1
|
Sofyantoro F, Septriani NI, Yudha DS, Wicaksono EA, Priyono DS, Putri WA, Primahesa A, Raharjeng ARP, Purwestri YA, Nuringtyas TR. Zebrafish as Versatile Model for Assessing Animal Venoms and Toxins: Current Applications and Future Prospects. Zebrafish 2024; 21:231-242. [PMID: 38608228 DOI: 10.1089/zeb.2023.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024] Open
Abstract
Animal venoms and toxins hold promise as sources of novel drug candidates, therapeutic agents, and biomolecules. To fully harness their potential, it is crucial to develop reliable testing methods that provide a comprehensive understanding of their effects and mechanisms of action. However, traditional rodent assays encounter difficulties in mimicking venom-induced effects in human due to the impractical venom dosage levels. The search for reliable testing methods has led to the emergence of zebrafish (Danio rerio) as a versatile model organism for evaluating animal venoms and toxins. Zebrafish possess genetic similarities to humans, rapid development, transparency, and amenability to high-throughput assays, making it ideal for assessing the effects of animal venoms and toxins. This review highlights unique attributes of zebrafish and explores their applications in studying venom- and toxin-induced effects from various species, including snakes, jellyfish, cuttlefish, anemones, spiders, and cone snails. Through zebrafish-based research, intricate physiological responses, developmental alterations, and potential therapeutic interventions induced by venoms are revealed. Novel techniques such as CRISPR/Cas9 gene editing, optogenetics, and high-throughput screening hold great promise for advancing venom research. As zebrafish-based insights converge with findings from other models, the comprehensive understanding of venom-induced effects continues to expand, guiding the development of targeted interventions and promoting both scientific knowledge and practical applications.
Collapse
Affiliation(s)
- Fajar Sofyantoro
- Faculties of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | | | - Ega Adhi Wicaksono
- Faculties of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dwi Sendi Priyono
- Faculties of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Alfian Primahesa
- Faculties of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Anita Restu Puji Raharjeng
- Faculties of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Faculty of Science and Technology, Universitas Islam Negeri Raden Fatah Palembang, South Sumatera, Indonesia
| | - Yekti Asih Purwestri
- Faculties of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Tri Rini Nuringtyas
- Faculties of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
2
|
Nundes RNC, Almeida AECC, Moura WC, Gonzalez MS, Araújo HP. A Cytotoxicity Assay as an Alternative to the Murine Model for the Potency Testing of Bothrops jararaca Venom and Antivenom: An Intralaboratory Pre-validation Study. Altern Lab Anim 2024; 52:82-93. [PMID: 38438161 DOI: 10.1177/02611929241237518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Antivenom therapy is the only specific treatment for snakebite envenomation, and antivenom potency determination is key in the efficacy assurance quality control process. Nowadays, this process relies on the in vivo murine model - thus, the development of alternative in vitro methods is imperative. In the current study, the principle of the proposed method is the ability of Bothrops venom to induce cytotoxic effects in Vero cells, and the capacity to evaluate the inhibition of this cytotoxicity by the respective antivenom. After exposure to the venom/antivenom, the relative proportions of adherent (viable) cells were evaluated by direct staining with Coomassie Blue. The optical density (OD) of the lysed cell eluate was directly proportional to the number of adherent cells. This cytotoxicity-based alternative method could represent a potential candidate for validation as a replacement for the current in vivo test. The in vitro-determined cytotoxicity of the Brazilian Bothrops reference venom (expressed as the 50% effective concentration; EC50) was 3.61 μg/ml; the in vitro-determined 50% inhibitory concentration (IC50) of the Brazilian Bothrops reference antivenom was 0.133 μl/ml. From these two values, it was possible to calculate the potency of the reference antivenom. The results from the assays exhibited a good linear response, indicating that the method could be a potential candidate replacement method for use in antivenom quality control prior to lot release, subject to further validation.
Collapse
Affiliation(s)
- Renata N C Nundes
- Oswaldo Cruz Foundation, National Institute for Quality Control in Health, Rio de Janeiro, Brazil
- Post-Graduate Programmes in Science and Biotechnology, Federal Fluminense University (UFF), Niterói, Brazil
| | - Antonio E C C Almeida
- Oswaldo Cruz Foundation, National Institute for Quality Control in Health, Rio de Janeiro, Brazil
| | - Wlamir C Moura
- Oswaldo Cruz Foundation, National Institute for Quality Control in Health, Rio de Janeiro, Brazil
- BraCVAM (Brazilian Center for Validation of Alternative Methods), Rio de Janeiro, Brazil
| | - Marcelo S Gonzalez
- Post-Graduate Programmes in Science and Biotechnology, Federal Fluminense University (UFF), Niterói, Brazil
- Science and Technology National Institute in Molecular Entomology (INCT-EM, CNPq), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Post-Graduate Programmes in Applied Physics, Physics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Humberto P Araújo
- Oswaldo Cruz Foundation, National Institute for Quality Control in Health, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Silva LT, Junior RS, Teixeira de Carvalho TX, Moutinho Pataca LC, Dias Heneine LG. Analysis of antibodies avidity for Tityus serrulatus scorpion venom in antivenom production and its potential for application as a potency test. Toxicon 2023; 236:107315. [PMID: 37827265 DOI: 10.1016/j.toxicon.2023.107315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Antivenoms are the only specific medication for neutralizing toxins present in venom of animals such scorpions and snakes through antigen-antibody binding. Several analyses are carried out throughout its production in order to ensure the quality and effectiveness of the antivenom that will be administered to the patient. One of these is the potency assay, which is performed to assess the ability of antivenoms to neutralize the toxic effects of the venom injected in mice. The substitution of in vivo for in vitro assays such as ELISA has been presented by other authors, bringing several advantages such as the reduction in the use of animals, in costs and in the duration of the assays. However, the avidity index of antivenom antibodies determined by ELISA has not yet been applied for this purpose. Therefore, the objective of this study was to evaluate the avidity of sera from hyperimmunized horses with crude Tityus serrulatus venom, a scorpion species associated with the most serious accidents in Brazil, and its potential for application as a potency test replacing the in vivo assay. The avidity ELISA proved to be interesting for monitoring the binding strength of antibodies produced by horses in hyperimmune plasma production programs. It was possible to verify oscillations in antibody avidity that occurred along the immunization cycles, differences between novice and veteran horses, maturation of antibody avidity, and correlation between avidity index and antibody titre. Similar results were obtained for crude venom and purified Ts1 toxin. In addition, the avidity ELISA apparently demonstrated potential for application as a potency test in the initial stage of antivenom production. However, more studies are necessary.
Collapse
Affiliation(s)
- Lucas Tadeu Silva
- Ezequiel Dias Foundation - Funed, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|
4
|
Bala AA, Mohammed M, Umar S, Ungogo MA, Al-Kassim Hassan M, Abdussalam US, Ahmad MH, Ishaq DU, Mana D, Sha'aban A, Jatau AI, Jibril M, Kurfi B, Raji I, Ringim AS, Gulma K, Malami S, Michael GC, Chedi BAZ. Pre-clinical efficacy of African medicinal plants used in the treatment of snakebite envenoming: A systematic review. Toxicon 2023; 224:107035. [PMID: 36706926 DOI: 10.1016/j.toxicon.2023.107035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
The World Health Organization has listed Snakebite Envenoming (SBE) as a priority neglected tropical disease, with a worldwide annual snakebite affecting 5.4 million people and injuring 2.7 million lives. In many parts of rural areas of Africa and Asia, medicinal plants have been used as alternatives to conventional antisnake venom (ASV) due in part to inaccessibility to hospitals. Systemic reviews (SR) of laboratory-based preclinical studies play an essential role in drug discovery. We conducted an SR to evaluate the relationship between interventional medicinal plants and their observed effects on venom-induced experiments. This SR was reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. The Modified collaborative approach to meta-analysis and review of animal data from experimental studies (CAMARADES) and SYRCLE's risk of bias tools were used to appraise the included studies. Data were searched online in Medline via PubMed, Embase via OVID, and Scopus. Studies reporting in vivo and in vitro pharmacological activities of African medicinal plants/extracts/constituents against venom-induced pathologies were identified and included for screening. Data from the included studies were extracted and synthesized. Ten studies reported statistically significant percentage protection (40-100%) of animals against venom-induced lethality compared with control groups that received no medicinal plant intervention. Sixteen studies reported significant effects (p ≤ 0.05) against venom-induced pathologies compared with the control group; these include hemolytic, histopathologic, necrotic, and anti-enzymatic effects. The plant family Fabaceae has the highest number of studies reporting its efficacy, followed by Annonaceae, Malvaceae, Combretaceae, Sterculiaceae, and Olacaceae. Some African medicinal plants are preclinically effective against venom-induced lethality, hematotoxicity, and cytotoxicity. The evidence was extracted from three in vitro studies, nine in vivo studies, and five studies that combined both in vivo and in vitro models. The effective plants belong to the Fabaceae family, followed by Malvaceae, and Annonaceae.
Collapse
Affiliation(s)
- Auwal A Bala
- Department of Pharmacology, College of Medicine and Health Sciences, Federal University Dutse, Nigeria; Department of Pharmacology and Therapeutics, Bayero University, Kano, Nigeria.
| | - Mustapha Mohammed
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Pulau Pinang, Malaysia; Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Saifullahi Umar
- Department of Pharmacognosy and Herbal Medicine, Faculty of Pharmaceutical Sciences, College of Natural and Pharmaceutical Sciences, Bayero University Kano, Nigeria
| | - Marzuq A Ungogo
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, 810107, Kaduna State, Nigeria; Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, UK
| | | | - Umar S Abdussalam
- Department of Pharmacology and Therapeutics, Bayero University, Kano, Nigeria
| | - Mubarak Hussaini Ahmad
- Department of Pharmacology and Therapeutics, Ahmadu Bello University, Zaria, Nigeria; Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Capital City University, Kano State, Nigeria
| | - Daha U Ishaq
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Science,Bayero University, Kano, Nigeria; Center for Mitochondrial Biology & Medicine, Xi'an Jiaotong University (XJTU), Xi'an, China
| | - Dillos Mana
- Department of Community Medicine and Primary Healthcare, Bingham University, Abuja, Nigeria
| | - Abubakar Sha'aban
- School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4YS, UK
| | - Abubakar I Jatau
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, Australia
| | - Murtala Jibril
- Department of Pharmacology and Therapeutics, Bayero University, Kano, Nigeria
| | - Binta Kurfi
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Science,Bayero University, Kano, Nigeria
| | - Ismaila Raji
- Department of Pharmacology, College of Medicine and Health Sciences, Federal University Dutse, Nigeria
| | - Abubakar S Ringim
- Morgan State University, Patuxent Environmental and Aquatic Research Laboratory, Maryland, USA; Department of Biological Sciences, Federal University Dutse, Jigawa State, Nigeria
| | - Kabiru Gulma
- School of Global Health and Bioethics, Euclid University, Gambia
| | - Sani Malami
- Department of Pharmacology and Therapeutics, Bayero University, Kano, Nigeria
| | - Godpower C Michael
- Department of Family Medicine, Aminu Kano Teaching Hospital, Kano, Nigeria
| | - Basheer A Z Chedi
- Department of Pharmacology and Therapeutics, Bayero University, Kano, Nigeria; Venom-Antivenom Research Project (VASP) and Nigeria- Snakebite Research and Intervention Centre(NSRIC), Nigeria
| |
Collapse
|
5
|
Faria GM, Lemos APA, Anholeti MC, Paiva SR, Amorim LMF. The bioprospecting potential of Clusia fluminensis Planch. & Triana: a scoping review. AN ACAD BRAS CIENC 2023; 95:e20211605. [PMID: 37132746 DOI: 10.1590/0001-3765202320211605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/15/2022] [Indexed: 05/04/2023] Open
Abstract
Many biological activities are described for the Clusiaceae family. Clusia fluminensis, a species from Brazilian flora, is mainly employed for ornamental purposes. This review aimed to depict the current knowledge of C. fluminensis from a bioprospecting standpoint. "Clusia fluminensis" search term was applied in Scopus, Web of Science, PubMed and Bireme databases according to PRISMA-ScR statement. Selected papers on Phytochemistry or Bioactivity followed hand searching procedures. Bioactivity preclinical studies considered in vitro or in vivo biological systems, treated with plant extracts or isolated compounds. The outcomes were compared with standard or no treatment control groups. Critical appraisal of individual trials considered completeness in the research fields. Our results showed that 81% of the selected papers presented high level of completeness, 69% revealed phytochemical parameters and 31% biological applications of plant extracts and isolated compounds. Polyisoprenylated benzophenones, terpenoids, sterols and phenolic compounds were identified. Antiviral, insecticidal and snake antivenom activities were reported. In conclusion, the phytochemical data reinforce the reported activities. Potential applications in personal care, nutritional supplementation and pharmaceutical, food, chemical or textile industries were also identified. Toxicological and phytochemical complementary studies may be required.
Collapse
Affiliation(s)
- Giselle M Faria
- Universidade Federal Fluminense, Instituto de Biologia, Departamento de Biologia Celular e Molecular, Rua Prof. Marcos Waldemar de Freitas Reis, Bloco M, 311, São Domingos, 24210-201 Niterói, RJ, Brazil
| | - Ana Patricia A Lemos
- Universidade Federal Fluminense, Instituto de Biologia, Departamento de Biologia Celular e Molecular, Rua Prof. Marcos Waldemar de Freitas Reis, Bloco M, 311, São Domingos, 24210-201 Niterói, RJ, Brazil
| | - Maria C Anholeti
- Universidade Federal Fluminense, Faculdade de Farmácia, Departamento de Farmácia e Administração Farmacêutica, Rua Dr. Mario Vianna, 523, Santa Rosa, 24241-001 Niterói, RJ, Brazil
| | - Selma R Paiva
- Universidade Federal Fluminense, Instituto de Biologia, Departamento de Biologia Geral, Rua Prof. Marcos Waldemar de Freitas Reis, Bloco M, 111, São Domingos, 24210-201 Niterói, RJ, Brazil
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para Saúde, Universidade Federal Fluminense, Faculdade de Farmácia, Rua Dr. Mario Vianna, 523, Santa Rosa, 24241-001 Niterói, RJ, Brazil
| | - Lidia M F Amorim
- Universidade Federal Fluminense, Instituto de Biologia, Departamento de Biologia Celular e Molecular, Rua Prof. Marcos Waldemar de Freitas Reis, Bloco M, 311, São Domingos, 24210-201 Niterói, RJ, Brazil
| |
Collapse
|
6
|
Bhatia S, Blotra A, Vasudevan K. Evaluating Antivenom Efficacy against Echis carinatus Venoms—Screening for In Vitro Alternatives. Toxins (Basel) 2022; 14:toxins14070481. [PMID: 35878219 PMCID: PMC9322380 DOI: 10.3390/toxins14070481] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023] Open
Abstract
In India, polyvalent antivenom is the mainstay treatment for snakebite envenoming. Due to batch-to-batch variation in antivenom production, manufacturers have to estimate its efficacy at each stage of IgG purification using the median effective dose which involves 100–120 mice for each batch. There is an urgent need to replace the excessive use of animals in snake antivenom production using in vitro alternatives. We tested the efficacy of a single batch of polyvalent antivenom from VINS bioproducts limited on Echis carinatus venom collected from three different locations—Tamil Nadu (ECVTN), Goa (ECVGO) and Rajasthan (ECVRAJ)—using different in vitro assays. Firstly, size-exclusion chromatography (SEC-HPLC) was used to quantify antivenom–venom complexes to assess the binding efficiency of the antivenom. Secondly, clotting, proteolytic and PLA2 activity assays were performed to quantify the ability of the antivenom to neutralize venom effects. The use of both binding and functional assays allowed us to measure the efficacy of the antivenom, as they represent multiple impacts of snake envenomation. The response from the assays was recorded for different antivenom–venom ratios and the dose–response curves were plotted. Based on the parameters that explained the curves, the efficacy scores (ES) of antivenom were computed. The binding assay revealed that ECVTN had more antivenom–venom complexes formed compared to the other venoms. The capacity of antivenom to neutralize proteolytic and PLA2 effects was lowest against ECVRAJ. The mean efficacy score of antivenom against ECVTN was the greatest, which was expected, as ECVTN is mainly used by antivenom manufacturers. These findings pave a way for the development of in vitro alternatives in antivenom efficacy assessment.
Collapse
|
7
|
Silva A, Hodgson WC, Tasoulis T, Isbister GK. Rodent Lethality Models Are Problematic for Evaluating Antivenoms for Human Envenoming. Front Pharmacol 2022; 13:830384. [PMID: 35185582 PMCID: PMC8850383 DOI: 10.3389/fphar.2022.830384] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/17/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Anjana Silva
- Department of Parasitology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
- Monash Venom Group, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- South Asian Clinical Toxicology Research Collaboration, University of Peradeniya, Peradeniya, Sri Lanka
| | - Wayne C. Hodgson
- Monash Venom Group, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Theo Tasoulis
- Clinical Toxicology Research Group, University of Newcastle, Newcastle, NSW, Australia
| | - Geoffrey K. Isbister
- South Asian Clinical Toxicology Research Collaboration, University of Peradeniya, Peradeniya, Sri Lanka
- Clinical Toxicology Research Group, University of Newcastle, Newcastle, NSW, Australia
- *Correspondence: Geoffrey K. Isbister,
| |
Collapse
|
8
|
Mender MM, Bolton F, Berry C, Young M. Antivenom: An immunotherapy for the treatment of snakebite envenoming in sub-Saharan Africa. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 129:435-477. [PMID: 35305724 DOI: 10.1016/bs.apcsb.2021.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Snakebite envenoming (SBE) leads to significant morbidity and mortality, resulting in over 90,000 deaths and approximately 400,000 amputations annually. In sub-Saharan Africa (SSA) alone, SBE accounts for over 30,000 deaths per annum. Since 2017, SBE has been classified as a priority Neglected Tropical Disease (NTD) by the World Health Organisation (WHO). The major species responsible for mortality from SBE within SSA are from the Bitis, Dendroaspis, Echis and Naja genera. Pharmacologically active toxins such as metalloproteinases, serine proteinases, 3-finger toxins, kunitz-type toxins, and phospholipase A2s are the primary snake venom components. These toxins induce cytotoxicity, coagulopathy, hemorrhage, and neurotoxicity in envenomed victims. Antivenom is currently the only available venom-specific treatment for SBE and contains purified equine or ovine polyclonal antibodies, collected from donor animals repeatedly immunized with low doses of adjuvanted venom. The resulting plasma or serum contains a high titre of specific antibodies, which can then be collected and stored until required. The purified antibodies are either whole IgG, monovalent fragment antibody (Fab) or divalent fragment antibody F(ab')2. Despite pharmacokinetic and pharmacodynamic differences, all three are effective in the treatment of SBE. No antivenom is without adverse reactions but, the level of their impact and severity varies from benign early adverse reactions to the rarely occurring fatal anaphylactic shock. However, the major side effects are largely reversible with immediate administration of adrenaline and corticosteroids. There are 16 different antivenoms marketed within SSA, but the efficacy and safety profiles are only published for less than 50% of these products.
Collapse
Affiliation(s)
- Mender M Mender
- School of Bioscience, Cardiff University, Cardiff, United Kingdom; Department of Research and Development, MicroPharm Ltd, Newcastle Emlyn, United Kingdom.
| | - Fiona Bolton
- Department of Research and Development, MicroPharm Ltd, Newcastle Emlyn, United Kingdom
| | - Colin Berry
- School of Bioscience, Cardiff University, Cardiff, United Kingdom
| | - Mark Young
- School of Bioscience, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
9
|
Development of Antibody Detection ELISA Based on Immunoreactive Toxins and Toxin-Derived Peptides to Evaluate the Neutralization Potency of Equine Plasma against Naja atra in Taiwan. Toxins (Basel) 2021; 13:toxins13110818. [PMID: 34822602 PMCID: PMC8622849 DOI: 10.3390/toxins13110818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
Naja atra, also known as Taiwanese cobra, is one of the most prevalent venomous snakes in Taiwan. Clinically, freeze-dried neurotoxic antivenom (FNAV) produced from horses by Taiwan Centers for Disease Control (CDC) has been the only approved treatment for N. atra envenoming for the last few decades. During antivenom production, large numbers of mice are used in the in vivo assay to determine whether the neutralization potency of hyperimmunized equines is satisfactory for large-scale harvesting. However, this in vivo assay is extremely laborious, expensive, and significantly impairs animal welfare. In the present study, we aimed to develop an in vitro ELISA-based system that could serve as an alternative assay to evaluate the neutralization potency of plasma from hyperimmunized equines. We initially obtained 51 plasma samples with known (high or low) neutralization potency assessed in vivo from 9 hyperimmunized equines and subsequently determined their antibody titers against the five major protein components of N. atra venom (neurotoxin (NTX), phospholipase A2 (PLA2), cytotoxin (CTX), cysteine-rich secretory protein (CRISP), and snake venom metalloproteinase (SVMP)) via ELISA. The antibody titer against NTX was the most effective in discriminating between high and low potency plasma samples. To identify the specific epitope(s) of NTX recognized by neutralization potency-related antibodies, 17 consecutive NTX-derived pentadecapeptides were synthesized and used as antigens to probe the 51 equine plasma samples. Among the 17 peptides, immunoreactive signals for three consecutive peptides (NTX1-8, NTX1-9, and NTX1-10) were significantly higher in the high potency relative to low potency equine plasma groups (p < 0.0001). Our ELISA system based on NTX1-10 peptide (RWRDHRGYRTERGCG) encompassing residues 28–42 of NTX displayed optimal sensitivity (96.88%) and specificity (89.47%) for differentiating between high- and low-potency plasma samples (area under the receiver operating characteristic curve (AUC) = 0.95). The collective data clearly indicate that the antibody titer against NTX protein or derived peptides can be used to efficiently discriminate between high and low neutralization potency of plasma samples from venom-immunized horses. This newly developed antibody detection ELISA based on NTX or its peptide derivatives has good potential to complement or replace the in vivo rodent assay for determining whether the neutralization potency of equine plasma is satisfactory for large-scale harvesting in the antivenom production process against N. atra.
Collapse
|
10
|
Factor XII-Deficient Chicken Plasma as a Useful Target for Screening of Pro- and Anticoagulant Animal Venom Toxins. Toxins (Basel) 2020; 12:toxins12020079. [PMID: 31979411 PMCID: PMC7076771 DOI: 10.3390/toxins12020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 11/24/2022] Open
Abstract
The sensitivity of vertebrate citrated plasma to pro- and anticoagulant venom or toxins occurs on a microscale level (micrograms). Although it improves responses to agonists, recalcification triggers a relatively fast thrombin formation process in mammalian plasma. As it has a natural factor XII deficiency, the recalcification time (RT) of chicken plasma (CP) is comparatively long [≥ 1800 seconds (s)]. Our objective was to compare the ability of bee venom phospholipase A2 (bvPLA2) to neutralize clot formation induced by an activator of coagulation (the aPTT clot) in recalcified human and chicken plasmas, through rotational thromboelastometry. The strategy used in this study was to find doses of bvPLA2 that were sufficient enough to prolong the clotting time (CT) of these activated plasmas to values within their normal RT range. The CT of CP was prolonged in a dose-dependent manner by bvPLA2, with 17 ± 2.8 ng (n = 6) being sufficient to displace the CT values of the activated samples to ≥ 1800 s. Only amounts up to 380 ± 41 ng (n = 6) of bvPLA2 induced the same effect in activated human plasma samples. In conclusion, the high sensitivity of CP to agonists and rotational thromboelastometry could be useful. For example, during screening procedures for assaying the effects of toxins in several stages of the coagulation pathway, such as clot initiation, formation, stability, strength, or dissolution.
Collapse
|
11
|
Lopes-de-Souza L, Costal-Oliveira F, Stransky S, Fonseca de Freitas C, Guerra-Duarte C, Braga VMM, Chávez-Olórtegui C. Development of a cell-based in vitro assay as a possible alternative for determining bothropic antivenom potency. Toxicon 2019; 170:68-76. [PMID: 31494208 DOI: 10.1016/j.toxicon.2019.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/22/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022]
Abstract
Accidents with venomous snakes are a major health hazard in tropical countries. Bothrops genus is responsible for almost 80% of snakebites in Brazil. Immunotherapy is the only approved specific treatment against snake toxins and the production of therapeutic antivenoms requires quality control tests to determine their neutralizing potency. Currently, these controls are performed by in vivo lethality neutralization, however, the inhibition of particular events produced by bothropic venoms such as coagulopathy, hemorrhage, edema or cytotoxic effects are also required. The aim of this work is to develop an in vitro alternative assay for antivenom pre-clinical evaluation. In this sense, we designed a cell viability assay using different amounts (0.2-10 μL/well) of low and high potency anti-bothropic sera, previously classified by the traditional in vivo test, for assessing the antivenom capacity to protect the cells against B. jararaca venom cytotoxicity (5xEC50 = 58.95 μg/mL). We found that high potency sera are more effective in neutralizing B. jararaca venom cytotoxicity when compared to low potency sera, which is in accordance to their pre-determined in vivo potency. Considering sera in vitro inhibitory concentration able to prevent 50% cell death (IC50) and their known in vivo potency, a cut-off point was determined to discriminate low and high potency sera. Our data provide insights for the development of an in vitro method which can determine the anti-bothropic antivenom potency during its production.
Collapse
Affiliation(s)
- Letícia Lopes-de-Souza
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais (UFMG), 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Costal-Oliveira
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais (UFMG), 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Stephanie Stransky
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais (UFMG), 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | | | - Clara Guerra-Duarte
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-010, Belo Horizonte, MG, Brazil
| | - Vania M M Braga
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, SW7 2AZ, London, UK
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais (UFMG), 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
12
|
Herrera C, Bolton F, Arias AS, Harrison RA, Gutiérrez JM. Analgesic effect of morphine and tramadol in standard toxicity assays in mice injected with venom of the snake Bothrops asper. Toxicon 2018; 154:35-41. [PMID: 30268394 DOI: 10.1016/j.toxicon.2018.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 01/12/2023]
Abstract
Routine laboratory animal tests necessary to assess the toxicity of snake venoms and the preclinical neutralizing ability of antivenoms and other inhibitory substances induce significant pain and distress. This has prompted initiatives to introduce the routine use of analgesia. In this study, the analgesic effect of morphine and tramadol was assessed in tests assessing the lethal, hemorrhagic, myotoxic and edema-forming activities of the venom of the viperid snake Bothrops asper. The Mouse Grimace Scale (MGS) and mouse-exploration activity were used to assess pain and its inhibition by the analgesics. Results demonstrate that tests assessing lethality and myotoxicity induce higher levels of pain than assays quantifying hemorrhagic and edema-forming activities. Our observations also indicate that pretreatment of mice with both analgesics, at the doses used, were similarly effective in reducing the MGS magnitude and increase mouse-exploration activity after the administration of B. asper venom. Moreover, the analgesic effect of both drugs was more evident in the myotoxic and lethality assays. Combined with previous observations showing that these analgesics do not alter the extent of toxic effects induced by B. asper venom, our results strongly indicate that the use of analgesia (using either morphine or tramadol) should be considered in the routine assessment of venom toxicity and antivenom efficacy.
Collapse
Affiliation(s)
- Cristina Herrera
- Facultad de Farmacia, Universidad de Costa Rica, San José, Costa Rica
| | - Fiona Bolton
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ana Silvia Arias
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | | | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| |
Collapse
|
13
|
Halassy B, Kurtović T, Lang Balija M, Brgles M, Tunjić M, Sviben D. Concept of sample-specific correction of immunoassay results for precise and accurate IgG quantification in horse plasma. J Pharm Biomed Anal 2018; 164:276-282. [PMID: 30408624 DOI: 10.1016/j.jpba.2018.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 01/27/2023]
Abstract
The hyperimmune horse plasma (HHP), prepared through active immunisation of horses with an antigen of interest, is the most common starting material for antitoxin (animal antibody-based therapeutics) production. Precise IgG quantification in plasma is a prerequisite for accurate estimation of the purification process efficiency. Although immunoglobulins from HHP have been purified for over a century, there is still no in vitro method for precise and accurate determination of IgG content in HHP. For this reason, the purification process efficiency has been assessed by antibody activity measurements, mostly performed in vivo. Here we describe the development of a precise and accurate in vitro immunoassay for IgG quantification in HHP. We showed and highlighted that any difference in composition of IgG population between the standard and the sample, with respect to both IgG subclass distribution and antigen-specific IgG content, leads to inaccurate IgG quantification. We demonstrated that caprylic acid precipitation as the method for IgG isolation from horse plasma renders the composition of IgG population unchanged. This very efficient, fast, simple and inexpensive method was used to prepare internal, sample-specific reference IgG for each plasma sample, which was tested simultaneously to a respective plasma sample. Deviation of IgG quantity determined by ELISA for each sample-specific reference from its nominal value was used for correction of the results of respective plasma sample, which led to accurate and precise IgG quantification as shown by method validation. The here presented novel concept of sample-specific correction of immunoassay results could be widely applicable and easily introduced in different immunoassays for more accurate and precise plasma IgG quantification.
Collapse
Affiliation(s)
- Beata Halassy
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia.
| | - Tihana Kurtović
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia
| | - Maja Lang Balija
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia
| | - Marija Brgles
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia
| | - Monika Tunjić
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia
| | - Dora Sviben
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, HR-10000, Zagreb, Croatia
| |
Collapse
|
14
|
Laustsen AH, Dorrestijn N. Integrating Engineering, Manufacturing, and Regulatory Considerations in the Development of Novel Antivenoms. Toxins (Basel) 2018; 10:E309. [PMID: 30065185 PMCID: PMC6115708 DOI: 10.3390/toxins10080309] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022] Open
Abstract
Snakebite envenoming is a neglected tropical disease that requires immediate attention. Conventional plasma-derived snakebite antivenoms have existed for more than 120 years and have been instrumental in saving thousands of lives. However, both a need and an opportunity exist for harnessing biotechnology and modern drug development approaches to develop novel snakebite antivenoms with better efficacy, safety, and affordability. For this to be realized, though, development approaches, clinical testing, and manufacturing must be feasible for any novel treatment modality to be brought to the clinic. Here, we present engineering, manufacturing, and regulatory considerations that need to be taken into account for any development process for a novel antivenom product, with a particular emphasis on novel antivenoms based on mixtures of monoclonal antibodies. We highlight key drug development challenges that must be addressed, and we attempt to outline some of the important shifts that may have to occur in the ways snakebite antivenoms are designed and evaluated.
Collapse
Affiliation(s)
- Andreas Hougaard Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| | - Netty Dorrestijn
- Utrecht Center for Affordable Biotherapeutics, Department of Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
15
|
A functional and thromboelastometric-based micromethod for assessing crotoxin anticoagulant activity and antiserum relative potency against Crotalus durissus terrificus venom. Toxicon 2018; 148:26-32. [PMID: 29654870 DOI: 10.1016/j.toxicon.2018.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 11/20/2022]
Abstract
The assessment of the capacity of antivenoms to neutralize the lethal activity of snake venoms still relies on traditional rodent in vivo lethality assay. ED50 and LD50 assays require large quantities of venoms and antivenoms, and besides leading to animal suffering. Therefore, in vitro tests should be introduced for assessing antivenom neutralizing capacity in intermediary steps of antivenom production. This task is facilitated when one key lethal toxin is identified. A good example is crotoxin, a β-neurotoxin phospholipase A2-like toxin that presents anticoagulant activity in vitro and is responsible for the lethality of venoms of Crotalus durissus snakes. By using rotational thromboelastometry, we reported recently one sensitive coagulation assay for assessing relative potency of the anti-bothropic serum in neutralizing procoagulant activity of Bothrops jararaca venom upon recalcified factor-XII-deficient chicken plasma samples (CPS). In this study, we stablished conditions for determining relative potency of four batches of the anti-crotalic serum (ACS) (antagonist) in inactivating crotoxin anticoagulant activity in CPS (target) simultaneously treated with one classical activator of coagulation (agonists). The correlation coefficient (r) between values related the ACS potency in inactivating both in vitro crotoxin anticoagulant activity and the in vivo lethality of whole venom (ED50) was 0.94 (p value < 0.05). In conclusion, slowness in spontaneous thrombin/fibrin generation even after recalcification elicit time lapse sufficient for elaboration of one dose-response curve to pro- or anti-coagulant agonists in CPS. We propose this methodology as an alternative and sensitive assay for assessing antivenom neutralizing ability in plasma of immunized horses as well as for in-process quality control.
Collapse
|
16
|
Wright LV, Indrawirawan YH. Lowland copperhead (Austrelaps superbus
) envenomation causing severe neuromuscular paralysis in a dog. Aust Vet J 2017; 95:207-210. [DOI: 10.1111/avj.12588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/11/2016] [Accepted: 09/04/2016] [Indexed: 10/19/2022]
Affiliation(s)
- LV Wright
- Animal Emergency Centre Hallam; 18/151-159 Princes Hwy Hallam Victoria 3803 Australia
| | - YH Indrawirawan
- Animal Emergency Centre Hallam; 18/151-159 Princes Hwy Hallam Victoria 3803 Australia
| |
Collapse
|
17
|
Oguiura N, Kapronezai J, Ribeiro T, Rocha M, Medeiros C, Marcelino J, Prezoto B. An alternative micromethod to access the procoagulant activity of Bothrops jararaca venom and the efficacy of antivenom. Toxicon 2014; 90:148-54. [DOI: 10.1016/j.toxicon.2014.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/23/2014] [Accepted: 08/06/2014] [Indexed: 12/24/2022]
|
18
|
van der Valk T, van der Meijden A. Toxicity of scorpion venom in chick embryo and mealworm assay depending on the use of the soluble fraction versus the whole venom. Toxicon 2014; 88:38-43. [DOI: 10.1016/j.toxicon.2014.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 06/05/2014] [Accepted: 06/11/2014] [Indexed: 12/23/2022]
|
19
|
Theakston RDG, Laing GD. Diagnosis of snakebite and the importance of immunological tests in venom research. Toxins (Basel) 2014; 6:1667-95. [PMID: 24859244 PMCID: PMC4052258 DOI: 10.3390/toxins6051667] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/09/2014] [Accepted: 05/14/2014] [Indexed: 11/16/2022] Open
Abstract
In many cases of envenoming following snake bite, the snake responsible for the accident remains unidentified; this frequently results in difficulty deciding which antivenom to administer to the systemically-envenomed victim, especially when only monospecific antivenoms are available. Normally the specific diagnosis of snake bite can be conveniently made using clinical and laboratory methods. Where clinical diagnosis depends upon the recognition of specific signs of envenoming in the patient, laboratory diagnosis is based on the changes which occur in envenomed victims including the detection of abnormalities in blood parameters, presence/absence of myoglobinuria, changes in certain enzyme levels, presence/absence of neurotoxic signs and the detection in the blood of specific venom antigens using immunologically-based techniques, such as enzyme immunoassay. It is the latter which is the main subject of this review, together with the application of techniques currently used to objectively assess the effectiveness of new and existing antivenoms, to assess first aid measures, to investigate the possible use of such methods in epidemiological studies, and to detect individual venom components. With this in mind, we have discussed in some detail how such techniques were developed and how they have helped in the treatment of envenoming particularly and in venom research in general.
Collapse
Affiliation(s)
- R David G Theakston
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, University of Liverpool, Liverpool L3 5QA, UK.
| | - Gavin D Laing
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, University of Liverpool, Liverpool L3 5QA, UK.
| |
Collapse
|
20
|
Khamehchian S, Zolfagharian H, Dounighi NM, Tebianian M, Madani R. Study on camel IgG purification: a new approach to prepare Naja Naja Oxiana antivenom as passive immunization for therapy. Hum Vaccin Immunother 2014; 10:1633-8. [PMID: 24642472 DOI: 10.4161/hv.28531] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A combined process of ammonium sulfate precipitation (salting out) and ion-exchange chromatography on DEAE-Sepharose CL-6B was used to prepare camel antivenom (IgG) against Naja Naja Oxiana for therapy. In the ammonium sulfate precipitation, the best condition for fractionation of IgG from the other proteins in camel serum was 55% precipitate. The camel IgG presented as 2 bands with molecular masses of 250 and 100 kDa, the latter corresponding to heavy chain IgG, on 10% gel electrophoresis. A trace amount of non-IgG proteins was not isolated and remained in this precipitate. Therefore in order to effectively separate albumin and the other nonspecific proteins from the IgG, the 25% precipitate of ammonium sulfate precipitation of serum was subjected to DEAE-Sepharose CL-6B column chromatography. A peak of antibody (IgG) could be obtained by elution with sodium phosphate buffer. In this stage, 2 bands of molecular masses of 150 and 75 kDa were observed on 7% gel electrophoresis. A comparative study was performed between camel IgG and conventional horse F(ab) 2 antivenoms in term of potency (serum neutralization test and ELISA). Our results showed that the potency of camel antivenom was 4-fold higher than that of horse. It is suggested the combined ammonium sulfate precipitation and ion-exchange chromatography process effectively removed residual proteins in the final camel IgG preparation and can be a suitable method for large-scale refinement of therapeutic camel antivenoms.
Collapse
Affiliation(s)
- Sedigheh Khamehchian
- Department of Venomous Animals and Antivenom; Razi Vaccine and Serum Research Institute; Karaj, Iran
| | - Hossein Zolfagharian
- Department of Venomous Animals and Antivenom; Razi Vaccine and Serum Research Institute; Karaj, Iran
| | | | - Majid Tebianian
- Department of Venomous Animals and Antivenom; Razi Vaccine and Serum Research Institute; Karaj, Iran
| | - Rasool Madani
- Department of Biotechnology; Razi Vaccine and Serum Research Institute; Karaj, Iran
| |
Collapse
|
21
|
van der Meijden A, Lobo Coelho P, Sousa P, Herrel A. Choose your weapon: defensive behavior is associated with morphology and performance in scorpions. PLoS One 2013; 8:e78955. [PMID: 24236075 PMCID: PMC3827323 DOI: 10.1371/journal.pone.0078955] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/16/2013] [Indexed: 11/29/2022] Open
Abstract
Morphology can be adaptive through its effect on performance of an organism. The effect of performance may, however, be modulated by behavior; an organism may choose a behavioral option that does not fully utilize its maximum performance. Behavior may therefore be decoupled from morphology and performance. To gain insight into the relationships between these levels of organization, we combined morphological data on defensive structures with measures of defensive performance, and their utilization in defensive behavior. Scorpion species show significant variation in the morphology and performance of their main defensive structures; their chelae (pincers) and the metasoma ("tail") carrying the stinger. Our data show that size-corrected pinch force varies to almost two orders of magnitude among species, and is correlated with chela morphology. Chela and metasoma morphology are also correlated to the LD50 of the venom, corroborating the anecdotal rule that dangerously venomous scorpions can be recognized by their chelae and metasoma. Analyses of phylogenetic independent contrasts show that correlations between several aspects of chela and metasoma morphology, performance and behavior are present. These correlations suggest co-evolution of behavior with morphology and performance. Path analysis found a performance variable (pinch force) to partially mediate the relationship between morphology (chela aspect ratio) and behavior (defensive stinger usage). We also found a correlation between two aspects of morphology: pincer finger length correlates with the relative "thickness" (aspect ratio) of the metasoma. This suggests scorpions show a trade-off between their two main weapon complexes: the metasoma carrying the stinger, and the pedipalps carrying the chelae.
Collapse
Affiliation(s)
- Arie van der Meijden
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Vairão, Portugal
| | - Pedro Lobo Coelho
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Vairão, Portugal
| | - Pedro Sousa
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Campus Agrário de Vairão, Vairão, Portugal
| | - Anthony Herrel
- UMR 7179, Muséum National d′Histoire Naturelle, Département d′Ecologie et de Gestion de la Biodiversité, Paris, France
| |
Collapse
|
22
|
Assessing the preclinical efficacy of antivenoms: From the lethality neutralization assay to antivenomics. Toxicon 2013. [DOI: 10.1016/j.toxicon.2012.11.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Harris J, Flecknell P, Thomas A, Warrell DA. On the use of analgesia in experimental toxinology. Toxicon 2013; 64:36-7. [DOI: 10.1016/j.toxicon.2012.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 12/13/2012] [Indexed: 10/27/2022]
|
24
|
Razi MT, Asad MHHB, Khan T, Chaudhary MZ, Ansari MT, Arshad MA, Saqib QNU. Antihaemorrhagic potentials of Fagonia cretica against Naja naja karachiensis (black Pakistan cobra) venom. Nat Prod Res 2011; 25:1902-7. [PMID: 21656416 DOI: 10.1080/14786419.2010.490785] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Plants have been extensively used as a remedy for the treatment of snake bites. The aim of this study was to determine the antivenom potentials of methanolic extract from the aerial parts (leaves and twigs) of Fagonia cretica L. on a haemorrhage induced by venom from Naja naja karachiensis. The haemorrhagic response of venom was dose dependent from 0.1 to 4.0 µg per 1.5 µL phosphate buffer saline (PBS) on vitelline veins of fertilised hens' eggs in their shells. The extract effectively eliminated and neutralised, in a dose-dependent manner, the haemorrhagic activity of snake venom. The minimum effective neutralising dose of F. cretica extract was found to be 15 µg per 1.5 µL PBS. The extract possesses potentials as haemorrhagic inhibitor against snake venom compared to the standard antiserum and various plants reported in the literature. This study also provides a scientific base for the use of F. cretica in traditional medicine for the treatment of snake bite.
Collapse
|
25
|
Sanny CG. In vitro evaluation of total venom–antivenin immune complex formation and binding parameters relevant to antivenin protection against venom toxicity and lethality based on size-exclusion high-performance liquid chromatography. Toxicon 2011; 57:871-81. [DOI: 10.1016/j.toxicon.2011.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/01/2011] [Indexed: 11/30/2022]
|
26
|
Antivenoms for the treatment of snakebite envenomings: The road ahead. Biologicals 2011; 39:129-42. [DOI: 10.1016/j.biologicals.2011.02.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 02/22/2011] [Indexed: 11/18/2022] Open
|
27
|
Solano G, Segura Á, Herrera M, Gómez A, Villalta M, Gutiérrez JM, León G. Study of the design and analytical properties of the lethality neutralization assay used to estimate antivenom potency against Bothrops asper snake venom. Biologicals 2010; 38:577-85. [DOI: 10.1016/j.biologicals.2010.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 05/06/2010] [Accepted: 05/12/2010] [Indexed: 11/25/2022] Open
|
28
|
Kwok HF, Ivanyi C, Morris A, Shaw C. Proteomic and Genomic Studies on Lizard Venoms in the Last Decade. PROTEOMICS INSIGHTS 2010. [DOI: 10.4137/pri.s3693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Traditionally man has looked to nature to provide cures for diseases. This approach still exists today in the form of ‘bio-prospecting’ for therapeutically-active compounds in venoms. For example, the venoms of many reptiles offer a spectacular laboratory of bioactive molecules, including peptides and proteins. In the last 10–15 years, there have been a number of major proteomic and genomic research breakthroughs on lizard venoms. In this current review, the key findings from these proteomic and genomic studies will be critically discussed and suggestions will be offered for future focused investigations. It is our intention that this article will not only provide a comprehensive picture of the state of current knowledge of the components of lizard venoms, but also engender awareness in readers of the need to protect and conserve such uniquely precious natural resources for several reasons, including the potential benefit of humankind.
Collapse
Affiliation(s)
- Hang Fai Kwok
- Molecular Therapeutics Research, School of Pharmacy, Queen's University Belfast, Northern Ireland BT9 7BL, U.K
| | - Craig Ivanyi
- Arizona-Sonora Desert Museum, 2021 North Kinney Road, Tucson, Arizona 85743 U.S.A
| | - Andrew Morris
- School of Pharmacy, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Malaysia
| | - Chris Shaw
- Molecular Therapeutics Research, School of Pharmacy, Queen's University Belfast, Northern Ireland BT9 7BL, U.K
| |
Collapse
|
29
|
El-Kady E, Ibrahim N, Wahby A. Assessment of the anti-Naja haje antibodies elicited in a low dose multi-site immunization protocol. Toxicon 2009; 54:450-9. [DOI: 10.1016/j.toxicon.2009.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 04/17/2009] [Accepted: 05/12/2009] [Indexed: 11/25/2022]
|
30
|
Gutiérrez JM, Lomonte B, León G, Alape-Girón A, Flores-Díaz M, Sanz L, Angulo Y, Calvete JJ. Snake venomics and antivenomics: Proteomic tools in the design and control of antivenoms for the treatment of snakebite envenoming. J Proteomics 2009; 72:165-82. [DOI: 10.1016/j.jprot.2009.01.008] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 01/01/2009] [Accepted: 01/07/2009] [Indexed: 12/14/2022]
|
31
|
Halassy B, Habjanec L, Brgles M, Balija ML, Leonardi A, Kovacic L, Prijatelj P, Tomasić J, Krizaj I. The role of antibodies specific for toxic sPLA2s and haemorrhagins in neutralizing potential of antisera raised against Vipera ammodytes ammodytes venom. Comp Biochem Physiol C Toxicol Pharmacol 2008; 148:178-83. [PMID: 18571473 DOI: 10.1016/j.cbpc.2008.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Revised: 05/09/2008] [Accepted: 05/10/2008] [Indexed: 10/22/2022]
Abstract
The contribution of antibodies directed against the two main toxic groups of proteins in the Vipera ammodytes ammodytes venom, haemorrhagic metalloproteinases (H) and neurotoxic sPLA2s (Atxs), to the overall protective efficacy of the whole venom antisera was investigated. Using ELISA assays we established a high correlation between the protective efficacy of the whole venom antisera in mice and their anti-Atxs antibody content. As the haemorrhage is the prevailing toxic effect of the venom in human, the lack of correlation also with anti-H IgG content exposed that the mouse model might not be optimal to evaluate the neutralizing potential of the venom-specific antisera for human therapy. We further revealed that Atxs and structurally very similar but non-toxic AtnI2 from the venom are not immuno cross-reactive.
Collapse
Affiliation(s)
- Beata Halassy
- Research and Development Department, Institute of Immunology, Inc., Rockefellerova 10, HR-10 000 Zagreb, Croatia.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Luksic B, Brizic I, Lang Balija M, Modun D, Culic V, Halassy B, Salamunic I, Boban M. Dose dependent effects of standardized nose-horned viper (Vipera ammodytes ammodytes) venom on parameters of cardiac function in isolated rat heart. Comp Biochem Physiol C Toxicol Pharmacol 2008; 147:434-40. [PMID: 18313364 DOI: 10.1016/j.cbpc.2008.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 01/22/2008] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
Abstract
Direct, dose dependent effects of the nose-horned vipers (Vipera ammodytes ammodytes) venom on various parameters of cardiac action in isolated rat hearts were examined. Biochemical (protein content, SDS polyacrylamide gel electrophoresis) and biological (minimum haemorrhagic and necrotizing dose and lethal dose (LD(50))) characterization of the venom was performed before testing. The hearts were infused with venom doses of 30, 90 and 150 microg/mL for 10 min followed by 30 min of wash out period. Left ventricular pressure, coronary flow, heart rate, atrioventricular conduction, myocardial oxygen consumption, incidence and duration of arrhythmias were measured and relative cardiac efficiency was calculated. Cardiac CPK, LDH, AST and troponin I were measured as biochemical markers of myocardial damage. The venom caused dose dependent electrophysiological instability and depression of contractility and coronary flow. Effects on the heart rate were biphasic; transient increase followed by significant slowing of the frequency. Relative cardiac efficiency decreased as oxygen consumption remained high relative to the heart rate-contractility product, indicating purposeless expenditure of oxygen and energy. Effects by the dose of 30 microg/mL were highly reversible while the dose of 90 mug/mL caused damages that were mostly irreversible. The dose of 150 mug/mL induced irreversible asystolic cardiac arrest.
Collapse
Affiliation(s)
- B Luksic
- Department of Infectious Diseases, University Hospital Split, Split, Croatia
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Araujo HP, Bourguignon SC, Boller MAA, Dias AASO, Lucas EPR, Santos IC, Delgado IF. Potency evaluation of antivenoms in Brazil: the national control laboratory experience between 2000 and 2006. Toxicon 2007; 51:502-14. [PMID: 18155119 DOI: 10.1016/j.toxicon.2007.11.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 11/01/2007] [Accepted: 11/05/2007] [Indexed: 11/28/2022]
Abstract
Envenoming from snakebites is an important public health issue in Brazil. In 2005, 28,597 cases were notified (15 cases/100,000 inhabitants), 87.5% due to Bothrops and 9.2% to Crotalus genus. Antivenoms available in Brazil are liquid preparations containing purified equine Fab'2. Since 1987, the National Institute for Quality Control in Health (INCQS/FIOCRUZ) has been testing all lots prior to batch release. Between 2000 and 2006, 619 lots of antivenoms were tested, comprising 2,513,690 ampoules. The potency assay was performed only for bothropic and crotalic antivenoms (485 lots corresponding to 1,866,726 ampoules) due to the unavailability of the other reference venoms. This paper aims to report the last 7-year activities of INCQS on the quality control, batch release and potency evaluation of antivenoms.
Collapse
Affiliation(s)
- H P Araujo
- Departamento de Imunologia, Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil.
| | | | | | | | | | | | | |
Collapse
|
34
|
Heller J, Mellor DJ, Hodgson JL, Reid SWJ, Hodgson DR, Bosward KL. Elapid snake envenomation in dogs in New South Wales: a review. Aust Vet J 2007; 85:469-79. [DOI: 10.1111/j.1751-0813.2007.00194.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Chang Y, Li Y, Bao Y, An L. Neurotoxic activity of Gln49 phospholipase A2 fromGloydius ussuriensis snake venom. J Appl Toxicol 2007; 27:447-52. [PMID: 17299814 DOI: 10.1002/jat.1222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A novel neurotoxic protein phospholipase A(2) (PLA(2)), molecular weight 13 881.83 Da, has been isolated from snake venom of Gloydius ussuriensis, named as Gln49-PLA(2), which shows weak lethal toxic, myotoxic and apparent anticoagulant activity, but lacks phospholipase activity. The Gln49-PLA(2) obviously induced an increase of the pain threshold in intoxicated 615 mice compared with the control group, suggesting it is a neurotoxin. Hot-plate tests also showed that its analgesic activity was dose-dependent, and naloxone antagonized the analgesic effect, implying the mechanism of action of Gln49-sPLA(2) is correlated with opioid receptors. Electrophysiology studies revealed decreases in the action potential and the nerve conduction velocity in isolated hoptoad (Bufo bufo gargarizans Cantor) sciatic nerve, indicating Gln49-PLA(2) most probably had effects on ion channels.
Collapse
Affiliation(s)
- Yan Chang
- Department of Bioscience and Biotechnology, Dalian University of Technology, 2 Linggong road, Dalian 116024, P. R. China
| | | | | | | |
Collapse
|
36
|
Rial A, Morais V, Rossi S, Massaldi H. A new ELISA for determination of potency in snake antivenoms. Toxicon 2006; 48:462-6. [PMID: 16893558 DOI: 10.1016/j.toxicon.2006.07.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 06/28/2006] [Accepted: 07/03/2006] [Indexed: 10/24/2022]
Abstract
A competitive ELISA for potency determination of bothropic equine antivenom was developed and compared to the conventional in vivo ED(50) assay, with the aim of partially substituting the in vivo assay in the monitoring of antivenom immunoglobulin levels. On this purpose, blood samples were taken at different times during and after the immunization protocol of the lot of horses used for production of snake antivenom at the Instituto de Higiene, Uruguay. Both the competitive ELISA and the ED(50) assay were performed on those samples. In addition, a group of five commercial pepsin-digested antivenoms were tested by both methods. A significant (P<0.001) correlation (Pearson's r=0.957) was found between the ELISA titres and the corresponding ED(50) values, indicating that the in vitro test can estimate the neutralizing antibody capacity of the sera as well as the in vivo assay. By means of this new ELISA, it was found that the immunized animals maintained good venom antibody titres, in the order of 20-50% of the maximum achieved, even 10 month after the end of the immunization schedule. The main advantage of our ELISA design is its ability to correctly estimate the neutralization capacity of crude hyperimmune plasma and antivenom sera independently of their antibody composition in terms of whole IgG or F(ab')(2) fragment.
Collapse
Affiliation(s)
- A Rial
- Department of Biotechnology Development, Instituto de Higiene, Universidad de la República, Av. A. Navarro 3051, 11600 Montevideo, Uruguay.
| | | | | | | |
Collapse
|