1
|
Fareed MM, Khalid H, Khalid S, Shityakov S. Deciphering Molecular Mechanisms of Carbon Tetrachloride- Induced Hepatotoxicity: A Brief Systematic Review. Curr Mol Med 2024; 24:1124-1134. [PMID: 37818557 DOI: 10.2174/0115665240257603230919103539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 10/12/2023]
Abstract
The liver plays a critical role in metabolic processes, making it vulnerable to injury. Researchers often study carbon tetrachloride (CCl4)-induced hepatotoxicity in model organisms because it closely resembles human liver damage. This toxicity occurs due to the activation of various cytochromes, including CYP2E1, CYP2B1, CYP2B2, and possibly CYP3A, which produce the trichloromethyl radical (CCl3*). CCl3* can attach to biological molecules such as lipids, proteins, and nucleic acids, impairing lipid metabolism and leading to fatty degeneration. It can also combine with DNA to initiate hepatic carcinogenesis. When exposed to oxygen, CCl3* generates more reactive CCl3OO*, which leads to lipid peroxidation and membrane damage. At the molecular level, CCl4 induces the release of several inflammatory cytokines, including TNF-α and NO, which can either help or harm hepatotoxicity through cellular apoptosis. TGF-β contributes to fibrogenesis, while IL-6 and IL-10 aid in recovery by minimizing anti-apoptotic activity and directing cells toward regeneration. To prevent liver damage, different interventions can be employed, such as antioxidants, mitogenic agents, and the maintenance of calcium sequestration. Drugs that prevent CCl4- induced cytotoxicity and proliferation or enhance CYP450 activity may offer a protective response against hepatic carcinoma.
Collapse
Affiliation(s)
- Muhammad Mazhar Fareed
- School of Science and Engineering, Department of Computer Science, Università degli Studi di Verona, Verona, Italy
- Laboratorio di Bioinformatica Applicata, Department of Biotechnology, Università degli Studi di Verona, Verona, Italy
| | - Hina Khalid
- Faculty of Life Sciences, Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Sana Khalid
- School of Life Science and Medicine, Shandong University of Technology, Zibo, China
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, Saint-Petersburg, Russian Federation
| |
Collapse
|
2
|
Yi C, Chen F, Ma R, Fu Z, Song M, Zhang Z, Chen L, Tang X, Lu P, Li B, Zhang Q, Song Q, Zhu G, Wang W, Wang Q, Wang X. Serum level of calpains product as a novel biomarker of acute lung injury following cardiopulmonary bypass. Front Cardiovasc Med 2022; 9:1000761. [PMID: 36465445 PMCID: PMC9709320 DOI: 10.3389/fcvm.2022.1000761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE The aim of this study was to test the hypothesis whether serum level of calpains could become a meaningful biomarker for diagnosis of acute lung injury (ALI) in clinical after cardiac surgery using cardiopulmonary bypass (CPB) technology. METHODS AND RESULTS Seventy consecutive adults underwent cardiac surgery with CPB were included in this prospective study. Based on the American-European Consensus Criteria (AECC), these patients were divided into ALI (n = 20, 28.57%) and non-ALI (n = 50, 71.43%) groups. Serum level of calpains in terms of calpains' activity which was expressed as relative fluorescence unit (RFU) per microliter and measured at beginning of CPB (baseline), 1 h during CPB, end of CPB as well as 1, 12, and 24 h after CPB. Difference of serum level of calpains between two groups first appeared at the end of CPB and remained different at subsequent test points. Univariate and multivariate logistic regression analysis indicated that serum level of calpains 1 h after CPB was an independent predictor for postoperative ALI (OR 1.011, 95% CI 1.001, 1.021, p = 0.033) and correlated with a lower PaO2/FiO2 ratio in the first 2 days (The first day: r = -0.389, p < 0.001 and the second day: r = -0.320, p = 0.007) as well as longer mechanical ventilation time (r = 0.440, p < 0.001), intensive care unit (ICU) length of stay (LOS) (r = 0.419, p < 0.001) and hospital LOS (r = 0.297, p = 0.013). CONCLUSION Elevated serum level of calpains correlate with impaired lung function and poor clinical outcomes, indicating serum level of calpains could act as a potential biomarker for postoperative ALI following CPB in adults. CLINICAL TRIAL REGISTRATION [https://clinicaltrials.gov/show/NCT05610475], identifier [NCT05610475].
Collapse
Affiliation(s)
- Chenlong Yi
- Department of Cardiovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fangyu Chen
- Department of Cardiovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Thoracic and Cardiovascular Surgery, Dalian Medical University, Dalian, China
| | - Rongrong Ma
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Zhi Fu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Meijuan Song
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zhuan Zhang
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Lingdi Chen
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xing Tang
- Department of Operating Theatre, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Peng Lu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ben Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qingfen Zhang
- Department of Anesthesiology, Peking University People’s Hospital, Beijing, China
| | - Qifeng Song
- Department of Cardiovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Thoracic and Cardiovascular Surgery, Dalian Medical University, Dalian, China
| | - Guangzheng Zhu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
- Department of Thoracic and Cardiovascular Surgery, Dalian Medical University, Dalian, China
| | - Wei Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Qiang Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaowei Wang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
3
|
Shan S, Liu Z, Li L, Zhang C, Kou R, Song F. Calpain-mediated cleavage of mitochondrial fusion/fission proteins in acetaminophen-induced mice liver injury. Hum Exp Toxicol 2022; 41:9603271221108321. [PMID: 35713544 DOI: 10.1177/09603271221108321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mitochondrial dysfunction was considered to be a critical event in acetaminophen (APAP) -induced hepatotoxicity. Recent studies suggest that abnormal mitochondrial dynamics contributes to mitochondrial dysfunction in APAP-induced liver injury, yet the underlying mechanisms responsible for deregulated mitochondrial dynamics remains elusive. In this study, C57BL/6 mice were used to establish a model of acute liver injury via intraperitoneal (i.p.) injection with overdose of APAP. Furthermore, calpain intervention experiments were achieved by the inhibitors ALLN or calpeptin. The activity of serum enzymes and pathological changes of APAP-treated mice were evaluated, and the critical molecules in mitochondrial dynamics and calpain degradative pathway were determined by electron microscopy, immunoblot and calpain activity kit. The results demonstrated that APAP overdose resulted in a severe liver injury, mitochondrial damage and an obvious cleavage of fusion/fission proteins. Meanwhile, the activation of calpain degradative machinery in liver were observed following APAP. By contrast, pretreatment of calpain inhibitors significantly inhibited the activation of calpains. Our further investigation found that ALLN or calpeptin administration significantly suppresses the changes of mitochondrial dynamics in APAP-treated mice and finally protected against APAP-induced hepatoxicity. Overall, these results suggest that calpain-mediated cleavage of mitochondrial dynamics proteins was involved in the pathogenic process of mitochondrial dysfunction and thus present a potential molecular coupling APAP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Shulin Shan
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, 12589Shandong University, Jinan, China
| | - Zhaoxiong Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, 12589Shandong University, Jinan, China
| | - Linlin Li
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, 12589Shandong University, Jinan, China
| | - Cuiqin Zhang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, 12589Shandong University, Jinan, China
| | - Ruirui Kou
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, 12589Shandong University, Jinan, China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, 12589Shandong University, Jinan, China
| |
Collapse
|
4
|
Kitto LJ, Henderson NC. Hepatic Stellate Cell Regulation of Liver Regeneration and Repair. Hepatol Commun 2021; 5:358-370. [PMID: 33681672 PMCID: PMC7917274 DOI: 10.1002/hep4.1628] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/22/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022] Open
Abstract
The hepatic mesenchyme has been studied extensively in the context of liver fibrosis; however, much less is known regarding the role of mesenchymal cells during liver regeneration. As our knowledge of the cellular and molecular mechanisms driving hepatic regeneration deepens, the key role of the mesenchymal compartment during the regenerative response has been increasingly appreciated. Single-cell genomics approaches have recently uncovered both spatial and functional zonation of the hepatic mesenchyme in homeostasis and following liver injury. Here we discuss how the use of preclinical models, from in vivo mouse models to organoid-based systems, are helping to shape our understanding of the role of the mesenchyme during liver regeneration, and how these approaches should facilitate the precise identification of highly targeted, pro-regenerative therapies for patients with liver disease.
Collapse
Affiliation(s)
- Laura J. Kitto
- Centre for Inflammation ResearchThe Queen’s Medical Research InstituteEdinburgh BioQuarterUniversity of EdinburghEdinburghUnited Kingdom
| | - Neil C. Henderson
- Centre for Inflammation ResearchThe Queen’s Medical Research InstituteEdinburgh BioQuarterUniversity of EdinburghEdinburghUnited Kingdom
- MRC Human Genetics UnitInstitute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
5
|
Xu H, Zhang L, Xu D, Deng W, Yang W, Tang F, Da M. Knockout of calpain-1 protects against high-fat diet-induced liver dysfunction in mouse through inhibiting oxidative stress and inflammation. Food Sci Nutr 2021; 9:367-374. [PMID: 33473299 PMCID: PMC7802557 DOI: 10.1002/fsn3.2002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 12/25/2022] Open
Abstract
The present study was designed to investigate the significance of calpain-1 in the high-fat diet (HFD)-induced liver dysfunction and to explore the possible mechanism. C57 mice and calpain-1 knockout (KO) mice were fed with standard diet (SD) or HFD, respectively, for 16 weeks. The activities of calpain, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and superoxide dismutase (SOD) in serum and/or liver of mouse were measured. Lipid profiles in the serum and liver were examined. Contents of oxidized low-density lipoprotein (oxLDL), malondialdehyde (MDA), tumor necrosis factor (TNF-α), and interleukin-6 (IL-6) in serum or/and liver were detected. The results showed that compared with C57 mice fed with SD, HFD-fed C57 mice showed the increased activities of AST and ALT in the serum, which was decreased in calpain-1 KO mice fed with HFD. In addition, knockout of calpain-1 decreased the contents of oxLDL, MDA, TNF-α, and IL-6, while increased SOD activity, in serum and/or liver. However, knockout of calpain-1 had no effects on lipid profiles in both serum and liver. When fed with SD, all these parameters of C57 and calpain-1 KO mice were comparable except for decreased calpain activity in the liver of calpain-1 KO mice. The results suggested that knockout of calpain-1 protects against HFD-induced liver dysfunction through inhibiting oxidative stress and inflammation.
Collapse
Affiliation(s)
- Hao Xu
- Department of Oncology SurgeryGansu Provincial People's HospitalLanzhouGansu ProvinceChina
- School of Clinical MedicineNingxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Li Zhang
- Pharmacy DepartmentShaanxi Aerospace HospitalXi'anShaanxi ProvinceChina
| | - Duowen Xu
- Pharmacy DepartmentWuwei Medical AcademyWuweiGansu ProvinceChina
| | - Weibo Deng
- School of Clinical MedicineNingxia Medical UniversityYinchuanNingxia Hui Autonomous RegionChina
| | - Wenbao Yang
- School of Clinical MedicineGansu University of Traditional Chinese MedicineLanzhouGansu ProvinceChina
| | - Futian Tang
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular DiseasesLanzhou University Second HospitalLanzouGansu ProvinceChina
| | - Mingxu Da
- Department of Oncology SurgeryGansu Provincial People's HospitalLanzhouGansu ProvinceChina
| |
Collapse
|
6
|
Bhushan B, Apte U. Acetaminophen Test Battery (ATB): A Comprehensive Method to Study Acetaminophen-Induced Acute Liver Injury. Gene Expr 2020; 20:125-138. [PMID: 32443984 PMCID: PMC7650012 DOI: 10.3727/105221620x15901763757677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acetaminophen (APAP) overdose is the major cause of acute liver failure (ALF) in the Western world. Extensive research is ongoing to identify the mechanisms of APAP-induced ALF. APAP-induced acute liver injury is also one of the most commonly studied drug-induced liver injury models in the field of hepatotoxicity. APAP toxicity is triphasic and includes three mechanistically interlinked but temporally distinct phases of initiation, progression, and recovery/regeneration. Despite how commonly it is studied, the methods to study APAP toxicity differ significantly, often leading to confusing and contradictory data. There are number of reviews on mechanisms of APAP toxicity, but a detailed mechanism-based comprehensive method and list of assays that covers all phases of APAP hepatotoxicity are missing. The goal of this review is to provide a standard protocol and guidelines to study APAP toxicity in mice including a test battery that can help investigators to comprehensively analyze APAP toxicity in the specific context of their hypothesis. Further, we will identify the major roadblocks and common technical problems that can significantly affect the results. This acetaminophen test battery (ATB) will be an excellent guide for scientists studying this most common and clinically relevant drug-induced liver injury and will also be helpful as a roadmap for hypothesis development to study novel mechanisms.
Collapse
Affiliation(s)
- Bharat Bhushan
- *Department of Pathology and Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Udayan Apte
- †Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
7
|
Calpain proteolytic systems counteract endothelial cell adaptation to inflammatory environments. Inflamm Regen 2020; 40:5. [PMID: 32266045 PMCID: PMC7114782 DOI: 10.1186/s41232-020-00114-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/23/2020] [Indexed: 02/08/2023] Open
Abstract
Vascular endothelial cells (ECs) make up the innermost surface of arteries, veins, and capillaries, separating the remaining layers of the vessel wall from circulating blood. Under non-inflammatory conditions, ECs are quiescent and form a robust barrier structure; however, exposure to inflammatory stimuli induces changes in the expression of EC proteins that control transcellular permeability and facilitate angiogenic tube formation. Increasing evidence suggests that dysfunction in intracellular proteolytic systems disturbs EC adaptation to the inflammatory environment, leading to vascular disorders such as atherosclerosis and pathological angiogenesis. Recent work has highlighted the contribution of the calpain–calpastatin stress-responsive intracellular proteolytic system to adaptation failure in ECs. In this review, we summarize our current knowledge of calpain–calpastatin-mediated physiologic and pathogenic regulation in ECs and discuss the molecular basis by which disruption of this system perturbs EC adaptation to the inflammatory environment.
Collapse
|
8
|
Trivella JP, Martin P, Carrion AF. Novel targeted therapies for the management of liver fibrosis. Expert Opin Emerg Drugs 2020; 25:59-70. [PMID: 32098512 DOI: 10.1080/14728214.2020.1735350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Juan P. Trivella
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Paul Martin
- Division of Gastroenterology and Hepatology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Andres F. Carrion
- Division of Gastroenterology and Hepatology, University of Miami, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
9
|
Hu C, Zhao L, Wu Z, Li L. Transplantation of mesenchymal stem cells and their derivatives effectively promotes liver regeneration to attenuate acetaminophen-induced liver injury. Stem Cell Res Ther 2020; 11:88. [PMID: 32106875 PMCID: PMC7047366 DOI: 10.1186/s13287-020-01596-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/29/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
Acetaminophen (APAP)-induced injury is a common clinical phenomenon that not only occurs in a dose-dependent manner but also occurs in some idiosyncratic individuals in a dose-independent manner. APAP overdose generally results in acute liver injury via the initiation of oxidative stress, endoplasmic reticulum (ER) stress, autophagy, liver inflammation, and microcirculatory dysfunction. Liver transplantation is the only effective strategy for treating APAP-induced liver failure, but liver transplantation is inhibited by scarce availability of donor liver grafts, acute graft rejection, lifelong immunosuppression, and unbearable costs. Currently, N-acetylcysteine (NAC) effectively restores liver functions early after APAP intake, but it does not protect against APAP-induced injury at the late stage. An increasing number of animal studies have demonstrated that mesenchymal stem cells (MSCs) significantly attenuate acute liver injury through their migratory capacity, hepatogenic differentiation, immunoregulatory capacity, and paracrine effects in acute liver failure (ALF). In this review, we comprehensively discuss the mechanisms of APAP overdose-induced liver injury and current therapies for treating APAP-induced liver injury. We then comprehensively summarize recent studies about transplantation of MSC and MSC derivatives for treating APAP-induced liver injury. We firmly believe that MSCs and their derivatives will effectively promote liver regeneration and liver injury repair in APAP overdose-treated animals and patients. To this end, MSC-based therapies may serve as an effective strategy for patients who are waiting for liver transplantation during the early and late stages of APAP-induced ALF in the near future.
Collapse
Affiliation(s)
- Chenxia Hu
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lingfei Zhao
- Kidney Disease Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China.,Institute of Nephrology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhongwen Wu
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lanjuan Li
- Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
10
|
Clemens MM, McGill MR, Apte U. Mechanisms and biomarkers of liver regeneration after drug-induced liver injury. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2019; 85:241-262. [PMID: 31307589 DOI: 10.1016/bs.apha.2019.03.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver, the major metabolic organ in the body, is known for its remarkable capacity to regenerate. Whereas partial hepatectomy (PHx) is a popular model for the study of liver regeneration, the liver also regenerates after acute injury, but less is known about the mechanisms that drive it. Recent studies have shown that liver regeneration is critical for survival in acute liver failure (ALF), which is usually due to drug-induced liver injury (DILI). It is sometimes assumed that the signaling pathways involved are similar to those that regulate regeneration after PHx, but there are likely to be critical differences. A better understanding of regeneration mechanisms after DILI and hepatotoxicity in general could lead to development of new therapies for ALF patients and new biomarkers to predict patient outcome. Here, we summarize what is known about the mechanisms of liver regeneration and repair after hepatotoxicity. We also review the literature in the emerging field of liver regeneration biomarkers.
Collapse
Affiliation(s)
- Melissa M Clemens
- Interdisciplinary Biomedical Sciences Graduate Program, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Mitchell R McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| | - Udayan Apte
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
11
|
Liver Regeneration after Acetaminophen Hepatotoxicity: Mechanisms and Therapeutic Opportunities. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:719-729. [PMID: 30653954 DOI: 10.1016/j.ajpath.2018.12.006] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 12/26/2022]
Abstract
Acetaminophen (N-acetyl-para-aminophenol; APAP) overdose is the most common cause of acute liver failure in the Western world, with limited treatment opportunities. For years, research on APAP overdose has been focused on investigating the mechanisms of hepatotoxicity, with limited success in advancing therapeutic strategies. Acute liver injury after any insult, including APAP overdose, is followed by compensatory liver regeneration, which promotes recovery and is a crucial determinant of the final outcome. Liver regeneration after APAP-induced liver injury is dose dependent and impaired after severe APAP overdose. Although robust regenerative response is associated with spontaneous recovery and survival, impaired regeneration results in faster progression of injury and death after APAP overdose. APAP hepatotoxicity-induced liver regeneration involves a complex time- and dose-dependent interplay of several signaling mediators, including growth factors, cytokines, angiogenic factors, and other mitogenic pathways. Compared with the liver injury, which is established before most patients seek medical attention and has proved difficult to manipulate, liver regeneration can be potentially modulated even in late-stage APAP-induced acute liver failure. Despite recent efforts to study the mechanisms of liver regeneration after APAP-induced liver injury, more comprehensive research in this area is required, especially regarding factors that contribute to impaired regenerative response, to develop novel regenerative therapies for APAP-induced acute liver failure.
Collapse
|
12
|
Rémignon H, Yahia RBH, Marty-Gasset N, Wilkesman J. Apoptosis during the development of the hepatic steatosis in force-fed ducks and cooking yield implications. Poult Sci 2018; 97:2211-2217. [DOI: 10.3382/ps/pey054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/20/2018] [Indexed: 11/20/2022] Open
|
13
|
Reunov A, Reunov A, Pimenova E, Reunova Y, Menchinskaiya E, Lapshina L, Aminin D. The study of the calpain and caspase-1 expression in ultrastructural dynamics of Ehrlich ascites carcinoma necrosis. Gene 2018. [PMID: 29518545 DOI: 10.1016/j.gene.2018.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
An expression of calpain and caspase-1 as well as the concomitant ultrastructural alterations were investigated during necrosis of the mouse Ehrlich ascites carcinoma. The calpain expression was registered at 0 h and 1 h although caspase-1 did not induce any signals during these time periods. The rise of the cytoplasmic lytic zones contacted by calpain antibodies was identified as a morphologic event corresponding to the expression of calpain. Lytic zone's distribution followed by the appearance of the calpain/caspase-1 clusters assigned for lysis of the Golgi vesicles and ER. Also, the microapocrine secretion of the vesicles containing the calpain/caspase-1 clusters was detected. Further, the lysis of the plasma membrane occurred due to progression of intracellular lysis. Rupture of the plasma membrane resulted in the termination of secretion and dissemination of cell contents. The nuclei still had their normal shape. Nuclear lysis continued to rise with intranuclear lytic zones, of which the progression was accompanied with the presence of calpain/caspase-1 clusters. The data contribute to the concept of the initial role of calpain for tumor cell destruction, provide first evidence of the calpain/caspase-1 pathway in tumor cells, and highlight microapocrine secretion as a possible tumor cell death signalling mechanism.
Collapse
Affiliation(s)
- Arkadiy Reunov
- University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y 4W7, Canada.
| | - Anatoliy Reunov
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Russia
| | - Evgenia Pimenova
- National Scientific Centre of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Yulia Reunova
- National Scientific Centre of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Ekaterina Menchinskaiya
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Russia
| | - Larisa Lapshina
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Russia
| | - Dmitry Aminin
- Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of Russian Academy of Sciences, Russia
| |
Collapse
|
14
|
Apte U, Bhushan B, Dadhania V. Hepatic Defenses Against Toxicity: Liver Regeneration and Tissue Repair. COMPREHENSIVE TOXICOLOGY 2018:368-396. [DOI: 10.1016/b978-0-12-801238-3.64918-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
15
|
Shabrang B, Jamshidzadeh A, Farjam M, Ebrahimpour A, Koohi-Hosseinabadi O. Concurrent assessment of calpain and caspase3 activities in brains of mice with acetaminophen-induced acute hepatic encephalopathy. Metab Brain Dis 2017; 32:2139-2142. [PMID: 28828727 DOI: 10.1007/s11011-017-0096-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 08/16/2017] [Indexed: 01/26/2023]
Abstract
To develop pharmacological therapy for acute hepatic encephalopathy (AHE), understanding the molecular basis for cell injury is essential. Excitotoxic neural cell injury mediated by calpain as a post- receptor mechanism has been proposed as a player in neuronal injury in AHE. Concurrent assessment of Calpain and Caspase3 activities in the brain of AHE mice in acetaminophen- induced mourine model was performed. After induction of AHE by acetaminophen in mice, the model was confirmed by histopathological, biochemical and behavioural studies. The brains were removed, western blot analysis was done and the relative activity of calpain and caspase was estimated and compared to control group calpain but not caspase 3 activity was significantly increased in the AHE group compared to the control brains. Experimentally, this finding is the first to report. Increased calpain activity in liver has been previously reported. To translate both finding it can be suggested that calpain inhibition can be an investigational intervention in saving lives in AHE. To confirm the results, besides more advanced toxicodynamic studies on acetaminophen, the results should be confirmed in other models of AHE in future.
Collapse
Affiliation(s)
- Bahareh Shabrang
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Farjam
- Noncommunicable Diseases Research Center, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
- Department of Pharmacology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Azin Ebrahimpour
- Department of immunology, School of medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
16
|
Revisiting the use of sPLA 2 -sensitive liposomes in cancer therapy. J Control Release 2017; 261:163-173. [DOI: 10.1016/j.jconrel.2017.06.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/21/2017] [Accepted: 06/24/2017] [Indexed: 11/24/2022]
|
17
|
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) increases necroinflammation and hepatic stellate cell activation but does not exacerbate experimental liver fibrosis in mice. Toxicol Appl Pharmacol 2016; 311:42-51. [PMID: 27693115 DOI: 10.1016/j.taap.2016.09.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 09/21/2016] [Accepted: 09/26/2016] [Indexed: 12/12/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant and high-affinity ligand for the aryl hydrocarbon receptor (AhR). Increasing evidence indicates that AhR signaling contributes to wound healing, which involves the coordinated deposition and remodeling of the extracellular matrix. In the liver, wound healing is attributed to the activation of hepatic stellate cells (HSCs), which mediate fibrogenesis through the production of soluble mediators and collagen type I. We recently reported that TCDD treatment increases the activation of human HSCs in vitro. The goal of this study was to determine how TCDD impacts HSC activation in vivo using a mouse model of experimental liver fibrosis. To elicit fibrosis, C57BL6/male mice were treated twice weekly for 8weeks with 0.5ml/kg carbon tetrachloride (CCl4). TCDD (20μg/kg) or peanut oil (vehicle) was administered once a week during the last 2weeks. Results indicate that TCDD increased liver-body-weight ratios, serum alanine aminotransferase activity, and hepatic necroinflammation in CCl4-treated mice. Likewise, TCDD treatment increased mRNA expression of HSC activation and fibrogenesis genes, namely α-smooth muscle actin, desmin, delta-like homolog-1, TGF-β1, and collagen type I. However, TCDD treatment did not exacerbate fibrosis, nor did it increase the collagen content of the liver. Instead, TCDD increased hepatic collagenase activity and increased expression of matrix metalloproteinase (MMP)-13 and the matrix regulatory proteins, TIMP-1 and PAI-1. These results support the conclusion that TCDD increases CCl4-induced liver damage and exacerbates HSC activation, yet collagen deposition and the development of fibrosis may be limited by TCDD-mediated changes in extracellular matrix remodeling.
Collapse
|
18
|
Dadhania VP, Muskhelishvili L, Latendresse JR, Mehendale HM. Hepatic Overexpression of Annexin A1 and A2 in Thioacetamide-Primed Mice Protects Them Against Acetaminophen-Induced Liver Failure and Death. Int J Toxicol 2016; 35:654-665. [PMID: 27451051 DOI: 10.1177/1091581816659067] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Compensatory tissue repair (CTR) in thioacetamide (TA)-primed rats protects them against acetaminophen (APAP)-induced lethality. This study was aimed at investigating the mechanisms of CTR-mediated heteroprotection in mice. Male Swiss Webster mice received a priming dose of TA (40 mg/kg body weight [BW] in 10 mL distilled water [DW]/kg BW, intraperitoneally [IP]). Thioacetamide-induced liver injury, CTR, and expression of annexin A1 and A2 (ANX1 and ANX2), the endogenous inhibitors of the death protein secretory phospholipase A2 (sPLA2), were measured over a time course of 84 hours after TA priming. Both centrilobular necrosis and CTR peaked at 36 hours after TA priming as indicated by significantly increased plasma alanine transaminase (ALT) and aspartate transaminase (AST) activities, liver histology, and proliferating cell nuclear antigen immunostaining. Thioacetamide priming resulted in the overexpression of ANX1 and ANX2 at 36 to 84 hours and 12 to 60 hours, respectively. A lethal dose of APAP (600 mg/kg BW in 10 mL 0.45% NaCl/kg BW, IP) was given at 12, 24, or 36 hours after TA-priming. Thioacetamide priming did not affect the rise in plasma ALT, AST, sPLA2, and arachidonic acid levels seen at 2 hours after the APAP overdose. Neither these biochemical parameters nor histology suggested any escalation of hepatic injury at later time points (12 and 24 hours after APAP overdose), consistent with 100% survival of the TA + APAP-treated mice compared to DW + APAP-treated mice, which had 100% mortality. Inhibition of ANX1 and ANX2 biosynthesis using cycloheximide (40 mg/kg BW in 5 mL DW/kg BW, IP) abolished this heteroprotection. Our data indicate that hepatic overexpression of ANX1 and ANX2 inhibits APAP-induced expansion of liver injury.
Collapse
Affiliation(s)
- Vivekkumar P Dadhania
- Department of Toxicology, College of Health and Pharmaceutical Sciences, The University of Louisiana at Monroe (ULM), Monroe, LA, USA
| | - Levan Muskhelishvili
- Toxicologic Pathology Associates, National Center for Toxicological Research (NCTR), Jefferson, AR, USA
| | - John R Latendresse
- Toxicologic Pathology Associates, National Center for Toxicological Research (NCTR), Jefferson, AR, USA
| | - Harihara M Mehendale
- Department of Toxicology, College of Health and Pharmaceutical Sciences, The University of Louisiana at Monroe (ULM), Monroe, LA, USA
| |
Collapse
|
19
|
Ghanem CI, Pérez MJ, Manautou JE, Mottino AD. Acetaminophen from liver to brain: New insights into drug pharmacological action and toxicity. Pharmacol Res 2016; 109:119-31. [PMID: 26921661 DOI: 10.1016/j.phrs.2016.02.020] [Citation(s) in RCA: 203] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/19/2016] [Accepted: 02/21/2016] [Indexed: 01/13/2023]
Abstract
Acetaminophen (APAP) is a well-known analgesic and antipyretic drug. It is considered to be safe when administered within its therapeutic range, but in cases of acute intoxication, hepatotoxicity can occur. APAP overdose is the leading cause of acute liver failure in the northern hemisphere. Historically, studies on APAP toxicity have been focused on liver, with alterations in brain function attributed to secondary effects of acute liver failure. However, in the last decade the pharmacological mechanism of APAP as a cannabinoid system modulator has been documented and some articles have reported "in situ" toxicity by APAP in brain tissue at high doses. Paradoxically, low doses of APAP have been reported to produce the opposite, neuroprotective effects. In this paper we present a comprehensive, up-to-date overview of hepatic toxicity as well as a thorough review of both toxic and beneficial effects of APAP in brain.
Collapse
Affiliation(s)
- Carolina I Ghanem
- Instituto de Investigaciones Farmacológicas (ININFA), Facultad de Farmacia y Bioquímica, CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina; Cátedra de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - María J Pérez
- Cátedra de Química Biológica Patológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológica (IQUIFIB), UBA-CONICET, Buenos Aires, Argentina
| | - José E Manautou
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| | - Aldo D Mottino
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| |
Collapse
|
20
|
Allen TEH, Goodman JM, Gutsell S, Russell PJ. Defining Molecular Initiating Events in the Adverse Outcome Pathway Framework for Risk Assessment. Chem Res Toxicol 2014; 27:2100-12. [DOI: 10.1021/tx500345j] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Timothy E. H. Allen
- Centre
for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jonathan M. Goodman
- Centre
for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Steve Gutsell
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Paul J. Russell
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| |
Collapse
|
21
|
Awde S, Marty-Gasset N, Wilkesman J, Rémignon H. Proteolytic activity alterations resulting from force-feeding in Muscovy and Pekin ducks. Poult Sci 2013; 92:2997-3002. [PMID: 24135604 DOI: 10.3382/ps.2013-03195] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated liver protease activity in force-fed and non-force-fed ducks using zymography gels to better understand mechanisms underlying liver steatosis in palmipeds. Male Muscovy and Pekin ducks were slaughtered before and after a short period (13 d) while they were conventionally fed or force fed. The force-fed regimen contained a high level of carbohydrates and was delivered in large doses. Main hepatic proteases (matrix metalloprotease-2, calpains, and cathepsins) were extracted from raw liver and specifically activated within electrophoretic gels. Both force-fed Muscovy and Pekin ducks presented higher liver weights and BW associated with lower matrix metalloprotease-2 and m-calpain hepatic activities. On the other hand, hepatic cathepsin activity was not affected by force feeding. It was concluded that Muscovy and Pekin duck hepatic proteases are affected similarly by the force feeding. Thus, this cannot explain differences observed between Muscovy and Pekin ducks regarding their ability to develop hepatic steatosis generally reported in literature.
Collapse
Affiliation(s)
- S Awde
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche (UMR) 1289 Tissus Animaux, Nutrition, Digestion, Ecosystème et Métabolisme (TANDEM), F-31326 Castanet-Tolosan, France
| | | | | | | |
Collapse
|
22
|
Firrincieli D, Zúñiga S, Rey C, Wendum D, Lasnier E, Rainteau D, Braescu T, Falguières T, Boissan M, Cadoret A, Housset C, Chignard N. Vitamin D nuclear receptor deficiency promotes cholestatic liver injury by disruption of biliary epithelial cell junctions in mice. Hepatology 2013; 58:1401-12. [PMID: 23696511 PMCID: PMC4286017 DOI: 10.1002/hep.26453] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 04/05/2013] [Accepted: 04/07/2013] [Indexed: 12/14/2022]
Abstract
UNLABELLED Alterations in apical junctional complexes (AJCs) have been reported in genetic or acquired biliary diseases. The vitamin D nuclear receptor (VDR), predominantly expressed in biliary epithelial cells in the liver, has been shown to regulate AJCs. The aim of our study was thus to investigate the role of VDR in the maintenance of bile duct integrity in mice challenged with biliary-type liver injury. Vdr(-/-) mice subjected to bile duct ligation (BDL) displayed increased liver damage compared to wildtype BDL mice. Adaptation to cholestasis, ascertained by expression of genes involved in bile acid metabolism and tissue repair, was limited in Vdr(-/-) BDL mice. Furthermore, evaluation of Vdr(-/-) BDL mouse liver tissue sections indicated altered E-cadherin staining associated with increased bile duct rupture. Total liver protein analysis revealed that a truncated form of E-cadherin was present in higher amounts in Vdr(-/-) mice subjected to BDL compared to wildtype BDL mice. Truncated E-cadherin was also associated with loss of cell adhesion in biliary epithelial cells silenced for VDR. In these cells, E-cadherin cleavage occurred together with calpain 1 activation and was prevented by the silencing of calpain 1. Furthermore, VDR deficiency led to the activation of the epidermal growth factor receptor (EGFR) pathway, while EGFR activation by EGF induced both calpain 1 activation and E-cadherin cleavage in these cells. Finally, truncation of E-cadherin was blunted when EGFR signaling was inhibited in VDR-silenced cells. CONCLUSION Biliary-type liver injury is exacerbated in Vdr(-/-) mice by limited adaptive response and increased bile duct rupture. These results indicate that loss of VDR restricts the adaptation to cholestasis and diminishes bile duct integrity in the setting of biliary-type liver injury.
Collapse
Affiliation(s)
- Delphine Firrincieli
- INSERM UMR_S 938, CdR Saint-AntoineF-75012, Paris, France,UPMC Univ Paris 06F-75012, Paris, France
| | - Silvia Zúñiga
- INSERM UMR_S 938, CdR Saint-AntoineF-75012, Paris, France,UPMC Univ Paris 06F-75012, Paris, France,Departamento de Gastroenterologia, Pontificia Universidad Catolica de ChileSantiago, Chile
| | - Colette Rey
- INSERM UMR_S 938, CdR Saint-AntoineF-75012, Paris, France,UPMC Univ Paris 06F-75012, Paris, France
| | - Dominique Wendum
- INSERM UMR_S 938, CdR Saint-AntoineF-75012, Paris, France,UPMC Univ Paris 06F-75012, Paris, France,AP-HP, Hôpital Saint Antoine, Service d'Anatomie PathologiqueF-75012, Paris, France
| | - Elisabeth Lasnier
- AP-HP, Hôpital Saint Antoine, Service de BiochimieF-75012, Paris, France
| | - Dominique Rainteau
- UPMC Univ Paris 06F-75012, Paris, France,AP-HP, Hôpital Saint Antoine, Service de BiochimieF-75012, Paris, France
| | - Thomas Braescu
- INSERM UMR_S 938, CdR Saint-AntoineF-75012, Paris, France,UPMC Univ Paris 06F-75012, Paris, France
| | - Thomas Falguières
- INSERM UMR_S 938, CdR Saint-AntoineF-75012, Paris, France,UPMC Univ Paris 06F-75012, Paris, France
| | - Mathieu Boissan
- INSERM UMR_S 938, CdR Saint-AntoineF-75012, Paris, France,UPMC Univ Paris 06F-75012, Paris, France,AP-HP, Hôpital Tenon, Service de Biochimie et HormonologieF-75020, Paris, France
| | - Axelle Cadoret
- INSERM UMR_S 938, CdR Saint-AntoineF-75012, Paris, France,UPMC Univ Paris 06F-75012, Paris, France
| | - Chantal Housset
- INSERM UMR_S 938, CdR Saint-AntoineF-75012, Paris, France,UPMC Univ Paris 06F-75012, Paris, France,AP-HP, Hôpital Saint Antoine, Service d'HépatologieF-75012, Paris, France
| | - Nicolas Chignard
- INSERM UMR_S 938, CdR Saint-AntoineF-75012, Paris, France,UPMC Univ Paris 06F-75012, Paris, France
| |
Collapse
|
23
|
Protective role of antioxidants on thioacetamide-induced acute hepatic encephalopathy: Biochemical and Ultrastructural study. Tissue Cell 2013; 45:350-62. [DOI: 10.1016/j.tice.2013.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 04/25/2013] [Accepted: 06/03/2013] [Indexed: 01/09/2023]
|
24
|
Woolbright BL, Ramachandran A, McGill MR, Yan HM, Bajt ML, Sharpe MR, Lemasters JJ, Jaeschke H. Lysosomal instability and cathepsin B release during acetaminophen hepatotoxicity. Basic Clin Pharmacol Toxicol 2012; 111:417-25. [PMID: 22900545 PMCID: PMC3501614 DOI: 10.1111/j.1742-7843.2012.00931.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/08/2012] [Indexed: 12/27/2022]
Abstract
Acetaminophen (APAP) overdose is currently the most frequent cause of drug-induced liver failure in the United States. Recently, it was shown that lysosomal iron translocates to mitochondria where it contributes to the collapse of the mitochondrial membrane potential. Therefore, the purpose of this study was to investigate whether cathepsin B, a lysosomal protease, is involved in APAP-induced hepatotoxicity. Cathepsin B activity was measured in subcellular liver fractions of C57Bl/6 mice 3 hr after 300 mg/kg APAP treatment. There was a significant increase in cytoplasmic cathepsin activity, concurrent with a decrease in microsomal activity, indicative of lysosomal cathepsin B release. To investigate the effect of cathepsin B on hepatotoxicity, the cathepsin inhibitor AC-LVK-CHO was given 1 hr prior to 300 mg/kg APAP treatment along with vehicle control. There was no difference between groups in serum alanine aminotransferase (ALT) values, or by histological evaluation of necrosis, although cathepsin B activity was inhibited by 70-80% compared with controls. These findings were confirmed with a different inhibitor (z-FA-fmk) in vivo and in vitro. Hepatocytes were exposed to 5 mM acetaminophen. Lysotracker staining confirmed lysosomal instability and cathepsin B release, but there was no reduction in cell death after treatment with cathepsin B inhibitors. Finally, cathepsin B release was measured in clinical samples from patients with APAP-induced liver injury. Low levels of cathepsin B were released into plasma from overdose patients. APAP overdose causes lysosomal instability and release of cathepsin B into the cytosol but does not contribute to liver injury under these conditions.
Collapse
Affiliation(s)
- Benjamin L. Woolbright
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mitchell R. McGill
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Hui-min Yan
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mary Lynn Bajt
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Matthew R. Sharpe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - John J. Lemasters
- Department of Pharmaceutical & Biomedical Sciences and Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology & Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
25
|
Woodhead JL, Howell BA, Yang Y, Harrill AH, Clewell HJ, Andersen ME, Siler SQ, Watkins PB. An Analysis of N-Acetylcysteine Treatment for Acetaminophen Overdose Using a Systems Model of Drug-Induced Liver Injury. J Pharmacol Exp Ther 2012; 342:529-40. [DOI: 10.1124/jpet.112.192930] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
26
|
Once initiated, how does toxic tissue injury expand? Trends Pharmacol Sci 2012; 33:200-6. [PMID: 22443935 DOI: 10.1016/j.tips.2012.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 01/13/2012] [Accepted: 01/17/2012] [Indexed: 11/23/2022]
Abstract
Once initiated, how tissue injury expands after high toxicant doses, even after their complete elimination, is not understood. Free-radical generation was initially proposed to mediate progression of injury. However, mechanisms proposed thus far have remained unsubstantiated. Necrotic injury is characterized by loss of osmoregulation, cell swelling, blebbing, and cell rupture. This exposes cytosolic enzymes, including proteases, phospholipases, and lysosomal Ca(2+)-dependent enzymes, to high extracellular calcium (Ca(2+)). Activated hydrolytic enzymes, termed 'death proteins,' hydrolyze their substrates in the plasma membrane of neighboring cells, commencing self-perpetuated injury progression. Likewise, ischemia-reperfusion injury exposes the hydrolytic enzymes to high Ca(2+), fuelling the progression of tissue injury. This mechanism is independent of the offending toxicant that initiates the injury. I present here a case for therapeutic intervention with inhibitors directed against death proteins as a means to avert organ failure and death well after the poisoning event.
Collapse
|
27
|
Jaeschke H, McGill MR, Ramachandran A. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab Rev 2012; 44:88-106. [PMID: 22229890 DOI: 10.3109/03602532.2011.602688] [Citation(s) in RCA: 660] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatotoxicity is a serious problem during drug development and for the use of many established drugs. For example, acetaminophen overdose is currently the most frequent cause of acute liver failure in the United States and Great Britain. Evaluation of the mechanisms of drug-induced liver injury indicates that mitochondria are critical targets for drug toxicity, either directly or indirectly through the formation of reactive metabolites. The consequence of these modifications is generally a mitochondrial oxidant stress and peroxynitrite formation, which leads to structural alterations of proteins and mitochondrial DNA and, eventually, to the opening of mitochondrial membrane permeability transition (MPT) pores. MPT pore formation results in a collapse of mitochondrial membrane potential and cessation of adenosine triphosphate synthesis. In addition, the release of intermembrane proteins, such as apoptosis-inducing factor and endonuclease G, and their translocation to the nucleus, leads to nuclear DNA fragmentation. Together, these events trigger necrotic cell death. Alternatively, the release of cytochrome c and other proapoptotic factors from mitochondria can promote caspase activation and apoptotic cell death. Drug toxicity can also induce an inflammatory response with the formation of reactive oxygen species by Kupffer cells and neutrophils. If not properly detoxified, these extracellularly generated oxidants can diffuse into hepatocytes and trigger mitochondrial dysfunction and oxidant stress, which then induces MPT and necrotic cell death. This review addresses the formation of oxidants and the defense mechanisms available for cells and applies this knowledge to better understand mechanisms of drug hepatotoxicity, especially acetaminophen-induced liver injury.
Collapse
Affiliation(s)
- Hartmut Jaeschke
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, 66160, USA.
| | | | | |
Collapse
|
28
|
Secretory phospholipase A₂-mediated progression of hepatotoxicity initiated by acetaminophen is exacerbated in the absence of hepatic COX-2. Toxicol Appl Pharmacol 2011; 251:173-80. [PMID: 21277885 DOI: 10.1016/j.taap.2011.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/18/2011] [Accepted: 01/19/2011] [Indexed: 02/05/2023]
Abstract
We have previously reported that among the other death proteins, hepatic secretory phospholipase A₂ (sPLA₂) is a leading mediator of progression of liver injury initiated by CCl₄ in rats. The aim of our present study was to test the hypothesis that increased hepatic sPLA₂ released after acetaminophen (APAP) challenge mediates progression of liver injury in wild type (WT) and COX-2 knockout (KO) mice. COX-2 WT and KO mice were administered a normally non lethal dose (400 mg/kg) of acetaminophen. The COX-2 KO mice suffered 60% mortality compared to 100% survival of the WT mice, suggesting higher susceptibility of COX-2 KO mice to sPLA₂-mediated progression of acetaminophen hepatotoxicity. Liver injury was significantly higher at later time points in the KO mice compared to the WT mice indicating that the abatement of progression of injury requires the presence of COX-2. This difference in hepatotoxicity was not due to increased bioactivation of acetaminophen as indicated by unchanged cyp2E1 protein and covalently bound ¹⁴C-APAP in the livers of KO mice. Hepatic sPLA₂ activity and plasma TNF-α were significantly higher after APAP administration in the KO mice. This was accompanied by a corresponding fall in hepatic PGE₂ and lower compensatory liver regeneration and repair (³H-thymidine incorporation) in the KO mice. These results suggest that hindered compensatory tissue repair and poor resolution of inflammation for want of beneficial prostaglandins render the liver very vulnerable to sPLA₂-mediated progression of liver injury. These findings are consistent with the destructive role of sPLA₂ in the progression and expansion of tissue injury as a result of continued hydrolytic breakdown of plasma membrane phospholipids of perinecrotic hepatocytes unless mitigated by sufficient co-induction of COX-2.
Collapse
|
29
|
|
30
|
Abstract
Although considered safe at therapeutic doses, at higher doses, acetaminophen produces a centrilobular hepatic necrosis that can be fatal. Acetaminophen poisoning accounts for approximately one-half of all cases of acute liver failure in the United States and Great Britain today. The mechanism occurs by a complex sequence of events. These events include: (1) CYP metabolism to a reactive metabolite which depletes glutathione and covalently binds to proteins; (2) loss of glutathione with an increased formation of reactive oxygen and nitrogen species in hepatocytes undergoing necrotic changes; (3) increased oxidative stress, associated with alterations in calcium homeostasis and initiation of signal transduction responses, causing mitochondrial permeability transition; (4) mitochondrial permeability transition occurring with additional oxidative stress, loss of mitochondrial membrane potential, and loss of the ability of the mitochondria to synthesize ATP; and (5) loss of ATP which leads to necrosis. Associated with these essential events there appear to be a number of inflammatory mediators such as certain cytokines and chemokines that can modify the toxicity. Some have been shown to alter oxidative stress, but the relationship of these modulators to other critical mechanistic events has not been well delineated. In addition, existing data support the involvement of cytokines, chemokines, and growth factors in the initiation of regenerative processes leading to the reestablishment of hepatic structure and function.
Collapse
Affiliation(s)
- Jack A Hinson
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | |
Collapse
|
31
|
Levesque S, Wilson B, Gregoria V, Thorpe LB, Dallas S, Polikov VS, Hong JS, Block ML. Reactive microgliosis: extracellular micro-calpain and microglia-mediated dopaminergic neurotoxicity. ACTA ACUST UNITED AC 2010; 133:808-21. [PMID: 20123724 DOI: 10.1093/brain/awp333] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Microglia, the innate immune cells in the brain, can become chronically activated in response to dopaminergic neuron death, fuelling a self-renewing cycle of microglial activation followed by further neuron damage (reactive microgliosis), which is implicated in the progressive nature of Parkinson's disease. Here, we use an in vitro approach to separate neuron injury factors from the cellular actors of reactive microgliosis and discover molecular signals responsible for chronic and toxic microglial activation. Upon injury with the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium, N27 cells (dopaminergic neuron cell line) released soluble neuron injury factors that activated microglia and were selectively toxic to dopaminergic neurons in mixed mesencephalic neuron-glia cultures through nicotinamide adenine dinucleotide phosphate oxidase. mu-Calpain was identified as a key signal released from damaged neurons, causing selective dopaminergic neuron death through activation of microglial nicotinamide adenine dinucleotide phosphate oxidase and superoxide production. These findings suggest that dopaminergic neurons may be inherently susceptible to the pro-inflammatory effects of neuron damage, i.e. reactive microgliosis, providing much needed insight into the chronic nature of Parkinson's disease.
Collapse
Affiliation(s)
- Shannon Levesque
- Department of Anatomy & Neurobiology, Sanger Hall, Room 9-048, 1101 E. Marshall Street, Virginia Commonwealth University Medical Campus, Box 980709, Richmond, VA 23298-0709, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Liu HH, Lu P, Guo Y, Farrell E, Zhang X, Zheng M, Bosano B, Zhang Z, Allard J, Liao G, Fu S, Chen J, Dolim K, Kuroda A, Usuka J, Cheng J, Tao W, Welch K, Liu Y, Pease J, de Keczer SA, Masjedizadeh M, Hu JS, Weller P, Garrow T, Peltz G. An integrative genomic analysis identifies Bhmt2 as a diet-dependent genetic factor protecting against acetaminophen-induced liver toxicity. Genome Res 2009; 20:28-35. [PMID: 19923254 DOI: 10.1101/gr.097212.109] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Acetaminophen-induced liver toxicity is the most frequent precipitating cause of acute liver failure and liver transplant, but contemporary medical practice has mainly focused on patient management after a liver injury has been induced. An integrative genetic, transcriptional, and two-dimensional NMR-based metabolomic analysis performed using multiple inbred mouse strains, along with knowledge-based filtering of these data, identified betaine-homocysteine methyltransferase 2 (Bhmt2) as a diet-dependent genetic factor that affected susceptibility to acetaminophen-induced liver toxicity in mice. Through an effect on methionine and glutathione biosynthesis, Bhmt2 could utilize its substrate (S-methylmethionine [SMM]) to confer protection against acetaminophen-induced injury in vivo. Since SMM is only synthesized in plants, Bhmt2 exerts its beneficial effect in a diet-dependent manner. Identification of Bhmt2 and the affected biosynthetic pathway demonstrates how a novel method of integrative genomic analysis in mice can provide a unique and clinically applicable approach to a major public health problem.
Collapse
Affiliation(s)
- Hong-Hsing Liu
- Department of Genetics and Genomics, Roche Palo Alto, Palo Alto, California 94304, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Doi K, Ishida K. Diabetes and hypertriglyceridemia modify the mode of acetaminophen-induced hepatotoxicity and nephrotoxicity in rats and mice. J Toxicol Sci 2009; 34:1-11. [PMID: 19182431 DOI: 10.2131/jts.34.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Certain disease conditions can modify drug-induced toxicities, which, in turn, may cause a medication-related health crisis. Therefore, preclinical investigations into the alterations in drug-induced toxicities using appropriate disease animal models are very important. This paper reviews the reported data related to the effects of diabetes and hypertriglyceridemia, common lifestyle-related diseases in a modern society, on acetaminophen (APAP)-induced hepatotoxicity and nephrotoxicity in rats and mice. It has generally been reported that diabetes protects rats and mice from APAP-induced hepatotoxicity and there are several reports that help to speculate on the effects of diabetes on APAP-induced nephrotoxicity. In fructose-induced hypertriglyceridemic rats, hepatotoxicity of APAP becomes apparently less severe, whereas nephrotoxicity of APAP becomes significantly more severe. The mechanisms of alteration of APAP-induced hepatorenal toxicity under diabetic and hypertriglyceridemic conditions are also discussed in this paper.
Collapse
Affiliation(s)
- Kunio Doi
- Nippon Institute for Biological Science, Shin-Machi, Ome, Tokyo 198-0024, Japan.
| | | |
Collapse
|
35
|
Harrill AH, Watkins PB, Su S, Ross PK, Harbourt DE, Stylianou IM, Boorman GA, Russo MW, Sackler RS, Harris SC, Smith PC, Tennant R, Bogue M, Paigen K, Harris C, Contractor T, Wiltshire T, Rusyn I, Threadgill DW. Mouse population-guided resequencing reveals that variants in CD44 contribute to acetaminophen-induced liver injury in humans. Genome Res 2009; 19:1507-15. [PMID: 19416960 DOI: 10.1101/gr.090241.108] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Interindividual variability in response to chemicals and drugs is a common regulatory concern. It is assumed that xenobiotic-induced adverse reactions have a strong genetic basis, but many mechanism-based investigations have not been successful in identifying susceptible individuals. While recent advances in pharmacogenetics of adverse drug reactions show promise, the small size of the populations susceptible to important adverse events limits the utility of whole-genome association studies conducted entirely in humans. We present a strategy to identify genetic polymorphisms that may underlie susceptibility to adverse drug reactions. First, in a cohort of healthy adults who received the maximum recommended dose of acetaminophen (4 g/d x 7 d), we confirm that about one third of subjects develop elevations in serum alanine aminotransferase, indicative of liver injury. To identify the genetic basis for this susceptibility, a panel of 36 inbred mouse strains was used to model genetic diversity. Mice were treated with 300 mg/kg or a range of additional acetaminophen doses, and the extent of liver injury was quantified. We then employed whole-genome association analysis and targeted sequencing to determine that polymorphisms in Ly86, Cd44, Cd59a, and Capn8 correlate strongly with liver injury and demonstrated that dose-curves vary with background. Finally, we demonstrated that variation in the orthologous human gene, CD44, is associated with susceptibility to acetaminophen in two independent cohorts. Our results indicate a role for CD44 in modulation of susceptibility to acetaminophen hepatotoxicity. These studies demonstrate that a diverse mouse population can be used to understand and predict adverse toxicity in heterogeneous human populations through guided resequencing.
Collapse
Affiliation(s)
- Alison H Harrill
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Gressner OA, Lahme B, Siluschek M, Rehbein K, Herrmann J, Weiskirchen R, Gressner AM. Activation of TGF-beta within cultured hepatocytes and in liver injury leads to intracrine signaling with expression of connective tissue growth factor. J Cell Mol Med 2008; 12:2717-30. [PMID: 18266973 PMCID: PMC3828886 DOI: 10.1111/j.1582-4934.2008.00260.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 01/23/2008] [Indexed: 01/06/2023] Open
Abstract
Recently, synthesis and secretion of connective tissue growth factor (CTGF)/CYR61/CTGF/NOV-family member 2 (CCN2) in cultures of hepatocytes were shown, which are sensitively up-regulated by exogenous TGF-beta. In this study TGF-beta-dependent CTGF/CCN2 expression in hepatocytes cultured under completely TGF-beta-free conditions was analysed by Western-blots, metabolic labelling, and CTGF-reporter gene assays. In alkaline phosphatase monoclonal anti-alkaline phosphatase complex (APAAP)-staining of cultured hepatocytes it was demonstrated that latent TGF-beta within the hepatocytes becomes rapidly detectable during culture indicating an intracellular demasking of the mature TGF-beta antigen. Subsequent signaling to theCTGF/CCN2 promoter occurs via p-Smad2, whereas p-Smad3 does not seem to be involved. Cycloheximide did not abolish the rapid immunocytochemical appearance of mature TGF-beta, but calpain inhibitors partially suppressed intracellular TGF-beta activation and subsequently CTGF up-regulation. Calpain treatment had the reverse effect. None of the inhibitors of extracellular TGF-beta signalling was effective in the reduction of spontaneous CTGF synthesis, but intracellularly acting Alk 4-/Alk 5-specific inhibitor SB-431542 was able to diminish CTGF expression. The assumption that latent intracellular TGF-beta is activated by calpains during culture-induced stress or injurious conditions in the liver in vivo was further validated by a direct effect of calpains on the activation of recombinant latent TGF-beta. In conclusion, these data are the first to suggest the possibility of intracrine TGF-beta signalling due to calpain-dependent intracellular proteolytic activation leading to transcriptional activation of CTGF/CCN2 as a TGF-beta-sensitive reporter gene. This mechanism might be deleterious for keeping long-term hepatocyte cultures due to TGF-beta-induced apoptosis and, further, might be of relevance for induction of apoptosis or epithelial-mesenchymal transition of hepatocytes in injured liver.
Collapse
Affiliation(s)
- Olav A Gressner
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH-University Hospital, Aachen, Germany.
| | | | | | | | | | | | | |
Collapse
|
37
|
Ramaiah SK, Jaeschke H. Hepatic Neutrophil Infiltration in the Pathogenesis of Alcohol-Induced Liver Injury. Toxicol Mech Methods 2008; 17:431-40. [DOI: 10.1080/00952990701407702] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Cribb AE, Peyrou M, Muruganandan S, Schneider L. The Endoplasmic Reticulum in Xenobiotic Toxicity. Drug Metab Rev 2008; 37:405-42. [PMID: 16257829 DOI: 10.1080/03602530500205135] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The endoplasmic reticulum (ER) is involved in an array of cellular functions that play important roles in xenobiotic toxicity. The ER contains the majority of cytochrome P450 enzymes involved in xenobiotic metabolism, as well as a number of conjugating enzymes. In addition to its role in drug bioactivation and detoxification, the ER can be a target for damage by reactive intermediates leading to cell death or immune-mediated toxicity. The ER contains a set of luminal proteins referred to as ER stress proteins (including GRP78, GRP94, protein disulfide isomerase, and calreticulin). These proteins help regulate protein processing and folding of membrane and secretory proteins in the ER, calcium homeostasis, and ER-associated apoptotic pathways. They are induced in response to ER stress. This review discusses the importance of the ER in molecular events leading to cell death following xenobiotic exposure. Data showing that the ER is important in both renal and hepatic toxicity will be discussed.
Collapse
Affiliation(s)
- Alastair E Cribb
- Laboratory of Comparative Pharmacogenetics, Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PEI, Canada.
| | | | | | | |
Collapse
|
39
|
Roomi MW, Kalinovsky T, Roomi NW, Ivanov V, Rath M, Niedzwiecki A. A nutrient mixture suppresses carbon tetrachloride–induced acute hepatic toxicity in ICR mice. Hum Exp Toxicol 2008; 27:559-66. [DOI: 10.1177/0960327108096851] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We examined the effect of a nutrient mixture (NM) that contains lysine, proline, ascorbic acid, and green tea extract in mice treated with carbon tetrachloride (CCl4), a model of liver injury in which free radical, oxidative stress, and cytokine production are closely linked. Seven-week-old male Imprinting Control Region (ICR) mice were divided into four groups (A–D) of five animals each. Groups A and C mice were fed a regular diet for 2 weeks, whereas groups B and D mice were supplemented with 0.5% NM (w/w) during that period. Groups A and B received corn oil i.p., whereas groups C and D received CCl4 (25 μL/kg, in corn oil, i.p.). All animals were killed 24 h after CCl4 administration, serum was collected to assess liver and kidney functions, and livers and kidneys were excised for histology. Mean serum aspartate aminotransferase and alanine aminotransferase were comparable in groups A and B, increased markedly in group C, and significantly lowered in group D compared with group C. CCl4 had no significant effect on renal markers (blood urea nitrogen [BUN], creatinine, and BUN/creatinine ratio). CCl4 administration caused an intense degree of liver necrosis that was less severe in the NM fed group D. These results indicate that NM could be a useful supplement in preventing acute chemical-induced liver toxicity.
Collapse
Affiliation(s)
- MW Roomi
- Dr Rath Research Institute, Santa Clara, California, USA
| | - T Kalinovsky
- Dr Rath Research Institute, Santa Clara, California, USA
| | - NW Roomi
- Dr Rath Research Institute, Santa Clara, California, USA
| | - V Ivanov
- Dr Rath Research Institute, Santa Clara, California, USA
| | - M Rath
- Dr Rath Research Institute, Santa Clara, California, USA
| | - A Niedzwiecki
- Dr Rath Research Institute, Santa Clara, California, USA
| |
Collapse
|
40
|
Patel NN, Crincoli CM, Kennedy EL, Frederick DM, Tchao R, Harvison PJ. Effect of gender, dose, and time on 3-(3,5-dichlorophenyl)-2,4-thiazolidinedione (DCPT)-induced hepatotoxicity in Fischer 344 rats. Xenobiotica 2008; 38:435-49. [PMID: 18340566 DOI: 10.1080/00498250701830267] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
1. The thiazolidinedione ring present in drugs available for type II diabetes can contribute to hepatic injury. Another thiazolidinedione ring-containing compound, 3-(3,5-dichlorophenyl)-2,4-thiazoli-dinedione (DCPT), produces liver damage in rats. Accordingly, the effects of gender, dose, and time on DCPT hepatotoxicity were therefore evaluated. 2. Male rats were more sensitive to DCPT (0.4-1.0 mmol kg(-1) by intraperitoneal administration) as shown by increased serum alanine aminotransferase levels and altered hepatic morphology 24 h post-dosing. Effects in both genders were dose dependent. In males, DCPT (0.6 mmol kg(-1)) produced elevations in alanine aminotransferases and changes in liver sections 3 h after dosing that progressively worsened up to 12 h. DCPT-induced renal effects were mild. 3. It is concluded that male rats are more susceptible to DCPT hepatotoxicity and that damage occurs rapidly. DCPT primarily affects the liver and can be a useful compound to investigate the role of the thiazolidinedione ring in hepatic injury. However, the gender dependency and rapid onset of DCPT hepatotoxicity require further investigation.
Collapse
Affiliation(s)
- N N Patel
- Department of Pharmaceutical Sciences, University of the Sciences in Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
41
|
Ramaiah SK, Jaeschke H. Role of neutrophils in the pathogenesis of acute inflammatory liver injury. Toxicol Pathol 2008; 35:757-66. [PMID: 17943649 DOI: 10.1080/01926230701584163] [Citation(s) in RCA: 248] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Polymorphonuclear leukocytes (neutrophils) are essential in the defense against invading microorganisms, tissue trauma or any inciting inflammatory signals. Hepatic infiltration of neutrophils is an acute response to recent or ongoing liver injury, hepatic stress or unknown systemic inflammatory signals. Once neutrophils reach the liver, they can cause mild-to-severe tissue damage and consequent liver failure. For neutrophils to appear in the liver, neutrophils have to undergo systemic activation (priming) by inflammatory mediators such as cytokines, chemokines, complement factors, immune complexes, opsonized particles and other biologically active molecules, e.g., platelet activating factor. Neutrophils accumulated in the hepatic microvasculature (sinusoids and postsinusoidal venules) can extravasate (transmigrate) into the hepatic parenchyma if they receive a signal from distressed cells. Transmigration can be mediated by a chemokine gradient established towards the hepatic parenchyma and generally involves orchestration by adhesion molecules on neutrophils (beta(2) integrins) and on endothelial cells (intracellular adhesion molecules, ICAM-1). After transmigration, neutrophils adhere to distressed hepatocytes through their beta(2) integrins and ICAM-1 expressed on hepatocytes. Neutrophil contact with hepatocytes mediate oxidative killing of hepatocytes by initiation of respiratory burst and neutrophil degranulation leading to hepatocellular oncotic necrosis. Neutrophil-mediated liver injury has been demonstrated in a variety of diseases and chemical/drug toxicities. Relevant examples are discussed in this review.
Collapse
Affiliation(s)
- Shashi K Ramaiah
- Department of Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843-4467, USA.
| | | |
Collapse
|
42
|
Mellgren RL, Huang X. Fetuin A stabilizes m-calpain and facilitates plasma membrane repair. J Biol Chem 2007; 282:35868-77. [PMID: 17942392 DOI: 10.1074/jbc.m706929200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast two-hybrid experiments identified alpha(2)-Heremans-Schmid glycoprotein (human fetuin A) as a binding partner for calpain domain III (DIII). The tandem DIIIs of calpain-10 interacted under the most selective culture conditions, but DIIIs of m-calpain, calpain-3, and calpain-5 also interacted under less stringent selection. DIIIs of mu-calpain, calpain-6, and the tandem DIII-like domains of the Dictyostelium Cpl protein did not interact with alpha(2)-Heremans-Schmid glycoprotein in the yeast two-hybrid system. Bovine fetuin A stabilized proteolytic activity of purified m-calpain incubated in the presence of mm calcium chloride and prevented calcium-dependent m-calpain aggregation. Consistent with the yeast two-hybrid studies, fetuin A neither stabilized mu-calpain nor prevented its aggregation. Confocal immunofluorescence microscopy of scratch-damaged L6 myotubes demonstrated accumulation of m-calpain at the wound site in association with the membrane repair protein, dysferlin. m-Calpain also co-localized with fluorescein-labeled fetuin A at the wound site. The effect of fetuin A on calpain-mediated plasma membrane resealing was investigated using fibroblasts from Capns1(-/-) and Capns1(+/+) mouse embryos. Capns1 encodes the small noncatalytic subunit that is required for the proteolytic function of m- and mu-calpains. Thus, Capns1(-/-) fibroblasts do not express these calpains in active form. Fetuin A increased resealing of scrape-damaged wild-type fibroblasts but not Capns1(-/-) fibroblasts. These studies identify fetuin A as a potential extracellular regulator of m-calpain at nascent sites of plasma membrane wounding.
Collapse
Affiliation(s)
- Ronald L Mellgren
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio 43614, USA.
| | | |
Collapse
|
43
|
Wang T, Shankar K, Ronis MJ, Mehendale HM. Mechanisms and outcomes of drug- and toxicant-induced liver toxicity in diabetes. Crit Rev Toxicol 2007; 37:413-59. [PMID: 17612954 DOI: 10.1080/10408440701215100] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increase dincidences of hepatotoxicity have been observed in diabetic patients receiving drug therapies. Neither the mechanisms nor the predisposing factors underlying hepatotoxicity in diabetics are clearly understood. Animal studies designed to examine the mechanisms of diabetes-modulated hepatotoxicity have traditionally focused only on bioactivation/detoxification of drugs and toxicants. It is becoming clear that once injury is initiated, additional events determine the final outcome of liver injury. Foremost among them are two leading mechanisms: first, biochemical mechanisms that lead to progression or regression of injury; and second, whether or not timely and adequate liver tissue repair occurs to mitigate injury and restore liver function. The liver has a remarkable ability to repair and restore its structure and function after physical or chemical-induced damage. The dynamic interaction between biotransformation-based liver injury and compensatory tissue repair plays a pivotal role in determining the ultimate outcome of hepatotoxicity initiated by drugs or toxicants. In this review, mechanisms underlying altered hepatotoxicity in diabetes with emphasis on both altered bioactivation and liver tissue repair are discussed. Animal models of both marked sensitivity (diabetic rats) and equally marked protection (diabetic mice) from drug-induced hepatotoxicity are described. These examples represent a remarkable species difference. Availability of the rodent diabetic models offers a unique opportunity to uncover mechanisms of clinical interest in averting human diabetic sensitivity to drug-induced hepatotoxicities. While the rat diabetic models appear to be suitable, the diabetic mouse models might not be suitable in preclinical testing for potential hepatotoxic effects of drugs or toxicants, because regardless of type 1 or type2 diabetes, mice are resistant to acute drug-or toxicant-induced toxicities.
Collapse
Affiliation(s)
- T Wang
- Department of Toxicology, College of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71209, USA
| | | | | | | |
Collapse
|
44
|
Abstract
Drug-induced liver injury depends initially on development of hepatocyte stress and cell death, which can be induced directly by parent drugs or by toxic metabolites. Hepatocyte stress can lead to activation of built-in death programs for apoptosis or necrosis. Subsequently, the innate immune system's participation is recruited. The interplay between proinflammatory and anti-inflammatory components of innate immune system determines the outcome of drug-induced liver injury. Both environmental factors and genetic differences in cellular responses to stress and the innate immune response may account for different susceptibilities between individuals to drug-induced liver injury.
Collapse
Affiliation(s)
- Basuki K Gunawan
- Research Center for Liver Disease, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR 101, Los Angeles, CA 90033, USA
| | | |
Collapse
|
45
|
Manibusan MK, Odin M, Eastmond DA. Postulated carbon tetrachloride mode of action: a review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2007; 25:185-209. [PMID: 17763046 DOI: 10.1080/10590500701569398] [Citation(s) in RCA: 272] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Under the 2005 U.S. EPA Guidelines for Carcinogen Risk Assessment (1), evaluations of carcinogens rely on mode of action data to better inform dose response assessments. A reassessment of carbon tetrachloride, a model hepatotoxicant and carcinogen, provides an opportunity to incorporate into the assessment biologically relevant mode of action data on its carcinogenesis. Mechanistic studies provide evidence that metabolism of carbon tetrachloride via CYP2E1 to highly reactive free radical metabolites plays a critical role in the postulated mode of action. The primary metabolites, trichloromethyl and trichloromethyl peroxy free radicals, are highly reactive and are capable of covalently binding locally to cellular macromolecules, with preference for fatty acids from membrane phospholipids. The free radicals initiate lipid peroxidation by attacking polyunsaturated fatty acids in membranes, setting off a free radical chain reaction sequence. Lipid peroxidation is known to cause membrane disruption, resulting in the loss of membrane integrity and leakage of microsomal enzymes. By-products of lipid peroxidation include reactive aldehydes that can form protein and DNA adducts and may contribute to hepatotoxicity and carcinogenicity, respectively. Natural antioxidants, including glutathione, are capable of quenching the lipid peroxidation reaction. When glutathione and other antioxidants are depleted, however, opportunities for lipid peroxidation are enhanced. Weakened cellular membranes allow sufficient leakage of calcium into the cytosol to disrupt intracellular calcium homeostasis. High calcium levels in the cytosol activate calcium-dependent proteases and phospholipases that further increase the breakdown of the membranes. Similarly, the increase in intracellular calcium can activate endonucleases that can cause chromosomal damage and also contribute to cell death. Sustained cell regeneration and proliferation following cell death may increase the likelihood of unrepaired spontaneous, lipid peroxidation- or endonuclease-derived mutations that can lead to cancer. Based on this body of scientific evidence, doses that do not cause sustained cytotoxicity and regenerative cell proliferation would subsequently be protective of liver tumors if this is the primary mode of action. To fulfill the mode of action framework, additional research may be necessary to determine alternative mode(s) of action for liver tumors formed via carbon tetrachloride exposure.
Collapse
Affiliation(s)
- Mary K Manibusan
- Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, DC 20460, United States.
| | | | | |
Collapse
|
46
|
Devi SS, Palkar PS, Mehendale HM. Measuring covalent binding in hepatotoxicity. CURRENT PROTOCOLS IN TOXICOLOGY 2007; Chapter 14:Unit14.6. [PMID: 23045139 DOI: 10.1002/0471140856.tx1406s32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Many hepatotoxicants like acetaminophen, chloroform, carbon tetrachloride, halothane, and thioacetamide cause hepatotoxicity through covalent binding of their reactive metabolites to proteins. The covalent binding to proteins may lead to dysfunction of critical proteins such as enzymes, transporters, receptors, and regulatory molecules. Because most reactive metabolites covalently bind to tissue macromolecules and tend to be unstable, they can not be isolated, and direct quantitation of the formation of reactive metabolites is not possible. Measuring their covalent binding to proteins offers a convenient way to estimate the amount of reactive metabolite formation. Such estimates have been used to quantify the bioactivation-based injury due to such hepatotoxicants. There are various methods by which covalent binding may be measured. This unit describes a protocol in which a radiolabeled compound can be utilized to measure covalent binding. Alternate protocols involve immunoblotting and immunohistochemistry. The time and method of measuring covalent binding play an important role in the evaluation.
Collapse
Affiliation(s)
- Sachin S Devi
- Michigan State University, East Lansing, Michigan, USA
| | | | | |
Collapse
|
47
|
Marquès JM, Belza I, Holtmann B, Pennica D, Prieto J, Bustos M. Cardiotrophin-1 is an essential factor in the natural defense of the liver against apoptosis. Hepatology 2007; 45:639-48. [PMID: 17326158 DOI: 10.1002/hep.21508] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
UNLABELLED We previously reported that exogenous cardiotrophin-1 (CT-1), a member of the IL-6 family of cytokines, exerts hepatoprotective effects. Because CT-1 is expressed in the normal liver, we hypothesized that this cytokine may constitute an endogenous defense of the liver against proapoptotic stimuli. Here, we found that CT-1-/- mice died faster than wild-type animals after challenge with a lethal dose of the Fas agonist Jo-2. At sublethal doses of Jo-2, all wild-type mice survived whereas CT-1-/- animals developed extensive hepatocyte apoptosis with 50% mortality at 24 hours. Pretreatment with CT-1 improved survival and reduced injury in both CT-1-/- and wild-type animals. Upon Fas ligation the activation of STAT-3, a molecule that defends the liver against apoptosis, was lower in CT-1-/- mice than in wild-type animals despite similar IL-6 up-regulation in the 2 groups. Analysis of liver transcriptome in CT-1-/- and wild-type mice showed that 9 genes reported to be associated with cell survival/death functions were differentially expressed in the 2 groups. Four of these genes [IGFBP1, peroxiredoxin3, TNFR1, and calpastatin (endogenous inhibitor of calpain)] could be validated by real-time PCR. All of them were down-regulated in CT-1-/- mice and were modulated by CT-1 administration. Treatment of CT-1-/- animals with the calpain inhibitor MDL28170 afforded significant protection against Fas-induced liver injury. CONCLUSION CT-1-/- mice are highly sensitive to Fas-mediated apoptosis due in part to deficient STAT-3 activation and inadequate control of calpain activity during the apoptotic process. Our data show that CT-1 is a natural defense of the liver against apoptosis. This cytokine may have therapeutic potential.
Collapse
Affiliation(s)
- Juan M Marquès
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Navarra, Spain
| | | | | | | | | | | |
Collapse
|
48
|
Philip BK, Mumtaz MM, Latendresse JR, Mehendale HM. Impact of repeated exposure on toxicity of perchloroethylene in Swiss Webster mice. Toxicology 2007; 232:1-14. [PMID: 17267091 DOI: 10.1016/j.tox.2006.12.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 11/23/2006] [Accepted: 12/05/2006] [Indexed: 11/26/2022]
Abstract
The aim was to study the subchronic toxicity of perchloroethylene (Perc) by measuring injury and repair in liver and kidney in relation to disposition of Perc and its major metabolites. Male SW mice (25-29g) were given three dose levels of Perc (150, 500, and 1000 mg/kg day) via aqueous gavage for 30 days. Tissue injury was measured during the dosing regimen (0, 1, 7, 14, and 30 days) and over a time course of 24-96h after the last dose (30 days). Perc produced significant liver injury (ALT) after single day exposure to all three doses. Liver injury was mild to moderate and regressed following repeated exposure for 30 days. Subchronic Perc exposure induced neither kidney injury nor dysfunction during the entire time course as evidenced by normal renal histology and BUN. TCA was the major metabolite detected in blood, liver, and kidney. Traces of DCA were also detected in blood at initial time points after single day exposure. With single day exposure, metabolism of Perc to TCA was saturated with all three doses. AUC/dose ratio for TCA was significantly decreased with a concomitant increase in AUC/dose of Perc levels in liver and kidney after 30 days as compared to 1 day exposures, indicating inhibition of metabolism upon repeated exposure to Perc. Hepatic CYP2E1 expression and activity were unchanged indicating that CYP2E1 is not the critical enzyme inhibited. Hepatic CYP4A expression, measured as a marker of peroxisome proliferation was increased transiently only on day 7 with the high dose, but was unchanged at later time points. Liver tissue repair peaked at 7 days, with all three doses and was sustained after medium and high dose exposure for 14 days. These data indicate that subchronic Perc exposure via aqueous gavage does not induce nephrotoxicity and sustained hepatotoxicity suggesting adaptive hepatic repair mechanisms. Enzymes other than CYP2E1, involved in the metabolism of Perc may play a critical role in the metabolism of Perc upon subchronic exposure in SW mice. Liver injury decreased during repeated exposure due to inhibition of metabolism and possibly due to adaptive tissue repair mechanisms.
Collapse
Affiliation(s)
- Binu K Philip
- Department of Toxicology, College of Pharmacy, The University of Louisiana at Monroe, Monroe, LA 71209, USA
| | | | | | | |
Collapse
|
49
|
Donthamsetty S, Bhave VS, Mitra MS, Latendresse JR, Mehendale HM. Nonalcoholic fatty liver sensitizes rats to carbon tetrachloride hepatotoxicity. Hepatology 2007; 45:391-403. [PMID: 17256749 DOI: 10.1002/hep.21530] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED This study tested whether hepatic steatosis sensitizes liver to toxicant-induced injury and investigated the potential mechanisms of hepatotoxic sensitivity. Male Sprague-Dawley rats were fed a methionine- and choline-deficient diet for 31 days to induce steatosis. On the 32nd day, administration of a nonlethal dose of CCl4 (2 mL/kg, intraperitoneally) yielded 70% mortality in steatotic rats 12-72 hours after CCl4 administration, whereas all nonsteatotic rats survived. Neither CYP2E1 levels nor covalent binding of [14C] CCl4-derived radio-label differed between the groups, suggesting that increased bioactivation is not the mechanism for this amplified toxicity. Cell division and tissue repair, assessed by [3H]thymidine incorporation and proliferative cell nuclear antigen assay, were inhibited in the steatotic livers after CCl4 administration and led to progressive expansion of liver injury culminating in mortality. The hypothesis that fatty hepatocytes undergo cell cycle arrest due to (1) an inability to replenish ATP due to overexpressed uncoupling protein-2 (UCP-2) or (2) induction of growth inhibitor p21 leading to G1/S phase arrest was tested. Steatotic livers showed 10-fold lower ATP levels due to upregulated UCP-2 throughout the time course after CCl4 administration, leading to sustained inhibition of cell division. Western blot analysis revealed an up-regulation of p21 due to overexpression of TGF beta1 and p53 and down-regulation of transcription factor Foxm 1b in steatotic livers leading to lower phosphorylated retinoblastoma protein. Thus, fatty hepatocytes fail to undergo compensatory cell division, rendering the liver susceptible to progression of liver injury. CONCLUSION Impaired tissue repair sensitizes the steatotic livers to hepatotoxicity.
Collapse
Affiliation(s)
- Shashikiran Donthamsetty
- Department of Toxicology, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209-0495, USA
| | | | | | | | | |
Collapse
|
50
|
Rose R, Banerjee A, Ramaiah SK. Calpain inhibition attenuates iNOS production and midzonal hepatic necrosis in a repeat dose model of endotoxemia in rats. Toxicol Pathol 2007; 34:785-94. [PMID: 17162536 DOI: 10.1080/01926230600932497] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic exposure to bacterial lipopolysaccharide (LPS, endotoxin) induces hypotension, disseminated intravascular coagulation and neutrophil infiltration in various organs including the lung, kidney and liver. A rat endotoxemic neutrophilic hepatitis model (repeat dose LPS, 10 mg/kg, i.v. 24 hours apart) was developed exhibiting hepatic neutrophil infiltration and mid-zonal hepatic necrosis. The goal of the study was to investigate the role of the intracellular enzyme calpain in the development of neutrophilic hepatitis with midzonal necrosis in this model. A second goal was to compare the observed protective effects of calpain inhibition with a relatively selective inducible nitric oxide synthase (iNOS) inhibitor aminoguanidine (AG) and an inhibitor of coagulation, heparin. When compared to rats administered LPS alone, administration of calpain 1 inhibitor prior to LPS significantly reduced hepatic iNOS expression, hepatic neutrophil infiltration and attenuated midzonal hepatic necrosis. Administration of AG or heparin prior to LPS also decreased liver iNOS expression, hepatic neutrophil infiltration and liver pathology comparable to calpain inhibition. Blood neutrophil activation, as measured by the neutrophil adhesion molecule CD11b integrin, was upregulated in all the LPS treated groups regardless of inhibitor administration. We conclude that amelioration of liver pathology via calpain inhibition is likely dependent on the down-regulation of iNOS expression in the rat model of LPS-mediated hepatitis.
Collapse
Affiliation(s)
- Robert Rose
- Department of Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4467, USA
| | | | | |
Collapse
|