1
|
Peters TL, Kirillina OA, Georges MO, Margulieux KR, Burke KA, Mzhavia N, Lertsethtakarn P, Musila LA, Filippov AA, Nikolich MP. Complete genome sequences of three Pseudomonas aeruginosa phages of the genus Phikmvvirus. Microbiol Resour Announc 2025:e0101024. [PMID: 39912636 DOI: 10.1128/mra.01010-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/09/2025] [Indexed: 02/07/2025] Open
Abstract
We describe the genomes of three lytic Pseudomonas aeruginosa phages of the genus Phikmvvirus. The genomes of phages vB_Pae4841-AFR43, vB_Pae10145-KEN1, and vB_Pae9718-KEN10 consist of 43,426, 43,406, and 43,118 bp, with 62.4%, 62.3%, and 62.2% GC content, contain 63, 66, and 64 coding sequences, respectively, and no tRNA genes.
Collapse
Affiliation(s)
- Tracey L Peters
- Institute for Modeling Collaboration and Innovation, University of Idaho, Moscow, Idaho, USA
| | - Olga A Kirillina
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Martin O Georges
- Department of Emerging Infectious Diseases, Walter Reed Army Institute of Research-Africa, Nairobi, Kenya
| | - Katie R Margulieux
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Kevin A Burke
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Nino Mzhavia
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Paphavee Lertsethtakarn
- Department of Bacterial and Parasitic Diseases, Walter Reed Army Institute of Research-Armed Forces Research Institute of Medical Sciences (WRAIR-AFRIMS), Bangkok, Thailand
| | - Lillian A Musila
- Department of Emerging Infectious Diseases, Walter Reed Army Institute of Research-Africa, Nairobi, Kenya
| | - Andrey A Filippov
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Mikeljon P Nikolich
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
2
|
Shimozono TM, Vogelaar NJ, O'Hara MT, Yang Z. A Phage-Based Approach to Identify Antivirulence Inhibitors of Bacterial Type IV Pili. Microb Biotechnol 2025; 18:e70081. [PMID: 39822166 PMCID: PMC11739798 DOI: 10.1111/1751-7915.70081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/19/2025] Open
Abstract
The increasing threat of antibiotic resistance underscores the urgent need for innovative strategies to combat infectious diseases, including the development of antivirulants. Microbial pathogens rely on their virulence factors to initiate and sustain infections. Antivirulants are small molecules designed to target virulence factors, thereby attenuating the virulence of infectious microbes. The bacterial type IV pilus (T4P), an extracellular protein filament that depends on the T4P machinery (T4PM) for its biogenesis, dynamics and function, is a key virulence factor in many significant bacterial pathogens. While the T4PM presents a promising antivirulence target, the systematic identification of inhibitors for its multiple protein constituents remains a considerable challenge. Here we report a novel high-throughput screening (HTS) approach for discovering T4P inhibitors. It uses Pseudomonas aeruginosa, a high-priority pathogen, in combination with its T4P-targeting phage, φKMV. Screening of a library of 2168 compounds using an optimised protocol led to the identification of tuspetinib, based on its deterrence of the lysis of P. aeruginosa by φKMV. Our findings show that tuspetinib also inhibits two additional T4P-targeting phages, while having no effect on a phage that recognises lipopolysaccharides as its receptor. Additionally, tuspetinib impedes T4P-mediated motility in P. aeruginosa and Acinetobacter species without impacting growth or flagellar motility. This bacterium-phage pairing approach is applicable to a broad range of virulence factors that are required for phage infection, paving ways for the development of advanced chemotherapeutics against antibiotic-resistant infections.
Collapse
Affiliation(s)
| | - Nancy J. Vogelaar
- Virginia Tech Center for Drug DiscoveryVirginia TechBlacksburgVirginiaUSA
| | - Megan T. O'Hara
- Department of Biological SciencesVirginia TechBlacksburgVirginiaUSA
| | - Zhaomin Yang
- Department of Biological SciencesVirginia TechBlacksburgVirginiaUSA
- Virginia Tech Center for Drug DiscoveryVirginia TechBlacksburgVirginiaUSA
- Center for Emerging, Zoonotic, and Arthropod‐Borne PathogensVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
3
|
Jo SJ, Lee YM, Cho K, Park SY, Kwon H, Giri SS, Lee SB, Jung WJ, Park JH, Hwang MH, Park DS, Park EJ, Kim SW, Jun JW, Kim SG, Kim JH, Park SC. Standardization of the Agar Plate Method for Bacteriophage Production. Antibiotics (Basel) 2024; 14:2. [PMID: 39858290 PMCID: PMC11762181 DOI: 10.3390/antibiotics14010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025] Open
Abstract
The growing threat of antimicrobial resistance (AMR), exacerbated by the COVID-19 pandemic, highlights the urgent need for alternative treatments such as bacteriophage (phage) therapy. Phage therapy offers a targeted approach to combat bacterial infections, particularly those resistant to conventional antibiotics. This study aimed to standardize an agar plate method for high-mix, low-volume phage production, suitable for personalized phage therapy. Plaque assays were conducted with the double-layer agar method, and plaque sizes were precisely measured using image analysis tools. Regression models developed with Minitab software established correlations between plaque size and phage production, optimizing production while minimizing resistance development. The resulting Plaque Size Calculation (PSC) model accurately correlated plaque size with inoculum concentration and phage yield, establishing specific plaque-forming unit (PFU) thresholds for optimal production. Using phages targeting pathogens such as Escherichia, Salmonella, Staphylococcus, Pseudomonas, Chryseobacterium, Vibrio, Erwinia, and Aeromonas confirmed the model's accuracy across various conditions. The model's validation showed a strong inverse correlation between plaque size and minimum-lawn cell clearing PFUs (MCPs; R² = 98.91%) and identified an optimal inoculum density that maximizes yield while minimizing the evolution of resistant mutants. These results highlight that the PSC model offers a standardized and scalable method for efficient phage production, which is crucial for personalized therapy and AMR management. Furthermore, its adaptability across different conditions and phages positions it as a potential standard tool for rapid and precise phage screening and propagation in both clinical and industrial settings.
Collapse
Affiliation(s)
- Su Jin Jo
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.J.J.)
| | - Young Min Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.J.J.)
| | - Kevin Cho
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.J.J.)
| | - Seon Young Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.J.J.)
- Division of Animal and Dairy Sciences, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyemin Kwon
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.J.J.)
| | - Sung Bin Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.J.J.)
| | - Won Joon Jung
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.J.J.)
| | - Jae Hong Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.J.J.)
| | - Mae Hyun Hwang
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.J.J.)
| | - Da Sol Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.J.J.)
| | - Eun Jae Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.J.J.)
| | - Sang Wha Kim
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.J.J.)
- College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jin Woo Jun
- Department of Aquaculture, Korea National College of Agriculture and Fisheries, Jeonju 54874, Republic of Korea
| | - Sang Guen Kim
- Laboratory of Phage and Microbial Resistance, Department of Biological Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| | - Ji Hyung Kim
- Department of Food Science and Biotechnology, College of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (S.J.J.)
| |
Collapse
|
4
|
Cong X, Zhao S, Zhang Q, Liu S, Zhang Y, Yan F. Isolation, Characterization, and Genome Engineering of a Lytic Pseudomonas aeruginosa Phage. Microorganisms 2024; 12:2346. [PMID: 39597735 PMCID: PMC11596505 DOI: 10.3390/microorganisms12112346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Antibiotic-resistant bacterial infections have become one of the leading causes of human mortality. Bacteriophages presented great potential for combating antibiotic-resistant infections in the post-antibiotic era due to their high host specificity and safety profile. Pseudomonas aeruginosa, an opportunistic pathogenic bacterium, has shown a surge in multidrug-resistant strains, severely impacting both human health and livestock. In this study, we successfully isolated and purified a P. aeruginosa-specific phage, PpY1, from feces collected from a breeding farm. This phage harbors a short tail and a 43,787 bp linear genome, and exhibited potent lytic activity against several pathogenic P. aeruginosa strains. Leveraging Transformation-associated recombination (TAR) cloning and phage assembly techniques in a P. aeruginosa host lacking a restriction-modification system, we developed a genome engineering platform for PpY1. Through a systematic gene knockout approach, we identified and eliminated 21 nonessential genes from the PpY1 genome, resulting in a series of phages with reduced genomes. This research not only enhances our understanding of the phage genome but also paves the way for the functional optimization of phages, e.g., broadening the host spectrum and elevating the lytic capacity, dedicated towards the treatment of bacterial infections.
Collapse
Affiliation(s)
- Xiaomei Cong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (X.C.); (S.Z.); (S.L.)
| | - Shuang Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (X.C.); (S.Z.); (S.L.)
| | - Qing Zhang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Shuo Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (X.C.); (S.Z.); (S.L.)
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (X.C.); (S.Z.); (S.L.)
| | - Fu Yan
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; (X.C.); (S.Z.); (S.L.)
| |
Collapse
|
5
|
Bucher MJ, Czyż DM. Phage against the Machine: The SIE-ence of Superinfection Exclusion. Viruses 2024; 16:1348. [PMID: 39339825 PMCID: PMC11436027 DOI: 10.3390/v16091348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Prophages can alter their bacterial hosts to prevent other phages from infecting the same cell, a mechanism known as superinfection exclusion (SIE). Such alterations are facilitated by phage interactions with critical bacterial components involved in motility, adhesion, biofilm production, conjugation, antimicrobial resistance, and immune evasion. Therefore, the impact of SIE extends beyond the immediate defense against superinfection, influencing the overall fitness and virulence of the bacteria. Evaluating the interactions between phages and their bacterial targets is critical for leading phage therapy candidates like Pseudomonas aeruginosa, a Gram-negative bacterium responsible for persistent and antibiotic-resistant opportunistic infections. However, comprehensive literature on the mechanisms underlying SIE remains scarce. Here, we provide a compilation of well-characterized and potential mechanisms employed by Pseudomonas phages to establish SIE. We hypothesize that the fitness costs imposed by SIE affect bacterial virulence, highlighting the potential role of this mechanism in the management of bacterial infections.
Collapse
Affiliation(s)
- Michael J Bucher
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Daniel M Czyż
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Zborowsky S, Balacheff Q, Theodorou I, Kane R, Delattre R, Weitz JS, Tournebize R, Debarbieux L. A nanoluciferase-encoded bacteriophage illuminates viral infection dynamics of Pseudomonas aeruginosa cells. ISME COMMUNICATIONS 2024; 4:ycae105. [PMID: 39296778 PMCID: PMC11409504 DOI: 10.1093/ismeco/ycae105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/29/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024]
Abstract
Bacteriophages (phages) are increasingly considered for both treatment and early detection of bacterial pathogens given their specificity and rapid infection kinetics. Here, we exploit an engineered phage expressing nanoluciferase to detect signals associated with Pseudomonas aeruginosa lysis spanning single cells to populations. Using several P. aeruginosa strains we found that the latent period, burst size, fraction of infected cells, and efficiency of plating inferred from fluorescent light intensity signals were consistent with inferences from conventional population assays. Notably, imaging-based traits were obtained in minutes to hours in contrast to the use of overnight plaques, which opens the possibility to study infection dynamics in spatial and/or temporal contexts where plaque development is infeasible. These findings support the use of engineered phages to study infection kinetics of virus-cell interactions in complex environments and potentially accelerate the determination of viral host range in therapeutically relevant contexts.
Collapse
Affiliation(s)
- Sophia Zborowsky
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 75015 Paris, France
| | - Quentin Balacheff
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 75015 Paris, France
| | - Ioanna Theodorou
- Institut Pasteur, UTechS Photonic Bioimaging, C2RT, 75015 Paris, France
| | - Rokhaya Kane
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 75015 Paris, France
| | - Raphaëlle Delattre
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 75015 Paris, France
- Université Paris Cité, INSERM U1137, IAME, F-75006 Paris, France
| | - Joshua S Weitz
- Department of Biology, University of Maryland, College Park, MD 20742, United States
- Institut de Biologie, École Normale Supérieure, 75005 Paris, France
| | - Régis Tournebize
- Institut Pasteur, UTechS Photonic Bioimaging, C2RT, 75015 Paris, France
- Centre d'Immunologie et des Maladies Infectieuses (CIMI), Sorbonne Université, INSERM U1135, 75013 Paris, France
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 75015 Paris, France
| |
Collapse
|
7
|
Czernecki D, Nourisson A, Legrand P, Delarue M. Reclassification of family A DNA polymerases reveals novel functional subfamilies and distinctive structural features. Nucleic Acids Res 2023; 51:4488-4507. [PMID: 37070157 PMCID: PMC10201439 DOI: 10.1093/nar/gkad242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/07/2023] [Accepted: 03/24/2023] [Indexed: 04/19/2023] Open
Abstract
Family A DNA polymerases (PolAs) form an important and well-studied class of extant polymerases participating in DNA replication and repair. Nonetheless, despite the characterization of multiple subfamilies in independent, dedicated works, their comprehensive classification thus far is missing. We therefore re-examine all presently available PolA sequences, converting their pairwise similarities into positions in Euclidean space, separating them into 19 major clusters. While 11 of them correspond to known subfamilies, eight had not been characterized before. For every group, we compile their general characteristics, examine their phylogenetic relationships and perform conservation analysis in the essential sequence motifs. While most subfamilies are linked to a particular domain of life (including phages), one subfamily appears in Bacteria, Archaea and Eukaryota. We also show that two new bacterial subfamilies contain functional enzymes. We use AlphaFold2 to generate high-confidence prediction models for all clusters lacking an experimentally determined structure. We identify new, conserved features involving structural alterations, ordered insertions and an apparent structural incorporation of a uracil-DNA glycosylase (UDG) domain. Finally, genetic and structural analyses of a subset of T7-like phages indicate a splitting of the 3'-5' exo and pol domains into two separate genes, observed in PolAs for the first time.
Collapse
Affiliation(s)
- Dariusz Czernecki
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75015 Paris, France
- Sorbonne Université, Collège Doctoral, ED 515, 75005 Paris, France
| | - Antonin Nourisson
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75015 Paris, France
- Sorbonne Université, Collège Doctoral, ED 515, 75005 Paris, France
| | - Pierre Legrand
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75015 Paris, France
- Synchrotron SOLEIL, L’Orme des Merisiers, 91190 Saint-Aubin, France
| | - Marc Delarue
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unit of Architecture and Dynamics of Biological Macromolecules, 75015 Paris, France
| |
Collapse
|
8
|
Huiting E, Cao X, Ren J, Athukoralage JS, Luo Z, Silas S, An N, Carion H, Zhou Y, Fraser JS, Feng Y, Bondy-Denomy J. Bacteriophages inhibit and evade cGAS-like immune function in bacteria. Cell 2023; 186:864-876.e21. [PMID: 36750095 PMCID: PMC9975087 DOI: 10.1016/j.cell.2022.12.041] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 10/29/2022] [Accepted: 12/21/2022] [Indexed: 02/09/2023]
Abstract
A fundamental strategy of eukaryotic antiviral immunity involves the cGAS enzyme, which synthesizes 2',3'-cGAMP and activates the effector STING. Diverse bacteria contain cGAS-like enzymes that produce cyclic oligonucleotides and induce anti-phage activity, known as CBASS. However, this activity has only been demonstrated through heterologous expression. Whether bacteria harboring CBASS antagonize and co-evolve with phages is unknown. Here, we identified an endogenous cGAS-like enzyme in Pseudomonas aeruginosa that generates 3',3'-cGAMP during phage infection, signals to a phospholipase effector, and limits phage replication. In response, phages express an anti-CBASS protein ("Acb2") that forms a hexamer with three 3',3'-cGAMP molecules and reduces phospholipase activity. Acb2 also binds to molecules produced by other bacterial cGAS-like enzymes (3',3'-cUU/UA/UG/AA) and mammalian cGAS (2',3'-cGAMP), suggesting broad inhibition of cGAS-based immunity. Upon Acb2 deletion, CBASS blocks lytic phage replication and lysogenic induction, but rare phages evade CBASS through major capsid gene mutations. Altogether, we demonstrate endogenous CBASS anti-phage function and strategies of CBASS inhibition and evasion.
Collapse
Affiliation(s)
- Erin Huiting
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Xueli Cao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Januka S Athukoralage
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zhaorong Luo
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Sukrit Silas
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Na An
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Héloïse Carion
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yu Zhou
- National Institute of Biological Sciences, Beijing 102206, China
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yue Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA; Innovative Genomics Institute, Berkeley, CA 94720, USA.
| |
Collapse
|
9
|
Comparative genomics of Acinetobacter baumannii and therapeutic bacteriophages from a patient undergoing phage therapy. Nat Commun 2022; 13:3776. [PMID: 35773283 PMCID: PMC9247103 DOI: 10.1038/s41467-022-31455-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 06/17/2022] [Indexed: 12/12/2022] Open
Abstract
In 2016, a 68-year-old patient with a disseminated multidrug-resistant Acinetobacter baumannii infection was successfully treated using lytic bacteriophages. Here we report the genomes of the nine phages used for treatment and three strains of A. baumannii isolated prior to and during treatment. The phages used in the initial treatment are related, T4-like myophages. Analysis of 19 A. baumannii isolates collected before and during phage treatment shows that resistance to the T4-like phages appeared two days following the start of treatment. We generate complete genomic sequences for three A. baumannii strains (TP1, TP2 and TP3) collected before and during treatment, supporting a clonal relationship. Furthermore, we use strain TP1 to select for increased resistance to five of the phages in vitro, and identify mutations that are also found in phage-insensitive isolates TP2 and TP3 (which evolved in vivo during phage treatment). These results support that in vitro investigations can produce results that are relevant to the in vivo environment.
Collapse
|
10
|
Yin Y, Wang X, Mou Z, Ren H, Zhang C, Zou L, Liu H, Liu W, Liu Z. Characterization and genome analysis of Pseudomonas aeruginosa phage vB_PaeP_Lx18 and the antibacterial activity of its lysozyme. Arch Virol 2022; 167:1805-1817. [PMID: 35716268 DOI: 10.1007/s00705-022-05472-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022]
Abstract
A lytic Pseudomonas aeruginosa phage, vB_PaeP_Lx18 (Lx18), was isolated from the sewage of a dairy farm. Biological characterization revealed that Lx18 was stable from 40 °C to 60 °C and over a wide range of pH values from 4 to 10. It was able to lyse 63.6% (21/33) of the P. aeruginosa strains tested and was able to reduce and disperse biofilms, with a biofilm reduction rate of 76.8%. Whole-genome sequencing showed that Lx18 is a dsDNA virus with a genome of 42,735 bp and G+C content of 62.16%. The genome contains 54 open reading frames (ORFs), 28 of which have known functions, including DNA replication and modification, transcriptional regulation, structural and packaging proteins, and host cell lysis. No virulence or tRNA genes were identified. Phylogenetic analysis showed that phage Lx18 belongs to the genus Phikmvvirus. The lysozyme of Lx18, Lys18, was cloned and expressed. The combined action of Lys18 and ethylenediaminetetraacetic acid (EDTA) had antibacterial activity against Pseudomonas aeruginosa. The study of phage Lx18 and its lysozyme will provide basic information for further research on the treatment of Pseudomonas aeruginosa infections.
Collapse
Affiliation(s)
- Yin Yin
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, 266109, China
| | - Xinwei Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, 266109, China
| | - Zehua Mou
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, 266109, China
| | - Huiying Ren
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, 266109, China
| | - Can Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, 266109, China
| | - Ling Zou
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, 266109, China
| | - Huanqi Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, 266109, China.
| | - Wenhua Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, 266109, China.
| | - Zongzhu Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Shandong, 266109, China
| |
Collapse
|
11
|
Rathor N, Thakur CK, Das BK, Chaudhry R. An insight into the therapeutic potential of a novel lytic Pseudomonas phage isolated from the river Ganga. J Appl Microbiol 2022; 133:1353-1362. [PMID: 35616159 DOI: 10.1111/jam.15639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
AIM Bacteriophages are effective natural antimicrobial agents against drug-resistant pathogens. Therefore, identification and detailed characterization of bacteriophages become essential to explore their therapeutic potential. This study aims to isolate and characterize a lytic bacteriophage against drug-resistant Pseudomonas aeruginosa. METHODS AND RESULTS The Pseudomonas phage AIIMS-Pa-A1, isolated from the river Ganga water against drug-resistant P. aeruginosa, showed clear lytic zone on spot assay. The phage revealed icosahedral head (58.20 nm diameter) and small tail (6.83 nm) under transmission electron microscope. The growth kinetics showed adsorption constant of 1.5×10-9 phage particles cell-1 ml-1 minute-1 and latent period of approximately 15 minutes with the burst size of 27 phages per infected cell. The whole genome sequencing depicted a GC-rich genome of 40.97kb having a lysis cassette of holin, endolysin, and Rz protein, with features of the family Autographiviridae. The comparative genome analysis, Ortho-average nucleotide identity value, and phylogenetic analysis indicated the novelty of the phage AIIMS-Pa-A1. CONCLUSIONS The study concludes that the Pseudomonas phage AIIMS-Pa-A1 is a novel member of the Autographiviridae family, truly lytic in nature for drug-resistant P. aeruginosa. SIGNIFICANCE AND IMPACT OF STUDY The Pseudomonas phage AIIMS-Pa-A1 is having promising potential for future therapeutic intervention to treat drug-resistant P. aeruginosa infections.
Collapse
Affiliation(s)
- Nisha Rathor
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Chandan Kumar Thakur
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Bimal Kumar Das
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Rama Chaudhry
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
12
|
Gao L, Ouyang M, Li Y, Zhang H, Zheng XF, Li HX, Rao SQ, Yang ZQ, Gao S. Isolation and Characterization of a Lytic Vibriophage OY1 and Its Biocontrol Effects Against Vibrio spp. Front Microbiol 2022; 13:830692. [PMID: 35464931 PMCID: PMC9022663 DOI: 10.3389/fmicb.2022.830692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/15/2022] [Indexed: 01/22/2023] Open
Abstract
Vibrio species are important pathogens of marine animals and aquaculture populations and some of them can cause serious infections in humans through consumption of contaminated seafood and aquaculture products. Lytic bacteriophages can potentially alleviate Vibrio contamination in the aquaculture organisms and in the processing of aquatic products and have gained significant scientific attention in recent years. In the present study, bacteriophages were isolated from sewage of local aquatic products markets and grown using Vibrio mimicus CICC 21613 as host cells. The lytic vibriophage OY1 belonging to the newly proposed family Autographiviridae and the genus Maculvirus was identified by observation under electron microscope and comparative genomic analysis. The phage OY1 showed lytic activity against 24 among 32 tested strains belonging to eight Vibrio species. The complete phage OY1 genome consists of a single circular double-stranded DNA of 43,479 bp with a total GC content of 49.27% and was predicted to encode 40 open reading frames (ORFs). To evaluate its potential against vibrios, the one-step growth curve, thermal and pH stability, host range, and lytic activity of the OY1 phage against Vibrio species were evaluated. The results showed that phage OY1 had a range of thermal and pH tolerance, and exhibited a significant inhibitory effect on the growth of tested Vibrio species. Bacterial growth in the fish muscle extract juice (FMEJ) inoculated with Vibrio mimicus CICC 21613, Vibrio parahaemolyticus CICC 21617, Vibrio alginolyticus VJ14, and the mixed bacterial culture was reduced by 2.65 log CFU/ml, 2.42 log CFU/ml, 1.93 log CFU/ml, and 2.01 log CFU/ml, respectively, by incubation with phage OY1 at 25°C for 36 h. Phage OY1 also showed a strong ability to prevent biofilm formation and destroy formed Vibrio species biofilms. These results indicate that phage OY1 is a potential biocontrol agent against Vibrio species in the aquaculture industry and in food safety control.
Collapse
Affiliation(s)
- Lu Gao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture, Yangzhou, China
| | - Min Ouyang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Yi Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Hui Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Xiang-Feng Zheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Hua-Xiang Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Sheng-Qi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Zhen-Quan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agri-food Safety and Quality, Ministry of Agriculture, Yangzhou, China
| | - Song Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
13
|
Abstract
Quorum sensing (QS) is used to coordinate social behaviors, such as virulence and biofilm formation, across bacterial populations. However, the role of QS in regulating phage-bacterium interactions remains unclear. Preventing phage recognition and adsorption are the first steps of bacterial defense against phages; however, both phage recognition and adsorption are a prerequisite for the successful application of phage therapy. In the present study, we report that QS upregulated the expression of phage receptors, thus increasing phage adsorption and infection rates in Pseudomonas aeruginosa. In P. aeruginosa PAO1, we found that las QS, instead of rhl QS, upregulated the expression of galU for lipopolysaccharide synthesis. Lipopolysaccharides act as the receptor of the phage vB_Pae_QDWS. This las QS-mediated phage susceptibility is a dynamic process, depending on host cell density. Our data suggest that inhibiting QS may reduce the therapeutic efficacy of phages. IMPORTANCE Phage resistance is a major limitation of phage therapy, and understanding the mechanisms by which bacteria block phage infection is critical for the successful application of phage therapy. In the present study, we found that Pseudomonas aeruginosa PAO1 uses las QS to promote phage infection by upregulating the expression of galU, which is necessary for the synthesis of phage receptor lipopolysaccharides. In contrast to the results of previous reports, we showed that QS increases the efficacy of phage-mediated bacterial killing. Since QS upregulates the expression of virulence factors and promotes biofilm development, which are positively correlated with lipopolysaccharide production in P. aeruginosa, increased phage susceptibility is a novel QS-mediated trade-off. QS inhibition may increase the efficacy of antibiotic treatment, but it will reduce the effectiveness of phage therapy.
Collapse
|
14
|
Martino G, Holtappels D, Vallino M, Chiapello M, Turina M, Lavigne R, Wagemans J, Ciuffo M. Molecular Characterization and Taxonomic Assignment of Three Phage Isolates from a Collection Infecting Pseudomonas syringae pv. actinidiae and P. syringae pv. phaseolicola from Northern Italy. Viruses 2021; 13:2083. [PMID: 34696512 PMCID: PMC8537276 DOI: 10.3390/v13102083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/27/2022] Open
Abstract
Bacterial kiwifruit vine disease (Pseudomonas syringae pv. actinidiae, Psa) and halo blight of bean (P. syringae pv. phaseolicola, Pph) are routinely treated with copper, leading to environmental pollution and bacterial copper resistance. An alternative sustainable control method could be based on bacteriophages, as phage biocontrol offers high specificity and does not result in the spread of toxic residues into the environment or the food chain. In this research, specific phages suitable for phage-based biocontrol strategies effective against Psa and Pph were isolated and characterized. In total, sixteen lytic Pph phage isolates and seven lytic Psa phage isolates were isolated from soil in Piedmont and Veneto in northern Italy. Genome characterization of fifteen selected phages revealed that the isolated Pph phages were highly similar and could be considered as isolates of a novel species, whereas the isolated Psa phages grouped into four distinct clades, two of which represent putative novel species. No lysogeny-, virulence- or toxin-related genes were found in four phages, making them suitable for potential biocontrol purposes. A partial biological characterization including a host range analysis was performed on a representative subset of these isolates. This analysis was a prerequisite to assess their efficacy in greenhouse and in field trials, using different delivery strategies.
Collapse
Affiliation(s)
- Gabriele Martino
- Institute for Sustainable Plant Protection, National Research Council of Italy, I-10135 Torino, Italy; (G.M.); (M.V.); (M.C.); (M.T.)
| | - Dominique Holtappels
- Laboratory of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, 3001 Leuven, Belgium; (D.H.); (R.L.); (J.W.)
| | - Marta Vallino
- Institute for Sustainable Plant Protection, National Research Council of Italy, I-10135 Torino, Italy; (G.M.); (M.V.); (M.C.); (M.T.)
| | - Marco Chiapello
- Institute for Sustainable Plant Protection, National Research Council of Italy, I-10135 Torino, Italy; (G.M.); (M.V.); (M.C.); (M.T.)
| | - Massimo Turina
- Institute for Sustainable Plant Protection, National Research Council of Italy, I-10135 Torino, Italy; (G.M.); (M.V.); (M.C.); (M.T.)
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, 3001 Leuven, Belgium; (D.H.); (R.L.); (J.W.)
| | - Jeroen Wagemans
- Laboratory of Gene Technology, Department of Biosystems, Katholieke Universiteit Leuven, 3001 Leuven, Belgium; (D.H.); (R.L.); (J.W.)
| | - Marina Ciuffo
- Institute for Sustainable Plant Protection, National Research Council of Italy, I-10135 Torino, Italy; (G.M.); (M.V.); (M.C.); (M.T.)
| |
Collapse
|
15
|
Complete Genome Sequence of Klebsiella pneumoniae Podophage Pone. Microbiol Resour Announc 2021; 10:e0140520. [PMID: 34042488 PMCID: PMC8201637 DOI: 10.1128/mra.01405-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative pathogen that has become increasingly antibiotic resistant. Phage therapy is potentially a useful approach to controlling this pathogen. Here, we present the genome sequence of the phiKMV-like K. pneumoniae podophage Pone.
Collapse
|
16
|
Specific Interaction of Novel Friunavirus Phages Encoding Tailspike Depolymerases with Corresponding Acinetobacter baumannii Capsular Types. J Virol 2021; 95:JVI.01714-20. [PMID: 33268523 PMCID: PMC8092837 DOI: 10.1128/jvi.01714-20] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Acinetobacter baumannii is one of the most clinically important nosocomial pathogens. The World Health Organisation refers it to its «critical priority» category to develop new strategies for effective therapy. This microorganism is capable of producing structurally diverse capsular polysaccharides (CPSs), which serve as primary receptors for A. baumannii bacteriophages carrying polysaccharide-depolymerasing enzymes. In this study, eight novel bacterial viruses that specifically infect A. baumannii strains belonging to K2/K93, K32, K37, K44, K48, K87, K89 and K116 capsular types were isolated and characterized. The overall genomic architecture demonstrated that these viruses are representatives of the Friunavirus genus of the family Autographiviridae The linear double-stranded DNA phage genomes of 41,105-42,402 bp share high nucleotide sequence identity, except for genes encoding structural depolymerases or tailspikes which determine the host specificity. Deletion mutants lacking N-terminal domains of tailspike proteins were cloned, expressed and purified. The structurally defined CPSs of the phage bacterial hosts were cleaved with the specific recombinant depolymerases, and the resultant oligosaccharides that corresponded to monomers or/and dimers of the CPS repeats (K-units) were isolated. Structures of the derived oligosaccharides were established by nuclear magnetic resonance spectroscopy and high-resolution electrospray ionization mass spectrometry. The data obtained showed that all depolymerases studied were glycosidases that cleave specifically the A. baumannii CPSs by the hydrolytic mechanism, in most cases, by the linkage between the K-units.IMPORTANCE Acinetobacter baumannii, a nonfermentative, Gram-negative, aerobic bacterium, is one of the most significant nosocomial pathogens. The pathogenicity of A. baumannii is based on the cooperative action of many factors, one of them being the production of capsular polysaccharides (CPSs) that surround bacterial cells with a thick protective layer. Polymorphism of the chromosomal capsule loci is responsible for the observed high structural diversity of the CPSs. In this study, we describe eight novel lytic phages which have different tailspike depolymerases (TSDs) determining the interaction of the viruses with corresponding A. baumannii capsular types (K-types). Moreover, we elucidate the structures of oligosaccharide products obtained by cleavage of the CPSs by the recombinant depolymerases. We believe that as the TSDs determine phage specificity, the diversity of their structures should be taken into consideration as selection criteria for inclusion of certain phage candidate to the cocktail designed to control A. baumannii with different K-types.
Collapse
|
17
|
Landyshev NN, Voronko YG, Kulikov EE, Sykilinda NN, Miroshnikov KA. Preparative Purification of Pseudomonas aeruginosa Bacteriophages via the Combination of Gel-Permeation and Anion-Exchage Chromatography. APPL BIOCHEM MICRO+ 2020. [DOI: 10.1134/s0003683820060095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Storey N, Rabiey M, Neuman BW, Jackson RW, Mulley G. Genomic Characterisation of Mushroom Pathogenic Pseudomonads and Their Interaction with Bacteriophages. Viruses 2020; 12:E1286. [PMID: 33182769 PMCID: PMC7696170 DOI: 10.3390/v12111286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 01/16/2023] Open
Abstract
Bacterial diseases of the edible white button mushroom Agaricus bisporus caused by Pseudomonas species cause a reduction in crop yield, resulting in considerable economic loss. We examined bacterial pathogens of mushrooms and bacteriophages that target them to understand the disease and opportunities for control. The Pseudomonastolaasii genome encoded a single type III protein secretion system (T3SS), but contained the largest number of non-ribosomal peptide synthase (NRPS) genes, multimodular enzymes that can play a role in pathogenicity, including a putative tolaasin-producing gene cluster, a toxin causing blotch disease symptom. However, Pseudomonasagarici encoded the lowest number of NRPS and three putative T3SS while non-pathogenic Pseudomonas sp. NS1 had intermediate numbers. Potential bacteriophage resistance mechanisms were identified in all three strains, but only P. agarici NCPPB 2472 was observed to have a single Type I-F CRISPR/Cas system predicted to be involved in phage resistance. Three novel bacteriophages, NV1, ϕNV3, and NV6, were isolated from environmental samples. Bacteriophage NV1 and ϕNV3 had a narrow host range for specific mushroom pathogens, whereas phage NV6 was able to infect both mushroom pathogens. ϕNV3 and NV6 genomes were almost identical and differentiated within their T7-like tail fiber protein, indicating this is likely the major host specificity determinant. Our findings provide the foundations for future comparative analyses to study mushroom disease and phage resistance.
Collapse
Affiliation(s)
- Nathaniel Storey
- School of Biological Sciences, Whiteknights Campus, University of Reading, Reading RG6 6AJ, UK; (N.S.); (R.W.J.); (G.M.)
| | - Mojgan Rabiey
- School of Biological Sciences, Whiteknights Campus, University of Reading, Reading RG6 6AJ, UK; (N.S.); (R.W.J.); (G.M.)
- School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Benjamin W. Neuman
- Biology Department, College of Arts, Sciences and Education, TAMUT, Texarkana, TX 75503, USA;
| | - Robert W. Jackson
- School of Biological Sciences, Whiteknights Campus, University of Reading, Reading RG6 6AJ, UK; (N.S.); (R.W.J.); (G.M.)
- School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Geraldine Mulley
- School of Biological Sciences, Whiteknights Campus, University of Reading, Reading RG6 6AJ, UK; (N.S.); (R.W.J.); (G.M.)
| |
Collapse
|
19
|
Ceyssens PJ, De Smet J, Wagemans J, Akulenko N, Klimuk E, Hedge S, Voet M, Hendrix H, Paeshuyse J, Landuyt B, Xu H, Blanchard J, Severinov K, Lavigne R. The Phage-Encoded N-Acetyltransferase Rac Mediates Inactivation of Pseudomonas aeruginosa Transcription by Cleavage of the RNA Polymerase Alpha Subunit. Viruses 2020; 12:v12090976. [PMID: 32887488 PMCID: PMC7552054 DOI: 10.3390/v12090976] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022] Open
Abstract
In this study, we describe the biological function of the phage-encoded protein RNA polymerase alpha subunit cleavage protein (Rac), a predicted Gcn5-related acetyltransferase encoded by phiKMV-like viruses. These phages encode a single-subunit RNA polymerase for transcription of their late (structure- and lysis-associated) genes, whereas the bacterial RNA polymerase is used at the earlier stages of infection. Rac mediates the inactivation of bacterial transcription by introducing a specific cleavage in the α subunit of the bacterial RNA polymerase. This cleavage occurs within the flexible linker sequence and disconnects the C-terminal domain, required for transcription initiation from most highly active cellular promoters. To achieve this, Rac likely taps into a novel post-translational modification (PTM) mechanism within the host Pseudomonas aeruginosa. From an evolutionary perspective, this novel phage-encoded regulation mechanism confirms the importance of PTMs in the prokaryotic metabolism and represents a new way by which phages can hijack the bacterial host metabolism.
Collapse
Affiliation(s)
- Pieter-Jan Ceyssens
- Department of Biosystems, KU Leuven, 3000 Leuven, Belgium; (P.-J.C.); (J.D.S.); (J.W.); (M.V.); (H.H.); (J.P.)
| | - Jeroen De Smet
- Department of Biosystems, KU Leuven, 3000 Leuven, Belgium; (P.-J.C.); (J.D.S.); (J.W.); (M.V.); (H.H.); (J.P.)
| | - Jeroen Wagemans
- Department of Biosystems, KU Leuven, 3000 Leuven, Belgium; (P.-J.C.); (J.D.S.); (J.W.); (M.V.); (H.H.); (J.P.)
| | - Natalia Akulenko
- Institute of Molecular Genetics, Russian Academy of Sciences, 119334 Moscow, Russia; (N.A.); (E.K.); (K.S.)
| | - Evgeny Klimuk
- Institute of Molecular Genetics, Russian Academy of Sciences, 119334 Moscow, Russia; (N.A.); (E.K.); (K.S.)
| | - Subray Hedge
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA; (S.H.); (H.X.); (J.B.)
| | - Marleen Voet
- Department of Biosystems, KU Leuven, 3000 Leuven, Belgium; (P.-J.C.); (J.D.S.); (J.W.); (M.V.); (H.H.); (J.P.)
| | - Hanne Hendrix
- Department of Biosystems, KU Leuven, 3000 Leuven, Belgium; (P.-J.C.); (J.D.S.); (J.W.); (M.V.); (H.H.); (J.P.)
| | - Jan Paeshuyse
- Department of Biosystems, KU Leuven, 3000 Leuven, Belgium; (P.-J.C.); (J.D.S.); (J.W.); (M.V.); (H.H.); (J.P.)
| | - Bart Landuyt
- Department of Biology, KU Leuven, 3000 Leuven, Belgium;
| | - Hua Xu
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA; (S.H.); (H.X.); (J.B.)
| | - John Blanchard
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461, USA; (S.H.); (H.X.); (J.B.)
| | - Konstantin Severinov
- Institute of Molecular Genetics, Russian Academy of Sciences, 119334 Moscow, Russia; (N.A.); (E.K.); (K.S.)
| | - Rob Lavigne
- Department of Biosystems, KU Leuven, 3000 Leuven, Belgium; (P.-J.C.); (J.D.S.); (J.W.); (M.V.); (H.H.); (J.P.)
- Correspondence: ; Tel.: +32-16-379-524
| |
Collapse
|
20
|
RLP, a bacteriophage of the family Podoviridae, rescues mice from bacteremia caused by multi-drug-resistant Pseudomonas aeruginosa. Arch Virol 2020; 165:1289-1297. [DOI: 10.1007/s00705-020-04601-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/28/2020] [Indexed: 02/01/2023]
|
21
|
Álvarez B, López MM, Biosca EG. Biocontrol of the Major Plant Pathogen Ralstonia solanacearum in Irrigation Water and Host Plants by Novel Waterborne Lytic Bacteriophages. Front Microbiol 2019; 10:2813. [PMID: 31866979 PMCID: PMC6908813 DOI: 10.3389/fmicb.2019.02813] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/20/2019] [Indexed: 12/31/2022] Open
Abstract
Three new lytic bacteriophages were found to effectively control the pathogen Ralstonia solanacearum, a quarantine bacterium in many countries, and causative agent of bacterial wilt, one of the most important vascular plant diseases. Bacterial wilt management has been carried out with fluctuating effects, suggesting the need to find alternative treatments. In this work, three lytic phages were isolated from environmental water from geographically distant regions in Spain. They proved to specifically infect a collection of R. solanacearum strains, and some of the closely related pathogenic species Ralstonia pseudosolanacearum, without affecting non-target environmental bacteria, and were able to lyze the pathogen populations within a wide range of conditions comprising environmental values of water temperatures, pH, salinity, and lack of aeration found in storage tanks. The three bacteriophages displayed high efficiency in controlling R. solanacearum, with reductions of the bacterial populations of several orders of magnitude in just a few hours, and proved to be able to survive in freshwater for months at environmental temperatures keeping activity on R. solanacearum, pointing out their suitability for field application through irrigation. Concerning their biocontrol potential, they were effective in reducing high populations of the pathogen in environmental water, and bacterial wilt incidence in planta by watering with either one phage or their combinations in assays with more than 300 plants. This is the first report on effective R. solanacearum biocontrol by applying single or combined bacteriophages through irrigation water in conditions mimicking those of the natural settings. The three phages belong to the Podoviridae family and are members of the T7likevirus genus. They are the first isolated phages from river water with activity against R. solanacearum, showing the longest persistence in natural water reported until now for phages with biocontrol potential, and consistently being able to control the disease in the host plant under environmental conditions. Consequently, the use of these bacteriophages for the prevention and/or biocontrol of the bacterial wilt disease caused by R. solanacearum has been patented. Evidence provided reveals the suitability of these waterborne phages to be effectively considered as a valuable strategy within the frame of sustainable integrated management programs.
Collapse
Affiliation(s)
- Belén Álvarez
- Departamento de Bacteriología, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
- Departamento de Microbiología y Ecología, Universitat de València, Valencia, Spain
| | - María M. López
- Departamento de Bacteriología, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Elena G. Biosca
- Departamento de Microbiología y Ecología, Universitat de València, Valencia, Spain
| |
Collapse
|
22
|
Gibson SB, Green SI, Liu CG, Salazar KC, Clark JR, Terwilliger AL, Kaplan HB, Maresso AW, Trautner BW, Ramig RF. Constructing and Characterizing Bacteriophage Libraries for Phage Therapy of Human Infections. Front Microbiol 2019; 10:2537. [PMID: 31781060 PMCID: PMC6861333 DOI: 10.3389/fmicb.2019.02537] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 10/21/2019] [Indexed: 12/21/2022] Open
Abstract
Phage therapy requires libraries of well-characterized phages. Here we describe the generation of phage libraries for three target species: Escherichia coli, Pseudomonas aeruginosa, and Enterobacter cloacae. The basic phage characteristics on the isolation host, sequence analysis, growth properties, and host range and virulence on a number of contemporary clinical isolates are presented. This information is required before phages can be added to a phage library for potential human use or sharing between laboratories for use in compassionate use protocols in humans under eIND (emergency investigational new drug). Clinical scenarios in which these phages can potentially be used are discussed. The phages presented here are currently being characterized in animal models and are available for eINDs.
Collapse
Affiliation(s)
- Shelley B. Gibson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Sabrina I. Green
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Carmen Gu Liu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Keiko C. Salazar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Justin R. Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Austen L. Terwilliger
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Heidi B. Kaplan
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Barbara W. Trautner
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Center for Innovations in Quality, Effectiveness and Safety, Michael E. DeBakey VA Medical Center, Houston, TX, United States
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Robert F. Ramig
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
23
|
Magin V, Garrec N, Andrés Y. Selection of Bacteriophages to Control In Vitro 24 h Old Biofilm of Pseudomonas Aeruginosa Isolated from Drinking and Thermal Water. Viruses 2019; 11:E749. [PMID: 31412645 PMCID: PMC6722843 DOI: 10.3390/v11080749] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/10/2019] [Accepted: 08/11/2019] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes public healthcare issues. In moist environments, this Gram-negative bacterium persists through biofilm-associated contamination on surfaces. Bacteriophages are seen as a promising alternative strategy to chemical biocides. This study evaluates the potential of nine lytic bacteriophages as biocontrol treatments against nine environmental P. aerginosa isolates. The spot test method is preliminarily used to define the host range of each virus and to identify their minimum infectious titer, depending on the strain. Based on these results, newly isolated bacteriophages 14.1, LUZ7, and B1 are selected and assessed on a planktonic cell culture of the most susceptible isolates (strains MLM, D1, ST395E, and PAO1). All liquid infection assays are achieved in a mineral minimum medium that is much more representative of real moist environments than standard culture medium. Phages 14.1 and LUZ7 eliminate up to 90% of the PAO1 and D1 bacterial strains. Hence, their effectiveness is evaluated on the 24 h old biofilms of these strains, established on a stainless steel coupon that is characteristic of materials found in thermal and industrial environments. The results of quantitative PCR viability show a maximum reduction of 1.7 equivalent Log CFU/cm2 in the coupon between treated and untreated surfaces and shed light on the importance of considering the entire virus/host/environment system for optimizing the treatment.
Collapse
Affiliation(s)
- Vanessa Magin
- Centre Scientifique et Technique du Bâtiment, Plateforme AQUASIM, 44300 Nantes, France.
- Institut Mines Télécom Atlantique, Laboratoire de Génie des Procédés Environnement Agro-alimentaire (UMR CNRS 6144), 44300 Nantes, France.
| | - Nathalie Garrec
- Centre Scientifique et Technique du Bâtiment, Plateforme AQUASIM, 44300 Nantes, France
| | - Yves Andrés
- Institut Mines Télécom Atlantique, Laboratoire de Génie des Procédés Environnement Agro-alimentaire (UMR CNRS 6144), 44300 Nantes, France
| |
Collapse
|
24
|
Kajsík M, Bugala J, Kadličeková V, Szemes T, Turňa J, Drahovská H. Characterization of Dev-CD-23823 and Dev-CT57, new Autographivirinae bacteriophages infecting Cronobacter spp. Arch Virol 2019; 164:1383-1391. [DOI: 10.1007/s00705-019-04202-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/09/2019] [Indexed: 02/04/2023]
|
25
|
Host range and molecular characterization of a lytic Pradovirus-like Ralstonia phage RsoP1IDN isolated from Indonesia. Arch Virol 2018; 163:3409-3414. [PMID: 30244289 DOI: 10.1007/s00705-018-4033-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/18/2018] [Indexed: 01/08/2023]
Abstract
A lytic Ralstonia solanacearum-infecting phage designated Ralstonia phage RsoP1IDN was isolated from soil in Indonesia. The phage has a linear double-stranded DNA genome of 41,135 bp with 413-bp terminal repeats, and contains 41 annotated open reading frames. The phage is most closely related to Ralstonia phage RSB1, but different from RSB1 mainly in containing a putative HNH homing endonuclease and having a narrower host range. Our phylogenetic and genomic analyses revealed that both phages RsoP1IDN and RSB1 belong to the genus Pradovirus or a new genus, and not Phikmvvirus as previously reported for phage RSB1. RsoP1IDN is the first sequenced and characterized R. solanacearum-infecting phage isolated from Indonesia in the proposed species Ralstonia virus RsoP1IDN.
Collapse
|
26
|
da Silva Xavier A, da Silva FP, Vidigal PMP, Lima TTM, de Souza FO, Alfenas-Zerbini P. Genomic and biological characterization of a new member of the genus Phikmvvirus infecting phytopathogenic Ralstonia bacteria. Arch Virol 2018; 163:3275-3290. [DOI: 10.1007/s00705-018-4006-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023]
|
27
|
Buttimer C, Lucid A, Neve H, Franz CMAP, O'Mahony J, Turner D, Lavigne R, Coffey A. Pectobacterium atrosepticum Phage vB_PatP_CB5: A Member of the Proposed Genus ' Phimunavirus'. Viruses 2018; 10:E394. [PMID: 30050020 PMCID: PMC6115819 DOI: 10.3390/v10080394] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/23/2018] [Accepted: 07/24/2018] [Indexed: 11/23/2022] Open
Abstract
Pectobacterium atrosepticum is a phytopathogen of economic importance as it is the causative agent of potato blackleg and soft rot. Here we describe the Pectobacterium phage vB_PatP_CB5 (abbreviated as CB5), which specifically infects the bacterium. The bacteriophage is characterized in detail and TEM micrographs indicate that it belongs to the Podoviridae family. CB5 shares significant pairwise nucleotide identity (≥80%) with P. atrosepticum phages φM1, Peat1, and PP90 and also shares common genome organization. Phylograms constructed using conserved proteins and whole-genome comparison-based amino acid sequences show that these phages form a distinct clade within the Autographivirinae. They also possess conserved RNA polymerase recognition and specificity loop sequences. Their lysis cassette resembles that of KP34virus, containing in sequential order a U-spanin, a holin, and a signal⁻arrest⁻release (SAR) endolysin. However, they share low pairwise nucleotide identity with the type phage of the KP34virus genus, Klebsiella phage KP34. In addition, phage KP34 does not possess several conserved proteins associated with these P. atrosepticum phages. As such, we propose the allocation of phages CB5, Peat1, φM1, and PP90 to a separate new genus designated Phimunavirus.
Collapse
Affiliation(s)
- Colin Buttimer
- Department of Biological Sciences, Cork Institute of Technology, T12 P928 Cork, Ireland.
| | - Alan Lucid
- Department of Biological Sciences, Cork Institute of Technology, T12 P928 Cork, Ireland.
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103 Kiel, Germany.
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103 Kiel, Germany.
| | - Jim O'Mahony
- Department of Biological Sciences, Cork Institute of Technology, T12 P928 Cork, Ireland.
| | - Dann Turner
- Department of Applied Sciences, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK.
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, 3001 Leuven, Belgium.
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, T12 P928 Cork, Ireland.
- APC Microbiome Institute, University College, T12 YT20 Cork, Ireland.
| |
Collapse
|
28
|
Hernandez-Morales AC, Lessor LL, Wood TL, Migl D, Mijalis EM, Cahill J, Russell WK, Young RF, Gill JJ. Genomic and Biochemical Characterization of Acinetobacter Podophage Petty Reveals a Novel Lysis Mechanism and Tail-Associated Depolymerase Activity. J Virol 2018; 92:e01064-17. [PMID: 29298884 PMCID: PMC5827379 DOI: 10.1128/jvi.01064-17] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/06/2017] [Indexed: 01/08/2023] Open
Abstract
The increased prevalence of drug-resistant, nosocomial Acinetobacter infections, particularly from pathogenic members of the Acinetobacter calcoaceticus-baumannii complex, necessitates the exploration of novel treatments such as phage therapy. In the present study, we characterized phage Petty, a novel podophage that infects multidrug-resistant Acinetobacter nosocomialis and Acinetobacter baumannii Genome analysis reveals that phage Petty is a 40,431-bp ϕKMV-like phage, with a coding density of 92.2% and a G+C content of 42.3%. Interestingly, the lysis cassette encodes a class I holin and a single-subunit endolysin, but it lacks canonical spanins to disrupt the outer membrane. Analysis of other ϕKMV-like genomes revealed that spaninless lysis cassettes are a feature of phages infecting Acinetobacter within this subfamily of bacteriophages. The observed halo surrounding Petty's large clear plaques indicated the presence of a phage-encoded depolymerase capable of degrading capsular exopolysaccharides (EPS). The product of gene 39, a putative tail fiber, was hypothesized to possess depolymerase activity based on weak homology to previously reported phage tail fibers. The 101.4-kDa protein gene product 39 (gp39) was cloned and expressed, and its activity against Acinetobacter EPS in solution was determined. The enzyme degraded purified EPS from its host strain A. nosocomialis AU0783, reducing its viscosity, and generated reducing ends in solution, indicative of hydrolase activity. Given that the accessibility to cells within a biofilm is enhanced by degradation of EPS, phages with depolymerases may have enhanced diagnostic and therapeutic potential against drug-resistant Acinetobacter strains.IMPORTANCE Bacteriophage therapy is being revisited as a treatment for difficult-to-treat infections. This is especially true for Acinetobacter infections, which are notorious for being resistant to antimicrobials. Thus, sufficient data need to be generated with regard to phages with therapeutic potential, if they are to be successfully employed clinically. In this report, we describe the isolation and characterization of phage Petty, a novel lytic podophage, and its depolymerase. To our knowledge, it is the first phage reported to be able to infect both A. baumannii and A. nosocomialis The lytic phage has potential as an alternative therapeutic agent, and the depolymerase could be used for modulating EPS both during infections and in biofilms on medical equipment, as well as for capsular typing. We also highlight the lack of predicted canonical spanins in the phage genome and confirm that, unlike the rounding of lambda lysogens lacking functional spanin genes, A. nosocomialis cells infected with phage Petty lyse by bursting. This suggests that phages like Petty employ a different mechanism to disrupt the outer membrane of Acinetobacter hosts during lysis.
Collapse
Affiliation(s)
- A C Hernandez-Morales
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - L L Lessor
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - T L Wood
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - D Migl
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - E M Mijalis
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - J Cahill
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - W K Russell
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - R F Young
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
| | - J J Gill
- Center for Phage Technology, Texas A&M University, College Station, Texas, USA
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
29
|
Abstract
In this paper, I describe the genomic characteristics of a Ralstonia phage infecting Ralstonia solanacearum. The Ralstonia phage RPSC1 was isolated from a soil sample collected in Sichuan Province, in southwestern China. The complete genome of RPSC1 is composed of a linear double-stranded DNA 39,628 bp in length, with G+C content of 61.55%, and 43 putative protein-coding genes. All the putative protein-coding genes were on the same strand. No tRNA-encoding genes were identified. Phylogenetic and comparative genomics analyses indicate that Ralstonia phage RPSC1 should be considered a new member of the family Podoviridae. The wide host range contributes to the potential of Ralstonia phage RPSC1 as a biocontrol agent.
Collapse
Affiliation(s)
- Min Liao
- College of Life Science & Biotechnology, Mianyang Teachers' College, 166# Mianxingdong Rd, Mianyang, 621000, Sichuan, China.
| |
Collapse
|
30
|
A Genome Comparison of T7-like Podoviruses That Infect Caulobacter crescentus. Curr Microbiol 2018; 75:760-765. [PMID: 29423729 DOI: 10.1007/s00284-018-1445-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/27/2018] [Indexed: 10/18/2022]
Abstract
Bacteriophages remain an understudied component of bacterial communities. Therefore, our laboratory has initiated an effort to isolate large numbers of bacteriophages that infect Caulobacter crescentus to provide an estimate of the diversity of bacteriophages that infect this common environmental bacterium. The majority of the new isolates are phicbkviruses, a genus of giant viruses that appear to be Caulobacter specific. However, we have also isolated several Podoviruses with icosahedral heads and small tails. One of these Podoviruses, designated Lullwater, is similar to two previously isolated Caulobacter phages, Cd1 and Percy. All three have genomes that are approximately 45 kb and contain approximately 30 genes. The gene order is conserved among the three genomes with one of the genes coding for a DNA polymerase that has homology to the family of T7 DNA polymerases. Phylogenetic trees based on either the DNA polymerase or the RNA polymerase amino acid sequences suggests that the three phages represent a new branch of the T7virus tree. Based on these similarities, we concluded that Cd1, Lullwater, and Percy comprise a new group in the T7virus genus.
Collapse
|
31
|
Magill DJ, Kucher PA, Krylov VN, Pleteneva EA, Quinn JP, Kulakov LA. Localised genetic heterogeneity provides a novel mode of evolution in dsDNA phages. Sci Rep 2017; 7:13731. [PMID: 29062062 PMCID: PMC5653853 DOI: 10.1038/s41598-017-14285-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/06/2017] [Indexed: 11/15/2022] Open
Abstract
The Red Queen hypothesis posits that antagonistic co-evolution between interacting species results in recurrent natural selection via constant cycles of adaptation and counter-adaptation. Interactions such as these are at their most profound in host-parasite systems, with bacteria and their viruses providing the most intense of battlefields. Studies of bacteriophage evolution thus provide unparalleled insight into the remarkable elasticity of living entities. Here, we report a novel phenomenon underpinning the evolutionary trajectory of a group of dsDNA bacteriophages known as the phiKMVviruses. Employing deep next generation sequencing (NGS) analysis of nucleotide polymorphisms we discovered that this group of viruses generates enhanced intraspecies heterogeneity in their genomes. Our results show the localisation of variants to genes implicated in adsorption processes, as well as variation of the frequency and distribution of SNPs within and between members of the phiKMVviruses. We link error-prone DNA polymerase activity to the generation of variants. Critically, we show trans-activity of this phenomenon (the ability of a phiKMVvirus to dramatically increase genetic variability of a co-infecting phage), highlighting the potential of phages exhibiting such capabilities to influence the evolutionary path of other viruses on a global scale.
Collapse
Affiliation(s)
- Damian J Magill
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland
| | - Phillip A Kucher
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland
| | - Victor N Krylov
- Department of Microbiology, Laboratory for Genetics of Bacteriophages, I.I. Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - Elena A Pleteneva
- Department of Microbiology, Laboratory for Genetics of Bacteriophages, I.I. Mechnikov Research Institute for Vaccines and Sera, Moscow, Russia
| | - John P Quinn
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland
| | - Leonid A Kulakov
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, Northern Ireland.
| |
Collapse
|
32
|
Yu X, Xu Y, Gu Y, Zhu Y, Liu X. Characterization and genomic study of "phiKMV-Like" phage PAXYB1 infecting Pseudomonas aeruginosa. Sci Rep 2017; 7:13068. [PMID: 29026171 PMCID: PMC5638911 DOI: 10.1038/s41598-017-13363-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
Bacteriophage PAXYB1 was recently isolated from wastewater samples. This phage was chosen based on its lytic properties against clinical isolates of Pseudomonas aeruginosa (P. aeruginosa). In the present study, characterized PAXYB1, clarified its morphological and lytic properties, and analyzed its complete genome sequence. Based on the morphology of PAXYB1, it is a Podoviridae. The linear GC-rich (62.29%) double-stranded DNA genome of PAXYB1 is 43,337 bp including direct terminal repeats (DTRs) of 468 bp. It contains 60 open reading frames (ORFs) that are all encoded within the same strand. We also showed that PAXYB1 is a virulent phage and a new member of the phiKMV-like phages genus. Twenty-eight out of sixty predicted gene products (gps) showed significant homology to proteins of known function, which were confirmed by analyzing the structural proteome. Altogether, our work identified a novel lytic bacteriophage that lyses P. aeruginosa PAO1 and efficiently infects and kills several clinical isolates of P. aeruginosa. This phage has potential for development as a biological disinfectant to control P. aeruginosa infections.
Collapse
Affiliation(s)
- Xinyan Yu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Microbiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yue Xu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Microbiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yu Gu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Microbiology, Nanjing Medical University, Nanjing, 211166, China
| | - Yefei Zhu
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoqiu Liu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Microbiology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
33
|
Novel Fri1-like Viruses Infecting Acinetobacter baumannii-vB_AbaP_AS11 and vB_AbaP_AS12-Characterization, Comparative Genomic Analysis, and Host-Recognition Strategy. Viruses 2017; 9:v9070188. [PMID: 28714913 PMCID: PMC5537680 DOI: 10.3390/v9070188] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 01/25/2023] Open
Abstract
Acinetobacter baumannii is a gram-negative, non-fermenting aerobic bacterium which is often associated with hospital-acquired infections and known for its ability to develop resistance to antibiotics, form biofilms, and survive for long periods in hospital environments. In this study, we present two novel viruses, vB_AbaP_AS11 and vB_AbaP_AS12, specifically infecting and lysing distinct multidrug-resistant clinical A. baumannii strains with K19 and K27 capsular polysaccharide structures, respectively. Both phages demonstrate rapid adsorption, short latent periods, and high burst sizes in one-step growth experiments. The AS11 and AS12 linear double-stranded DNA genomes of 41,642 base pairs (bp) and 41,402 bp share 86% nucleotide sequence identity with the most variable regions falling in host receptor–recognition genes. These genes encode tail spikes possessing depolymerizing activities towards corresponding capsular polysaccharides which are the primary bacterial receptors. We described AS11 and AS12 genome organization and discuss the possible regulation of transcription. The overall genomic architecture and gene homology analyses showed that the phages are new representatives of the recently designated Fri1virus genus of the Autographivirinae subfamily within the Podoviridae family.
Collapse
|
34
|
φBO1E, a newly discovered lytic bacteriophage targeting carbapenemase-producing Klebsiella pneumoniae of the pandemic Clonal Group 258 clade II lineage. Sci Rep 2017; 7:2614. [PMID: 28572684 PMCID: PMC5453958 DOI: 10.1038/s41598-017-02788-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/13/2017] [Indexed: 01/15/2023] Open
Abstract
The pandemic dissemination of KPC carbapenemase-producing Klebsiella pneumoniae (KPC-KP) represents a major public health problem, given their extensive multidrug resistance profiles and primary role in causing healthcare-associated infections. This phenomenon has largely been contributed by strains of Clonal Group (CG) 258, mostly of clade II, which in some areas represent the majority of KPC-KP isolates. Here we have characterized a newly discovered lytic Podoviridae, named φBO1E, targeting KPC-KP strains of clade II lineage of CG258. Genomic sequencing revealed that φBO1E belongs to the Kp34virus genus (87% nucleotide identity to vB_KpnP_SU552A). ΦBO1E was stable over a broad pH and temperature range, exhibited strict specificity for K. pneumoniae strains of clade II of CG258, and was unable to establish lysogeny. In a Galleria mellonella infection model, φBO1E was able to protect larvae from death following infection with KPC-KP strains of clade II of CG258, including one colistin resistant strain characterized by a hypermucoviscous phenotype. To our best knowledge φBO1E is the first characterized lytic phage targeting K. pneumoniae strains of this pandemic clonal lineage. As such, it could be of potential interest to develop new agents for treatment of KPC-KP infections and for decolonization of subjects chronically colonized by these resistant superbugs.
Collapse
|
35
|
Blower TR, Chai R, Przybilski R, Chindhy S, Fang X, Kidman SE, Tan H, Luisi BF, Fineran PC, Salmond GPC. Evolution of Pectobacterium Bacteriophage ΦM1 To Escape Two Bifunctional Type III Toxin-Antitoxin and Abortive Infection Systems through Mutations in a Single Viral Gene. Appl Environ Microbiol 2017; 83:e03229-16. [PMID: 28159786 PMCID: PMC5377504 DOI: 10.1128/aem.03229-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/26/2017] [Indexed: 02/08/2023] Open
Abstract
Some bacteria, when infected by their viral parasites (bacteriophages), undergo a suicidal response that also terminates productive viral replication (abortive infection [Abi]). This response can be viewed as an altruistic act protecting the uninfected bacterial clonal population. Abortive infection can occur through the action of type III protein-RNA toxin-antitoxin (TA) systems, such as ToxINPa from the phytopathogen Pectobacterium atrosepticum Rare spontaneous mutants evolved in the generalized transducing phage ΦM1, which escaped ToxINPa-mediated abortive infection in P. atrosepticum ΦM1 is a member of the Podoviridae and a member of the "KMV-like" viruses, a subset of the T7 supergroup. Genomic sequencing of ΦM1 escape mutants revealed single-base changes which clustered in a single open reading frame. The "escape" gene product, M1-23, was highly toxic to the host bacterium when overexpressed, but mutations in M1-23 that enabled an escape phenotype caused M1-23 to be less toxic. M1-23 is encoded within the DNA metabolism modular section of the phage genome, and when it was overexpressed, it copurified with the host nucleotide excision repair protein UvrA. While the M1-23 protein interacted with UvrA in coimmunoprecipitation assays, a UvrA mutant strain still aborted ΦM1, suggesting that the interaction is not critical for the type III TA Abi activity. Additionally, ΦM1 escaped a heterologous type III TA system (TenpINPl) from Photorhabdus luminescens (reconstituted in P. atrosepticum) through mutations in the same protein, M1-23. The mechanistic action of M1-23 is currently unknown, but further analysis of this protein may provide insights into the mode of activation of both systems.IMPORTANCE Bacteriophages, the viral predators of bacteria, are the most abundant biological entities and are important factors in driving bacterial evolution. In order to survive infection by these viruses, bacteria have evolved numerous antiphage mechanisms. Many of the studies involved in understanding these interactions have led to the discovery of biotechnological and gene-editing tools, most notably restriction enzymes and more recently the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems. Abortive infection is another such antiphage mechanism that warrants further investigation. It is unique in that activation of the system leads to the premature death of the infected cells. As bacteria infected with the virus are destined to die, undergoing precocious suicide prevents the release of progeny phage and protects the rest of the bacterial population. This altruistic suicide can be caused by type III toxin-antitoxin systems, and understanding the activation mechanisms involved will provide deeper insight into the abortive infection process.
Collapse
Affiliation(s)
- Tim R Blower
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ray Chai
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Rita Przybilski
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Shahzad Chindhy
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Xinzhe Fang
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Samuel E Kidman
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Hui Tan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - George P C Salmond
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
36
|
Oliveira H, Pinto G, Oliveira A, Noben JP, Hendrix H, Lavigne R, Łobocka M, Kropinski AM, Azeredo J. Characterization and genomic analyses of two newly isolated Morganella phages define distant members among Tevenvirinae and Autographivirinae subfamilies. Sci Rep 2017; 7:46157. [PMID: 28387353 PMCID: PMC5384007 DOI: 10.1038/srep46157] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/09/2017] [Indexed: 11/09/2022] Open
Abstract
Morganella morganii is a common but frequent neglected environmental opportunistic pathogen which can cause deadly nosocomial infections. The increased number of multidrug-resistant M. morganii isolates motivates the search for alternative and effective antibacterials. We have isolated two novel obligatorily lytic M. morganii bacteriophages (vB_MmoM_MP1, vB_MmoP_MP2) and characterized them with respect to specificity, morphology, genome organization and phylogenetic relationships. MP1's dsDNA genome consists of 163,095 bp and encodes 271 proteins, exhibiting low DNA (<40%) and protein (<70%) homology to other members of the Tevenvirinae. Its unique property is a >10 kb chromosomal inversion that encompass the baseplate assembly and head outer capsid synthesis genes when compared to other T-even bacteriophages. MP2 has a dsDNA molecule with 39,394 bp and encodes 55 proteins, presenting significant genomic (70%) and proteomic identity (86%) but only to Morganella bacteriophage MmP1. MP1 and MP2 are then novel members of Tevenvirinae and Autographivirinae, respectively, but differ significantly from other tailed bacteriophages of these subfamilies to warrant proposing new genera. Both bacteriophages together could propagate in 23 of 27 M. morganii clinical isolates of different origin and antibiotic resistance profiles, making them suitable for further studies on a development of bacteriophage cocktail for potential therapeutic applications.
Collapse
Affiliation(s)
- Hugo Oliveira
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Graça Pinto
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Ana Oliveira
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, Hasselt University, Diepenbeek 3590, Belgium
| | - Hanne Hendrix
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, B-3001 Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, B-3001 Leuven, Belgium
| | - Małgorzata Łobocka
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland.,Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Andrew M Kropinski
- Departments of Food Science; Molecular and Cellular Biology; and, Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
37
|
Genome Analysis of a Novel Broad Host Range Proteobacteria Phage Isolated from a Bioreactor Treating Industrial Wastewater. Genes (Basel) 2017; 8:genes8010040. [PMID: 28106814 PMCID: PMC5295034 DOI: 10.3390/genes8010040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 12/27/2016] [Accepted: 01/11/2017] [Indexed: 01/18/2023] Open
Abstract
Bacteriophages are viruses that infect bacteria, and consequently they have a major impact on the development of a microbial population. In this study, the genome of a novel broad host range bacteriophage, Aquamicrobium phage P14, isolated from a wastewater treatment plant, was analyzed. The Aquamicrobium phage P14 was found to infect members of different Proteobacteria classes (Alphaproteobacteria and Betaproteobacteria). This phage contains a 40,551 bp long genome and 60% of its genes had blastx hits. Furthermore, the bacteriophage was found to share more than 50% of its genes with several podoviruses and has the same gene order as other polyvalent bacteriophages. The results obtained in this study led to the conclusion that indeed general features of the genome of the Aquamicrobium phage P14 are shared with other broad host range bacteriophages, however further analysis of the genome is needed in order to identify the specific mechanisms which enable the bacteriophage to infect both Alphaproteobacteria and Betaproteobacteria.
Collapse
|
38
|
Krylov V, Shaburova O, Pleteneva E, Bourkaltseva M, Krylov S, Kaplan A, Chesnokova E, Kulakov L, Magill D, Polygach O. Modular Approach to Select Bacteriophages Targeting Pseudomonas aeruginosa for Their Application to Children Suffering With Cystic Fibrosis. Front Microbiol 2016; 7:1631. [PMID: 27790211 PMCID: PMC5062033 DOI: 10.3389/fmicb.2016.01631] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/30/2016] [Indexed: 01/21/2023] Open
Abstract
This review discusses the potential application of bacterial viruses (phage therapy) toward the eradication of antibiotic resistant Pseudomonas aeruginosa in children with cystic fibrosis (CF). In this regard, several potential relationships between bacteria and their bacteriophages are considered. The most important aspect that must be addressed with respect to phage therapy of bacterial infections in the lungs of CF patients is in ensuring the continuity of treatment in light of the continual occurrence of resistant bacteria. This depends on the ability to rapidly select phages exhibiting an enhanced spectrum of lytic activity among several well-studied phage groups of proven safety. We propose a modular based approach, utilizing both mono-species and hetero-species phage mixtures. With an approach involving the visual recognition of characteristics exhibited by phages of well-studied phage groups on lawns of the standard P. aeruginosa PAO1 strain, the simple and rapid enhancement of the lytic spectrum of cocktails is permitted, allowing the development of tailored preparations for patients capable of circumventing problems associated with phage resistant bacterial mutants.
Collapse
Affiliation(s)
- Victor Krylov
- Laboratory for Genetics of Bacteriophages, Department of Microbiology, I.I. Mechnikov Research Institute for Vaccines and Sera Moscow, Russia
| | - Olga Shaburova
- Laboratory for Genetics of Bacteriophages, Department of Microbiology, I.I. Mechnikov Research Institute for Vaccines and Sera Moscow, Russia
| | - Elena Pleteneva
- Laboratory for Genetics of Bacteriophages, Department of Microbiology, I.I. Mechnikov Research Institute for Vaccines and Sera Moscow, Russia
| | - Maria Bourkaltseva
- Laboratory for Genetics of Bacteriophages, Department of Microbiology, I.I. Mechnikov Research Institute for Vaccines and Sera Moscow, Russia
| | - Sergey Krylov
- Laboratory for Genetics of Bacteriophages, Department of Microbiology, I.I. Mechnikov Research Institute for Vaccines and Sera Moscow, Russia
| | - Alla Kaplan
- Laboratory for Genetics of Bacteriophages, Department of Microbiology, I.I. Mechnikov Research Institute for Vaccines and Sera Moscow, Russia
| | - Elena Chesnokova
- Laboratory for Genetics of Bacteriophages, Department of Microbiology, I.I. Mechnikov Research Institute for Vaccines and Sera Moscow, Russia
| | - Leonid Kulakov
- Medical Biology Centre, School of Biological Sciences, Queen's University Belfast Belfast, UK
| | - Damian Magill
- Medical Biology Centre, School of Biological Sciences, Queen's University Belfast Belfast, UK
| | - Olga Polygach
- Laboratory for Genetics of Bacteriophages, Department of Microbiology, I.I. Mechnikov Research Institute for Vaccines and Sera Moscow, Russia
| |
Collapse
|
39
|
Morozova V, Kozlova Y, Shedko E, Kurilshikov A, Babkin I, Tupikin A, Yunusova A, Chernonosov A, Baykov I, Кondratov I, Kabilov M, Ryabchikova E, Vlassov V, Tikunova N. Lytic bacteriophage PM16 specific for Proteus mirabilis: a novel member of the genus Phikmvvirus. Arch Virol 2016; 161:2457-72. [PMID: 27350061 DOI: 10.1007/s00705-016-2944-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 06/18/2016] [Indexed: 12/19/2022]
Abstract
Lytic Proteus phage PM16, isolated from human faeces, is a novel virus that is specific for Proteus mirabilis cells. Bacteriophage PM16 is characterized by high stability, a short latency period, large burst size and the occurrence of low phage resistance. Phage PM16 was classified as a member of the genus Phikmvvirus on the basis of genome organization, gene synteny, and protein sequences similarities. Within the genus Phikmvvirus, phage PM16 is grouped with Vibrio phage VP93, Pantoea phage LIMElight, Acinetobacter phage Petty, Enterobacter phage phiKDA1, and KP34-like bacteriophages. An investigation of the phage-cell interaction demonstrated that phage PM16 attached to the cell surface, not to the bacterial flagella. The study of P. mirabilis mutant cells obtained during the phage-resistant bacterial cell assay that were resistant to phage PM16 re-infection revealed a non-swarming phenotype, changes in membrane characteristics, and the absence of flagella. Presumably, the resistance of non-swarming P. mirabilis cells to phage PM16 re-infection is determined by changes in membrane macromolecular composition and is associated with the absence of flagella and a non-swarming phenotype.
Collapse
Affiliation(s)
- V Morozova
- Institute of Chemical Biology and Fundamental Medicine, Lavrentieva Ave., 8, Novosibirsk, Russia.
| | - Yu Kozlova
- Institute of Chemical Biology and Fundamental Medicine, Lavrentieva Ave., 8, Novosibirsk, Russia
| | - E Shedko
- Institute of Chemical Biology and Fundamental Medicine, Lavrentieva Ave., 8, Novosibirsk, Russia
| | - A Kurilshikov
- Institute of Chemical Biology and Fundamental Medicine, Lavrentieva Ave., 8, Novosibirsk, Russia
| | - I Babkin
- Institute of Chemical Biology and Fundamental Medicine, Lavrentieva Ave., 8, Novosibirsk, Russia
| | - A Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Lavrentieva Ave., 8, Novosibirsk, Russia
| | - A Yunusova
- Institute of Chemical Biology and Fundamental Medicine, Lavrentieva Ave., 8, Novosibirsk, Russia
| | - A Chernonosov
- Institute of Chemical Biology and Fundamental Medicine, Lavrentieva Ave., 8, Novosibirsk, Russia
| | - I Baykov
- Institute of Chemical Biology and Fundamental Medicine, Lavrentieva Ave., 8, Novosibirsk, Russia
| | - I Кondratov
- Limnological Institute of SB RAS, Ulan-Batorskaya Str., 3, Irkutsk, Russia
| | - M Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Lavrentieva Ave., 8, Novosibirsk, Russia
| | - E Ryabchikova
- Institute of Chemical Biology and Fundamental Medicine, Lavrentieva Ave., 8, Novosibirsk, Russia
| | - V Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Lavrentieva Ave., 8, Novosibirsk, Russia
| | - N Tikunova
- Institute of Chemical Biology and Fundamental Medicine, Lavrentieva Ave., 8, Novosibirsk, Russia
| |
Collapse
|
40
|
Dömötör D, Frank T, Rákhely G, Doffkay Z, Schneider G, Kovács T. Comparative analysis of two bacteriophages of Xanthomonas arboricola pv. juglandis. INFECTION GENETICS AND EVOLUTION 2016; 43:371-7. [PMID: 27275846 DOI: 10.1016/j.meegid.2016.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/24/2016] [Accepted: 06/04/2016] [Indexed: 12/21/2022]
Abstract
Walnut blight caused by Xanthomonas arboricola pv. juglandis (Xaj) is one of the most frequent infective diseases of walnut, resulting in serious economic losses. One potential solution to control this disease could be the application of bacteriophages. In this study, 24 phages were isolated from soil and walnut aerial tissues infected with Xaj. Two polyvalent bacteriophages, Xaj2 and Xaj24 were chosen for further characterization including their morphological, physiological and genomic analyses. Xaj2 was classified as Siphoviridae whereas Xaj24 belonged to the Podoviridae family. Both phages demonstrated lytic effect on Xaj in laboratory trials. Complete genomes of Xaj2 and Xaj24 were determined. Genomes of Xaj2 and Xaj24 consisted of 49.241 and 44.861 nucleotides encoding 80 and 53 genes, respectively. Comparative genome analyses have revealed that Xaj2 had a unique genome sequence, while Xaj24 was a phiKMV-like phage and it was most similar to the Prado phage which is virulent for Xylella fastidiosa and Xanthomonas spp. In this study, we present the first two complete Xaj phage sequences enabling an insight into the genomics of Xaj phages.
Collapse
Affiliation(s)
- Dóra Dömötör
- Department of Biotechnology, Nanophagetherapy Center, Enviroinvest Corporation, Pécs, Hungary
| | - Tamara Frank
- Department of Biotechnology, Nanophagetherapy Center, Enviroinvest Corporation, Pécs, Hungary; Faculty of Engineering, University of Pannonia, Veszprém, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary; Institute of Biophysics, Biological Research Center, Szeged, Hungary
| | - Zsolt Doffkay
- Institute of Biophysics, Biological Research Center, Szeged, Hungary
| | - György Schneider
- Institute of Medical Microbiology and Immunology, University of Pécs, Pécs, Hungary
| | - Tamás Kovács
- Department of Biotechnology, Nanophagetherapy Center, Enviroinvest Corporation, Pécs, Hungary.
| |
Collapse
|
41
|
Genome Sequence of Pectobacterium carotovorum Phage PPWS1, Isolated from Japanese Horseradish [Eutrema japonicum (Miq.) Koidz] Showing Soft-Rot Symptoms. GENOME ANNOUNCEMENTS 2016; 4:4/2/e01625-15. [PMID: 27103734 PMCID: PMC4841149 DOI: 10.1128/genomea.01625-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pectobacterium carotovorum subsp. carotovorum and its lytic bacteriophage PPWS1 were isolated from a Japanese horseradish rhizome with soft rot. Sequencing of the phage genomic DNA suggested that PPWS1 is a new species of the family Podoviridae and has high similarity to the bacteriophage Peat1 infectious to P. atrosepticum.
Collapse
|
42
|
Kawasaki T, Narulita E, Matsunami M, Ishikawa H, Shimizu M, Fujie M, Bhunchoth A, Phironrit N, Chatchawankanphanich O, Yamada T. Genomic diversity of large-plaque-forming podoviruses infecting the phytopathogen Ralstonia solanacearum. Virology 2016; 492:73-81. [PMID: 26901487 DOI: 10.1016/j.virol.2016.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/25/2016] [Accepted: 02/14/2016] [Indexed: 01/21/2023]
Abstract
The genome organization, gene structure, and host range of five podoviruses that infect Ralstonia solanacearum, the causative agent of bacterial wilt disease were characterized. The phages fell into two distinctive groups based on the genome position of the RNA polymerase gene (i.e., T7-type and ϕKMV-type). One-step growth experiments revealed that ϕRSB2 (a T7-like phage) lysed host cells more efficiently with a shorter infection cycle (ca. 60 min corresponding to half the doubling time of the host) than ϕKMV-like phages such as ϕRSB1 (with an infection cycle of ca. 180 min). Co-infection experiments with ϕRSB1 and ϕRSB2 showed that ϕRSB2 always predominated in the phage progeny independent of host strains. Most phages had wide host-ranges and the phage particles usually did not attach to the resistant strains; when occasionally some did, the phage genome was injected into the resistant strain's cytoplasm, as revealed by fluorescence microscopy with SYBR Gold-labeled phage particles.
Collapse
Affiliation(s)
- Takeru Kawasaki
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Erlia Narulita
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan; Study Program of Biology Education, University of Jember, Jember 68121, Indonesia
| | - Minaho Matsunami
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Hiroki Ishikawa
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Mio Shimizu
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Makoto Fujie
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Anjana Bhunchoth
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Namthip Phironrit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Orawan Chatchawankanphanich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Takashi Yamada
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan.
| |
Collapse
|
43
|
Mapes AC, Trautner BW, Liao KS, Ramig RF. Development of expanded host range phage active on biofilms of multi-drug resistant Pseudomonas aeruginosa. BACTERIOPHAGE 2016; 6:e1096995. [PMID: 27144083 PMCID: PMC4836484 DOI: 10.1080/21597081.2015.1096995] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/14/2015] [Accepted: 09/17/2015] [Indexed: 01/14/2023]
Abstract
Phage therapy is a promising treatment of multi-drug resistant (MDR) bacterial infections but is limited by the narrow host range of phage. To overcome this limitation, we developed a host range expansion (HRE) protocol that expands the host range of Pseudomonas aeruginosa-specific phage by cycles of co-incubation of phage with multiple P. aeruginosa strains. Application of the HRE protocol to a mixture of 4 phages, using 16 P. aeruginosa strains for development, resulted in undefined phage mixtures with greatly expanded host range. Individual phage clones derived from the undefined mixture had expanded host ranges but no individual clone could lyse all of the strains covered by the undefined mixture from which it was isolated. Reconstituting host range-characterized clones into cocktails produced defined cocktails with predictable and broad host ranges. The undefined mixture from the 30th cycle of the mixed-phage HRE (4ϕC30) showed a dose-dependent ability to prevent biofilm formation by, and to reduce a pre-existing biofilm of, 3 P. aeruginosa clinical isolates that produced high amounts of biofilm. A defined cocktail reconstituted from 3 host range-characterized clones had activity on high biofilm-formers susceptible to the phage. Phage therapy was superior to antibiotic therapy (levofloxacin) in a strain of P. aeruginosa that was resistant to levofloxacin. The HRE protocol establishes a rapid approach to create libraries of phage clones and phage cocktails with broad host range, defined composition and anti-biofilm activity.
Collapse
Affiliation(s)
- Abigail C. Mapes
- Section of Infectious Diseases, Departments of Medicine and Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Barbara W. Trautner
- Section of Infectious Diseases, Departments of Medicine and Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, USA
| | - Kershena S. Liao
- Section of Infectious Diseases, Departments of Medicine and Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Robert F. Ramig
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
44
|
Hsieh SE, Tseng YH, Lo HH, Chen ST, Wu CN. Genomic analysis of Staphylococcus phage Stau2 isolated from medical specimen. Virus Genes 2015; 52:107-16. [PMID: 26706853 DOI: 10.1007/s11262-015-1276-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/10/2015] [Indexed: 11/30/2022]
Abstract
Stau2 is a lytic myophage of Staphylococcus aureus isolated from medical specimen. Exhibiting a broad host range against S. aureus clinical isolates, Stau2 is potentially useful for topical phage therapy or as an additive in food preservation. In this study, Stau2 was firstly revealed to possess a circularly permuted linear genome of 133,798 bp, with low G + C content, containing 146 open reading frames, but encoding no tRNA. The genome is organized into several modules containing genes for packaging, structural proteins, replication/transcription and host-cell-lysis, with the structural proteins and DNA polymerase modules being organized similarly to that in Twort-like phages of Staphylococcus. With the encoded DNA replication genes, Stau2 can possibly use its own system for replication. In addition, analysis in silico found several introns in seven genes, including those involved in DNA metabolism, packaging, and structure, while one of them (helicase gene) is experimentally confirmed to undergo splicing. Furthermore, phylogenetic analysis suggested Stau2 to be most closely related to Staphylococcus phages SA11 and Remus, members of Twort-like phages. The results of sodium dodecyl sulfate polyacrylamide gel electrophoresis showed 14 structural proteins of Stau2 and N-terminal sequencing identified three of them. Importantly, this phage does not encode any proteins which are known or suspected to be involved in toxicity, pathogenicity, or antibiotic resistance. Therefore, further investigations of feasible therapeutic application of Stau2 are needed.
Collapse
Affiliation(s)
- Sue-Er Hsieh
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan
| | - Yi-Hsiung Tseng
- Department of Microbiology, Tzu Chi University, Hualien, 970, Taiwan
| | - Hsueh-Hsia Lo
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan
| | - Shui-Tu Chen
- Pediatrics Department, Nantou Hospital, Department of Health, Nantou, 540, Taiwan
| | - Cheng-Nan Wu
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, 406, Taiwan.
| |
Collapse
|
45
|
Alves DR, Perez-Esteban P, Kot W, Bean JE, Arnot T, Hansen LH, Enright MC, Jenkins ATA. A novel bacteriophage cocktail reduces and disperses Pseudomonas aeruginosa biofilms under static and flow conditions. Microb Biotechnol 2015; 9:61-74. [PMID: 26347362 PMCID: PMC4720417 DOI: 10.1111/1751-7915.12316] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 01/21/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that forms highly stable communities - biofilms, which contribute to the establishment and maintenance of infections. The biofilm state and intrinsic/acquired bacterial resistance mechanisms contribute to resistance/tolerance to antibiotics that is frequently observed in P. aeruginosa isolates. Here we describe the isolation and characterization of six novel lytic bacteriophages: viruses that infect bacteria, which together efficiently infect and kill a wide range of P. aeruginosa clinical isolates. The phages were used to formulate a cocktail with the potential to eliminate P. aeruginosa PAO1 planktonic cultures. Two biofilm models were studied, one static and one dynamic, and the phage cocktail was assessed for its ability to reduce and disperse the biofilm biomass. For the static model, after 4 h of contact with the phage suspension (MOI 10) more than 95% of biofilm biomass was eliminated. In the flow biofilm model, a slower rate of activity by the phage was observed, but 48 h after addition of the phage cocktail the biofilm was dispersed, with most cells eliminated (> 4 logs) comparing with the control. This cocktail has the potential for development as a therapeutic to control P. aeruginosa infections, which are predominantly biofilm centred.
Collapse
Affiliation(s)
- Diana R Alves
- Department of Chemistry, University of Bath, Bath, Claverton Down, BA2 7AY, UK
| | - P Perez-Esteban
- Department of Chemical Engineering, University of Bath, Bath, Claverton Down, BA2 7AY, UK
| | - W Kot
- Department of Environmental Science, Aarhus Universitet, Frederiksborgvej 399, Postboks, 358, Roskilde, DK-4000, Denmark
| | - J E Bean
- Department of Chemistry, University of Bath, Bath, Claverton Down, BA2 7AY, UK
| | - T Arnot
- Department of Chemical Engineering, University of Bath, Bath, Claverton Down, BA2 7AY, UK
| | - L H Hansen
- Department of Environmental Science, Aarhus Universitet, Frederiksborgvej 399, Postboks, 358, Roskilde, DK-4000, Denmark
| | - Mark C Enright
- School of Healthcare Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD, UK
| | - A Tobias A Jenkins
- Department of Chemistry, University of Bath, Bath, Claverton Down, BA2 7AY, UK
| |
Collapse
|
46
|
Essoh C, Latino L, Midoux C, Blouin Y, Loukou G, Nguetta SPA, Lathro S, Cablanmian A, Kouassi AK, Vergnaud G, Pourcel C. Investigation of a Large Collection of Pseudomonas aeruginosa Bacteriophages Collected from a Single Environmental Source in Abidjan, Côte d'Ivoire. PLoS One 2015; 10:e0130548. [PMID: 26115051 PMCID: PMC4482731 DOI: 10.1371/journal.pone.0130548] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/22/2015] [Indexed: 12/12/2022] Open
Abstract
Twenty two distinct bacteriophages were isolated from sewage water from five locations in the city of Abidjan, Côte d'Ivoire over a two-year period, using a collection of Pseudomonas aeruginosa strains with diverse genotypes. The phages were characterized by their virulence spectrum on a panel of selected P. aeruginosa strains from cystic fibrosis patients and by whole genome sequencing. Twelve virions representing the observed diversity were visualised by electron microscopy. The combined observations showed that 17 phages, distributed into seven genera, were virulent, and that five phages were related to temperate phages belonging to three genera. Some showed similarity with known phages only at the protein level. The vast majority of the genetic variations among virulent phages from the same genus resulted from seemingly non-random horizontal transfer events, inside a population of P. aeruginosa phages with limited diversity. This suggests the existence of a single environmental reservoir or ecotype in which continuous selection is taking place. In contrast, mostly point mutations were observed among phages potentially capable of lysogenisation. This is the first study of P. aeruginosa phage diversity in an African city and it shows that a large variety of phage species can be recovered in a limited geographical site at least when different bacterial strains are used. The relative temporal and spatial stability of the Abidjan phage population might reflect equilibrium in the microbial community from which they are released.
Collapse
Affiliation(s)
- Christiane Essoh
- Institute for Integrative Biology of the Cell, CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Libera Latino
- Institute for Integrative Biology of the Cell, CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Cédric Midoux
- Institute for Integrative Biology of the Cell, CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Yann Blouin
- Institute for Integrative Biology of the Cell, CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Guillaume Loukou
- Laboratoire National de Santé Publique, Abidjan, Côte d’Ivoire
- Laboratoire de Bactériologie-Virologie, département de Sciences pharmaceutiques et Biologiques, Univ Félix Houphouët-Boigny, Abidjan, Côte d’Ivoire
| | - Simon-Pierre A. Nguetta
- Laboratoire de Génétique, Département des Biosciences, Univ Félix Houphouet-Boigny, Abidjan, Côte d’Ivoire
| | - Serge Lathro
- Laboratoire National de Santé Publique, Abidjan, Côte d’Ivoire
| | | | | | - Gilles Vergnaud
- Institute for Integrative Biology of the Cell, CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Orsay, France
- ENSTA ParisTech, Université Paris-Saclay, Palaiseau, France
| | - Christine Pourcel
- Institute for Integrative Biology of the Cell, CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Orsay, France
| |
Collapse
|
47
|
Magill DJ, Shaburova OV, Chesnokova EN, Pleteneva EA, Krylov VN, Kulakov LA. Complete nucleotide sequence of phiCHU: a Luz24likevirus infecting Pseudomonas aeruginosa and displaying a unique host range. FEMS Microbiol Lett 2015; 362:fnv045. [PMID: 25825475 DOI: 10.1093/femsle/fnv045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2015] [Indexed: 11/13/2022] Open
Abstract
A complete nucleotide sequence of the new Pseudomonas aeruginosa Luz24likevirus phiCHU was obtained. This virus was shown to have a unique host range whereby it grew poorly on the standard laboratory strain PAO1, but infected 26 of 46 clinical isolates screened, and strains harbouring IncP2 plasmid pMG53. It was demonstrated that phiCHU has single-strand interruptions in its genome. Analysis of the phiCHU genome also suggested that recombination event(s) participated in the evolution of the leftmost portion of the genome, presumably encoding early genes.
Collapse
Affiliation(s)
- Damian J Magill
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, Belfast BT9 7BL, Northern Ireland, UK
| | - Olga V Shaburova
- Department of Microbiology, Laboratory for Genetics of Bacteriophages, I.I. Mechnikov Research Institute for Vaccines and Sera, Moscow 105064, Russia
| | - Elena N Chesnokova
- Department of Microbiology, Laboratory for Genetics of Bacteriophages, I.I. Mechnikov Research Institute for Vaccines and Sera, Moscow 105064, Russia
| | - Elena A Pleteneva
- Department of Microbiology, Laboratory for Genetics of Bacteriophages, I.I. Mechnikov Research Institute for Vaccines and Sera, Moscow 105064, Russia
| | - Victor N Krylov
- Department of Microbiology, Laboratory for Genetics of Bacteriophages, I.I. Mechnikov Research Institute for Vaccines and Sera, Moscow 105064, Russia
| | - Leonid A Kulakov
- Queen's University Belfast, School of Biological Sciences, Medical Biology Centre, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
48
|
Didamony GE, Askora A, Shehata AA. Isolation and Characterization of T7-Like Lytic Bacteriophages Infecting Multidrug Resistant Pseudomonas aeruginosa Isolated from Egypt. Curr Microbiol 2015; 70:786-91. [DOI: 10.1007/s00284-015-0788-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/08/2015] [Indexed: 10/24/2022]
|
49
|
Krylov V, Shaburova O, Pleteneva E, Krylov S, Kaplan A, Burkaltseva M, Polygach O, Chesnokova E. Selection of phages and conditions for the safe phage therapy against Pseudomonas aeruginosa infections. Virol Sin 2015; 30:33-44. [PMID: 25680443 PMCID: PMC8200895 DOI: 10.1007/s12250-014-3546-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/30/2015] [Indexed: 11/27/2022] Open
Abstract
The emergence of multidrug-resistant bacterial pathogens forced us to consider the phage therapy as one of the possible alternative approaches to treatment. The purpose of this paper is to consider the conditions for the safe, long-term use of phage therapy against various infections caused by Pseudomonas aeruginosa. We describe the selection of the most suitable phages, their most effective combinations and some approaches for the rapid recognition of phages unsuitable for use in therapy. The benefits and disadvantages of the various different approaches to the preparation of phage mixtures are considered, together with the specific conditions that are required for the safe application of phage therapy in general hospitals and the possibilities for the development of personalized phage therapy.
Collapse
Affiliation(s)
- Victor Krylov
- I.I. Mechnikov Research Institute for Vaccines & Sera, RAMS, Moscow, 105064, Russian,
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Cao Z, Zhang J, Niu YD, Cui N, Ma Y, Cao F, Jin L, Li Z, Xu Y. Isolation and characterization of a "phiKMV-like" bacteriophage and its therapeutic effect on mink hemorrhagic pneumonia. PLoS One 2015; 10:e0116571. [PMID: 25615639 PMCID: PMC4304800 DOI: 10.1371/journal.pone.0116571] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 12/11/2014] [Indexed: 02/07/2023] Open
Abstract
The objective of this study was to investigate the potential of using phages as a therapy against hemorrhagic pneumonia in mink both in vitro and in vivo. Five Pseudomonas aeruginosa (P. aeruginosa) strains were isolated from lungs of mink with suspected hemorrhagic pneumonia and their identity was confirmed by morphological observation and 16S rDNA sequence analysis. Compared to P. aeruginosa strains isolated from mink with hemorrhagic pneumonia in 2002, these isolates were more resistant to antibiotics selected. A lytic phage vB_PaeP_PPA-ABTNL (PPA-ABTNL) of the Podoviridae family was isolated from hospital sewage using a P. aeruginosa isolate as host, showing broad host range against P. aeruginosa. A one-step growth curve analysis of PPA-ABTNL revealed eclipse and latent periods of 20 and 35 min, respectively, with a burst size of about 110 PFU per infected cell. Phage PPA-ABTNL significantly reduced the growth of P. aeruginosa isolates in vitro. The genome of PPA-ABTNL was 43,227 bp (62.4% G+C) containing 54 open reading frames and lacked regions encoding known virulence factors, integration-related proteins and antibiotic resistance determinants. Genome architecture analysis showed that PPA-ABTNL belonged to the "phiKMV-like Viruses" group. A repeated dose inhalational toxicity study using PPA-ABTNL crude preparation was conducted in mice and no significantly abnormal histological changes, morbidity or mortality were observed. There was no indication of any potential risk associated with using PPA-ABTNL as a therapeutic agent. The results of a curative treatment experiment demonstrated that atomization by ultrasonic treatment could efficiently deliver phage to the lungs of mink and a dose of 10 multiplicity of infection was optimal for treating mink hemorrhagic pneumonia. Our work demonstrated the potential for phage to fight P. aeruginosa involved in mink lung infections when administered by means of ultrasonic nebulization.
Collapse
Affiliation(s)
- Zhenhui Cao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Jiancheng Zhang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yan D. Niu
- Alberta Agriculture and Rural Development, Agriculture Centre, Lethbridge, Alberta, Canada
| | - Naizhong Cui
- School of Life Science, Datong University, Datong, Shanxi, China
| | - Yongsheng Ma
- College of Food Science and Engineering, Dalian Ocean University, Dalian, Liaoning, China
| | - Fang Cao
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Liji Jin
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
- Ministry of Education Center for Food Safety of Animal Origin, Dalian, Liaoning, China
| | - Zhen Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Yongping Xu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
- Ministry of Education Center for Food Safety of Animal Origin, Dalian, Liaoning, China
| |
Collapse
|