to determine the extent to which similar responses are observed across cell lines. Although immortalized cells appear to respond similarly to primary cells, caution must be exercised in using gene expression data from tumor-derived cell lines, where inactivation or overexpression of key genes (e.g., p53, Bcl-2) may lead to altered genomic responses. Data from acute in vivo exposures are of limited value for evaluating the dose-response for gene expression, because of the transient, variable, and uncertain nature of tissue exposure in these studies. The available in vitro gene expression data, together with information on the metabolism and protein binding of arsenic compounds, provide evidence of a mode of action for inorganic arsenic carcinogenicity involving interactions with critical proteins, such as those involved in DNA repair, overlaid against a background of chemical stress, including proteotoxicity and depletion of nonprotein sulfhydryls. The inhibition of DNA repair under conditions of toxicity and proliferative pressure may compromise the ability of cells to maintain the integrity of their DNA.
Collapse
|
9
|
Arsenite enhances the benzo[a]pyrene diol epoxide (BPDE)-induced mutagenesis with no marked effect on repair of BPDE-DNA adducts in human lung cells. Toxicol In Vitro 2009; 23:897-905. [DOI: 10.1016/j.tiv.2009.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 05/01/2009] [Accepted: 05/18/2009] [Indexed: 12/16/2022]
|
10
|
Tsai MH, Chen SC, Wang HJ, Yu HS, Chang LW. A Mouse Model for the Study of Vascular Permeability Changes Induced by Arsenic. Toxicol Mech Methods 2008; 15:433-7. [DOI: 10.1080/15376520500195640] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Bae ON, Lim KM, Noh JY, Kim KY, Lim EK, Chung JH. Methylated Organic Metabolites of Arsenic and their Cardiovascular Toxicities. Toxicol Res 2008; 24:161-167. [PMID: 32038790 PMCID: PMC7006311 DOI: 10.5487/tr.2008.24.3.161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 06/27/2008] [Accepted: 06/28/2008] [Indexed: 11/20/2022] Open
Abstract
Recently, arsenic-toxicity has become the major focus of strenuous assessment and dynamic research from the academy and regulatory agency. To elucidate the cause and the mechanism underlying the serious adverse health effects from chronic ingestion of arsenic-contaminated drinking water, numerous studies have been directed on the investigation of arsenic-toxicity using various in vitro as well as in vivo systems. Neverthless, some questions for arsenic effects remain unexplained, reflecting the contribution of unknown factors to the manifestation of arsenic-toxicity. Interestingly, very recent studies on arsenic metabolites have discovered that trivalent methylated arsenicals show stronger cytotoxic and genotoxic potentials than inorganic arsenic or pentavalent metabolites, arguing that these metabolites could play a key role in arsenic-associated disorders. In this review, recent progress and literatures are summarized on the metabolism of trivalent methylated metabolites and their toxicity on body systems including cardiovascular system in an effort to provide an insight into the future research on arsenic-associated disorders.
Collapse
Affiliation(s)
- Ok-Nam Bae
- College of Pharmacy, Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 151-742 Korea
| | - Kyung-Min Lim
- College of Pharmacy, Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 151-742 Korea
| | - Ji-Yoon Noh
- College of Pharmacy, Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 151-742 Korea
| | - Keun-Young Kim
- College of Pharmacy, Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 151-742 Korea
| | - Eun-Kyung Lim
- College of Pharmacy, Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 151-742 Korea
| | - Jin-Ho Chung
- College of Pharmacy, Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 151-742 Korea
| |
Collapse
|
12
|
Klei LR, Barchowsky A. Positive signaling interactions between arsenic and ethanol for angiogenic gene induction in human microvascular endothelial cells. Toxicol Sci 2008; 102:319-27. [PMID: 18182400 DOI: 10.1093/toxsci/kfn003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Arsenic in the drinking water may promote vascular diseases in millions of people worldwide through unresolved mechanisms. In addition, little is known of the effects of coexposures to arsenic and other common vasculature toxicants, such as alcohol. To investigate signaling interactions between arsenic and alcohols, primary human microvascular endothelial (HMVEC) cells were exposed to noncytotoxic concentrations of arsenite (1-5 microM) in the presence or absence of 0.1% ethanol (EtOH). Coexposure, but not exposure to either agent alone, rapidly increased active Fyn tyrosine kinase, tyrosine phosphorylation of a 109-kDa protein and serine phosphorylation of protein kinase C (PKC)delta. The 109-kDa protein was identified as PYK2, a regulator of vascular integrin signaling and an upstream activator of PKCdelta. Membrane localization of phospholipase Cgamma1 was increased by coexposure within 15 min, but not by either agent alone. In contrast, both agents equally increased membrane localization of Rac1-GTPase. Coexposure, but not exposure to either agent alone, induced transcript levels for the angiogenic genes, vascular endothelial cell growth factor (Vegfa) and insulin-like growth factor-1 (Igf1). However, EtOH inhibited arsenic-induced, nuclear factor-kappaB-driven interleukin-8 and collagen-1 expression. Differential effects of selective PKC inhibitors on induced gene expression combined with a lack of interaction for induction of hemeoxygenase-1 further demonstrated that arsenic-responsive signaling pathways differ in sensitivity to EtOH interactions. Finally, coexposure enhanced endothelial tube formation in in vitro angiogenesis assays. These data indicate that complex interactions occur between arsenic and EtOH exposures that functionally affect endothelial signaling for gene induction and remodeling stimuli.
Collapse
Affiliation(s)
- Linda R Klei
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania 15219, USA
| | | |
Collapse
|
13
|
Wang SL, Chang FH, Liou SH, Wang HJ, Li WF, Hsieh DPH. Inorganic arsenic exposure and its relation to metabolic syndrome in an industrial area of Taiwan. ENVIRONMENT INTERNATIONAL 2007; 33:805-11. [PMID: 17481731 DOI: 10.1016/j.envint.2007.03.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 01/26/2007] [Accepted: 03/16/2007] [Indexed: 05/15/2023]
Abstract
Past arsenic exposure was found associated with increased incidence of type 2 diabetes. However, the mechanisms remain unclear. Metabolic syndrome has been shown as a strong predictor for diabetes occurrence. We aimed at examining the association of inorganic arsenic exposure and the prevalence of metabolic syndrome. The authors recruited 660 age and gender stratified random population of residents in central Taiwan during 2002-2003. They received home interviews and health examinations at local health care units, where blood and hair specimens were collected. Hair arsenic (H-As) concentrations were determined by inductively coupled plasma-mass spectrometry. Metabolic syndrome was defined as the presence of three or more of the following risk factors: elevated levels of blood pressure, plasma glucose, and triglycerides, also the body mass index, and reduced high-density lipoprotein. Prevalence of metabolic syndrome increased from the 2nd tertile (0.034 ug/g) of H-As levels (odds ratio=2.54, 95% confidence interval: 1.20-5.39, p=0.015) after the adjustment for age, gender, occupation and life styles including cigarette smoking. We further found linear relation between H-As concentrations and increased levels of plasma glucose and lipids, and blood pressures. This first report may help identify modifiable factors associated with diabetogenesis and cardiovascular disease progression and thus be worth following for community health.
Collapse
Affiliation(s)
- Shu-Li Wang
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
14
|
Tsou TC, Yeh SC, Tsai FY, Chen JW, Chiang HC. Glutathione regulation of redox-sensitive signals in tumor necrosis factor-α-induced vascular endothelial dysfunction. Toxicol Appl Pharmacol 2007; 221:168-78. [PMID: 17467021 DOI: 10.1016/j.taap.2007.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 03/03/2007] [Accepted: 03/07/2007] [Indexed: 10/23/2022]
Abstract
We investigated the regulatory role of glutathione in tumor necrosis factor-alpha (TNF-alpha)-induced vascular endothelial dysfunction as evaluated by using vascular endothelial adhesion molecule expression and monocyte-endothelial monolayer binding. Since TNF-alpha induces various biological effects on vascular cells, TNF-alpha dosage could be a determinant factor directing vascular cells into different biological fates. Based on the adhesion molecule expression patterns responding to different TNF-alpha concentrations, we adopted the lower TNF-alpha (0.2 ng/ml) to rule out the possible involvement of other TNF-alpha-induced biological effects. Inhibition of glutathione synthesis by l-buthionine-(S,R)-sulfoximine (BSO) resulted in down-regulations of the TNF-alpha-induced adhesion molecule expression and monocyte-endothelial monolayer binding. BSO attenuated the TNF-alpha-induced nuclear factor-kappaB (NF-kappaB) activation, however, with no detectable effect on AP-1 and its related mitogen-activated protein kinases (MAPKs). Deletion of an AP-1 binding site in intercellular adhesion molecule-1 (ICAM-1) promoter totally abolished its constitutive promoter activity and its responsiveness to TNF-alpha. Inhibition of ERK, JNK, or NF-kappaB attenuates TNF-alpha-induced ICAM-1 promoter activation and monocyte-endothelial monolayer binding. Our study indicates that TNF-alpha induces adhesion molecule expression and monocyte-endothelial monolayer binding mainly via activation of NF-kappaB in a glutathione-sensitive manner. We also demonstrated that intracellular glutathione does not modulate the activation of MAPKs and/or their downstream AP-1 induced by lower TNF-alpha. Although AP-1 activation by the lower TNF-alpha was not detected in our systems, we could not rule out the possible involvement of transiently activated MAPKs/AP-1 in the regulation of TNF-alpha-induced adhesion molecule expression.
Collapse
Affiliation(s)
- Tsui-Chun Tsou
- Laboratory of Molecular Toxicology, Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan.
| | | | | | | | | |
Collapse
|
15
|
McCarty MF, Block KI. Preadministration of high-dose salicylates, suppressors of NF-kappaB activation, may increase the chemosensitivity of many cancers: an example of proapoptotic signal modulation therapy. Integr Cancer Ther 2006; 5:252-68. [PMID: 16880431 DOI: 10.1177/1534735406291499] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
NF-kappaB activity is elevated in a high proportion of cancers, particularly advanced cancers that have been treated previously. Cytotoxic treatment selects for such up-regulation inasmuch as NF-kappaB promotes transcription of a large number of proteins that inhibit both the intrinsic and extrinsic pathways of apoptosis; NF-kappaB also boosts expression of mdr1, which expels many drugs from cells. Indeed, high NF-kappaB activity appears to be largely responsible for the chemo- and radioresistance of many cancers. Thus, agents that suppress NF-kappaB activity should be useful as adjuvants to cytotoxic cancer therapy. Of the compounds that are known to be NF-kappaB antagonists, the most practical for current use may be the nonsteroidal anti-inflammatory drugs aspirin, salicylic acid, and sulindac, each of which binds to and inhibits Ikappa kinase- beta, a central mediator of NF-kappa activation; the low millimolar plasma concentrations of salicylate required for effective inhibition of this kinase in vivo can be achieved with high-dose regimens traditionally used to manage rheumatic disorders. The gastrointestinal toxicity of such regimens could be minimized by using salsalate or enteric-coated sodium salicy-late or by administering misoprostol in conjunction with aspirin therapy. Presumably, best results would be seen if these agents were administered for several days prior to a course of chemo- or radiotherapy, continuing throughout the course. This concept should first be tested in nude mice bearing xenografts of chemoresistant human tumors known to have elevated NF-kappa activity. Ultimately, more complex adjuvant regimens can be envisioned in which salicylates are used in conjunction with other NF-kappa antagonists and/or agents that target other mediators of down-regulated apoptosis in cancer, such as Stat3; coadministration of salicylate and organic selenium may have intriguing potential in this regard. These strategies may also have potential as adjuvants to metronomic chemotherapy, which seeks to suppress angio-genesis by targeting cycling endothelial cells in tumors.
Collapse
Affiliation(s)
- Mark F McCarty
- Block Center for Integrative Cancer Care, Evanston, Illinois 60201, USA
| | | |
Collapse
|
16
|
Santos C, Gaspar M, Caeiro A, Branco-Price C, Teixeira A, Ferreira RB. Exposure of Lemna minor to arsenite: expression levels of the components and intermediates of the ubiquitin/proteasome pathway. PLANT & CELL PHYSIOLOGY 2006; 47:1262-73. [PMID: 16926164 DOI: 10.1093/pcp/pcj096] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In animal cells, arsenite has been reported to cause sulfhydryl depletion, generate reactive oxygen species and increase the level of large ubiquitin-protein conjugates. Plant viability tests and DNA laddering experiments have shown that Lemna minor remains viable after exposure to 50 microM NaAsO(2) for periods of at least 6 h. However, protein metabolism is affected in two major ways: the synthesis of an array of stress proteins, which confer thermotolerance; and an increase in the amount of large ubiquitin-protein conjugates, particularly evident after 2-3 h of stress, indicative of a role for the ubiquitin/proteasome pathway. This outcome is primarily attributed to an increased availability of protein substrates during arsenite treatment for three main reasons: an increase in protein carbonyl content after 1-2 h of stress; moderate increments in the transcript levels of the sequences coding for the ubiquitin pathway components chosen as markers (polyubiquitin, E1 and E2, and the beta subunit and the ATPase subunits of the 26S proteasome); the observed increase in ubiquitin conjugates does not depend on de novo protein synthesis. This study is the first report on the involvement of the ubiquitin/proteasome pathway in response to arsenite in plants. In addition, it addresses the simultaneous expression of selected genes encoding the various components of the pathway. The results suggest that in plants, unlike in animals, the response to a relatively low level of arsenite does not induce apoptotic cell death. As a whole, the response to arsenite apparently involves a conjugation of salvage and proteolytic machineries, including heat shock protein synthesis and the ubiquitin/proteasome pathway.
Collapse
Affiliation(s)
- Cláudia Santos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal.
| | | | | | | | | | | |
Collapse
|
17
|
Tsou TC, Tsai FY, Yeh SC, Chang LW. ATM/ATR-related checkpoint signals mediate arsenite-induced G2/M arrest in primary aortic endothelial cells. Arch Toxicol 2006; 80:804-10. [PMID: 16645841 DOI: 10.1007/s00204-006-0110-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 04/12/2006] [Indexed: 01/08/2023]
Abstract
Epidemiological studies have demonstrated a high association of inorganic arsenic exposure with vascular disease. Our recent in vitro studies have linked this vascular damage to vascular endothelial dysfunction induced by arsenic exposure. However, cell-cycle arrest induced by arsenic and its involvement in vascular dysfunction remain to be clarified. In this study, we employed primary porcine aortic endothelial cells to investigate regulatory mechanisms of G2/M phase arrest induced by arsenite. Our study revealed that lower concentrations of arsenite (1 and 3 microM) increased cell proliferation, whereas higher concentrations of arsenite (10, 20, and 30 microM) inhibited cell proliferation together with correlated increases in G2/M phase arrest. We found that this arsenite-induced G2/M phase arrest was accompanied by accumulation and/or phosphorylation of checkpoint-related molecules, including p53, Cdc25B, Cdc25C, and securin. Inhibition of activations of these checkpoint-related molecules by caffeine significantly attenuated the 30-microM arsenite-induced G2/M phase arrest by 93%. Our data suggest that the DNA damage responsive kinases ATM (ataxia-telangiectasia mutated) and ATR (ATM and Rad3-related) play critical roles in arsenite-induced G2/M phase arrest in aortic endothelial cells possibly via regulation of checkpoint-related signaling molecules including p53, Cdc25B, Cdc25C, and securin.
Collapse
Affiliation(s)
- Tsui-Chun Tsou
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, 35 Keyan Road, Zhunan Town, Miaoli County 35053, Taiwan.
| | | | | | | |
Collapse
|
18
|
Tsou TC, Tsai FY, Hsieh YW, Li LA, Yeh SC, Chang LW. Arsenite induces endothelial cytotoxicity by down-regulation of vascular endothelial nitric oxide synthase. Toxicol Appl Pharmacol 2005; 208:277-84. [PMID: 16239170 DOI: 10.1016/j.taap.2005.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 02/17/2005] [Accepted: 03/01/2005] [Indexed: 12/12/2022]
Abstract
Epidemiological studies have demonstrated a high association of inorganic arsenic exposure with vascular diseases. Recent research has also linked this vascular damage to impairment of endothelial nitric oxide synthase (eNOS) function by arsenic exposure. However, the role of eNOS in regulating the arsenite-induced vascular dysfunction still remains to be clarified. In our present study, we investigated the effect of arsenite on Akt1 and eNOS and its involvement in cytotoxicity of vascular endothelial cells. Our study demonstrated that arsenite decreased the protein levels of both Akt1 and eNOS accompanied with increased levels of ubiquitination of total cell lysates. We found that inhibition of the ubiquitin-proteasome pathway by MG-132 could partially protect Akt1 and eNOS from degradation by arsenite together with a proportional protection from the arsenite-induced cytoxicity. Moreover, up-regulation of eNOS protein expression significantly attenuated the arsenite-induced cytotoxicity and eNOS activity could be significantly inhibited after incubation with arsenite for 24 h in a cell-free system. Our study indicated that endothelial eNOS activity could be attenuated by arsenite via the ubiquitin-proteasome-mediated degradation of Akt1/eNOS as well as via direct inhibition of eNOS activity. Our study also demonstrated that eNOS actually played a protective role in arsenite-induced cytoxicity. These observations supported the hypothesis that the impairment of eNOS function by arsenite is one of the mechanisms leading to vascular changes and diseases.
Collapse
Affiliation(s)
- Tsui-Chun Tsou
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
19
|
Tsou TC, Yeh SC, Tsai EM, Tsai FY, Chao HR, Chang LW. Arsenite enhances tumor necrosis factor-α-induced expression of vascular cell adhesion molecule-1. Toxicol Appl Pharmacol 2005; 209:10-8. [PMID: 16271621 DOI: 10.1016/j.taap.2005.03.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 01/29/2005] [Accepted: 03/14/2005] [Indexed: 11/20/2022]
Abstract
Epidemiological studies demonstrated a high association of vascular diseases with arsenite exposure. We hypothesize that arsenite potentiates the effect of proinflammatory cytokines on vascular endothelial cells, and hence contributes to atherosclerosis. In this study, we investigated the effect of arsenite and its induction of glutathione (GSH) on vascular cell adhesion molecule-1 (VCAM-1) protein expression in human umbilical vein endothelial cells (HUVECs) in response to tumor necrosis factor-alpha (TNF-alpha), a typical proinflammatory cytokine. Our study demonstrated that arsenite pretreatment potentiated the TNF-alpha-induced VCAM-1 expression with up-regulations of both activator protein-1 (AP-1) and nuclear factor-kappaB (NF-kappaB). To elucidate the role of GSH in regulation of AP-1, NF-kappaB, and VCAM-1 expression, we employed l-buthionine (S,R)-sulfoximine (BSO), a specific gamma-glutamylcysteine synthetase (gamma-GCS) inhibitor, to block intracellular GSH synthesis. Our investigation revealed that, by depleting GSH, arsenite attenuated the TNF-alpha-induced VCAM-1 expression as well as a potentiation of AP-1 and an attenuation of NF-kappaB activations by TNF-alpha. Moreover, we found that depletion of GSH would also attenuate the TNF-alpha-induced VCAM-1 expression with a down-regulation of the TNF-alpha-induced NF-kappaB activation and without significant effect on AP-1. On the other hand, the TNF-alpha-induced VCAM-1 expression could be completely abolished by inhibition of AP-1 or NF-kappaB activity, suggesting that activation of both AP-1 and NF-kappaB was necessary for VCAM-1 expression. In summary, we demonstrate that arsenite enhances the TNF-alpha-induced VCAM-1 expression in HUVECs via regulation of AP-1 and NF-kappaB activities in a GSH-sensitive manner. Our present study suggested a potential mechanism for arsenite in the induction of vascular inflammation and vascular diseases via modulating the actions of proinflammatory cytokines.
Collapse
Affiliation(s)
- Tsui-Chun Tsou
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan, ROC.
| | | | | | | | | | | |
Collapse
|
20
|
Nuntharatanapong N, Chen K, Sinhaseni P, Keaney JF. EGF receptor-dependent JNK activation is involved in arsenite-induced p21Cip1/Waf1 upregulation and endothelial apoptosis. Am J Physiol Heart Circ Physiol 2005; 289:H99-H107. [PMID: 15734884 DOI: 10.1152/ajpheart.00901.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arsenic exposure is associated with an increased risk of atherosclerosis and vascular diseases. Although endothelial cells have long been considered to be the primary targets of arsenic toxicity, the underlying molecular mechanism remains largely unknown. In this study, we sought to explore the signaling pathway triggered by sodium arsenite and its implication for endothelial phenotype. We found that sodium arsenite produced time- and dose-dependent decreases in human umbilical vein endothelial cell viability. This effect correlated with the induction of p21Cip1/Waf1 (up to 10-fold), a regulatory protein of cell cycle and apoptosis. We also found that arsenite-stimulated EGF (ErbB1) and ErbB2 receptor transactivation, manifest as receptor tyrosine phosphorylation, appeared to be a proximal signaling event leading to p21Cip1/Waf1 induction, because both pharmacological inhibitors and knockdown of receptors by RNA interference blocked arsenite-induced p21Cip1/Waf1 upregulation. Arsenite-induced activation of JNK and p38 MAPK was distinct, with only JNK as a downstream target of the EGF receptor. Moreover, inhibition of JNK with SP-600125 or dominant negative MKK7 inhibited only p21Cip1/Waf1 induction, whereas the p38 MAPK inhibitor SB-203580 or dominant negative MKK4 inhibited both p21Cip1/Waf1 and p53 induction. Functionally, inhibition of p21Cip1/Waf1 induction prevented endothelial apoptosis due to arsenite treatment. Insofar as endothelial dysfunction promotes vascular disease, these data provide a mechanism for the increased incidence of cardiovascular disease due to arsenite exposure.
Collapse
Affiliation(s)
- Nopparat Nuntharatanapong
- Evans Memorial Department of Medicine, Boston Univ. School of Medicine, Whitaker Cardiovascular Institute, 715 Albany St., Rm. W507, Boston, MA 02118, USA
| | | | | | | |
Collapse
|
21
|
Abstract
The impact of arsenic on the integrity of blood vessels in vivo via in situ exposure (local injection) of arsenic was investigated. Vascular permeability changes were evaluated by means of the Evans blue assay and the India ink tracer techniques. Rats were intravenously injected with Evans blue followed by intradermal injections of various doses of sodium arsenite on the back skins of the animals. Evans blue at different time points was extracted and assayed as indices of vascular leakage. Skin at various time point injection sites was sampled for arsenic measurement via graphite furnace atomic absorption spectroscopy. Our time course study with Evans blue technique demonstrated a biphasic pattern of vascular permeability change: an early phase of permeability reduction and a later phase of permeability promotion at all dose levels tested. The India ink tracer technique also demonstrated a time-correlated increase in vascular labelling in the tissues examined, signifying an increase in vascular leakage with time. Moreover, we found that despite an early increase in tissue arsenic content at time of injection, tissue arsenic declined rapidly and returned to near control levels after 30-60 min. Thus, an inverse correlation between tissue arsenic content and the extent of vascular permeability was apparent. This study provides the first demonstration that in situ exposure to arsenic will produce vascular dysfunction (vascular leakage) in vivo.
Collapse
Affiliation(s)
- Shih-Chieh Chen
- Department of Anatomy, Kaohsiung Medical University, Taiwan, ROC
| | | | | | | | | |
Collapse
|