1
|
Belkinova D, Stoianova D, Beshkova M, Kazakov S, Stoyanov P, Mladenov R. Current status and prognosis of Raphidiopsis raciborskii distribution in Bulgaria as part of the southeastern region of Europe. HARMFUL ALGAE 2024; 132:102578. [PMID: 38331543 DOI: 10.1016/j.hal.2024.102578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/21/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024]
Abstract
The cyanobacterial species Raphidiopsis raciborskii (Wołoszyńska) Aguilera et al. has a high invasiveness potential, which in less than a century leads to its cosmopolitan spread. In the temperate climate of Europe, R. raciborskii has been reported in many countries, but there is still a lack of detailed information about the current status of its distribution in lakes of Bulgaria, as a part of the southeastern range of its spread in Europe. We investigated the distribution of the species using data on the phytoplankton of 122 lakes surveyed during 13-years period (2009-2022). The species was found in 33 lakes (up to 324 m asl), and 14 new localities were registered during the studied period. The results reveal that the number of lakes with the presence of R. raciborskii (27 % of all research lakes) and its contribution to the total phytoplankton biomass, has increased significantly over the last decade. The species has successfully adapted and dominated the phytoplankton in 9 lakes, forming a bloom in 8 of them. The dominant position of R. raciborskii causes loss of species and functional diversity of phytoplankton and displaces the native bloom-forming cyanobacteria. Lakes with and without the species were compared based on the available data on bioclimatic and local environmental variables. Statistically significant differences were established with respect to water transparency, conductivity, maximum depth and maximum air temperature in the warmest month. Species distribution models (SDMs) were used to identify lakes in high risk of future invasion by R. raciborskii. The results of the SDMs implementation confirmed the high maximum air temperature and low water transparency to be important predictors of the occurrence of R. raciborskii in freshwater lakes in Bulgaria. In the areas with high summer temperatures the most suitable for R. raciborskii development were found to be shallow polymictic or medium deep lakes with small surface area and low water transparency. In areas with a suitable climate, the large, deep reservoirs with high transparency as well as macrophyte dominated lakes have a low probability of occurrence of R. raciborskii. Future colonization of lakes above 500 m asl (but most likely below 700 m asl) is also possible, especially in the conditions of global warming. SDMs account for climatic and biogeographic differences of lakes and could help in elucidating the underlying factors that control the occurrence and adaptation of R. raciborskii in a given area.
Collapse
Affiliation(s)
- Detelina Belkinova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria; Department of Botany and Biological education, Faculty of Biology, University of Plovdiv "Paisii Hilendarski", Bulgaria
| | - Desislava Stoianova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Mihaela Beshkova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Stefan Kazakov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Plamen Stoyanov
- Department of Botany and Biological education, Faculty of Biology, University of Plovdiv "Paisii Hilendarski", Bulgaria; Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, Bulgaria
| | - Rumen Mladenov
- Department of Botany and Biological education, Faculty of Biology, University of Plovdiv "Paisii Hilendarski", Bulgaria; Department of Bioorganic Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, Bulgaria
| |
Collapse
|
2
|
Hinojosa MG, Cascajosa-Lira A, Prieto AI, Gutiérrez-Praena D, Vasconcelos V, Jos A, Cameán AM. Cytotoxic Effects and Oxidative Stress Produced by a Cyanobacterial Cylindrospermopsin Producer Extract versus a Cylindrospermopsin Non-Producing Extract on the Neuroblastoma SH-SY5Y Cell Line. Toxins (Basel) 2023; 15:toxins15050320. [PMID: 37235355 DOI: 10.3390/toxins15050320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
The incidence and interest of cyanobacteria are increasing nowadays because they are able to produce some toxic secondary metabolites known as cyanotoxins. Among them, the presence of cylindrospermopsin (CYN) is especially relevant, as it seems to cause damage at different levels in the organisms: the nervous system being the one most recently reported. Usually, the effects of the cyanotoxins are studied, but not those exerted by cyanobacterial biomass. The aim of the present study was to assess the cytotoxicity and oxidative stress generation of one cyanobacterial extract of R. raciborskii non-containing CYN (CYN-), and compare its effects with those exerted by a cyanobacterial extract of C. ovalisporum containing CYN (CYN+) in the human neuroblastoma SH-SY5Y cell line. Moreover, the analytical characterization of potential cyanotoxins and their metabolites that are present in both extracts of these cultures was also carried out using Ultrahigh Performance Liquid Chromatography-Mass Spectrometry, in tandem (UHPLC-MS/MS). The results show a reduction of cell viability concentration- and time-dependently after 24 and 48 h of exposure with CYN+ being five times more toxic than CYN-. Furthermore, the reactive oxygen species (ROS) increased with time (0-24 h) and CYN concentration (0-1.11 µg/mL). However, this rise was only obtained after the highest concentrations and times of exposure to CYN-, while this extract also caused a decrease in reduced glutathione (GSH) levels, which might be an indication of the compensation of the oxidative stress response. This study is the first one performed in vitro comparing the effects of CYN+ and CYN-, which highlights the importance of studying toxic features in their natural scenario.
Collapse
Affiliation(s)
- María G Hinojosa
- Area of Toxicología, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Antonio Cascajosa-Lira
- Area of Toxicología, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Ana I Prieto
- Area of Toxicología, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Daniel Gutiérrez-Praena
- Area of Toxicología, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Vitor Vasconcelos
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-159 Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Angeles Jos
- Area of Toxicología, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| | - Ana M Cameán
- Area of Toxicología, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Seville, Spain
| |
Collapse
|
3
|
Zheng B, He S, Zhao L, Li J, Du Y, Li Y, Shi J, Wu Z. Does temperature favour the spread of Raphidiopsis raciborskii, an invasive bloom-forming cyanobacterium, by altering cellular trade-offs? HARMFUL ALGAE 2023; 124:102406. [PMID: 37164561 DOI: 10.1016/j.hal.2023.102406] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 05/12/2023]
Abstract
As a tropical filamentous cyanobacterium, Raphidiopsis raciborskii has attracted much attention due to its expansion and toxin production. However, the mechanisms of its expansion to temperate regions have not been studied in detail. To address the potential strategies, the physiological and metabolomic profiles of R. raciborskii FACHB 1096 isolated from a temperate lake in China were determined and measured at different temperatures (10 °C, 15 °C, 20 °C, 25 °C, and 32 °C). The results demonstrated that temperature significantly changed cell viability, chlorophyll a content, specific growth rate, Chl a fluorescence, and filamentous shape of R. raciborskii. Low temperature decreased cell viability, specific growth rate, and photosynthetic efficiency, while the proportion of akinete and carbon fixation per unit cell were significantly increased compared with high temperature (32 °C). A constructed unimodal model indicated that filament length, cell volume, and cell length/width of R. raciborskii were significantly reduced in both high and low temperature environments. Under low-temperature conditions, R. raciborskii suffered different degrees of oxidative damage and produced corresponding antioxidant substances to resist oxidative stress, suggesting that low temperature changes the metabolic level of the cells, causing the cells to gradually switch from development to defense. Metabolomic data further confirmed that temperature change induced shifts in metabolic pathways in R. raciborskii, including starch and sucrose metabolic pathways, glutathione metabolic pathways, and the pentose phosphate pathways (PPP), as well as metabolic pathways related to the tricarboxylic acid (TCA) cycle. Our results indicated that the trade-offs of R. raciborskii cells among the growth, cell size, and metabolites can be significantly regulated by temperature, with broad implications for its global expansion in temperate waterbodies.
Collapse
Affiliation(s)
- Baohai Zheng
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Shuhan He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Lu Zhao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jiaxin Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yuxin Du
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yuxin Li
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Junqiong Shi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Zhongxing Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
4
|
Bhattacharjee A, Sarma S, Sen T, Devi MV, Deka B, Singh AK. Genome mining to identify valuable secondary metabolites and their regulation in Actinobacteria from different niches. Arch Microbiol 2023; 205:127. [PMID: 36944761 DOI: 10.1007/s00203-023-03482-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/20/2023] [Accepted: 03/11/2023] [Indexed: 03/23/2023]
Abstract
Actinobacteria are the largest bacteria group with 18 significant lineages, which are ubiquitously distributed in all the possible terrains. They are known to produce more than 10,000 medically relevant compounds. Despite their ability to make critical secondary metabolites and genome sequences' availability, these two have not been linked with certainty. With this intent, our study aims at understanding the biosynthetic capacity in terms of secondary metabolite production in 528 Actinobacteria species from five different habitats, viz., soil, water, plants, animals, and humans. In our analysis of 9,646 clusters of 59 different classes, we have documented 64,000 SMs, of which more than 74% were of unique type, while 19% were partially conserved and 7% were conserved compounds. In the case of conserved compounds, we found the highest distribution in soil, 79.12%. We found alternate sources of antibiotics, such as viomycin, vancomycin, teicoplanin, fosfomycin, ficellomycin and patulin, and antitumour compounds, such as doxorubicin and tacrolimus in the soil. Also our study reported alternate sources for the toxin cyanobactin in water and plant isolates. We further analysed the clusters to determine their regulatory pathways and reported the prominent presence of the two component system of TetR/AcrR family, as well as other partial domains like CitB superfamily and HTH superfamily, and discussed their role in secondary metabolite production. This information will be helpful in exploring Actinobacteria from other environments and in discovering new chemical moieties of clinical significance.
Collapse
Affiliation(s)
- Abhilash Bhattacharjee
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India
- Department of Botany, Dibrugarh Hanumanbax Surajmall Kanoi College, Dibrugarh, 786001, Assam, India
| | - Sangita Sarma
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India
| | - Tejosmita Sen
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India
| | - Moirangthem Veigyabati Devi
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India
| | - Banani Deka
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India
| | - Anil Kumar Singh
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 220002, India.
| |
Collapse
|
5
|
Al Naim HM, El Semary N. Laser Treatment Increases the Antimicrobial Efficacy of Cyanobacterial Extracts against Staphylococcusaureus (SA) and Methicillin-resistantStaphylococcus aureus (MRSA). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13305. [PMID: 36293886 PMCID: PMC9603216 DOI: 10.3390/ijerph192013305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Staphylococcus aureus (SA) and Methicillin-resistant Staphylococcus aureus (MRSA) are multidrug-resistant bacterial pathogens. A novel approach needs to be followed to combat these pathogens in an ecofriendly manner. Cyanobacterial extracts were previously proven to be affective as antimicrobial agents. To capitalize on this, laser treatments were used to increase their antimicrobial efficacy. Two cyanobacterial strains isolated from Al-Ahsa were identified using molecular methods. Their aqueous extracts were used in the antimicrobial bioassay for these two bacterial pathogens. The first group of aqueous extracts were exposed directly to laser treatment and used in antibacterial bioassay. In parallel, the cyanobacterial biomass of the two isolates was exposed to the laser, then aqueous extracts were prepared. The third group of extracts were not exposed to the laser and were used as a control. Time and distance were the factors tested as they affected the dose of the laser, both individually and in combination. In addition, accessory pigment estimation in extracts before and after laser exposure of extracts was also determined. The two cyanobacterial strains were identified as Thermoleptolyngbya sp. and Leptolyngbya sp. and the molecular analysis also confirmed the identity of pathogenic bacteria. The untreated cyanobacterial aqueous extracts had little effect against the two bacterial strains. In contrast, the extract directly exposed to the laser was significantly more effective, with an inhibition zone of 22.0 mm in the case of a time of 32 min and distance of 10 cm against S. aureus. Accessory pigment composition increased in extracts directly exposed to the laser. This is the first case report on the effect of lasers on enhancing the antimicrobial profile of cyanobacterial extracts against SA and MRSA bacterial pathogens, as well as enhancing accessory pigment content. The laser dose that was most effective was that of 32 min time and 10 cm distance of Thermoleptolyngbya sp. extract directly exposed to the laser, which highlights the importance of time for increasing the laser dose and consequently increasing its antimicrobial impact.
Collapse
Affiliation(s)
- Haifa M. Al Naim
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nermin El Semary
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Helwan, Cairo 11795, Egypt
| |
Collapse
|
6
|
Review of Cyanotoxicity Studies Based on Cell Cultures. J Toxicol 2022; 2022:5647178. [PMID: 35509523 PMCID: PMC9061046 DOI: 10.1155/2022/5647178] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/28/2022] [Accepted: 03/25/2022] [Indexed: 12/23/2022] Open
Abstract
Cyanotoxins (CTs) are a large and diverse group of toxins produced by the peculiar photosynthetic prokaryotes of the domain Cyanoprokaryota. Toxin-producing aquatic cyanoprokaryotes can develop in mass, causing “water blooms” or “cyanoblooms,” which may lead to environmental disaster—water poisoning, extinction of aquatic life, and even to human death. CT studies on single cells and cells in culture are an important stage of toxicological studies with increasing impact for their further use for scientific and clinical purposes, and for policies of environmental protection. The higher cost of animal use and continuous resistance to the use of animals for scientific and toxicological studies lead to a progressive increase of cell lines use. This review aims to present (1) the important results of the effects of CT on human and animal cell lines, (2) the methods and concentrations used to obtain these results, (3) the studied cell lines and their tissues of origin, and (4) the intracellular targets of CT. CTs reviewed are presented in alphabetical order as follows: aeruginosins, anatoxins, BMAA (β-N-methylamino-L-alanine), cylindrospermopsins, depsipeptides, lipopolysaccharides, lyngbyatoxins, microcystins, nodularins, cyanobacterial retinoids, and saxitoxins. The presence of all these data in a review allows in one look to advance the research on CT using cell cultures by facilitating the selection of the most appropriate methods, conditions, and cell lines for future toxicological, pharmacological, and physiological studies.
Collapse
|
7
|
Unravelling unknown cyanobacteria diversity linked with HCN production. Mol Phylogenet Evol 2021; 166:107322. [PMID: 34626811 DOI: 10.1016/j.ympev.2021.107322] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 11/20/2022]
Abstract
Cyanobacteria are ecologically versatile microorganisms, occupying diverse habitats, from terrestrial caves to coastal shores and from brackish lakes to thermal springs. Cyanobacteria have also been linked with hydrogen cyanide (HCN), mainly for their ability to catabolize HCN by the nitrogenase enzyme. In this context, we sampled disparate environments, spanning from Canary Islands and Iceland to Estonia and Cyprus. Eighty-one (81) strains were isolated and characterised with taxonomic indices and molecular markers (16S-23S rRNA region and cpcBA region), whilst their ability to produce HCN was evaluated. This approach resulted in the description of five new genera (Speleotes, Haliplanktos, Olisthonema, Speos, and Iphianassa) and their type species (S. anchialus, H. antonyquinny, O. eestii, S. fyssassi, I. zackieohae) representing Chroococcales, Chroococcidiopsales, Oscillatoriales, Synechococcales, and Nostocales orders, respectively. We also found unique lineages inside the genera Komarekiella, Stenomitos, Cyanocohniella, and Nodularia, describing four new species (K. chia, S. pantisii, C. hyphalmyra, N. mediterannea). We report for the first time a widespread production of HCN amongst different taxa and habitats. Epilithic lifestyle, where cyanobacteria are more vulnerable to grazers, had the largest relative frequency in HCN production. In this work, we show novel cyanobacteria diversity from various habitats, including an unexplored anchialine cave, and possible correlation of cyanobacteria chemo- with species diversity, which may have implications on strategic focusing of screening programs on underexploited taxa and/or habitats.
Collapse
|
8
|
Bertani P, Lu W. Cyanobacterial toxin biosensors for environmental monitoring and protection. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021. [DOI: 10.1016/j.medntd.2021.100059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
9
|
Falfushynska H, Horyn O, Osypenko I, Rzymski P, Wejnerowski Ł, Dziuba MK, Sokolova IM. Multibiomarker-based assessment of toxicity of central European strains of filamentous cyanobacteria Aphanizomenon gracile and Raphidiopsis raciborskii to zebrafish Danio rerio. WATER RESEARCH 2021; 194:116923. [PMID: 33631698 DOI: 10.1016/j.watres.2021.116923] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The global increase in cyanobacterial blooms poses environmental and health threats. Selected cyanobacterial strains reveal toxicities despite a lack of synthesis of known toxic metabolites, and the mechanisms of these toxicities are not well understood. Here we investigated the toxicity of non-cylindrospermopsin and non-microcystin producing Aphanizomenon gracile and Raphidiopsis raciborskii of Central European origin to zebrafish exposed for 14 days to their extracts. Toxicological screening revealed the presence of anabaenopeptins and a lack of anatoxin-a, ß-methylamino-L-alanine or saxitoxins in examined extracts. The responses were compared to 20 μg L-1 of common cyanobacterial toxins cylindrospermopsin (CYN) and microcystin-LR (MC-LR). The expression of the marker genes involved in apoptosis (caspase 3a and 3b, Bcl-2, BAX, p53, MAPK, Nrf2), DNA damage detection and repair (GADD45, RAD51, JUN, XPC), detoxification (CYP1A, CYP26, EPHX1), lipid metabolism (PPARa, FABP1, PLA2), phosphorylation/dephosphorylation (PPP6C, PPM1) and cytoskeleton (actin, tubulin) were examined using targeted transcriptomics. Cellular stress and toxicity biomarkers (oxidative injury, antioxidant enzymes, thiol pool status, and lactate dehydrogenase activity) were measured in the liver, and acetylcholinesterase activity was determined as an index of neurotoxicity in the brain. The extracts of three cyanobacterial strains that produce no known cyanotoxins caused marked toxicity in D. rerio, and the biomarker profiles indicate different toxic mechanisms between the bioactive compounds extracted from these strains and the purified cyanotoxins. All studied cyanobacterial extracts and purified cyanotoxins induced oxidative stress and neurotoxicity, downregulated Nrf2 and CYP26B1, disrupted phosphorylation/dephosphorylation processes and actin/tubulin cytoskeleton and upregulated apoptotic activity in the liver. The tested strains and purified toxins displayed distinctively different effects on lipid metabolism. Unlike CYN and MC-LR, the Central European strain of A. gracile and R. raciborskii did not reveal a genotoxic potential. These findings help to further understand the ecotoxicological consequences of toxic cyanobacterial blooms in freshwater ecosystems.
Collapse
Affiliation(s)
- Halina Falfushynska
- Department of Orthopedagogy and Physical Therapy, Ternopil V. Hnatiuk National Pedagogical University, Ternopil, Ukraine; Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany
| | - Oksana Horyn
- Department of Orthopedagogy and Physical Therapy, Ternopil V. Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Inna Osypenko
- Department of Orthopedagogy and Physical Therapy, Ternopil V. Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznan, Poland; Integrated Science Association (ISA), Universal Scientific Education and Research Network (USERN), Poznań, Poland
| | - Łukasz Wejnerowski
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Marcin K Dziuba
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Inna M Sokolova
- Department of Marine Biology, Institute for Biological Sciences, University of Rostock, Rostock, Germany; Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany.
| |
Collapse
|
10
|
Yang Y, Yu G, Chen Y, Jia N, Li R. Four decades of progress in cylindrospermopsin research: The ins and outs of a potent cyanotoxin. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124653. [PMID: 33321325 DOI: 10.1016/j.jhazmat.2020.124653] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The cyanotoxin cylindrospermopsin (CYN), a toxic metabolite from cyanobacteria, is of particular concern due to its cosmopolitan occurrence, aquatic bioaccumulation, and multi-organ toxicity. CYN is the second most often recorded cyanotoxin worldwide, and cases of human morbidity and animal mortality are associated with ingestion of CYN contaminated water. The toxin poses a great challenge for drinking water treatment plants and public health authorities. CYN, with the major toxicity manifested in the liver, is cytotoxic, genotoxic, immunotoxic, neurotoxic and may be carcinogenic. Adverse effects are also reported for endocrine and developmental processes. We present a comprehensive review of CYN over the past four decades since its first reported poisoning event, highlighting its global occurrence, biosynthesis, toxicology, removal, and monitoring. In addition, current data gaps are identified, and future directions for CYN research are outlined. This review is beneficial for understanding the ins and outs of this environmental pollutant, and for robustly assessing health hazards posed by CYN exposure to humans and other organisms.
Collapse
Affiliation(s)
- Yiming Yang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Youxin Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Nannan Jia
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renhui Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
11
|
Jia N, Wang Y, Guan Y, Chen Y, Li R, Yu G. Occurrence of Raphidiopsis raciborskii blooms in cool waters: Synergistic effects of nitrogen availability and ecotypes with adaptation to low temperature. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116070. [PMID: 33223338 DOI: 10.1016/j.envpol.2020.116070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
Raphidiopsis raciborskii is a diazotrophic and potentially toxic cyanobacterium. To date, this species has successfully invaded many regions from the tropics to sub-tropical and temperate regions, typically forming blooms at temperatures greater than 25 °C. However, there have been a few cases in which R. raciborskii blooms have occurred at low temperatures (below 15 °C), but its cause and mechanisms remain unclear. In this study, field investigations revealed that R. raciborskii blooms occurred at 10-15 °C in Lake Xihu, Yunnan, China. The biomass of R. raciborskii was found to be positively related to nitrate concentrations in this lake. Three strains of R. raciborskii, two isolated from Lake Xihu (CHAB 6611 and CHAB 6612) and one from Lushui Reservoir in central China (CHAB 3409), were used for growth experiments at 15 °C. The three strains exhibited genotypic (16S rRNA and ITS-L genes) and physiological differences in response to nitrogen concentrations at low temperature. The growth rates of strains CHAB 6611 and CHAB 6612 increased with nitrogen concentration while CHAB 3409 could not grow at 15 °C. Furthermore, the growth and phenotypic responses of CHAB 6611 and CHAB 6612 to nitrogen concentrations were different, despite the closer genetic relationship shared by these two strains. Thus, increased nitrogen concentration in water may enhance the biological availability and utilization of nitrogen by R. raciborskii, which is the external promoter, leading to improving the resistance of R. raciborskii to low temperature. The internal cause is the presence of ecotypes in R. raciborskii populations with adaptation to low temperature. With increasing global eutrophication, the distribution range of R. raciborskii as well as the scale of its blooms will increase. As such, the risk of exposure of aquatic biota and humans to cylindrospermopsin is also expected to increase.
Collapse
Affiliation(s)
- Nannan Jia
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yilang Wang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yuying Guan
- School of Environment, Nanjing Normal University, Nanjing, 210046, China
| | - Youxin Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Renhui Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; College of Life and Environmental Sciences, Wenzhou University, Wenzhou, 325039, China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
12
|
Hui J, Pestana CJ, Caux M, Gunaratne HQN, Edwards C, Robertson PK, Lawton LA, Irvine JT. Graphitic-C3N4 coated floating glass beads for photocatalytic destruction of synthetic and natural organic compounds in water under UV light. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112935] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Scarlett KR, Kim S, Lovin LM, Chatterjee S, Scott JT, Brooks BW. Global scanning of cylindrospermopsin: Critical review and analysis of aquatic occurrence, bioaccumulation, toxicity and health hazards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139807. [PMID: 32585507 PMCID: PMC8204307 DOI: 10.1016/j.scitotenv.2020.139807] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 05/03/2023]
Abstract
Cylindrospermopsin (CYN), a cyanotoxin produced by harmful algal blooms, has been reported worldwide; however, there remains limited understanding of its potential risks to surface water quality. In the present study, we critically reviewed available literature regarding the global occurrence, bioaccumulation, and toxicity of CYN in aquatic systems with a particular focus on freshwater. We subsequently developed environmental exposure distributions (EEDs) for CYN in surface waters and performed probabilistic environmental hazard assessments (PEHAs) using guideline values (GVs). PEHAs were performed by geographic region, type of aquatic system, and matrix. CYN occurrence was prevalent in North America, Europe, and Asia/Pacific, with lakes being the most common system. Many global whole water EEDs exceeded guideline values (GV) previously developed for drinking water (e.g., 0.5 μg L-1) and recreational water (e.g., 1 μg L-1). GV exceedances were higher in the Asia/Pacific region, and in rivers and reservoirs. Rivers in the Asia/Pacific region exceeded the lowest drinking water GV 73.2% of the time. However, lack of standardized protocols used for analyses was alarming, which warrants improvement in future studies. In addition, bioaccumulation of CYN has been reported in mollusks, crustaceans, and fish, but such exposure information remains limited. Though several publications have reported aquatic toxicity of CYN, there is limited chronic aquatic toxicity data, especially for higher trophic level organisms. Most aquatic toxicity studies have not employed standardized experimental designs, failed to analytically verify treatment levels, and did not report purity of CYN used for experiments; therefore, existing data are insufficient to derive water quality guidelines. Considering such elevated exceedances of CYN in global surface waters and limited aquatic bioaccumulation and toxicity data, further aquatic monitoring, environmental fate and mechanistic toxicology studies are warranted to robustly assess and manage water quality risks to public health and the environment.
Collapse
Affiliation(s)
- Kendall R Scarlett
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA
| | - Sujin Kim
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA
| | - Lea M Lovin
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Department Environmental Health Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - J Thad Scott
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Bryan W Brooks
- Department of Environmental Science, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, TX 76798, USA; Institute of Biomedical Studies, Baylor University, Waco, TX 76798, USA.
| |
Collapse
|
14
|
Sidelev S, Koksharova O, Babanazarova O, Fastner J, Chernova E, Gusev E. Phylogeographic, toxicological and ecological evidence for the global distribution of Raphidiopsis raciborskii and its northernmost presence in Lake Nero, Central Western Russia. HARMFUL ALGAE 2020; 98:101889. [PMID: 33129449 DOI: 10.1016/j.hal.2020.101889] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Raphidiopsis raciborskii is a freshwater, potentially toxigenic cyanobacterium, originally described as a tropical species that is spreading to northern regions over several decades. The ability of R. raciborskii to produce cyanotoxins - in particular the alkaloid cylindrospermopsin (CYN), which is toxic to humans and animals - is of serious concern. The first appearance of R. raciborskii in Russia was noted in Lake Nero in the summer of 2010. This is the northernmost (57°N) recorded case of the simultaneous presence of R. raciborskii and detection of CYN. In this study, the data from long-term monitoring of the R. raciborskii population, temperature and light conditions in Lake Nero were explored. CYN and cyr/aoa genes present in environmental samples were examined using HPLC/MS-MS and PCR analysis. A R. raciborskii strain (R104) was isolated and its morphology, toxigenicity and phylogeography were studied. It is supposed that the trigger factor for the strong development of R. raciborskii in Lake Nero in summer 2010 may have been the relatively high water temperature, reaching 29-30 °C. Strain R. raciborskii R104 has straight trichomes and can produce akinetes, making it morphologically similar to European strains. Phylogeographic analysis based on nifH gene and 16S-23S rRNA ITS1 sequences showed that the Russian strain R104 grouped together with R. raciborskii strains isolated from Portugal, France, Germany and Hungary. The Russian strain R104 does not contain cyrA and cyrB genes, meaning that it - like all European strains - cannot produce CYN. Thus, while recent invasion of R. raciborskii into Lake Nero has occurred, morphological, genetic, and toxicological data supported the spreading of this cyanobacterium from other European lakes. Detection of CYN and cyr/aoa genes in environmental samples indicated the cyanobacterium Aphanizomenon gracile as a likely producer of CYN in Lake Nero. The article also discusses data on the global biogeography of R. raciborskii. Genetic similarity between R. raciborskii strains isolated from very remote continents might be related to the ancient origin of the cyanobacterium inhabiting the united continents of Laurasia and Gondwana, rather than comparably recent transoceanic exchange between R. raciborskii populations.
Collapse
Affiliation(s)
- Sergey Sidelev
- Regional Center for Ecological Safety of Water Resources, Yaroslavl State University, Yaroslavl, Russia
| | - Olga Koksharova
- Belozersky Institute of Physicо-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga Babanazarova
- Regional Center for Ecological Safety of Water Resources, Yaroslavl State University, Yaroslavl, Russia
| | | | - Ekaterina Chernova
- Saint-Petersburg Scientific Research Centre for Ecological Safety, Russian Academy of Sciences, St-Petersburg, Russia
| | - Evgeniy Gusev
- К.А. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
15
|
Vico P, Bonilla S, Cremella B, Aubriot L, Iriarte A, Piccini C. Biogeography of the cyanobacterium Raphidiopsis (Cylindrospermopsis) raciborskii: Integrating genomics, phylogenetic and toxicity data. Mol Phylogenet Evol 2020; 148:106824. [PMID: 32294544 DOI: 10.1016/j.ympev.2020.106824] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/07/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022]
Abstract
Raphidiopsis (Cylindrospermopsis) raciborskii, a globally distributed bloom-forming cyanobacterium, produces either the cytotoxin cylindrospermopsin (CYL) in Oceania, Asia and Europe or the neurotoxin saxitoxin (STX) and analogues (paralytic shellfish poison, PSP) in South America (encoded by sxt genetic cluster) and none of them in Africa. Nevertheless, this particular geographic pattern is usually overlooked in current hypotheses about the species dispersal routes. Here, we combined genomics, phylogenetic analyses, toxicity data and a literature survey to unveil the evolutionary history and spread of the species. Phylogenies based on 354 orthologous genes from all the available genomes and ribosomal ITS sequences of the taxon showed two well-defined clades: the American, having the PSP producers; and the Oceania/Europe/Asia, including the CYL producers. We propose central Africa as the original dispersion center (non-toxic populations), reaching North Africa and North America (in former Laurasia continent). The ability to produce CYL probably took place in populations that advanced to sub-Saharan Africa and then to Oceania and South America. According to the genomic context of the sxt cluster found in PSP-producer strains, this trait was acquired once by horizontal transfer in South America, where the ability to produce CYL was lost.
Collapse
Affiliation(s)
- Paula Vico
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600 Montevideo, Uruguay; Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Avenida A. Navarro 3051, 11600 Montevideo, Uruguay
| | - Sylvia Bonilla
- Sección Limnología, Instituto de Ecología y Ciencias Ambientales. Facultad de Ciencias. Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay; Physiology and Ecology Phytoplankton Group, CSIC, Uruguay
| | - Bruno Cremella
- Sección Limnología, Instituto de Ecología y Ciencias Ambientales. Facultad de Ciencias. Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay; Physiology and Ecology Phytoplankton Group, CSIC, Uruguay; Laboratory of Environmental Analysis, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Luis Aubriot
- Sección Limnología, Instituto de Ecología y Ciencias Ambientales. Facultad de Ciencias. Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay; Physiology and Ecology Phytoplankton Group, CSIC, Uruguay
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Avenida A. Navarro 3051, 11600 Montevideo, Uruguay.
| | - Claudia Piccini
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600 Montevideo, Uruguay.
| |
Collapse
|
16
|
Stefanova K, Radkova M, Uzunov B, Gärtner G, Stoyneva-Gärtner M. Pilot search for cylindrospermopsin-producers in nine shallow Bulgarian waterbodies reveals nontoxic strains of Raphidiopsis raciborskii, R. mediterranea and Chrysosporum bergii. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1758595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
| | - Mariana Radkova
- AgroBioInstitute, Bulgarian Agricultural Academy, Sofia, Bulgaria
| | - Blagoy Uzunov
- Department of Botany, Faculty of Biology, Sofia University, Sofia, Bulgaria
| | - Georg Gärtner
- Institute of Botany, Innsbruck University, Innsbruck, Austria
| | | |
Collapse
|
17
|
Li C, Wang Y, Han J, Ni L. RETRACTED: Simple and sensitive molecularly imprinted polymer-MPA capped Mn-doped ZnS quantum dots-based phosphorescence probe for cyanotoxins determination in algae metabolites. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Rzymski P, Evans DM, Murphy PJ, Kokociński M. A study of polymethoxy-1-alkenes in Raphidiopsis (Cylindrospermopsis) raciborskii and Aphanizomenon gracile isolated in Poland. Toxicon 2019; 171:51-53. [PMID: 31586555 DOI: 10.1016/j.toxicon.2019.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/16/2019] [Accepted: 10/02/2019] [Indexed: 10/25/2022]
Abstract
Previous studies indicated that teratogenic polymethoxy-1-alkenes (PMAs) are produced by phylogenetically diverse cyanobacteria taxa, however corresponding studies on the occurrence of PMAs in European cyanobacteria are lacking. Herein, the presence of PMAs in strains of Raphidiopsis raciborskii and Aphanizomenon gracile isolated from surface waters in Poland was studied using nuclear magnetic resonance and mass spectrometry. No PMAs were detected in any of the strains investigated, indicating that production of these compounds may be geographically diversified. Further studies are necessary to elucidate mechanisms of cyanobacterial PMAs synthesis.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
| | - Daniel M Evans
- School of Natural Sciences, Alun Roberts Building (Chemistry), Bangor University, Bangor, Gwynedd, LL57 2DG, UK
| | - Patrick J Murphy
- School of Natural Sciences, Alun Roberts Building (Chemistry), Bangor University, Bangor, Gwynedd, LL57 2DG, UK
| | | |
Collapse
|
19
|
Gkelis S, Panou M, Konstantinou D, Apostolidis P, Kasampali A, Papadimitriou S, Kati D, Di Lorenzo GM, Ioakeim S, Zervou SK, Christophoridis C, Triantis TM, Kaloudis T, Hiskia A, Arsenakis M. Diversity, Cyanotoxin Production, and Bioactivities of Cyanobacteria Isolated from Freshwaters of Greece. Toxins (Basel) 2019; 11:toxins11080436. [PMID: 31349572 PMCID: PMC6723990 DOI: 10.3390/toxins11080436] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 12/28/2022] Open
Abstract
Cyanobacteria are a diverse group of photosynthetic Gram-negative bacteria that produce an array of secondary compounds with selective bioactivity against a broad spectrum of organisms and cell lines. In this study, 29 strains isolated from freshwaters in Greece were classified using a polyphasic approach and assigned to Chroococcales, Synechococcales, and Nostocales, representing 11 genera and 17 taxa. There were good agreements between 16S ribosomal RNA (rRNA)-cpcBA-internal genetic spacer (IGS) characterization and morphological features, except for the Jaaginema-Limnothrix group which appears intermixed and needs further elucidation. Methanol extracts of the strains were analyzed for cyanotoxin production and tested against pathogenic bacteria species and several cancer cell lines. We report for the first time a Nostoc oryzae strain isolated from rice fields capable of producing microcystins (MCs) and a Chlorogloeopsis fritschii strain isolated from the plankton of a lake, suggesting that this species may also occur in freshwater temperate habitats. Strains with very high or identical 16S rRNA gene sequences displayed different antibacterial and cytotoxic activities. Extracts from Synechococcus cf. nidulans showed the most potent antibacterial activity against Staphylococcus aureus, whereas Jaaginema sp. strains exhibited potent cytotoxic activities against human colorectal adenocarcinoma and hepatocellular carcinoma cells. Jaaginema Thessaloniki Aristotle University Microalgae and Cyanobacteria (TAU-MAC) 0110 and 0210 strains caused pronounced changes in the actin network and triggered the formation of numerous lipid droplets in hepatocellular carcinoma and green monkey kidney cells, suggesting oxidative stress and/or mitochondrial damage leading to apoptosis.
Collapse
Affiliation(s)
- Spyros Gkelis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| | - Manthos Panou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Despoina Konstantinou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Panagiotis Apostolidis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Antonia Kasampali
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Sofia Papadimitriou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Dominiki Kati
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Giorgia Maria Di Lorenzo
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Stamatia Ioakeim
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Sevasti-Kiriaki Zervou
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Grigoriou & Neapoleos, Agia Paraskevi, 15341 Athens, Greece
| | - Christophoros Christophoridis
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Grigoriou & Neapoleos, Agia Paraskevi, 15341 Athens, Greece
| | - Theodoros M Triantis
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Grigoriou & Neapoleos, Agia Paraskevi, 15341 Athens, Greece
| | - Triantafyllos Kaloudis
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Grigoriou & Neapoleos, Agia Paraskevi, 15341 Athens, Greece
| | - Anastasia Hiskia
- Laboratory of Photo-Catalytic Processes and Environmental Chemistry, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Grigoriou & Neapoleos, Agia Paraskevi, 15341 Athens, Greece
| | - Minas Arsenakis
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| |
Collapse
|
20
|
Barros MUG, Wilson AE, Leitão JIR, Pereira SP, Buley RP, Fernandez-Figueroa EG, Capelo-Neto J. Environmental factors associated with toxic cyanobacterial blooms across 20 drinking water reservoirs in a semi-arid region of Brazil. HARMFUL ALGAE 2019; 86:128-137. [PMID: 31358272 DOI: 10.1016/j.hal.2019.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 06/10/2023]
Abstract
Cyanobacteria are known to produce a wide variety of bioactive, toxic secondary metabolites generally described as hepatotoxins, neurotoxins, cytotoxins, or dermatoxins. In Brazil, the regular monitoring of cyanobacterial toxins has intensified after the death of 65 patients in a hemodialysis clinic in Caruaru in the state of Pernambuco due to microcystin exposure. The primary objective of this study was to use multivariate statistics that incorporated environmental parameters (both biotic and abiotic) to forecast blooms of cyanobacteria and their toxic secondary metabolites in 20 drinking water reservoirs managed by the Water Treatment Company of Ceará (CAGECE) in the semi-arid region of Ceará, Brazil. Across four years (January 2013 to January 2017), 114 different phytoplankton taxa were identified, including 24 cyanobacterial taxa. In general, Ceará reservoirs were dominated by cyanobacteria due to eutrophication but also because of the dry and warm climate found throughout the region. Interestingly, specific cyanobacterial taxa were influenced by different biotic and abiotic factors. For example, nitrogen-to-phosphorus (N:P) and evaporation were positively related to saxitoxin-producing taxa, especially Raphidiopsis raciborskii, while temperature, electrical conductivity, total phosphorus, and transparency (measured as Secchi depth) were positively associated with microcystin-producing taxa, such as Microcystis aeruginosa. Climate forecasts predict higher evaporation and temperatures in the semi-arid Ceará region, which will likely magnify droughts and water scarcity as well as promote toxic cyanobacterial blooms in reservoirs in the future. Therefore, understanding the factors associated with algal blooms dominated by specific taxa is paramount for water resource management.
Collapse
Affiliation(s)
- Mário U G Barros
- Federal University of Ceará, Department of Hydraulic and Environmental Engineering, Block 713, Campus Pici, Fortaleza, Ceará, Brazil; Auburn University, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn, Alabama, 36849, USA
| | - Alan E Wilson
- Auburn University, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn, Alabama, 36849, USA.
| | - João I R Leitão
- Federal University of Ceará, Department of Hydraulic and Environmental Engineering, Block 713, Campus Pici, Fortaleza, Ceará, Brazil
| | - Silvano P Pereira
- Water Treatment Company of Ceará, CAGECE, 1030, Lauro Vieira Chaves Av, Fortaleza, Ceará, Brazil
| | - Riley P Buley
- Auburn University, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn, Alabama, 36849, USA
| | - Edna G Fernandez-Figueroa
- Auburn University, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn, Alabama, 36849, USA
| | - José Capelo-Neto
- Federal University of Ceará, Department of Hydraulic and Environmental Engineering, Block 713, Campus Pici, Fortaleza, Ceará, Brazil
| |
Collapse
|
21
|
Pestana CJ, Capelo-Neto J, Lawton L, Oliveira S, Carloto I, Linhares HP. The effect of water treatment unit processes on cyanobacterial trichome integrity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:1403-1414. [PMID: 31096351 DOI: 10.1016/j.scitotenv.2018.12.337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Many toxic and/or noxious cyanobacteria appear in nature with a filamentous, stacked cell arrangement called trichomes. Although water treatment can be optimized to keep cyanobacterial cells intact and avoid the release of toxic and/or noxious compounds, many physical and chemical stresses encountered during the treatment process may result in trichome truncation, decreasing treatment efficiency by allowing single cells or short trichomes to reach the product water. This makes it possible for harmful/noxious compounds as well as organic matter to enter the distribution system. Investigations in a pilot and three full-scale water treatment plants were carried out in order to elucidate the degree of trichome truncation across different unit processes. It was found that genera (Pseudanabaena, Planktolyngbya) with short trichomes (<10-12 cells per trichome), are hardly affected by the unit processes (loss of one to four cells respectively), while genera (Planktothrix, Geitlerinema, Dolichospermum) with longer trichomes (30+ cells per trichome) suffer from high degrees of truncation (up to 63, 30, and 56 cells per trichome respectively). The presence of a rigid sheath and/or mucilaginous layer appears to offer some protection from truncation. It was observed that certain unit processes alter the sensitivity or resilience of trichomes to disruption by physical stress. Some genera (Planktothrix, Geitlerinema) were sensitive to pre-oxidation making them more susceptible to shear stress, while Dolichospermum sp. appears more robust after pre-oxidation. While the potential of toxicogenic genera breaking through into the product water is a real danger, in the current study no toxicogenic cyanobacteria were observed. This work stresses the need for plant operators to study the incoming cyanobacterial composition in the raw water in order to adjust treatment parameters and thus limit the potential of toxic/noxious compound breakthrough.
Collapse
Affiliation(s)
- Carlos J Pestana
- Federal University of Ceará, Department of Hydraulic and Environmental Engineering, Fortaleza, Brazil; School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - José Capelo-Neto
- Federal University of Ceará, Department of Hydraulic and Environmental Engineering, Fortaleza, Brazil.
| | - Linda Lawton
- School of Pharmacy and Life Sciences, Robert Gordon University, Aberdeen, UK
| | - Samylla Oliveira
- Federal University of Ceará, Department of Hydraulic and Environmental Engineering, Fortaleza, Brazil
| | - Ismael Carloto
- Federal University of Ceará, Department of Hydraulic and Environmental Engineering, Fortaleza, Brazil
| | - Helísia P Linhares
- Federal University of Ceará, Department of Hydraulic and Environmental Engineering, Fortaleza, Brazil
| |
Collapse
|
22
|
Janssen EML. Cyanobacterial peptides beyond microcystins - A review on co-occurrence, toxicity, and challenges for risk assessment. WATER RESEARCH 2019; 151:488-499. [PMID: 30641464 DOI: 10.1016/j.watres.2018.12.048] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/18/2018] [Accepted: 12/31/2018] [Indexed: 05/28/2023]
Abstract
Cyanobacterial bloom events that produce natural toxins occur in freshwaters across the globe, yet the potential risk of many cyanobacterial metabolites remains mostly unknown. Only microcystins, one class of cyanopeptides, have been studied intensively and the wealth of evidence regarding exposure concentrations and toxicity led to their inclusion in risk management frameworks for water quality. However, cyanobacteria produce an incredible diversity of hundreds of cyanopeptides beyond the class of microcystins. The question arises, whether the other cyanopeptides are in fact of no human and ecological concern or whether these compounds merely received (too) little attention thus far. Current observations suggest that an assessment of their (eco)toxicological risk is indeed relevant: First, other cyanopeptides, including cyanopeptolins and anabaenopeptins, can occur just as frequently and at similar nanomolar concentrations as microcystins in surface waters. Second, cyanopeptolins, anabaenopeptins, aeruginosins and microginins inhibit proteases in the nanomolar range, in contrast to protein phosphatase inhibition by microcystins. Cyanopeptolins, aeruginosins, and aerucyclamide also show toxicity against grazers in the micromolar range comparable to microcystins. The key challenge for a comprehensive risk assessment of cyanopeptides remains their large structural diversity, lack of reference standards, and high analytical requirements for identification and quantification. One way forward would be a prevalence study to identify the priority candidates of tentatively abundant, persistent, and toxic cyanopeptides to make comprehensive risk assessments more manageable.
Collapse
Affiliation(s)
- Elisabeth M-L Janssen
- Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, 8600, Switzerland.
| |
Collapse
|
23
|
Gutiérrez-Praena D, Guzmán-Guillén R, Pichardo S, Moreno FJ, Vasconcelos V, Jos Á, Cameán AM. Cytotoxic and morphological effects of microcystin-LR, cylindrospermopsin, and their combinations on the human hepatic cell line HepG2. ENVIRONMENTAL TOXICOLOGY 2019; 34:240-251. [PMID: 30461177 DOI: 10.1002/tox.22679] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 06/09/2023]
Abstract
Cylindrospermopsin (CYN) and Microcystin-LR (MC-LR) are toxins produced by different cyanobacterial species, which are found mainly in freshwater reservoirs. Both of them can induce, separately, toxic effects in humans and wildlife. However, little is known about the toxic effects of the combined exposure, which could likely happen, taking into account the concomitant occurrence of the producers. As both cyanotoxins are well known to induce hepatic damage, the human hepatocellular HepG2 cell line was selected for the present study. Thus, the cytotoxicity of both pure cyanotoxins alone (0-5 μg/mL CYN and 0-120 μg/mL MC-LR) and in combination for 24 and 48 h was assayed, as long as the cytotoxicity of extracts from CYN-producing and nonproducing cyanobacterial species. The potential interaction of the combination was evaluated by the isobologram or Chou-Talalay's method, which provides a combination index as a quantitative measure of the two cyanotoxins interaction's degree. Moreover, a morphological study of the individual pure toxins and their combinations was also performed. Results showed that CYN was the most toxic pure cyanotoxin, being the mean effective concentrations obtained ≈4 and 90 μg/mL for CYN and MC-LR, respectively after 24 h. However, the simultaneous exposure showed an antagonistic effect. Morphologically, autophagy, at low concentrations, and apoptosis, at high concentrations were observed, with affectation of the rough endoplasmic reticulum and mitochondria. These effects were more pronounced with the combination. Therefore, it is important to assess the toxicological profile of cyanotoxins combinations in order to perform more realistic risk evaluations.
Collapse
Affiliation(s)
| | | | - Silvia Pichardo
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | | | - Vitor Vasconcelos
- CIIMAR/CIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ángeles Jos
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Ana María Cameán
- Área de Toxicología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
24
|
Falfushynska H, Horyn O, Brzozowska A, Fedoruk O, Buyak B, Poznansky D, Poniedziałek B, Kokociński M, Rzymski P. Is the presence of Central European strains of Raphidiopsis (Cylindrospermopsis) raciborskii a threat to a freshwater fish? An in vitro toxicological study in common carp cells. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 206:105-113. [PMID: 30472479 DOI: 10.1016/j.aquatox.2018.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/11/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
As yet European strains of Raphidiopsis raciborskii (previously Cylindrospermopsis raciborskii) have not been found to produce known cyanotoxins although their extracts have caused adverse effects in mammals, as shown using in vitro and in vivo experimental models. The present study investigated whether R. raciborskii isolated from Western Poland and Ukraine can affect fish cells using in vitro exposures of hepatocytes and red blood cells (RBC), and brain homogenates obtained from common carp (Cyprinus carpio) to 1.0% and 0.1% extracts of 7 strains. The studied extracts evoked different responses of catalase activity in hepatocytes with both increase and decrease observed under low and high concentrations. The cellular thiol pool was also altered with most extracts inducing a decrease in the activity of glutathione-S-transferase, and Ukrainian strains leading to an increase in glutathione level and a decrease in metallothionein content. All the studied extracts induced comparable reactive oxygen species formation, lipid peroxidation, protein carbonylation and DNA fragmentation in hepatocytes, and all but one increased the activity of caspase-3. Only one extract caused lysosomal membrane destabilization as measured by neutral red retention in RBC. In contrast to extracts of Ukrainian isolates, exposure of brain homogenates to extracts of Polish strains induced an increase in acetylcholinesterase activity suggesting the neurotoxic action of their exudates. The results indicate that both Polish and Ukrainian strains of R. raciborskii may pose a toxicological risk to freshwater fish, and further, that Polish strains may produce compound(s) evoking neurotoxic effects.
Collapse
Affiliation(s)
- Halina Falfushynska
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Oksana Horyn
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Agnieszka Brzozowska
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
| | - Olga Fedoruk
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Bogdan Buyak
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Dmytro Poznansky
- Ternopil Volodymyr Hnatiuk National Pedagogical University, Ternopil, Ukraine
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Mikołaj Kokociński
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University in Poznan, Poznań, Poland
| | - Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
| |
Collapse
|
25
|
Mohamed ZA, Bakr A. Concentrations of cylindrospermopsin toxin in water and tilapia fish of tropical fishponds in Egypt, and assessing their potential risk to human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:36287-36297. [PMID: 30368701 DOI: 10.1007/s11356-018-3581-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/23/2018] [Indexed: 06/08/2023]
Abstract
Unlike microcystin, cylindrospermospin (CYN) concentrations in fishpond water and their accumulation in fish tissues have been largely unexplored. This study determined CYN levels in water and tilapia fish organs from three tropical fishponds in southern Egypt. Water and fish samples were collected monthly from fishponds for 12 months (Oct 2012 to Sep 2013). The results revealed that six CYN-producing species of cyanobacteria dominated phytoplankton populations and formed blooms in these fishponds during warm months. Among these species, Anabaena affinis, Planktothrix agardhii, Cylindrospermopsis catemaco, and C. philippinensis were assigned as CYN producers for the first time in the present study. The highest cell densities of CYN-producing species in fishponds were recorded in August and September 2013, correlating with high temperature, pH and nutrient concentrations. Dissolved CYN was found in fishpond waters at levels (0.3-2.76 μg L-1) very close to those of particulate CYN (0.4-2.37 μg L-1). CYN was also estimated in tilapia fish organs at levels up to 417 ng g-1 in the intestines, 1500 ng g-1 in the livers, and 280 ng g-1in edible muscles. Compared to the recommended guideline (0.03 μg kg-1 day-1), the estimated daily intake (EDI) of CYN in our samples of edible muscles exceeded this limit by a factor of 1.3-14 during summer and autumn. This might represent a risk to human health upon consumption of such contaminated fish muscles. Therefore, fishponds worldwide should be monitored for the presence toxic cyanobacteria to protect humans from their potent toxins.
Collapse
Affiliation(s)
- Zakaria A Mohamed
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | - Asmaa Bakr
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| |
Collapse
|
26
|
Dalu T, Wasserman RJ. Cyanobacteria dynamics in a small tropical reservoir: Understanding spatio-temporal variability and influence of environmental variables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 643:835-841. [PMID: 29958171 DOI: 10.1016/j.scitotenv.2018.06.256] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 05/04/2023]
Abstract
Anthropogenic disturbances within or near aquatic ecosystems often contribute to eutrophication events. Cyanobacteria are a key group responsible for environmental problems associated with eutrophication processes. Interest is growing in estimating the threat of cyanobacteria in tropical Africa, however, there is still a lack of understanding regarding temporal drivers of cyanobacteria dynamics in natural aquatic ecosystems given the paucity of relevant fundamental research in this area. To better understand cyanobacteria dynamics, potential drivers of cyanobacteria dynamics were investigated in a model tropical reservoir system, whereby phytoplankton communities and water quality parameters were sampled during the tropical hot-wet, cool-dry and hot-dry seasons. Fifteen cyanobacteria taxa were recorded over the study period. Microcystis spp. and Cylindrospermopsis spp., known cyanotoxins producers, were the most prevalent bloom-forming taxa found in the study, with overall Cyanobacteria relative abundances being greatest during the cool-dry season. This was likely driven by decreased river inflows and increased reservoir mixing during the cool-dry period. Combinations of macrophyte cover, dissolved oxygen levels, water transparency, reactive phosphorus, water depth and chemical oxygen demand were found to significantly affect cyanobacteria community structure. The study highlights that under climate change forecasts (for much of tropical arid Africa), potentially harmful and problematic algal species may proliferate. Management options, therefore, need to be explored to maintain water quality and potable availability to mitigate against indirect harmful effects of environmental changes on ecosystems and human communities that utilise their services.
Collapse
Affiliation(s)
- Tatenda Dalu
- Department of Ecology and Resource Management, University of Venda, Thohoyandou 0950, South Africa.
| | - Ryan J Wasserman
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
27
|
Panou M, Zervou SK, Kaloudis T, Hiskia A, Gkelis S. A Greek Cylindrospermopsis raciborskii strain: Missing link in tropic invader's phylogeography tale. HARMFUL ALGAE 2018; 80:96-106. [PMID: 30502817 DOI: 10.1016/j.hal.2018.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 06/09/2023]
Abstract
The cyanobacterium Cylindrospermopsis raciborskii represents a challenge for researchers and it is extensively studied for its toxicity and invasive behaviour, which is presumably enhanced by global warming. Biogeography studies indicate a tropical origin for this species, with Greece considered as the expansion route of C. raciborskii in Europe. The widening of its geographic distribution and the isolation of strains showing high optimum growth temperature underline its ecological heterogeneity, suggesting the existence of different ecotypes. The dominance of species like C. raciborskii along with their ecotoxicology and potential human risk related problems, render the establishment of a clear phylogeography model essential. In the context of the present study, the characterization of Cylindrospermopsis raciborskii TAU-MAC 1414 strain, isolated from Lake Karla, with respect to its phylogeography and toxic potential, is attempted. Our research provides new insights on the origin of C. raciborskii in the Mediterranean region; C. raciborskii expanded in Mediterranean from North America, whilst the rest of the European strains may originate from Asia and Australia. Microcystin synthetase genes, phylogenetic closely related with Microcystis strains, were also present in C. raciborskii TAU-MAC 1414. We were unable to unambiguously confirm the presence of MC-LR, using LC-MS/MS. Our results are shedding light on the expansion and distribution of C. raciborskii, whilst they pose further questions on the toxic capacity of this species.
Collapse
Affiliation(s)
- Manthos Panou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Sevasti-Kiriaki Zervou
- Laboratory of Catalytic-Photocatalytic Processes and Environmental Analysis, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Grigoriou & Neapoleos, 15310 Agia Paraskevi, Athens, Greece
| | - Triantafyllos Kaloudis
- Water Quality Department, Athens Water Supply and Sewerage Company (EYDAP SA), 156 Oropou Str., 11146 Athens, Greece
| | - Anastasia Hiskia
- Laboratory of Catalytic-Photocatalytic Processes and Environmental Analysis, Institute of Nanoscience & Nanotechnology, National Center for Scientific Research "Demokritos", Patriarchou Grigoriou & Neapoleos, 15310 Agia Paraskevi, Athens, Greece
| | - Spyros Gkelis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece.
| |
Collapse
|
28
|
Pitois F, Fastner J, Pagotto C, Dechesne M. Multi-Toxin Occurrences in Ten French Water Resource Reservoirs. Toxins (Basel) 2018; 10:toxins10070283. [PMID: 29987192 PMCID: PMC6071237 DOI: 10.3390/toxins10070283] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 12/15/2022] Open
Abstract
Cyanobacteria are known to produce a wide array of metabolites, including various classes of toxins. Among these, hepatotoxins (Microcystins), neurotoxins (Anatoxin-A and PSP toxins) or cytotoxins (Cylindrospermopsins) have been subjected to numerous, individual studies during the past twenty years. Reports of toxins co-occurrences, however, remain scarce in the literature. The present work is an inventory of cyanobacteria with a particular focus on Nostocales and their associated toxin classes from 2007 to 2010 in ten lakes used for drinking water production in France. The results show that potential multiple toxin producing species are commonly encountered in cyanobacteria populations. Individual toxin classes were detected in 75% of all samples. Toxin co-occurrences appeared in 40% of samples as two- or three-toxin combinations (with 35% for the microcystins–anatoxin combination), whereas four-toxin class combinations only appeared in 1% of samples. Toxin co-occurrences could be partially correlated to species composition and water temperature. Peak concentrations however could never be observed simultaneously and followed distinct, asymmetrical distribution patterns. As observations are the key for preventive management and risk assessment, these results indicate that water monitoring should search for all four toxin classes simultaneously instead of focusing on the most frequent toxins, i.e., microcystins.
Collapse
Affiliation(s)
- Frederic Pitois
- Limnologie sarl, 16 rue Paul Langevin, 35200 Rennes, France.
| | - Jutta Fastner
- German Federal Environment Agency (UBA), Corrensplatz 1, 14195 Berlin, Germany.
| | | | - Magali Dechesne
- Veolia Recherche & Innovation, Chemin de la Digue, 78603 Maisons-Laffitte, France.
| |
Collapse
|
29
|
Chernoff N, Hill DJ, Chorus I, Diggs DL, Huang H, King D, Lang JR, Le TT, Schmid JE, Travlos GS, Whitley EM, Wilson RE, Wood CR. Cylindrospermopsin toxicity in mice following a 90-d oral exposure. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:549-566. [PMID: 29693504 PMCID: PMC6764423 DOI: 10.1080/15287394.2018.1460787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 02/26/2018] [Indexed: 05/19/2023]
Abstract
Cylindrospermopsin (CYN) is a toxin associated with numerous species of freshwater cyanobacteria throughout the world. It is postulated to have caused an episode of serious illnesses in Australia through treated drinking water, as well as lethal effects in livestock exposed to water from farm ponds. Toxicity included effects indicative of both hepatic and renal dysfunction. In humans, symptoms progressed from initial hepatomegaly, vomiting, and malaise to acidosis and hypokalemia, bloody diarrhea, and hyperemia in mucous membranes. Laboratory animal studies predominantly involved the intraperitoneal (i.p.) route of administration and confirmed this pattern of toxicity with changes in liver enzyme activities and histopathology consistent with hepatic injury and adverse renal effects. The aim of this study was designed to assess subchronic oral exposure (90 d) of purified CYN from 75 to 300 µg/kg/d in mouse. At the end of the dosing period, examinations of animals noted (1) elevated organ to body weight ratios of liver and kidney at all dose levels, (2) treatment-related increases in serum alanine aminotransferase (ALT) activity, (3) decreased blood urea nitrogen (BUN) and cholesterol concentrations in males, and (4) elevated monocyte counts in both genders. Histopathological alterations included hepatocellular hypertrophy and cord disruption in the liver, as well as renal cellular hypertrophy, tubule dilation, and cortical tubule lesions that were more prominent in males. A series of genes were differentially expressed including Bax (apoptosis), Rpl6 (tissue regeneration), Fabp4 (fatty acid metabolism), and Proc (blood coagulation). Males were more sensitive to many renal end points suggestive of toxicity. At the end of exposure, toxicity was noted at all dose levels, and the 75 µg/kg group exhibited significant effects in liver and kidney/body weight ratios, reduced BUN, increased serum monocytes, and multiple signs of histopathology indicating that a no-observed-adverse-effect level could not be determined for any dose level.
Collapse
Affiliation(s)
- N Chernoff
- a National Health and Environmental Effects Research Laboratory , US Environmental Protection Agency, Office of Research and Development , Research Triangle Park , NC , USA
| | - D J Hill
- a National Health and Environmental Effects Research Laboratory , US Environmental Protection Agency, Office of Research and Development , Research Triangle Park , NC , USA
| | - I Chorus
- b Division of Drinking-Water and Swimming-Pool Hygiene , Umweltbundesamt , Berlin , Germany
| | - D L Diggs
- c NHEERL , Oak Ridge Institute for Science and Education Internship/Research Participation Program at the US Environmental Protection Agency , Research Triangle Park , NC , USA
| | - H Huang
- d North Carolina State University , Raleigh , NC , USA
| | - D King
- e Cellular and Molecular Pathology Branch , National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - J R Lang
- c NHEERL , Oak Ridge Institute for Science and Education Internship/Research Participation Program at the US Environmental Protection Agency , Research Triangle Park , NC , USA
| | - T-T Le
- c NHEERL , Oak Ridge Institute for Science and Education Internship/Research Participation Program at the US Environmental Protection Agency , Research Triangle Park , NC , USA
| | - J E Schmid
- a National Health and Environmental Effects Research Laboratory , US Environmental Protection Agency, Office of Research and Development , Research Triangle Park , NC , USA
| | - G S Travlos
- e Cellular and Molecular Pathology Branch , National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - E M Whitley
- f Pathogenesis , LLC , Gainesville , FL , USA
| | - R E Wilson
- e Cellular and Molecular Pathology Branch , National Institute of Environmental Health Sciences , Research Triangle Park , NC , USA
| | - C R Wood
- a National Health and Environmental Effects Research Laboratory , US Environmental Protection Agency, Office of Research and Development , Research Triangle Park , NC , USA
| |
Collapse
|
30
|
Xiao M, Li M, Reynolds CS. Colony formation in the cyanobacterium
Microcystis. Biol Rev Camb Philos Soc 2018; 93:1399-1420. [DOI: 10.1111/brv.12401] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/16/2018] [Accepted: 01/24/2018] [Indexed: 02/07/2023]
Affiliation(s)
- Man Xiao
- College of Natural Resources and Environment Northwest A & F University Yangling 712100 China
- Australian Rivers Institute, School of Environment and Science Griffith University Nathan Queensland 4111 Australia
| | - Ming Li
- College of Natural Resources and Environment Northwest A & F University Yangling 712100 China
| | | |
Collapse
|
31
|
Pichardo S, Cameán AM, Jos A. In Vitro Toxicological Assessment of Cylindrospermopsin: A Review. Toxins (Basel) 2017; 9:toxins9120402. [PMID: 29258177 PMCID: PMC5744122 DOI: 10.3390/toxins9120402] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 12/29/2022] Open
Abstract
Cylindrospermopsin (CYN) is a cyanobacterial toxin that is gaining importance, owing to its increasing expansion worldwide and the increased frequency of its blooms. CYN mainly targets the liver, but also involves other organs. Various mechanisms have been associated with its toxicity, such as protein synthesis inhibition, oxidative stress, etc. However, its toxic effects are not yet fully elucidated and additional data for hazard characterization purposes are required. In this regard, in vitro methods can play an important role, owing to their advantages in comparison to in vivo trials. The aim of this work was to compile and evaluate the in vitro data dealing with CYN available in the scientific literature, focusing on its toxicokinetics and its main toxicity mechanisms. This analysis would be useful to identify research needs and data gaps in order to complete knowledge about the toxicity profile of CYN. For example, it has been shown that research on various aspects, such as new emerging toxicity effects, the toxicity of analogs, or the potential interaction of CYN with other cyanotoxins, among others, is still very scarce. New in vitro studies are therefore welcome.
Collapse
Affiliation(s)
- Silvia Pichardo
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, University of Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| |
Collapse
|
32
|
Đorđević NB, Matić SL, Simić SB, Stanić SM, Mihailović VB, Stanković NM, Stanković VD, Ćirić AR. Impact of the toxicity of Cylindrospermopsis raciborskii (Woloszynska) Seenayya & Subba Raju on laboratory rats in vivo. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:14259-14272. [PMID: 28421526 DOI: 10.1007/s11356-017-8940-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
In vivo laboratory studies of toxicity were performed on Wistar rats using a methanol extract produced by the natural population of Cylindrospermopsis raciborskii (abundance of 2.13 × 105 trichomes mL-1) collected at Aleksandrovac Lake (Serbia). HPLC analysis showed that the extract contains 6.65 μg cylindrospermopsin (CYN) mg-1. The rats were killed 24 or 72 h after a single intraperitoneal injection of C. raciborskii extract in concentrations of 1500, 3000, 6000 and 12,000 μg kg-1 body weight (bw) and an equivalent amount of CYN as present in the highest dose of the extract (79.80 μg CYN kg-1 bw). The genotoxic effect on the livers treated with C. raciborskii was evaluated using comet assay and potential induction of oxidative stress as the toxicity mechanism associated with the presence of CYN in extract. The results from the analyses of DNA damage in the comet tail length, tail moment and percentage of DNA in the tail in the liver indicated that administration of extract and CYN present statistically significant difference when compared with the negative control group. Although an increase in the frequency of selected parameters induced by the CYN was observed in the liver, this damage was less than the damage resulting from the administration of the highest dose of extract. The changes in the biochemical parameters of the hepatic damage showed that the application of single doses of the extract and CYN did not cause serious liver damage in rats. The extract and CYN significantly increased oxidative stress in rats' liver after a single exposure.
Collapse
Affiliation(s)
- Nevena B Đorđević
- Faculty of Science, Institute of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, Kragujevac, 34 000, Serbia
| | - Sanja Lj Matić
- Faculty of Science, Institute of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, Kragujevac, 34 000, Serbia
| | - Snežana B Simić
- Faculty of Science, Institute of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, Kragujevac, 34 000, Serbia.
| | - Snežana M Stanić
- Faculty of Science, Institute of Biology and Ecology, University of Kragujevac, Radoja Domanovića 12, Kragujevac, 34 000, Serbia
| | - Vladimir B Mihailović
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, Kragujevac, 34 000, Serbia
| | - Nevena M Stanković
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, Kragujevac, 34 000, Serbia
| | - Vesna D Stanković
- Department of Pathology, Faculty of Medical Sciences, University of Kragujevac, Svetozara Markovića 69, Kragujevac, 34 000, Serbia
| | - Andrija R Ćirić
- Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, Kragujevac, 34 000, Serbia
| |
Collapse
|
33
|
Rzymski P, Poniedziałek B, Mankiewicz-Boczek J, Faassen EJ, Jurczak T, Gągała-Borowska I, Ballot A, Lürling M, Kokociński M. Polyphasic toxicological screening of Cylindrospermopsis raciborskii and Aphanizomenon gracile isolated in Poland. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Buratti FM, Manganelli M, Vichi S, Stefanelli M, Scardala S, Testai E, Funari E. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch Toxicol 2017; 91:1049-1130. [DOI: 10.1007/s00204-016-1913-6] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/13/2016] [Indexed: 12/11/2022]
|
35
|
Greer B, McNamee SE, Boots B, Cimarelli L, Guillebault D, Helmi K, Marcheggiani S, Panaiotov S, Breitenbach U, Akçaalan R, Medlin LK, Kittler K, Elliott CT, Campbell K. A validated UPLC-MS/MS method for the surveillance of ten aquatic biotoxins in European brackish and freshwater systems. HARMFUL ALGAE 2016; 55:31-40. [PMID: 28073545 DOI: 10.1016/j.hal.2016.01.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 05/26/2023]
Abstract
Over the past few decades, there has been an increased frequency and duration of cyanobacterial Harmful Algal Blooms (HABs) in freshwater systems globally. These can produce secondary metabolites called cyanotoxins, many of which are hepatotoxins, raising concerns about repeated exposure through ingestion of contaminated drinking water or food or through recreational activities such as bathing/swimming. An ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) multi-toxin method has been developed and validated for freshwater cyanotoxins; microcystins-LR, -YR, -RR, -LA, -LY and -LF, nodularin, cylindrospermopsin, anatoxin-a and the marine diatom toxin domoic acid. Separation was achieved in around 9min and dual SPE was incorporated providing detection limits of between 0.3 and 5.6ng/L of original sample. Intra- and inter-day precision analysis showed relative standard deviations (RSD) of 1.2-9.6% and 1.3-12.0% respectively. The method was applied to the analysis of aquatic samples (n=206) from six European countries. The main class detected were the hepatotoxins; microcystin-YR (n=22), cylindrospermopsin (n=25), microcystin-RR (n=17), microcystin-LR (n=12), microcystin-LY (n=1), microcystin-LF (n=1) and nodularin (n=5). For microcystins, the levels detected ranged from 0.001 to 1.51μg/L, with two samples showing combined levels above the guideline set by the WHO of 1μg/L for microcystin-LR. Several samples presented with multiple toxins indicating the potential for synergistic effects and possibly enhanced toxicity. This is the first published pan European survey of freshwater bodies for multiple biotoxins, including two identified for the first time; cylindrospermopsin in Ireland and nodularin in Germany, presenting further incentives for improved monitoring and development of strategies to mitigate human exposure.
Collapse
Affiliation(s)
- Brett Greer
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Stranmillis Road, Belfast BT9 5AG, UK
| | - Sara E McNamee
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Stranmillis Road, Belfast BT9 5AG, UK
| | - Bas Boots
- University College Dublin, National University of Ireland, Dublin, Ireland
| | - Lucia Cimarelli
- Laboratory of Genetics, School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, MC 62032, Italy
| | | | - Karim Helmi
- Veolia Environnement Recherche et Innovation SNC, France
| | | | - Stefan Panaiotov
- National Center of Infectious and Parasitic Diseases, Sofia 1504, Bulgaria
| | | | | | | | - Katrin Kittler
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Stranmillis Road, Belfast BT9 5AG, UK
| | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Stranmillis Road, Belfast BT9 5AG, UK.
| |
Collapse
|
36
|
Burford MA, Beardall J, Willis A, Orr PT, Magalhaes VF, Rangel LM, Azevedo SMFOE, Neilan BA. Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. HARMFUL ALGAE 2016; 54:44-53. [PMID: 28073481 DOI: 10.1016/j.hal.2015.10.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 10/14/2015] [Indexed: 05/06/2023]
Abstract
The cyanobacterium Cylindrospermopsis raciborskii is a widespread species increasingly being recorded in freshwater systems around the world. It is of particular concern because strains in some geographic areas are capable of producing toxins with implications for human and animal health. Studies of this species have increased rapidly in the last two decades, especially in the southern hemisphere where toxic strains are prevalent. A clearer picture is emerging of the strategies adopted by this species to bloom and out-compete other species. This species has a high level of flexibility with respect to light and nutrients, with higher temperatures and carbon dioxide also promoting growth. There are two types of toxins produced by C. raciborskii: cylindrospermopsins (CYNs) and saxitoxins (STXs). The toxins CYNs are constitutively produced irrespective of environmental conditions and the ecological or physiological role is unclear, while STXs appear to serve as protection against high salinity and/or water hardness. It is also apparent that strains of this species can vary substantially in their physiological responses to environmental conditions, including CYNs production, and this may explain discrepancies in findings from studies in different geographical areas. The combination of a flexible strategy with respect to environmental conditions, and variability in strain response makes it a challenging species to manage. Our ability to improve bloom prediction will rely on a more detailed understanding of the complex physiology of this species.
Collapse
Affiliation(s)
- Michele A Burford
- Australian Rivers Institute, Griffith University, Nathan, Queensland 4111, Australia.
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | - Anusuya Willis
- Australian Rivers Institute, Griffith University, Nathan, Queensland 4111, Australia.
| | - Philip T Orr
- Australian Rivers Institute, Griffith University, Nathan, Queensland 4111, Australia; School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia.
| | - Valeria F Magalhaes
- Institute of Biophysics Carlos Chagas Filho - CCS, Federal University of Rio, Rio de Janeiro 21941-902, Brazil.
| | - Luciana M Rangel
- Institute of Biophysics Carlos Chagas Filho - CCS, Federal University of Rio, Rio de Janeiro 21941-902, Brazil.
| | - Sandra M F O E Azevedo
- Institute of Biophysics Carlos Chagas Filho - CCS, Federal University of Rio, Rio de Janeiro 21941-902, Brazil.
| | - Brett A Neilan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
37
|
Esterhuizen-Londt M, Kühn S, Pflugmacher S. Development and validation of an in-house quantitative analysis method for cylindrospermopsin using hydrophilic interaction liquid chromatography-tandem mass spectrometry: Quantification demonstrated in 4 aquatic organisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:2878-2883. [PMID: 26126753 DOI: 10.1002/etc.3138] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/17/2015] [Accepted: 06/25/2015] [Indexed: 06/04/2023]
Abstract
The cyanobacterial toxin cylindrospermopsin (CYN) is of great concern in aquatic environments because of its incidence, multiple toxicity endpoints, and, therefore, the severity of health implications. It may bioaccumulate in aquatic food webs, resulting in high exposure concentrations to higher-order trophic levels, particularly humans. Because of accumulation at primary levels resulting from exposure to trace amounts of toxin, a sensitive analytical technique with proven aquatic applications is required. In the present study, a hydrophilic interaction liquid chromatographic-tandem mass spectrometric method with a lower limit of detection of 200 fg on column (signal-to-noise ratio = 3, n = 9) and a lower limit of quantification of 1 pg on column (signal-to-noise ratio = 11, n = 9) with demonstrated application in 4 aquatic organisms is described. The analytical method was optimized and validated with a linear range (r(2) = 0.999) from 0.1 ng mL(-1) to 100 ng mL(-1) CYN. Mean recovery of the extraction method was 98 ± 2%. Application of the method was demonstrated by quantifying CYN uptake in Scenedesmus subspicatus (green algae), Egeria densa (Brazilian waterweed), Daphnia magna (water flea), and Lumbriculus variegatus (blackworm) after 24 h of static exposure to 50 μg L(-1) CYN. Uptake ranged from 0.05% to 0.11% of the nominal CYN exposure amount. This constitutes a sensitive and reproducible method for extraction and quantification of unconjugated CYN with demonstrated application in 4 aquatic organisms, which can be used in further aquatic toxicological investigations.
Collapse
Affiliation(s)
| | - Sandra Kühn
- Institute of Ecology, Technische Universität Berlin, Berlin, Germany
| | | |
Collapse
|
38
|
Blooms of toxic microorganisms in aquatic environments: marine microalgae and freshwater cyanobacteria. A brief review with a particular focus on the Italian situation. RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI 2015. [DOI: 10.1007/s12210-015-0488-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Geh EN, Ghosh D, McKell M, de la Cruz AA, Stelma G, Bernstein JA. Identification of Microcystis aeruginosa Peptides Responsible for Allergic Sensitization and Characterization of Functional Interactions between Cyanobacterial Toxins and Immunogenic Peptides. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:1159-66. [PMID: 25902363 PMCID: PMC4629744 DOI: 10.1289/ehp.1409065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 04/15/2015] [Indexed: 05/27/2023]
Abstract
BACKGROUND The cyanobacterium species Microcystis aeruginosa produces microcystin and an array of diverse metabolites believed responsible for their toxicity and/or immunogenicity. Previously, chronic rhinitis patients were demonstrated to elicit a specific IgE response to nontoxic strains of M. aeruginosa by skin-prick testing, indicating that cyanobacteria allergenicity resides in a non-toxin-producing component of the organism. OBJECTIVES We sought to identify and characterize M. aeruginosa peptide(s) responsible for allergic sensitization in susceptible individuals, and we investigated the functional interactions between cyanobacterial toxins and their coexpressed immunogenic peptides. METHODS Sera from patients and extracts from M. aeruginosa toxic [MC(+)] and nontoxic [MC(-)] strains were used to test IgE-specific reactivity by direct and indirect ELISAs; 2D gel electrophoresis, followed by immunoblots and mass spectrometry (MS), was performed to identify the relevant sensitizing peptides. Cytotoxicity and mediator release assays were performed using the MC(+) and MC(-) lysates. RESULTS We found specific IgE to be increased more in response to the MC(-) strain than the MC(+) strain. This response was inhibited by preincubation of MC(-) lysate with increasing concentrations of microcystin. MS revealed that phycocyanin and the core-membrane linker peptide are the responsible allergens, and MC(-) extracts containing these proteins induced β-hexosaminidase release in rat basophil leukemia cells. CONCLUSIONS Phycobiliprotein complexes in M. aeruginosa have been identified as the relevant sensitizing proteins. Our finding that allergenicity is inhibited in a dose-dependent manner by microcystin toxin suggests that further investigation is warranted to understand the interplay between immunogenicity and toxicity of cyanobacteria under diverse environmental conditions. CITATION Geh EN, Ghosh D, McKell M, de la Cruz AA, Stelma G, Bernstein JA. 2015. Identification of Microcystis aeruginosa peptides responsible for allergic sensitization and characterization of functional interactions between cyanobacterial toxins and immunogenic peptides. Environ Health Perspect 123:1159-1166; http://dx.doi.org/10.1289/ehp.1409065.
Collapse
Affiliation(s)
- Esmond N Geh
- Allergy Section, Division of Immunology Allergy, and Rheumatology, Department of Internal Medicine, and
| | | | | | | | | | | |
Collapse
|
40
|
Effects of Cylindrospermopsin Producing Cyanobacterium and Its Crude Extracts on a Benthic Green Alga-Competition or Allelopathy? Mar Drugs 2015; 13:6703-22. [PMID: 26528991 PMCID: PMC4663549 DOI: 10.3390/md13116703] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 11/17/2022] Open
Abstract
Cylindrospermopsin (CYN) is a toxic secondary metabolite produced by filamentous cyanobacteria which could work as an allelopathic substance, although its ecological role in cyanobacterial-algal assemblages is mostly unclear. The competition between the CYN-producing cyanobacterium Chrysosporum (Aphanizomenon) ovalisporum, and the benthic green alga Chlorococcum sp. was investigated in mixed cultures, and the effects of CYN-containing cyanobacterial crude extract on Chlorococcum sp. were tested by treatments with crude extracts containing total cell debris, and with cell debris free crude extracts, modelling the collapse of a cyanobacterial water bloom. The growth inhibition of Chlorococcum sp. increased with the increasing ratio of the cyanobacterium in mixed cultures (inhibition ranged from 26% to 87% compared to control). Interestingly, inhibition of the cyanobacterium growth also occurred in mixed cultures, and it was more pronounced than it was expected. The inhibitory effects of cyanobacterial crude extracts on Chlorococcum cultures were concentration-dependent. The presence of C. ovalisporum in mixed cultures did not cause significant differences in nutrient content compared to Chlorococcum control culture, so the growth inhibition of the green alga could be linked to the presence of CYN and/or other bioactive compounds.
Collapse
|
41
|
Antunes JT, Leão PN, Vasconcelos VM. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species. Front Microbiol 2015; 6:473. [PMID: 26042108 PMCID: PMC4435233 DOI: 10.3389/fmicb.2015.00473] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/29/2015] [Indexed: 11/13/2022] Open
Abstract
Cylindrospermopsis raciborskii is a cyanobacterial species extensively studied for its toxicity, bloom formation and invasiveness potential, which have consequences to public and environmental health. Its current geographical distribution, spanning different climates, suggests that C. raciborskii has acquired the status of a cosmopolitan species. From phylogeography studies, a tropical origin for this species seems convincing, with different conjectural routes of expansion toward temperate climates. This expansion may be a result of the species physiological plasticity, or of the existence of different ecotypes with distinct environmental requirements. In particular, C. raciborskii is known to tolerate wide temperature and light regimes and presents diverse nutritional strategies. This cyanobacterium is also thought to have benefited from climate change conditions, regarding its invasiveness into temperate climates. Other factors, recently put forward, such as allelopathy, may also be important to its expansion. The effect of C. raciborskii in the invaded communities is still mostly unknown but may strongly disturb species diversity at different trophic levels. In this review we present an up-to-date account of the distribution, phylogeography, ecophysiology, as well some preliminary reports of the impact of C. raciborskii in different organisms.
Collapse
Affiliation(s)
- Jorge T Antunes
- Faculty of Sciences, University of Porto , Porto, Portugal ; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto , Porto, Portugal
| | - Pedro N Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto , Porto, Portugal
| | - Vítor M Vasconcelos
- Faculty of Sciences, University of Porto , Porto, Portugal ; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto , Porto, Portugal
| |
Collapse
|
42
|
Integrative monitoring of marine and freshwater harmful algae in Washington State for public health protection. Toxins (Basel) 2015; 7:1206-34. [PMID: 25860160 PMCID: PMC4417964 DOI: 10.3390/toxins7041206] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/18/2015] [Accepted: 03/26/2015] [Indexed: 11/23/2022] Open
Abstract
The more frequent occurrence of both marine and freshwater toxic algal blooms and recent problems with new toxic events have increased the risk for illness and negatively impacted sustainable public access to safe shellfish and recreational waters in Washington State. Marine toxins that affect safe shellfish harvest in the state are the saxitoxins that cause paralytic shellfish poisoning (PSP), domoic acid that causes amnesic shellfish poisoning (ASP) and the first ever US closure in 2011 due to diarrhetic shellfish toxins that cause diarrhetic shellfish poisoning (DSP). Likewise, the freshwater toxins microcystins, anatoxin-a, cylindrospermopsins, and saxitoxins have been measured in state lakes, although cylindrospermopsins have not yet been measured above state regulatory guidance levels. This increased incidence of harmful algal blooms (HABs) has necessitated the partnering of state regulatory programs with citizen and user-fee sponsored monitoring efforts such as SoundToxins, the Olympic Region Harmful Algal Bloom (ORHAB) partnership and the state’s freshwater harmful algal bloom passive (opportunistic) surveillance program that allow citizens to share their observations with scientists. Through such integrated programs that provide an effective interface between formalized state and federal programs and observations by the general public, county staff and trained citizen volunteers, the best possible early warning systems can be instituted for surveillance of known HABs, as well as for the reporting and diagnosis of unusual events that may impact the future health of oceans, lakes, wildlife, and humans.
Collapse
|
43
|
Guzmán-Guillén R, Prieto AI, Moreno I, Vasconcelos VM, Moyano R, Blanco A, Cameán Fernandez AM. Cyanobacterium producing cylindrospermopsin cause histopathological changes at environmentally relevant concentrations in subchronically exposed tilapia (Oreochromis niloticus). ENVIRONMENTAL TOXICOLOGY 2015; 30:261-277. [PMID: 24000190 DOI: 10.1002/tox.21904] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 07/30/2013] [Accepted: 08/05/2013] [Indexed: 06/02/2023]
Abstract
The acute toxicity of cylindrospermopsin (CYN) has been established in rodents, based on diverse intraperitoneal an oral exposure studies and more recently in fish. But no data have been reported in fish after subchronic exposure to cyanobacterial cells containing this cyanotoxin, so far. In this work, tilapia (Oreochromis niloticus) were exposed by immersion to lyophilized Aphanizomenon ovalisporum cells added to the aquaria using two concentration levels of CYN (10 or 100 μg CYN L(-1)) and deoxy-cylindrospermopsin (deoxy-CYN) (0.46 or 4.6 μg deoxy-CYN L(-1)), during two different exposure times: 7 or 14 d. This is the first study showing damage in the liver, kidney, hearth, intestines, and gills of tilapia after subchronic exposure to cyanobacterial cells at environmental relevant concentrations. The major histological changes observed were degenerative processes and steatosis in the liver, membranous glomerulopathy in the kidney, myofibrolysis and edema in the heart, necrotic enteritis in the gastrointestinal tract, and hyperemic processes in gill lamellae and microhemorrhages. Moreover, these histopathological findings confirm that the extent of damage is related to the CYN concentration and length of exposure. Results from the morphometric study indicated that the average of nuclear diameter of hepatocytes and cross-sections of proximal and distal convoluted tubules are useful to evaluate the damage induced by CYN in the main targets of toxicity.
Collapse
|
44
|
Poniedziałek B, Rzymski P, Kokociński M, Karczewski J. Toxic potencies of metabolite(s) of non-cylindrospermopsin producing Cylindrospermopsis raciborskii isolated from temperate zone in human white cells. CHEMOSPHERE 2015; 120:608-14. [PMID: 25462304 DOI: 10.1016/j.chemosphere.2014.09.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/08/2014] [Accepted: 09/22/2014] [Indexed: 05/22/2023]
Abstract
Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) has worldwide distribution and is well known for producing the toxic alkaloid, cylindrospermopsin (CYN). Strains unable to synthesize this compound but potentially toxic were recently identified in Europe. Here, for the first time the effect of cell-free extracts of a non-CYN-producing strain of C. raciborskii was studied in human cells (neutrophils and lymphocytes) isolated from healthy donors. The observed effects were compared to those induced by CYN (1.0-0.01 μg mL(-1)). Short-term (1h) extract treatments resulted in altered viability of cells demonstrated by increased necrosis and apoptosis in neutrophils and elevated apoptosis in lymphocytes. CYN did not induce similar effects, regardless of the toxin concentration. Exposure of T-lymphocytes to 100% C. raciborskii extract in isolated and whole-blood 72 h cultures resulted in decrease of proliferation by 20.6% and 32.5%, respectively. In comparison, exposure to 1.0 μg mL(-1) of CYN caused lymphocytes proliferation to be inhibited by 91.0% in isolated cultures and 56.5% in whole-blood assay. Significant antiproliferative properties were also found for 0.1 μg mL(-1) of CYN in whole-blood culture. From the results we conclude that strains occurring in temperate zones may pose a threat to human health through the production of hitherto unknown metabolites that reveal a toxic pattern different to that of CYN. At the same time our study demonstrates that CYN is a powerful but slowly-acting toxin in human immune cells.
Collapse
Affiliation(s)
- Barbara Poniedziałek
- Department of Biology and Environmental Protection, Poznan University of Medical Sciences, Poznań, Poland.
| | - Piotr Rzymski
- Department of Biology and Environmental Protection, Poznan University of Medical Sciences, Poznań, Poland.
| | - Mikołaj Kokociński
- Department of Hydrobiology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland; Collegium Polonicum, Adam Mickiewicz University, Słubice, Poland
| | - Jacek Karczewski
- Department of Biology and Environmental Protection, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
45
|
Rzymski P, Poniedziałek B. In search of environmental role of cylindrospermopsin: a review on global distribution and ecology of its producers. WATER RESEARCH 2014; 66:320-337. [PMID: 25222334 DOI: 10.1016/j.watres.2014.08.029] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 06/03/2023]
Abstract
Despite a significant interest in cyanotoxins over recent decades, their biological role is still poorly elucidated. Cylindrospermopsin (CYN) is a cyanobacterial metabolite that is globally identified in surface fresh- and brackish waters and whose producers are observed to spread throughout different climate zones. This paper provides a comprehensive review of the characteristics and global distribution of CYN-producing species, the variety of their chemotypes and the occurrence of strains which, while incapable of toxin synthesis, are able to produce other bioactive compounds including those that are hitherto unknown and yet to be identified. Environmental conditions that can trigger CYN production and promote growth of CYN-producers in aquatic ecosystems are also discussed. Finally, on the basis of existing experimental evidence, potential ecological role(s) of CYN are indicated. It is eventually concluded that CYN can be at least partially responsible for the ecological success of certain cyanobacteria species.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Biology and Environmental Protection, Poznan University of Medical Sciences, Poznań, Poland.
| | - Barbara Poniedziałek
- Department of Biology and Environmental Protection, Poznan University of Medical Sciences, Poznań, Poland.
| |
Collapse
|
46
|
Fernández DA, Louzao MC, Vilariño N, Fraga M, Espiña B, Vieytes MR, Botana LM. Evaluation of the intestinal permeability and cytotoxic effects of cylindrospermopsin. Toxicon 2014; 91:23-34. [DOI: 10.1016/j.toxicon.2014.08.072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/20/2014] [Accepted: 08/22/2014] [Indexed: 10/24/2022]
|
47
|
Hochmuth JD, De Schamphelaere KAC. The effect of temperature on the sensitivity of Daphnia magna to cyanobacteria is genus dependent. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:2333-2343. [PMID: 25043375 DOI: 10.1002/etc.2681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/09/2014] [Accepted: 07/01/2014] [Indexed: 06/03/2023]
Abstract
In the present study, the authors investigated the effects of 6 different genera of cyanobacteria on multiple endpoints of Daphnia magna in a 21-d life table experiment conducted at 3 different temperatures (15 °C, 19 °C, and 23 °C). The specific aims were to test if the effect of temperature on Daphnia's sensitivity to cyanobacteria differed among different cyanobacteria and if the rank order from most to least harmful cyanobacteria to Daphnia reproduction changed or remained the same across the studied temperature range. Overall, the authors observed a decrease in harmful effects on reproduction with increasing temperature for Microcystis, Nodularia, and Aphanizomenon, and an increase in harmful effects with increasing temperature for Anabaena and Oscillatoria. No effect of temperature was observed on Daphnia sensitivity to Cylindrospermopsis. Harmful effects of Microcystis and Nodularia on reproduction appear to be mirrored by a decrease in length. On the other hand, harmful effects of Anabaena, Aphanizomenon, and Oscillatoria on reproduction were correlated with a decrease in intrinsic rate of natural increase, which was matched by a later onset of reproduction in exposures to Oscillatoria. In addition, the results suggest that the cyanobacteria rank order of harmfulness may change with temperature. Higher temperatures may increase the sensitivity of D. magna to the presence of some cyanobacteria (Anabaena and Oscillatoria) in their diet, whereas the harmful effects of others (Microcystis, Nodularia, and Aphanizomenon) may be reduced by higher temperatures.
Collapse
Affiliation(s)
- Jennifer D Hochmuth
- Laboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit, Ghent University, Ghent, Belgium
| | | |
Collapse
|
48
|
Jiang Y, Xiao P, Yu G, Shao J, Liu D, Azevedo SMFO, Li R. Sporadic distribution and distinctive variations of cylindrospermopsin genes in cyanobacterial strains and environmental samples from Chinese freshwater bodies. Appl Environ Microbiol 2014; 80:5219-30. [PMID: 24928879 PMCID: PMC4136083 DOI: 10.1128/aem.00551-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 06/05/2014] [Indexed: 11/20/2022] Open
Abstract
Increasing reports of cylindrospermopsins (CYNs) in freshwater ecosystems have promoted the demand for identifying all of the potential CYN-producing cyanobacterial species. The present study explored the phylogenetic distribution and evolution of cyr genes in cyanobacterial strains and water samples from China. Four Cylindrospermopsis strains and two Raphidiopsis strains were confirmed to produce CYNs. Mutant cyrI and cyrK genes were observed in these strains. Cloned cyr gene sequences from eight water bodies were clustered with cyr genes from Cylindrospermopsis and Raphidiopsis (C/R group) in the phylogenetic trees with high similarities (99%). Four cyrI sequence types and three cyrJ sequence types were observed to have different sequence insertions and repeats. Phylogenetic analysis of the rpoC1 sequences of the C/R group revealed four conserved clades, namely, clade I, clade II, clade III, and clade V. High sequence similarities (>97%) in each clade and a divergent clade IV were observed. Therefore, CYN producers were sporadically distributed in congeneric and paraphyletic C/R group species in Chinese freshwater ecosystems. In the evolution of cyr genes, intragenomic translocations and intergenomic transfer between local Cylindrospermopsis and Raphidiopsis were emphasized and probably mediated by transposases. This research confirms the existence of CYN-producing Cylindrospermopsis in China and reveals the distinctive variations of cyr genes.
Collapse
Affiliation(s)
- Yongguang Jiang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Peng Xiao
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Jihai Shao
- Resources and Environment College, Hunan Agricultural University, Changsha, People's Republic of China
| | - Deming Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, People's Republic of China
| | - Sandra M F O Azevedo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Ilha do Fundão, Cidade Universitária, Rio de Janeiro, Brazil
| | - Renhui Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China
| |
Collapse
|
49
|
Burford MA, Davis TW, Orr PT, Sinha R, Willis A, Neilan BA. Nutrient-related changes in the toxicity of field blooms of the cyanobacterium, Cylindrospermopsis raciborskii. FEMS Microbiol Ecol 2014; 89:135-48. [PMID: 24735048 DOI: 10.1111/1574-6941.12341] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 03/12/2014] [Accepted: 04/04/2014] [Indexed: 11/28/2022] Open
Abstract
Nutrients have the capacity to change cyanobacterial toxin loads via growth-related toxin production, or shifts in the dominance of toxic and nontoxic strains. This study examined the effect of nitrogen (N) and phosphorus on cell division and strain-related changes in production of the toxins, cylindrospermopsins (CYNs) by the cyanobacterium, Cylindrospermopsis raciborskii. Two short-term experiments were conducted with mixed phytoplankton populations dominated by C. raciborskii in a subtropical reservoir where treatments had nitrate (NO3 ), urea (U) and inorganic phosphorus (P) added alone or in combination. Cell division rates of C. raciborskii were only statistically higher than the control on day 5 when U and P were co-supplied. In contrast, cell quotas of CYNs (QCYNS ) increased significantly in treatments where P was supplied, irrespective of whether N was supplied, and this increase was not necessarily related to cell division rates. Increased QCYNS did correlate with an increase in the proportion of the cyrA toxin gene to 16S genes in the C. raciborskii-dominated cyanobacterial population. Therefore, changes in strain dominance are the most likely factor driving differences in toxin production between treatments. Our study has demonstrated differential effects of nutrients on cell division and strain dominance reflecting a C. raciborskii population with a range of strategies in response to environmental conditions.
Collapse
Affiliation(s)
- Michele A Burford
- Australian Rivers Institute, Griffith University, Nathan, Qld, Australia
| | | | | | | | | | | |
Collapse
|
50
|
Jančula D, Straková L, Sadílek J, Maršálek B, Babica P. Survey of cyanobacterial toxins in Czech water reservoirs--the first observation of neurotoxic saxitoxins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:8006-8015. [PMID: 24659433 DOI: 10.1007/s11356-014-2699-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 02/24/2014] [Indexed: 06/03/2023]
Abstract
The environmental occurrence and concentrations of cyanobacterial toxins (cyanotoxins) were investigated in the Czech Republic. Concentrations of microcystins (MCs), cylindrospermopsin (CYN) or saxitoxins (STXs) were determined immunochemically by ELISA assays in 30 water samples collected from the surface layers of 19 reservoirs during the summer season of 2010. MCs were detected in 18 reservoirs and 83 % of samples, with median and maximal concentration being 1.5 and 18.6 μg/L, respectively. The high frequency of MC occurrence coincided with prevalence of cyanobacterium Microcystis sp., which was detected in 87 % samples, followed by Dolichospermum (Anabaena) sp. observed in 33 % samples. CYN was detected by ELISA only in one sample at a concentration of 1.2 μg/L. STXs presence was indicated for the first time in Czech water reservoirs when the toxins were found at low concentrations (0.03-0.04 μg/L) in two samples (7 %) collected from two different reservoirs, where STXs co-occurred with MCs and eventually also with CYN. In both STX-positive samples, the phytoplankton community was dominated by Microcystis sp., but Dolichospermum sp. and/or Aphanizomenon sp. were also present as putative producers of STX and/or CYN. Cyanotoxins commonly occurred in Czech water reservoirs, and MCs frequently at concentrations possibly associated with human health risks. MCs were the most prevalent and abundant cyanotoxins, but also other cyanotoxins were detected, though sporadically. Further research and regulatory monitoring of cyanotoxins other than MCs is therefore required.
Collapse
|