1
|
Colombari E, Parisi G, Tafuro A, Mele S, Mazzi C, Savazzi S. Beyond primary visual cortex: The leading role of lateral occipital complex in early conscious visual processing. Neuroimage 2024; 298:120805. [PMID: 39173692 DOI: 10.1016/j.neuroimage.2024.120805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024] Open
Abstract
The study of the neural substrates that serve conscious vision is one of the unsolved questions of cognitive neuroscience. So far, consciousness literature has endeavoured to disentangle which brain areas and in what order are involved in giving rise to visual awareness, but the problem of consciousness still remains unsolved. Availing of two different but complementary sources of data (i.e., Fast Optical Imaging and EEG), we sought to unravel the neural dynamics responsible for the emergence of a conscious visual experience. Our results revealed that conscious vision is characterized by a significant increase of activation in extra-striate visual areas, specifically in the Lateral Occipital Complex (LOC), and that, more interestingly, such activity occurred in the temporal window of the ERP component commonly thought to represent the electrophysiological signature of visual awareness, i.e., the Visual Awareness Negativity (VAN). Furthermore, Granger causality analysis, performed to further investigate the flow of activity occurring in the investigated areas, unveiled that neural processes relating to conscious perception mainly originated in LOC and subsequently spread towards visual and motor areas. In general, the results of the present study seem to advocate for an early contribution of LOC in conscious vision, thus suggesting that it could represent a reliable neural correlate of visual awareness. Conversely, striate visual areas, showing awareness-related activity only in later stages of stimulus processing, could be part of the cascade of neural events following awareness emergence.
Collapse
Affiliation(s)
- Elisabetta Colombari
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, Verona, Italy
| | - Giorgia Parisi
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, Verona, Italy
| | - Alessandra Tafuro
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, Verona, Italy
| | - Sonia Mele
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, Verona, Italy
| | - Chiara Mazzi
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, Verona, Italy.
| | - Silvia Savazzi
- Perception and Awareness (PandA) Laboratory, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada le Grazie 8, Verona, Italy
| |
Collapse
|
2
|
Tipado Z, Kuypers KPC, Sorger B, Ramaekers JG. Visual hallucinations originating in the retinofugal pathway under clinical and psychedelic conditions. Eur Neuropsychopharmacol 2024; 85:10-20. [PMID: 38648694 DOI: 10.1016/j.euroneuro.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Psychedelics like LSD (Lysergic acid diethylamide) and psilocybin are known to modulate perceptual modalities due to the activation of mostly serotonin receptors in specific cortical (e.g., visual cortex) and subcortical (e.g., thalamus) regions of the brain. In the visual domain, these psychedelic modulations often result in peculiar disturbances of viewed objects and light and sometimes even in hallucinations of non-existent environments, objects, and creatures. Although the underlying processes are poorly understood, research conducted over the past twenty years on the subjective experience of psychedelics details theories that attempt to explain these perceptual alterations due to a disruption of communication between cortical and subcortical regions. However, rare medical conditions in the visual system like Charles Bonnet syndrome that cause perceptual distortions may shed new light on the additional importance of the retinofugal pathway in psychedelic subjective experiences. Interneurons in the retina called amacrine cells could be the first site of visual psychedelic modulation and aid in disrupting the hierarchical structure of how humans perceive visual information. This paper presents an understanding of how the retinofugal pathway communicates and modulates visual information in psychedelic and clinical conditions. Therefore, we elucidate a new theory of psychedelic modulation in the retinofugal pathway.
Collapse
Affiliation(s)
- Zeus Tipado
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands.
| | - Kim P C Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Johannes G Ramaekers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| |
Collapse
|
3
|
Magrou L, Joyce MKP, Froudist-Walsh S, Datta D, Wang XJ, Martinez-Trujillo J, Arnsten AFT. The meso-connectomes of mouse, marmoset, and macaque: network organization and the emergence of higher cognition. Cereb Cortex 2024; 34:bhae174. [PMID: 38771244 PMCID: PMC11107384 DOI: 10.1093/cercor/bhae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/29/2024] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
The recent publications of the inter-areal connectomes for mouse, marmoset, and macaque cortex have allowed deeper comparisons across rodent vs. primate cortical organization. In general, these show that the mouse has very widespread, "all-to-all" inter-areal connectivity (i.e. a "highly dense" connectome in a graph theoretical framework), while primates have a more modular organization. In this review, we highlight the relevance of these differences to function, including the example of primary visual cortex (V1) which, in the mouse, is interconnected with all other areas, therefore including other primary sensory and frontal areas. We argue that this dense inter-areal connectivity benefits multimodal associations, at the cost of reduced functional segregation. Conversely, primates have expanded cortices with a modular connectivity structure, where V1 is almost exclusively interconnected with other visual cortices, themselves organized in relatively segregated streams, and hierarchically higher cortical areas such as prefrontal cortex provide top-down regulation for specifying precise information for working memory storage and manipulation. Increased complexity in cytoarchitecture, connectivity, dendritic spine density, and receptor expression additionally reveal a sharper hierarchical organization in primate cortex. Together, we argue that these primate specializations permit separable deconstruction and selective reconstruction of representations, which is essential to higher cognition.
Collapse
Affiliation(s)
- Loïc Magrou
- Department of Neural Science, New York University, New York, NY 10003, United States
| | - Mary Kate P Joyce
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Sean Froudist-Walsh
- School of Engineering Mathematics and Technology, University of Bristol, Bristol, BS8 1QU, United Kingdom
| | - Dibyadeep Datta
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, United States
| | - Xiao-Jing Wang
- Department of Neural Science, New York University, New York, NY 10003, United States
| | - Julio Martinez-Trujillo
- Departments of Physiology and Pharmacology, and Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 3K7, Canada
| | - Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, United States
| |
Collapse
|
4
|
Lu Y, Chen QM, An L. SPADE: spatial deconvolution for domain specific cell-type estimation. Commun Biol 2024; 7:469. [PMID: 38632414 PMCID: PMC11024133 DOI: 10.1038/s42003-024-06172-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Understanding gene expression in different cell types within their spatial context is a key goal in genomics research. SPADE (SPAtial DEconvolution), our proposed method, addresses this by integrating spatial patterns into the analysis of cell type composition. This approach uses a combination of single-cell RNA sequencing, spatial transcriptomics, and histological data to accurately estimate the proportions of cell types in various locations. Our analyses of synthetic data have demonstrated SPADE's capability to discern cell type-specific spatial patterns effectively. When applied to real-life datasets, SPADE provides insights into cellular dynamics and the composition of tumor tissues. This enhances our comprehension of complex biological systems and aids in exploring cellular diversity. SPADE represents a significant advancement in deciphering spatial gene expression patterns, offering a powerful tool for the detailed investigation of cell types in spatial transcriptomics.
Collapse
Affiliation(s)
- Yingying Lu
- Interdisciplinary Program in Statistics and Data Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Qin M Chen
- College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Lingling An
- Interdisciplinary Program in Statistics and Data Science, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, 85721, USA.
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
5
|
Campbell A, Tanaka JW. Fast saccades to faces during the feedforward sweep. J Vis 2024; 24:16. [PMID: 38630459 PMCID: PMC11037494 DOI: 10.1167/jov.24.4.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/19/2023] [Indexed: 04/19/2024] Open
Abstract
Saccadic choice tasks use eye movements as a response method, typically in a task where observers are asked to saccade as quickly as possible to an image of a prespecified target category. Using this approach, face-selective saccades have been observed within 100 ms poststimulus. When taking into account oculomotor processing, this suggests that faces can be detected in as little as 70 to 80 ms. It has therefore been suggested that face detection must occur during the initial feedforward sweep, since this latency leaves little time for feedback processing. In the current experiment, we tested this hypothesis using backward masking-a technique shown to primarily disrupt feedback processing while leaving feedforward activation relatively intact. Based on minimum saccadic reaction time, we found that face detection benefited from ultra-fast, accurate saccades within 110 to 160 ms and that these eye movements are obtainable even under extreme masking conditions that limit perceptual awareness. However, masking did significantly increase the median SRT for faces. In the manual responses, we found remarkable detection accuracy for faces and houses, even when participants indicated having no visual experience of the test images. These results provide evidence for the view that the saccadic bias to faces is initiated by coarse information used to categorize faces in the feedforward sweep but that, in most cases, additional processing is required to quickly reach the threshold for saccade initiation.
Collapse
Affiliation(s)
- Alison Campbell
- Department of Psychology, University of Victoria, Victoria, BC, Canada
- https://orcid.org/0000-0001-6891-8609
| | - James W Tanaka
- Department of Psychology, University of Victoria, Victoria, BC, Canada
- https://orcid.org/0000-0001-6559-0388
| |
Collapse
|
6
|
Tscshantz A, Millidge B, Seth AK, Buckley CL. Hybrid predictive coding: Inferring, fast and slow. PLoS Comput Biol 2023; 19:e1011280. [PMID: 37531366 PMCID: PMC10395865 DOI: 10.1371/journal.pcbi.1011280] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/20/2023] [Indexed: 08/04/2023] Open
Abstract
Predictive coding is an influential model of cortical neural activity. It proposes that perceptual beliefs are furnished by sequentially minimising "prediction errors"-the differences between predicted and observed data. Implicit in this proposal is the idea that successful perception requires multiple cycles of neural activity. This is at odds with evidence that several aspects of visual perception-including complex forms of object recognition-arise from an initial "feedforward sweep" that occurs on fast timescales which preclude substantial recurrent activity. Here, we propose that the feedforward sweep can be understood as performing amortized inference (applying a learned function that maps directly from data to beliefs) and recurrent processing can be understood as performing iterative inference (sequentially updating neural activity in order to improve the accuracy of beliefs). We propose a hybrid predictive coding network that combines both iterative and amortized inference in a principled manner by describing both in terms of a dual optimization of a single objective function. We show that the resulting scheme can be implemented in a biologically plausible neural architecture that approximates Bayesian inference utilising local Hebbian update rules. We demonstrate that our hybrid predictive coding model combines the benefits of both amortized and iterative inference-obtaining rapid and computationally cheap perceptual inference for familiar data while maintaining the context-sensitivity, precision, and sample efficiency of iterative inference schemes. Moreover, we show how our model is inherently sensitive to its uncertainty and adaptively balances iterative and amortized inference to obtain accurate beliefs using minimum computational expense. Hybrid predictive coding offers a new perspective on the functional relevance of the feedforward and recurrent activity observed during visual perception and offers novel insights into distinct aspects of visual phenomenology.
Collapse
Affiliation(s)
- Alexander Tscshantz
- Sussex AI Group, Department of Informatics, University of Sussex, Brighton, United Kingdom
- VERSES Research Lab, Los Angeles, California, United States of America
- Sussex Centre for Consciousness Science, University of Sussex, Brighton, United Kingdom
| | - Beren Millidge
- Sussex AI Group, Department of Informatics, University of Sussex, Brighton, United Kingdom
- VERSES Research Lab, Los Angeles, California, United States of America
- Brain Networks Dynamics Unit, University of Oxford, Oxford, United Kingdom
| | - Anil K. Seth
- Sussex AI Group, Department of Informatics, University of Sussex, Brighton, United Kingdom
- Sussex Centre for Consciousness Science, University of Sussex, Brighton, United Kingdom
| | - Christopher L. Buckley
- Sussex AI Group, Department of Informatics, University of Sussex, Brighton, United Kingdom
- VERSES Research Lab, Los Angeles, California, United States of America
| |
Collapse
|
7
|
Intrinsic brain dynamics in the Default Mode Network predict involuntary fluctuations of visual awareness. Nat Commun 2022; 13:6923. [PMID: 36376303 PMCID: PMC9663583 DOI: 10.1038/s41467-022-34410-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Brain activity is intrinsically organised into spatiotemporal patterns, but it is still not clear whether these intrinsic patterns are functional or epiphenomenal. Using a simultaneous fMRI-EEG implementation of a well-known bistable visual task, we showed that the latent transient states in the intrinsic EEG oscillations can predict upcoming involuntarily perceptual transitions. The critical state predicting a dominant perceptual transition was characterised by the phase coupling between the precuneus (PCU), a key node of the Default Mode Network (DMN), and the primary visual cortex (V1). The interaction between the lifetime of this state and the PCU- > V1 Granger-causal effect is correlated with the perceptual fluctuation rate. Our study suggests that the brain's endogenous dynamics are phenomenologically relevant, as they can elicit a diversion between potential visual processing pathways, while external stimuli remain the same. In this sense, the intrinsic DMN dynamics pre-empt the content of consciousness.
Collapse
|
8
|
Ensemble perception without phenomenal awareness of elements. Sci Rep 2022; 12:11922. [PMID: 35831387 PMCID: PMC9279487 DOI: 10.1038/s41598-022-15850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022] Open
Abstract
Humans efficiently recognize complex scenes by grouping multiple features and objects into ensembles. It has been suggested that ensemble processing does not require, or even impairs, conscious discrimination of individual element properties. The present study examined whether ensemble perception requires phenomenal awareness of elements. We asked observers to judge the mean orientation of a line-based texture pattern whose central region was made invisible by backward masks. Masks were composed of either a Mondrian pattern (Exp. 1) or of an annular contour (Exp. 2) which, unlike the Mondrian, did not overlap spatially with elements in the central region. In the Mondrian-mask experiment, perceived mean orientation was determined only by visible elements outside the central region. However, in the annular-mask experiment, perceived mean orientation matched the mean orientation of all elements, including invisible elements within the central region. Results suggest that the visual system can compute spatial ensembles even without phenomenal awareness of stimuli.
Collapse
|
9
|
Le Bec B, Troncoso XG, Desbois C, Passarelli Y, Baudot P, Monier C, Pananceau M, Frégnac Y. Horizontal connectivity in V1: Prediction of coherence in contour and motion integration. PLoS One 2022; 17:e0268351. [PMID: 35802625 PMCID: PMC9269411 DOI: 10.1371/journal.pone.0268351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 04/26/2022] [Indexed: 11/30/2022] Open
Abstract
This study demonstrates the functional importance of the Surround context relayed laterally in V1 by the horizontal connectivity, in controlling the latency and the gain of the cortical response to the feedforward visual drive. We report here four main findings: 1) a centripetal apparent motion sequence results in a shortening of the spiking latency of V1 cells, when the orientation of the local inducer and the global motion axis are both co-aligned with the RF orientation preference; 2) this contextual effects grows with visual flow speed, peaking at 150–250°/s when it matches the propagation speed of horizontal connectivity (0.15–0.25 mm/ms); 3) For this speed range, the axial sensitivity of V1 cells is tilted by 90° to become co-aligned with the orientation preference axis; 4) the strength of modulation by the surround context correlates with the spatiotemporal coherence of the apparent motion flow. Our results suggest an internally-generated binding process, linking local (orientation /position) and global (motion/direction) features as early as V1. This long-range diffusion process constitutes a plausible substrate in V1 of the human psychophysical bias in speed estimation for collinear motion. Since it is demonstrated in the anesthetized cat, this novel form of contextual control of the cortical gain and phase is a built-in property in V1, whose expression does not require behavioral attention and top-down control from higher cortical areas. We propose that horizontal connectivity participates in the propagation of an internal “prediction” wave, shaped by visual experience, which links contour co-alignment and global axial motion at an apparent speed in the range of saccade-like eye movements.
Collapse
Affiliation(s)
- Benoit Le Bec
- NeuroPSI-UNIC, Paris-Saclay Institute of Neuroscience, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Xoana G. Troncoso
- NeuroPSI-UNIC, Paris-Saclay Institute of Neuroscience, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Christophe Desbois
- NeuroPSI-UNIC, Paris-Saclay Institute of Neuroscience, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
- Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France
| | - Yannick Passarelli
- NeuroPSI-UNIC, Paris-Saclay Institute of Neuroscience, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Pierre Baudot
- NeuroPSI-UNIC, Paris-Saclay Institute of Neuroscience, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Cyril Monier
- NeuroPSI-UNIC, Paris-Saclay Institute of Neuroscience, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Marc Pananceau
- NeuroPSI-UNIC, Paris-Saclay Institute of Neuroscience, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Yves Frégnac
- NeuroPSI-UNIC, Paris-Saclay Institute of Neuroscience, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
10
|
Sensory recruitment in visual short-term memory: A systematic review and meta-analysis of sensory visual cortex interference using transcranial magnetic stimulation. Psychon Bull Rev 2022; 29:1594-1624. [PMID: 35606595 DOI: 10.3758/s13423-022-02107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 11/08/2022]
Abstract
Sensory visual areas are involved in encoding information in visual short-term memory (VSTM). Yet it remains unclear whether sensory visual cortex is a necessary component of the brain network for maintenance of information in VSTM. Here, we aimed to systematically review studies that have investigated the role of the sensory visual cortex in VSTM using transcranial magnetic stimulation (TMS) and to quantitatively explore these effects using meta-analyses. Fourteen studies were identified and reviewed. Eight studies provided sufficient data for meta-analysis. Two meta-analyses, one regarding the VSTM encoding phase (17 effect sizes) and one regarding the VSTM maintenance phase (15 effect sizes), two meta-regressions (32 effect sizes in each), and one exploratory meta-analysis were conducted. Our results indicate that the sensory visual cortex is similarly involved in both the encoding and maintenance VSTM phase. We suggest that some cases where evidence did not show significant TMS effects was due to low memory or perceptual task demands. Overall, these findings support the idea that sensory visual areas are part of the brain network responsible for successfully maintaining information in VSTM.
Collapse
|
11
|
Abstract
Recent years have seen a blossoming of theories about the biological and physical basis of consciousness. Good theories guide empirical research, allowing us to interpret data, develop new experimental techniques and expand our capacity to manipulate the phenomenon of interest. Indeed, it is only when couched in terms of a theory that empirical discoveries can ultimately deliver a satisfying understanding of a phenomenon. However, in the case of consciousness, it is unclear how current theories relate to each other, or whether they can be empirically distinguished. To clarify this complicated landscape, we review four prominent theoretical approaches to consciousness: higher-order theories, global workspace theories, re-entry and predictive processing theories and integrated information theory. We describe the key characteristics of each approach by identifying which aspects of consciousness they propose to explain, what their neurobiological commitments are and what empirical data are adduced in their support. We consider how some prominent empirical debates might distinguish among these theories, and we outline three ways in which theories need to be developed to deliver a mature regimen of theory-testing in the neuroscience of consciousness. There are good reasons to think that the iterative development, testing and comparison of theories of consciousness will lead to a deeper understanding of this most profound of mysteries.
Collapse
|
12
|
DiNuzzo M, Mangia S, Moraschi M, Mascali D, Hagberg GE, Giove F. Perception is associated with the brain's metabolic response to sensory stimulation. eLife 2022; 11:71016. [PMID: 35225790 PMCID: PMC9038191 DOI: 10.7554/elife.71016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Processing of incoming sensory stimulation triggers an increase of cerebral perfusion and blood oxygenation (neurovascular response) as well as an alteration of the metabolic neurochemical profile (neurometabolic response). Here we show in human primary visual cortex (V1) that perceived and unperceived isoluminant chromatic flickering stimuli designed to have similar neurovascular responses as measured by blood oxygenation level dependent functional MRI (BOLD-fMRI) have markedly different neurometabolic responses as measured by functional MRS. In particular, a significant regional buildup of lactate, an index of aerobic glycolysis, and glutamate, an index of malate-aspartate shuttle, occurred in V1 only when the flickering was perceived, without any relation with behavioral or physiological variables. Whereas the BOLD-fMRI signal in V1, a proxy for input to V1, was insensitive to flickering perception by design, the BOLD-fMRI signal in secondary visual areas was larger during perceived than unperceived flickering, indicating increased output from V1. These results demonstrate that the upregulation of energy metabolism induced by visual stimulation depends on the type of information processing taking place in V1, and that 1H-fMRS provides unique information about local input/output balance that is not measured by BOLD fMRI.
Collapse
Affiliation(s)
- Mauro DiNuzzo
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| | - Silvia Mangia
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, United States
| | - Marta Moraschi
- Department of Radiation Oncology, University of Rome, Rome, Italy
| | - Daniele Mascali
- Dipartimento di Neuroscienze, Università Gabriele D'Annunzio, Chieti, Italy
| | - Gisela E Hagberg
- High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics and Biomedical Magnetic Resonance, Tübingen, Germany
| | - Federico Giove
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy
| |
Collapse
|
13
|
Linton P. V1 as an egocentric cognitive map. Neurosci Conscious 2021; 2021:niab017. [PMID: 34532068 PMCID: PMC8439394 DOI: 10.1093/nc/niab017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/21/2021] [Accepted: 06/08/2021] [Indexed: 01/20/2023] Open
Abstract
We typically distinguish between V1 as an egocentric perceptual map and the hippocampus as an allocentric cognitive map. In this article, we argue that V1 also functions as a post-perceptual egocentric cognitive map. We argue that three well-documented functions of V1, namely (i) the estimation of distance, (ii) the estimation of size, and (iii) multisensory integration, are better understood as post-perceptual cognitive inferences. This argument has two important implications. First, we argue that V1 must function as the neural correlates of the visual perception/cognition distinction and suggest how this can be accommodated by V1's laminar structure. Second, we use this insight to propose a low-level account of visual consciousness in contrast to mid-level accounts (recurrent processing theory; integrated information theory) and higher-level accounts (higher-order thought; global workspace theory). Detection thresholds have been traditionally used to rule out such an approach, but we explain why it is a mistake to equate visibility (and therefore the presence/absence of visual experience) with detection thresholds.
Collapse
Affiliation(s)
- Paul Linton
- Centre for Applied Vision Research, City, University of London, Northampton Square, London EC1V 0HB, UK
| |
Collapse
|
14
|
An expanded model for perceptual visual single object recognition system using expectation priming following neuroscientific evidence. COGN SYST RES 2021. [DOI: 10.1016/j.cogsys.2020.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Allen C, Viola T, Irvine E, Sedgmond J, Castle H, Gray R, Chambers CD. Causal manipulation of feed-forward and recurrent processing differentially affects measures of consciousness. Neurosci Conscious 2020; 2020:niaa015. [PMID: 32922860 PMCID: PMC7475771 DOI: 10.1093/nc/niaa015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/30/2020] [Accepted: 05/07/2020] [Indexed: 11/12/2022] Open
Abstract
It has been theorized that cortical feed-forward and recurrent neural activity support unconscious and conscious cognitive processes, respectively. Here we causally tested this proposition by applying event-related transcranial magnetic stimulation (TMS) at early and late times relative to visual stimuli, together with a pulse designed to suppress conscious detection. Consistent with pre-registered hypotheses, early TMS affected residual, reportedly 'unseen' capacity. However, conscious perception also appeared critically dependent upon feed-forward processing to a greater extent than the later recurrent phase. Additional exploratory analyses suggested that these early effects dissociated from top-down criterion measures, which were most affected by later TMS. These findings are inconsistent with a simple dichotomy where feed-forward and recurrent processes correspond to unconscious and conscious mechanisms. Instead, different components of awareness may correspond to different phases of cortical dynamics in which initial processing is broadly perceptual whereas later recurrent processing might relate to decision to report.
Collapse
Affiliation(s)
- Christopher Allen
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Tommaso Viola
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK.,Institute of Neuroscience, Medical School, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| | - Elizabeth Irvine
- Philosophy, School of English, Communication and Philosophy, John Percival Building, Cardiff University, Colum Road, Cardiff, CF10 3EU, UK
| | - Jemma Sedgmond
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Heidi Castle
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Richard Gray
- Philosophy, School of English, Communication and Philosophy, John Percival Building, Cardiff University, Colum Road, Cardiff, CF10 3EU, UK
| | - Christopher D Chambers
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| |
Collapse
|
16
|
Eklund R, Gerdfeldter B, Wiens S. Is auditory awareness negativity confounded by performance? Conscious Cogn 2020; 83:102954. [DOI: 10.1016/j.concog.2020.102954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 01/08/2023]
|
17
|
Cartaud A, Ott L, Iachini T, Honoré J, Coello Y. The influence of facial expression at perceptual threshold on electrodermal activity and social comfort distance. Psychophysiology 2020; 57:e13600. [PMID: 32437046 DOI: 10.1111/psyp.13600] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 03/01/2020] [Accepted: 04/22/2020] [Indexed: 01/10/2023]
Abstract
Interpersonal distance, an essential component of social interaction, is modulated by the emotion conveyed by others and associated physiological response. However, in modern societies with overcrowded and hyperstimulating environments, we can only surreptitiously glimpse the faces of others in order to quickly make behavioral adjustments. How this impacts social interactions is not yet well understood. In the present study, we investigated this issue by testing whether facial expressions that are difficult to identify modify the physiological response (Electrodermal Activity, EDA) and subsequent judgment of interpersonal comfort distance. We recorded participants' EDA while they provided comfort judgments to interpersonal distances with a Point-Light Walker (PLW). The PLW, with an emotionally neutral gait, moved toward and crossed participants at various distances after the latter were exposed to a negative (anger), positive (happiness) or neutral facial expression presented at the perceptual threshold. Bayesian analyses of the data revealed an increase versus decrease of interpersonal comfort distance with the PLW depending on the negative versus positive emotional valence of the facial expression. They also showed an increase in EDA when the approaching PLW violated interpersonal comfort distance after participants were exposed to an angry facial expression. These effects correlated with the subjective assessment of the arousal of facial expressions. Thus, previous exposure to barely visible facial expressions can alter the representation of social comfort space and the physiological response associated with a violation of interpersonal comfort distances, depending on the valence and arousal of the emotional social stimuli.
Collapse
Affiliation(s)
- Alice Cartaud
- Laboratoire SCALab - Sciences Cognitives et Sciences Affectives, UMR CNRS 9193, Université Lille, Lille, France
| | - Laurent Ott
- Laboratoire SCALab - Sciences Cognitives et Sciences Affectives, UMR CNRS 9193, Université Lille, Lille, France
| | - Tina Iachini
- Laboratory of Cognitive Science and Immersive Virtual Reality, CS-IVR, Department of Psychology, University of Campania Luigi Vanvitelli, Caserte, Italy
| | - Jacques Honoré
- Laboratoire SCALab - Sciences Cognitives et Sciences Affectives, UMR CNRS 9193, Université Lille, Lille, France
| | - Yann Coello
- Laboratoire SCALab - Sciences Cognitives et Sciences Affectives, UMR CNRS 9193, Université Lille, Lille, France
| |
Collapse
|
18
|
Cheng Y, Huang X, Hu YX, Huang MH, Yang B, Zhou FQ, Wu XR. Comparison of intrinsic brain activity in individuals with low/moderate myopia versus high myopia revealed by the amplitude of low-frequency fluctuations. Acta Radiol 2020; 61:496-507. [PMID: 31398992 DOI: 10.1177/0284185119867633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Previous neuroimaging studies demonstrated that individuals with high myopia are associated with abnormalities in anatomy of the brain. Purpose The purpose of this study was to explore alterations in the intrinsic brain activity by studying the amplitude of low-frequency fluctuations. Material and Methods A total of 64 myopia individuals (41 with high myopia with a refractive error <–600 diopter [D], 23 with low/moderate myopia with a refractive error between –100 and –600 D, and similarly 59 healthy controls with emmetropia closely matched for age) were recruited. The amplitude of low-frequency fluctuations method was conducted to investigate the difference of intrinsic brain activity across three groups. Results Compared with the healthy controls, individuals with low/moderate myopia showed significantly decreased amplitude of low-frequency fluctuation values in the bilateral rectal gyrus, right cerebellum anterior lobe/calcarine, and bilateral thalamus and showed significantly increased amplitude of low-frequency fluctuation values in left white matter (optic radiation), right prefrontal cortex, and left primary motor cortex (M1)/primary somatosensory cortex (S1). In addition, individuals with high myopia showed significantly decreased amplitude of low-frequency fluctuation values in the right cerebellum anterior lobe/calcarine/bilateral parahippocampal gyrus, bilateral posterior cingulate cortex, and bilateral middle cingulate cortex and significantly increased amplitude of low-frequency fluctuation values in left white matter (optic radiation), bilateral frontal parietal cortex, and left M1/S1. Moreover, we found that the amplitude of low-frequency fluctuation values of the different brain areas was closely related to the clinical features in the high myopia group. Conclusion Our results demonstrated that individuals with low/moderate myopia and high myopia had abnormal intrinsic brain activities in various brain regions related to the limbic system, default mode network, and thalamo-occipital pathway.
Collapse
Affiliation(s)
- Yi Cheng
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, PR China
| | - Xin Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, PR China
| | - Yu-Xiang Hu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, PR China
| | - Mu-Hua Huang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province, PR China
- Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province, PR China
| | - Bo Yang
- Department of Ophthalmology, The People’s Hospital of Xinjiang, Urumqi, PR China
| | - Fu-Qing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province, PR China
- Jiangxi Province Medical Imaging Research Institute, Nanchang, Jiangxi Province, PR China
| | - Xiao-Rong Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, PR China
| |
Collapse
|
19
|
Kanai R, Chang A, Yu Y, Magrans de Abril I, Biehl M, Guttenberg N. Information generation as a functional basis of consciousness. Neurosci Conscious 2019; 2019:niz016. [PMID: 31798969 PMCID: PMC6884095 DOI: 10.1093/nc/niz016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 01/27/2023] Open
Abstract
What is the biological advantage of having consciousness? Functions of consciousness have been elusive due to the subjective nature of consciousness and ample empirical evidence showing the presence of many nonconscious cognitive performances in the human brain. Drawing upon empirical literature, here, we propose that a core function of consciousness be the ability to internally generate representations of events possibly detached from the current sensory input. Such representations are constructed by generative models learned through sensory-motor interactions with the environment. We argue that the ability to generate information underlies a variety of cognitive functions associated with consciousness such as intention, imagination, planning, short-term memory, attention, curiosity, and creativity, all of which contribute to non-reflexive behavior. According to this view, consciousness emerged in evolution when organisms gained the ability to perform internal simulations using internal models, which endowed them with flexible intelligent behavior. To illustrate the notion of information generation, we take variational autoencoders (VAEs) as an analogy and show that information generation corresponds the decoding (or decompression) part of VAEs. In biological brains, we propose that information generation corresponds to top-down predictions in the predictive coding framework. This is compatible with empirical observations that recurrent feedback activations are linked with consciousness whereas feedforward processing alone seems to occur without evoking conscious experience. Taken together, the information generation hypothesis captures many aspects of existing ideas about potential functions of consciousness and provides new perspectives on the functional roles of consciousness.
Collapse
Affiliation(s)
- Ryota Kanai
- Basic Research Group, Araya, Inc., P.O. Box 577 ARK Mori Building 24 F, 1-12-32 Akasaka, Minato-ku, Tokyo, 107-6024, Japan
| | - Acer Chang
- Basic Research Group, Araya, Inc., P.O. Box 577 ARK Mori Building 24 F, 1-12-32 Akasaka, Minato-ku, Tokyo, 107-6024, Japan
| | - Yen Yu
- Basic Research Group, Araya, Inc., P.O. Box 577 ARK Mori Building 24 F, 1-12-32 Akasaka, Minato-ku, Tokyo, 107-6024, Japan
| | - Ildefons Magrans de Abril
- Basic Research Group, Araya, Inc., P.O. Box 577 ARK Mori Building 24 F, 1-12-32 Akasaka, Minato-ku, Tokyo, 107-6024, Japan
| | - Martin Biehl
- Basic Research Group, Araya, Inc., P.O. Box 577 ARK Mori Building 24 F, 1-12-32 Akasaka, Minato-ku, Tokyo, 107-6024, Japan
| | - Nicholas Guttenberg
- Basic Research Group, Araya, Inc., P.O. Box 577 ARK Mori Building 24 F, 1-12-32 Akasaka, Minato-ku, Tokyo, 107-6024, Japan
| |
Collapse
|
20
|
de Vries E, Baldauf D. Attentional Weighting in the Face Processing Network: A Magnetic Response Image-guided Magnetoencephalography Study Using Multiple Cyclic Entrainments. J Cogn Neurosci 2019; 31:1573-1588. [PMID: 31112470 DOI: 10.1162/jocn_a_01428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We recorded magnetoencephalography using a neural entrainment paradigm with compound face stimuli that allowed for entraining the processing of various parts of a face (eyes, mouth) as well as changes in facial identity. Our magnetic response image-guided magnetoencephalography analyses revealed that different subnodes of the human face processing network were entrained differentially according to their functional specialization. Whereas the occipital face area was most responsive to the rate at which face parts (e.g., the mouth) changed, and face patches in the STS were mostly entrained by rhythmic changes in the eye region, the fusiform face area was the only subregion that was strongly entrained by the rhythmic changes in facial identity. Furthermore, top-down attention to the mouth, eyes, or identity of the face selectively modulated the neural processing in the respective area (i.e., occipital face area, STS, or fusiform face area), resembling behavioral cue validity effects observed in the participants' RT and detection rate data. Our results show the attentional weighting of the visual processing of different aspects and dimensions of a single face object, at various stages of the involved visual processing hierarchy.
Collapse
|
21
|
Koenig L, Ro T. Dissociations of conscious and unconscious perception in TMS-induced blindsight. Neuropsychologia 2019; 128:215-222. [DOI: 10.1016/j.neuropsychologia.2018.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 03/18/2018] [Accepted: 03/22/2018] [Indexed: 01/26/2023]
|
22
|
Jiang Q, Shao F, Gao W, Chen Z, Jiang G, Ho YS. Unified No-Reference Quality Assessment of Singly and Multiply Distorted Stereoscopic Images. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2019; 28:1866-1881. [PMID: 30452360 DOI: 10.1109/tip.2018.2881828] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A challenging problem in the no-reference quality assessment of multiply distorted stereoscopic images (MDSIs) is to simulate the monocular and binocular visual properties under a mixed type of distortions. Due to the joint effects of multiple distortions in MDSIs, the underlying monocular and binocular visual mechanisms have different manifestations with those of singly distorted stereoscopic images (SDSIs). This paper presents a unified no-reference quality evaluator for SDSIs and MDSIs by learning monocular and binocular local visual primitives (MB-LVPs). The main idea is to learn MB-LVPs to characterize the local receptive field properties of the visual cortex in response to SDSIs and MDSIs. Furthermore, we also consider that the learning of primitives should be performed in a task-driven manner. For this, two penalty terms including reconstruction error and quality inconsistency are jointly minimized within a supervised dictionary learning framework, generating a set of quality-oriented MB-LVPs for each single and multiple distortion modality. Given an input stereoscopic image, feature encoding is performed using the learned MB-LVPs as codebooks, resulting in the corresponding monocular and binocular responses. Finally, responses across all the modalities are fused with probabilistic weights which are determined by the modality-specific sparse reconstruction errors, yielding the final monocular and binocular features for quality regression. The superiority of our method has been verified on several SDSI and MDSI databases.
Collapse
|
23
|
Singh A, Chandrasekhar Pammi VS, Guleria A, Srinivasan N. Concentrative (Sahaj Samadhi) meditation training and visual awareness: An fMRI study on color afterimages. PROGRESS IN BRAIN RESEARCH 2019; 244:185-206. [PMID: 30732837 DOI: 10.1016/bs.pbr.2018.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
All of us consciously experience the world around us through our sensory modalities. Empirical studies on the relationship between attention and awareness have shown that attention does influence perceptual experience or appearance in addition to better performance in perceptual tasks. The practice of meditation also changes perceptual experience in addition to better perceptual performance. For example, a study with Sahaj Samadhi meditators utilizing negative color afterimages had shown that concentrative meditation influences visual experience. However the brain regions that are modified by meditation practice leading to such changes in visual experience or awareness are still not known. Here using negative color afterimages in a functional MRI study, we investigated the brain mechanisms underlying the changes in visual awareness as a function of attentional enhancement achieved through long-term concentrative meditation practice. We found increased activity in right lateralized inferior occipital and inferior frontal cortex, which suggests the importance of attentional control in modulating visual awareness. The results of this study indicate that the link between attention and conscious experience is possibly changed by meditation practices.
Collapse
Affiliation(s)
- Amrendra Singh
- Centre of Behavioural and Cognitive Sciences, University of Allahabad, Allahabad, India
| | | | | | - Narayanan Srinivasan
- Centre of Behavioural and Cognitive Sciences, University of Allahabad, Allahabad, India.
| |
Collapse
|
24
|
Schendan HE. Memory influences visual cognition across multiple functional states of interactive cortical dynamics. PSYCHOLOGY OF LEARNING AND MOTIVATION 2019. [DOI: 10.1016/bs.plm.2019.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
25
|
Rajaei N, Aoki N, Takahashi HK, Miyaoka T, Kochiyama T, Ohka M, Sadato N, Kitada R. Brain networks underlying conscious tactile perception of textures as revealed using the velvet hand illusion. Hum Brain Mapp 2018; 39:4787-4801. [PMID: 30096223 DOI: 10.1002/hbm.24323] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/29/2018] [Accepted: 07/11/2018] [Indexed: 01/26/2023] Open
Abstract
Humans are adept at perceiving textures through touch. Previous neuroimaging studies have identified a distributed network of brain regions involved in the tactile perception of texture. However, it remains unclear how nodes in this network contribute to the tactile awareness of texture. To examine the hypothesis that such awareness involves the interaction of the primary somatosensory cortex with higher order cortices, we conducted a functional magnetic resonance imaging (fMRI) study utilizing the velvet hand illusion, in which an illusory velvet-like surface is perceived between the hands. Healthy participants were subjected to a strong illusion, a weak illusion, and tactile perception of real velvet. The strong illusion induced greater activation in the primary somatosensory cortex (S1) than the weak illusion, and increases in such activation were positively correlated with the strength of the illusion. Furthermore, both actual and illusory perception of velvet induced common activation in S1. Psychophysiological interaction (PPI) analysis revealed that the strength of the illusion modulated the functional connectivity of S1 with each of the following regions: the parietal operculum, superior parietal lobule, precentral gyrus, insula, and cerebellum. The present results indicate that S1 is associated with the conscious tactile perception of textures, which may be achieved via interactions with higher order somatosensory areas.
Collapse
Affiliation(s)
- Nader Rajaei
- Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, Japan.,Graduate School of Information Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Naoya Aoki
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Japan.,The Graduate University for Advanced Studies, Hayama, Japan
| | | | - Tetsu Miyaoka
- Shizuoka institute of Science and Technology, Fukuroi, Shizuoka, Japan
| | | | - Masahiro Ohka
- Graduate School of Information Science, Nagoya University, Chikusa-ku, Nagoya, Japan
| | - Norihiro Sadato
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Japan.,The Graduate University for Advanced Studies, Hayama, Japan
| | - Ryo Kitada
- Division of Psychology, School of Social Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
26
|
Juxtaposing the real-time unfolding of subjective experience and ERP neuromarker dynamics. Conscious Cogn 2017; 54:3-19. [DOI: 10.1016/j.concog.2017.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 01/08/2023]
|
27
|
Wu Q, Wu J, Takahashi S, Huang Q, Sun H, Guo Q, Ohtani Y, Ejima Y, Zhang X, Li C, Yan T. Modes of Effective Connectivity within Cortical Pathways Are Distinguished for Different Categories of Visual Context: An fMRI Study. Front Behav Neurosci 2017; 11:64. [PMID: 28588458 PMCID: PMC5440725 DOI: 10.3389/fnbeh.2017.00064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 03/29/2017] [Indexed: 12/01/2022] Open
Abstract
Context contributes to accurate and efficient information processing. To reveal the dynamics of the neural mechanisms that underlie the processing of visual contexts during the recognition of color, shape, and 3D structure of objects, we carried out functional magnetic resonance imaging (fMRI) of subjects while judging the contextual validity of the three visual contexts. Our results demonstrated that the modes of effective connectivity in the cortical pathways, as well as the patterns of activation in these pathways, were dynamical depending on the nature of the visual contexts. While the fusiform gyrus, superior parietal lobe, and inferior prefrontal gyrus were activated by the three visual contexts, the temporal and parahippocampal gyrus/Amygdala (PHG/Amg) cortices were activated only by the color context. We further carried out dynamic causal modeling (DCM) analysis and revealed the nature of the effective connectivity involved in the three contextual information processing. DCM showed that there were dynamic connections and collaborations among the brain regions belonging to the previously identified ventral and dorsal visual pathways.
Collapse
Affiliation(s)
- Qiong Wu
- Key Laboratory of Biomimetic Robots and System, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of TechnologyBeijing, China
| | - Jinglong Wu
- Key Laboratory of Biomimetic Robots and System, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of TechnologyBeijing, China.,Cognitive Neuroscience Laboratory, Graduate School of Natural Science and Technology, Okayama UniversityOkayama, Japan
| | | | - Qiang Huang
- Key Laboratory of Biomimetic Robots and Systems, Ministry of Education, Beijing Institute of TechnologyBeijing, China
| | - Hongzan Sun
- Department of Radiology, Shengjing Hospital of China Medical UniversityShenyang, China
| | - Qiyong Guo
- Department of Radiology, Shengjing Hospital of China Medical UniversityShenyang, China
| | - Yoshio Ohtani
- Faculty of Engineering and Design, Kyoto Institute of TechnologyKyoto, Japan
| | - Yoshimichi Ejima
- Key Laboratory of Biomimetic Robots and System, Ministry of Education, State Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of TechnologyBeijing, China
| | - Xu Zhang
- School of Biomedical Engineering, Capital Medical UniversityBeijing, China
| | - Chunlin Li
- School of Biomedical Engineering, Capital Medical UniversityBeijing, China
| | - Tianyi Yan
- School of Life Science, Beijing Institute of TechnologyBeijing, China.,Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, The Ministry of Industry and Information Technology, Beijing Institute of TechnologyBeijing, China
| |
Collapse
|
28
|
Zeki S. Multiple asynchronous stimulus- and task-dependent hierarchies (STDH) within the visual brain's parallel processing systems. Eur J Neurosci 2016; 44:2515-2527. [DOI: 10.1111/ejn.13270] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/25/2016] [Accepted: 05/03/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Semir Zeki
- Wellcome Laboratory of Neurobiology; University College London; London WC1E 6BT UK
| |
Collapse
|
29
|
Tuning perception: Visual working memory biases the quality of visual awareness. Psychon Bull Rev 2016; 23:1854-1859. [DOI: 10.3758/s13423-016-1064-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Breitmeyer BG, Ro T, Singhal NS. Unconscious Color Priming Occurs at Stimulus- Not Percept-Dependent Levels of Processing. Psychol Sci 2016; 15:198-202. [PMID: 15016292 DOI: 10.1111/j.0956-7976.2004.01503009.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Although past studies have shown that visual information can be processed without awareness, the types and levels of this processing have yet to be determined. We used metacontrast masking to explore unconscious priming effects of white, blue, and green stimuli generated on a color video display. We found that a white prime tends to act more like a green than a blue one. Color confusions among unmasked and masked primes and calibrations of the display phosphors show that physical rather than perceptual properties of the stimuli best explain the white prime's effects. We conclude that unconscious color priming in normal observers occurs at early wavelength-dependent levels of processing prior to later color-percept-dependent levels.
Collapse
Affiliation(s)
- Bruno G Breitmeyer
- Department of Psychology and Center for Neuro-Engineering and Cognitive Science, University of Houston, TX 77204-5022, USA.
| | | | | |
Collapse
|
31
|
Deplancke A, Madelain L, Coello Y. Differential effects of forward and backward masks on the relationship between perception and action. Eur J Neurosci 2016; 43:792-801. [DOI: 10.1111/ejn.13173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 12/05/2015] [Accepted: 01/08/2016] [Indexed: 11/28/2022]
Affiliation(s)
- A. Deplancke
- Univ. Lille; CNRS; CHU Lille; UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives; F-59000 Lille France
| | - L. Madelain
- Univ. Lille; CNRS; CHU Lille; UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives; F-59000 Lille France
| | - Y. Coello
- Univ. Lille; CNRS; CHU Lille; UMR 9193 - SCALab - Sciences Cognitives et Sciences Affectives; F-59000 Lille France
| |
Collapse
|
32
|
Montijn JS, Goltstein PM, Pennartz CMA. Mouse V1 population correlates of visual detection rely on heterogeneity within neuronal response patterns. eLife 2015; 4:e10163. [PMID: 26646184 PMCID: PMC4739777 DOI: 10.7554/elife.10163] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/06/2015] [Indexed: 01/23/2023] Open
Abstract
Previous studies have demonstrated the importance of the primary sensory cortex for the detection, discrimination, and awareness of visual stimuli, but it is unknown how neuronal populations in this area process detected and undetected stimuli differently. Critical differences may reside in the mean strength of responses to visual stimuli, as reflected in bulk signals detectable in functional magnetic resonance imaging, electro-encephalogram, or magnetoencephalography studies, or may be more subtly composed of differentiated activity of individual sensory neurons. Quantifying single-cell Ca2+ responses to visual stimuli recorded with in vivo two-photon imaging, we found that visual detection correlates more strongly with population response heterogeneity rather than overall response strength. Moreover, neuronal populations showed consistencies in activation patterns across temporally spaced trials in association with hit responses, but not during nondetections. Contrary to models relying on temporally stable networks or bulk signaling, these results suggest that detection depends on transient differentiation in neuronal activity within cortical populations. DOI:http://dx.doi.org/10.7554/eLife.10163.001 Seeing is not the same as perceiving, where an object is recognized and information about it is interpreted by the brain. Things might be in your field of view, but not actively perceived; for example, when daydreaming with your eyes open. Many researchers have investigated how the brain responds differently to a perceived object compared with something that is seen but not perceived. However, using relatively coarse techniques, only small differences in brain activity have been found. Many of the techniques used to investigate brain activity only look at the average activity of a group of neurons – the cells in the brain that process information. This raises the possibility that the perception of an object relies on more subtle or complex interactions in brain activity. To investigate this, Montijn et al. trained mice to lick a reward spout that gave out sugar water when they perceived a particular image. A technique called two-photon calcium imaging was then used to simultaneously record the activity of tens to hundreds of neurons in part of the brain called the visual cortex as the mice performed the perception task. This revealed that the average activation of a group of neurons was only weakly related to whether a mouse had perceived the image. However, differences in the strength of the responses of the individual neurons in the group reflected perception more strongly: when a mouse perceived the image and licked in response, a heterogeneous (non-uniform) set of neuronal responses occurred. The diversity of the neuronal responses could also be used to predict how quickly a mouse would respond to an image. These activity differences would not be picked up by techniques that detect the average activity of many neurons, explaining why these effects had not previously been seen. These findings shed light on which patterns of activity in the visual region of the brain lead to objects being perceived or not. Whether similar mechanisms operate in different regions of the brain remains to be investigated. DOI:http://dx.doi.org/10.7554/eLife.10163.002
Collapse
Affiliation(s)
- Jorrit S Montijn
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Pieter M Goltstein
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands.,Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands.,Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
33
|
Mathews Z, Cetnarski R, Verschure PFMJ. Visual anticipation biases conscious decision making but not bottom-up visual processing. Front Psychol 2015; 5:1443. [PMID: 25741290 PMCID: PMC4330879 DOI: 10.3389/fpsyg.2014.01443] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 11/25/2014] [Indexed: 11/17/2022] Open
Abstract
Prediction plays a key role in control of attention but it is not clear which aspects of prediction are most prominent in conscious experience. An evolving view on the brain is that it can be seen as a prediction machine that optimizes its ability to predict states of the world and the self through the top-down propagation of predictions and the bottom-up presentation of prediction errors. There are competing views though on whether prediction or prediction errors dominate the formation of conscious experience. Yet, the dynamic effects of prediction on perception, decision making and consciousness have been difficult to assess and to model. We propose a novel mathematical framework and a psychophysical paradigm that allows us to assess both the hierarchical structuring of perceptual consciousness, its content and the impact of predictions and/or errors on conscious experience, attention and decision-making. Using a displacement detection task combined with reverse correlation, we reveal signatures of the usage of prediction at three different levels of perceptual processing: bottom-up fast saccades, top-down driven slow saccades and consciousnes decisions. Our results suggest that the brain employs multiple parallel mechanism at different levels of perceptual processing in order to shape effective sensory consciousness within a predicted perceptual scene. We further observe that bottom-up sensory and top-down predictive processes can be dissociated through cognitive load. We propose a probabilistic data association model from dynamical systems theory to model the predictive multi-scale bias in perceptual processing that we observe and its role in the formation of conscious experience. We propose that these results support the hypothesis that consciousness provides a time-delayed description of a task that is used to prospectively optimize real time control structures, rather than being engaged in the real-time control of behavior itself.
Collapse
Affiliation(s)
- Zenon Mathews
- Synthetic, Perceptive, Emotive and Cognitive Systems Group, Department of Technology, Information and Communication, Center of Autonomous Systems and Neurorobotics, Universitat Pompeu Fabra Barcelona, Spain
| | - Ryszard Cetnarski
- Synthetic, Perceptive, Emotive and Cognitive Systems Group, Department of Technology, Information and Communication, Center of Autonomous Systems and Neurorobotics, Universitat Pompeu Fabra Barcelona, Spain
| | - Paul F M J Verschure
- Synthetic, Perceptive, Emotive and Cognitive Systems Group, Department of Technology, Information and Communication, Center of Autonomous Systems and Neurorobotics, Universitat Pompeu Fabra Barcelona, Spain ; Institucio Catalana de Recerca i Estudis Avançats, Passeig Llus Companys Barcelona, Spain
| |
Collapse
|
34
|
Tapia E, Beck DM. Probing feedforward and feedback contributions to awareness with visual masking and transcranial magnetic stimulation. Front Psychol 2014; 5:1173. [PMID: 25374548 PMCID: PMC4204434 DOI: 10.3389/fpsyg.2014.01173] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/26/2014] [Indexed: 11/13/2022] Open
Abstract
A number of influential theories posit that visual awareness relies not only on the initial, stimulus-driven (i.e., feedforward) sweep of activation but also on recurrent feedback activity within and between brain regions. These theories of awareness draw heavily on data from masking paradigms in which visibility of one stimulus is reduced due to the presence of another stimulus. More recently transcranial magnetic stimulation (TMS) has been used to study the temporal dynamics of visual awareness. TMS over occipital cortex affects performance on visual tasks at distinct time points and in a manner that is comparable to visual masking. We draw parallels between these two methods and examine evidence for the neural mechanisms by which visual masking and TMS suppress stimulus visibility. Specifically, both methods have been proposed to affect feedforward as well as feedback signals when applied at distinct time windows relative to stimulus onset and as a result modify visual awareness. Most recent empirical evidence, moreover, suggests that while visual masking and TMS impact stimulus visibility comparably, the processes these methods affect may not be as similar as previously thought. In addition to reviewing both masking and TMS studies that examine feedforward and feedback processes in vision, we raise questions to guide future studies and further probe the necessary conditions for visual awareness.
Collapse
Affiliation(s)
- Evelina Tapia
- Beckman Institute, University of Illinois Urbana-Champaign Urbana, IL USA
| | - Diane M Beck
- Beckman Institute, University of Illinois Urbana-Champaign Urbana, IL USA ; Department of Psychology, University of Illinois Urbana-Champaign Urbana, IL, USA
| |
Collapse
|
35
|
Heyman T, Moors P. Frequent words do not break continuous flash suppression differently from infrequent or nonexistent words: implications for semantic processing of words in the absence of awareness. PLoS One 2014; 9:e104719. [PMID: 25116265 PMCID: PMC4130538 DOI: 10.1371/journal.pone.0104719] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 07/13/2014] [Indexed: 11/19/2022] Open
Abstract
Continuous flash suppression (CFS) has been used as a paradigm to probe the extent to which word stimuli are processed in the absence of awareness. In the two experiments reported here, no evidence is obtained that word stimuli are processed up to the semantic level when suppressed through CFS. In Experiment 1, word stimuli did not break suppression faster than their pseudo-word variants nor was suppression time modulated by word frequency. Experiment 2 replicated these findings, but more critically showed that differential effects can be obtained with this paradigm using a simpler stimulus. In addition, pixel density of the stimuli did prove to be related to suppression time in both experiments, indicating that the paradigm is sensitive to differences in detectability. A third and final experiment replicated the well-known face inversion effect using the same set-up as Experiments 1 and 2, thereby demonstrating that the employed methodology can capture more high-level effects as well. These results are discussed in the context of previous evidence on unconscious semantic processing and two potential explanations are advanced. Specifically, it is argued that CFS might act at a level too low in the visual system for high-level effects to be observed or that the widely used breaking CFS paradigm is merely ill-suited to capture effects in the context of words.
Collapse
Affiliation(s)
- Tom Heyman
- Laboratory of Experimental Psychology, University of Leuven, Leuven, Belgium
| | - Pieter Moors
- Laboratory of Experimental Psychology, University of Leuven, Leuven, Belgium
| |
Collapse
|
36
|
Bachmann T. A hidden ambiguity of the term "feedback" in its use as an explanatory mechanism for psychophysical visual phenomena. Front Psychol 2014; 5:780. [PMID: 25101037 PMCID: PMC4106009 DOI: 10.3389/fpsyg.2014.00780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/02/2014] [Indexed: 11/26/2022] Open
Affiliation(s)
- Talis Bachmann
- Institute of Public Law, University of Tartu Tartu, Estonia
| |
Collapse
|
37
|
Excitatory synaptic feedback from the motor layer to the sensory layers of the superior colliculus. J Neurosci 2014; 34:6822-33. [PMID: 24828636 DOI: 10.1523/jneurosci.3137-13.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural circuits that translate sensory information into motor commands are organized in a feedforward manner converting sensory information into motor output. The superior colliculus (SC) follows this pattern as it plays a role in converting visual information from the retina and visual cortex into motor commands for rapid eye movements (saccades). Feedback from movement to sensory regions is hypothesized to play critical roles in attention, visual image stability, and saccadic suppression, but in contrast to feedforward pathways, motor feedback to sensory regions has received much less attention. The present study used voltage imaging and patch-clamp recording in slices of rat SC to test the hypothesis of an excitatory synaptic pathway from the motor layers of the SC back to the sensory superficial layers. Voltage imaging revealed an extensive depolarization of the superficial layers evoked by electrical stimulation of the motor layers. A pharmacologically isolated excitatory synaptic potential in the superficial layers depended on stimulus strength in the motor layers in a manner consistent with orthodromic excitation. Patch-clamp recording from neurons in the sensory layers revealed excitatory synaptic potentials in response to glutamate application in the motor layers. The location, size, and morphology of responsive neurons indicated they were likely to be narrow-field vertical cells. This excitatory projection from motor to sensory layers adds an important element to the circuitry of the SC and reveals a novel feedback pathway that could play a role in enhancing sensory responses to attended targets as well as visual image stabilization.
Collapse
|
38
|
de Graaf TA, Koivisto M, Jacobs C, Sack AT. The chronometry of visual perception: review of occipital TMS masking studies. Neurosci Biobehav Rev 2014; 45:295-304. [PMID: 25010557 DOI: 10.1016/j.neubiorev.2014.06.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 11/17/2022]
Abstract
Transcranial magnetic stimulation (TMS) continues to deliver on its promise as a research tool. In this review article we focus on the application of TMS to early visual cortex (V1, V2, V3) in studies of visual perception and visual awareness. Depending on the asynchrony between visual stimulus onset and TMS pulse (SOA), TMS can suppress visual perception, allowing one to track the time course of functional relevance (chronometry) of early visual cortex for vision. This procedure has revealed multiple masking effects ('dips'), some consistently (∼+100ms SOA) but others less so (∼-50ms, ∼-20ms, ∼+30ms, ∼+200ms SOA). We review the state of TMS masking research, focusing on the evidence for these multiple dips, the relevance of several experimental parameters to the obtained 'masking curve', and the use of multiple measures of visual processing (subjective measures of awareness, objective discrimination tasks, priming effects). Lastly, we consider possible future directions for this field. We conclude that while TMS masking has yielded many fundamental insights into the chronometry of visual perception already, much remains unknown. Not only are there several temporal windows when TMS pulses can induce visual suppression, even the well-established 'classical' masking effect (∼+100ms) may reflect more than one functional visual process.
Collapse
Affiliation(s)
- Tom A de Graaf
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200MD Maastricht, The Netherlands; Maastricht Brain Imaging Center, PO Box 616, 6200MD Maastricht, The Netherlands.
| | - Mika Koivisto
- Centre for Cognitive Neuroscience and Department of Psychology, University of Turku, FIN-20014 Turku, Finland
| | - Christianne Jacobs
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200MD Maastricht, The Netherlands; Maastricht Brain Imaging Center, PO Box 616, 6200MD Maastricht, The Netherlands; Department of Psychology, Faculty of Science and Technology, University of Westminster, 309 Regent Street, W1B 2HW London, United Kingdom
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200MD Maastricht, The Netherlands; Maastricht Brain Imaging Center, PO Box 616, 6200MD Maastricht, The Netherlands
| |
Collapse
|
39
|
Nardella A, Rocchi L, Conte A, Bologna M, Suppa A, Berardelli A. Inferior parietal lobule encodes visual temporal resolution processes contributing to the critical flicker frequency threshold in humans. PLoS One 2014; 9:e98948. [PMID: 24905987 PMCID: PMC4048231 DOI: 10.1371/journal.pone.0098948] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/08/2014] [Indexed: 11/24/2022] Open
Abstract
The measurement of the Critical Flicker Frequency threshold is used to study the visual temporal resolution in healthy subjects and in pathological conditions. To better understand the role played by different cortical areas in the Critical Flicker Frequency threshold perception we used continuous Theta Burst Stimulation (cTBS), an inhibitory plasticity-inducing protocol based on repetitive transcranial magnetic stimulation. The Critical Flicker Frequency threshold was measured in twelve healthy subjects before and after cTBS applied over different cortical areas in separate sessions. cTBS over the left inferior parietal lobule altered the Critical Flicker Frequency threshold, whereas cTBS over the left mediotemporal cortex, primary visual cortex and right inferior parietal lobule left the Critical Flicker Frequency threshold unchanged. No statistical difference was found when the red or blue lights were used. Our findings show that left inferior parietal lobule is causally involved in the conscious perception of Critical Flicker Frequency and that Critical Flicker Frequency threshold can be modulated by plasticity-inducing protocols.
Collapse
Affiliation(s)
| | - Lorenzo Rocchi
- Department of Neurology and Psychiatry, "Sapienza", University of Rome, Rome, Italy
| | - Antonella Conte
- IRCCS Neuromed, Pozzilli, Isernia, Italy
- Department of Neurology and Psychiatry, "Sapienza", University of Rome, Rome, Italy
| | | | | | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli, Isernia, Italy
- Department of Neurology and Psychiatry, "Sapienza", University of Rome, Rome, Italy
- * E-mail:
| |
Collapse
|
40
|
Panagiotaropoulos TI, Kapoor V, Logothetis NK. Subjective visual perception: from local processing to emergent phenomena of brain activity. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130534. [PMID: 24639588 DOI: 10.1098/rstb.2013.0534] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The combination of electrophysiological recordings with ambiguous visual stimulation made possible the detection of neurons that represent the content of subjective visual perception and perceptual suppression in multiple cortical and subcortical brain regions. These neuronal populations, commonly referred to as the neural correlates of consciousness, are more likely to be found in the temporal and prefrontal cortices as well as the pulvinar, indicating that the content of perceptual awareness is represented with higher fidelity in higher-order association areas of the cortical and thalamic hierarchy, reflecting the outcome of competitive interactions between conflicting sensory information resolved in earlier stages. However, despite the significant insights into conscious perception gained through monitoring the activities of single neurons and small, local populations, the immense functional complexity of the brain arising from correlations in the activity of its constituent parts suggests that local, microscopic activity could only partially reveal the mechanisms involved in perceptual awareness. Rather, the dynamics of functional connectivity patterns on a mesoscopic and macroscopic level could be critical for conscious perception. Understanding these emergent spatio-temporal patterns could be informative not only for the stability of subjective perception but also for spontaneous perceptual transitions suggested to depend either on the dynamics of antagonistic ensembles or on global intrinsic activity fluctuations that may act upon explicit neural representations of sensory stimuli and induce perceptual reorganization. Here, we review the most recent results from local activity recordings and discuss the potential role of effective, correlated interactions during perceptual awareness.
Collapse
Affiliation(s)
- Theofanis I Panagiotaropoulos
- Department of Physiology of Cognitive Processes, Max-Planck-Institute for Biological Cybernetics, , Tübingen 72076, Germany
| | | | | |
Collapse
|
41
|
State-Dependent Transcranial Magnetic Stimulation (TMS) Protocols. TRANSCRANIAL MAGNETIC STIMULATION 2014. [DOI: 10.1007/978-1-4939-0879-0_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
42
|
Evidence for metaplasticity in the human visual cortex. J Neural Transm (Vienna) 2013; 121:221-31. [PMID: 24162796 DOI: 10.1007/s00702-013-1104-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
Abstract
The threshold and direction of excitability changes induced by low- and high-frequency repetitive transcranial magnetic stimulation (rTMS) in the primary motor cortex can be effectively reverted by a preceding session of transcranial direct current stimulation (tDCS), a phenomenon referred to as "metaplasticity". Here, we used a combined tDCS-rTMS protocol and visual evoked potentials (VEPs) in healthy subjects to provide direct electrophysiological evidence for metaplasticity in the human visual cortex. Specifically, we evaluated changes in VEPs at two different contrasts (90 and 20 %) before and at different time points after the application of anodal or cathodal tDCS to occipital cortex (i.e., priming), followed by an additional conditioning with low- or high-frequency rTMS. Anodal tDCS increased the amplitude of VEPs and this effect was paradoxically reverted by applying high-frequency (5 Hz), conventionally excitatory rTMS (p < 0.0001). Similarly, cathodal tDCS led to a decrease in VEPs amplitude, which was reverted by a subsequent application of conventionally inhibitory, 1 Hz rTMS (p < 0.0001). Similar changes were observed for both the N1 and P1 component of the VEP. There were no significant changes in resting motor threshold values (p > 0.5), confirming the spatial selectivity of our conditioning protocol. Our findings show that preconditioning primary visual area excitability with tDCS can modulate the direction and strength of plasticity induced by subsequent application of 1 or 5 Hz rTMS. These data indicate the presence of mechanisms of metaplasticity that keep synaptic strengths within a functional dynamic range in the human visual cortex.
Collapse
|
43
|
Contextual influences in texture-segmentation: distinct effects from elements along the edge and in the texture-region. Vision Res 2013; 88:1-8. [PMID: 23770435 DOI: 10.1016/j.visres.2013.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 04/12/2013] [Accepted: 05/30/2013] [Indexed: 01/27/2023]
Abstract
Both neurophysiological and psychophysical evidence suggest a strong influence of context on texture-segmentation. Here we extend and further analyse this issue, with a particular focus on the underlying mechanism. Specifically, we use a texture-edge discrimination task and separately investigate the effect of elements far from and along the edge. Consistent with previous studies, we report both an iso-near contextual effect - whereby performance is better if elements along the edge are iso-oriented compared to ortho-oriented to the edge - as well as an ortho-far effect - whereby discrimination is higher when elements far from the edge are orthogonal to the edge. We found that backward mask, which is known to interrupt re-entrant processing from extrastriate areas, only interferes with the iso-near effect whereas perturbing orientation, position or contrast polarity of elements far from the edge only abolishes the ortho-far effect. This suggests that feedback processes may be involved in the iso-near effect. Instead, the ortho-far effect may be accounted for by recurrent interactions among 1st order filters.
Collapse
|
44
|
Rassovsky Y, Lee J, Nori P, D Wu A, Iacoboni M, Breitmeyer BG, Hellemann G, Green MF. Assessing temporal processing of facial emotion perception with transcranial magnetic stimulation. Brain Behav 2013; 3:263-72. [PMID: 23785658 PMCID: PMC3683286 DOI: 10.1002/brb3.136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 02/13/2013] [Accepted: 02/23/2013] [Indexed: 11/30/2022] Open
Abstract
The ability to process facial expressions can be modified by altering the spatial frequency of the stimuli, an effect that has been attributed to differential properties of visual pathways that convey different types of information to distinct brain regions at different speeds. While this effect suggests a potential influence of spatial frequency on the processing speed of facial emotion, this hypothesis has not been examined directly. We addressed this question using a facial emotion identification task with photographs containing either high spatial frequency (HSF), low spatial frequency (LSF), or broadband spatial frequency (BSF). Temporal processing of emotion perception was manipulated by suppressing visual perception with a single-pulse transcranial magnetic stimulation (TMS), delivered to the visual cortex at six intervals prior to (forward masking) or following (backward masking) stimulus presentation. Participants performed best in the BSF, followed by LSF, and finally HSF condition. A spatial frequency by forward/backward masking interaction effect demonstrated reduced performance in the forward masking component in the BSF condition and a reversed performance pattern in the HSF condition, with no significant differences between forward and backward masking in the LSF condition. Results indicate that LSF information may play a greater role than HSF information in emotional processing, but may not be sufficient for fast conscious perception of emotion. As both LSF and HSF filtering reduced the speed of extracting emotional information from faces, it is possible that intact BSF faces have an inherent perceptual advantage and hence benefit from faster temporal processing.
Collapse
Affiliation(s)
- Yuri Rassovsky
- Department of Psychology and Gonda Multidisciplinary Brain Research Center, Bar-Ilan University Ramat-Gan, Israel ; Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience and Human Behavior Los Angeles, California
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Stochastic generation of gamma-band activity in primary visual cortex of awake and anesthetized monkeys. J Neurosci 2013; 32:13873-80a. [PMID: 23035096 DOI: 10.1523/jneurosci.5644-11.2012] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oscillatory neural activity within the gamma band (25-90 Hz) is generally thought to be able to provide a timing signal for harmonizing neural computations across different brain regions. Using time-frequency analyses of the dynamics of gamma-band activity in the local field potentials recorded from monkey primary visual cortex, we found identical temporal characteristics of gamma activity in both awake and anesthetized brain states, including large variability of peak frequency, brief oscillatory epochs (<100 ms on average), and stochastic statistics of the incidence and duration of oscillatory events. These findings indicate that gamma-band activity is temporally unstructured and is inherently a stochastic signal generated by neural networks. This idea was corroborated further by our neural-network simulations. Our results suggest that gamma-band activity is too random to serve as a clock signal for synchronizing neuronal responses in awake as in anesthetized monkeys. Instead, gamma-band activity is more likely to be filtered neuronal network noise. Its mean frequency changes with global state and is reduced under anesthesia.
Collapse
|
46
|
|
47
|
Jacobs C, Sack AT. Behavior in oblivion: the neurobiology of subliminal priming. Brain Sci 2012; 2:225-41. [PMID: 24962773 PMCID: PMC4061795 DOI: 10.3390/brainsci2020225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/09/2012] [Accepted: 05/16/2012] [Indexed: 11/23/2022] Open
Abstract
Subliminal priming refers to behavioral modulation by an unconscious stimulus, and can thus be regarded as a form of unconscious visual processing. Theories on recurrent processing have suggested that the neural correlate of consciousness (NCC) comprises of the non-hierarchical transfer of stimulus-related information. According to these models, the neural correlate of subliminal priming (NCSP) corresponds to the visual processing within the feedforward sweep. Research from cognitive neuroscience on these two concepts and the relationship between them is discussed here. Evidence favoring the necessity of recurrent connectivity for visual awareness is accumulating, although some questions, such as the need for global versus local recurrent processing, are not clarified yet. However, this is not to say that recurrent processing is sufficient for consciousness, as a neural definition of consciousness in terms of recurrent connectivity would imply. We argue that the limited interest cognitive neuroscience currently has for the NCSP is undeserved, because the discovery of the NCSP can give insight into why people do (and do not) express certain behavior.
Collapse
Affiliation(s)
- Christianne Jacobs
- Department of Cognitive Neuroscience, FPN, Maastricht University, Maastricht, 6200 MD, The Netherlands.
| | - Alexander T Sack
- Department of Cognitive Neuroscience, FPN, Maastricht University, Maastricht, 6200 MD, The Netherlands.
| |
Collapse
|
48
|
The effect of visual experience on texture segmentation without awareness. Vision Res 2011; 51:2509-16. [DOI: 10.1016/j.visres.2011.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 09/25/2011] [Accepted: 10/10/2011] [Indexed: 11/20/2022]
|
49
|
Tao X, Zhang B, Smith EL, Nishimoto S, Ohzawa I, Chino YM. Local sensitivity to stimulus orientation and spatial frequency within the receptive fields of neurons in visual area 2 of macaque monkeys. J Neurophysiol 2011; 107:1094-110. [PMID: 22114163 DOI: 10.1152/jn.00640.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used dynamic dense noise stimuli and local spectral reverse correlation methods to reveal the local sensitivities of neurons in visual area 2 (V2) of macaque monkeys to orientation and spatial frequency within their receptive fields. This minimized the potentially confounding assumptions that are inherent in stimulus selections. The majority of neurons exhibited a relatively high degree of homogeneity for the preferred orientations and spatial frequencies in the spatial matrix of facilitatory subfields. However, about 20% of all neurons showed maximum orientation differences between neighboring subfields that were greater than 25 deg. The neurons preferring horizontal or vertical orientations showed less inhomogeneity in space than the neurons preferring oblique orientations. Over 50% of all units also exhibited suppressive profiles, and those were more heterogeneous than facilitatory profiles. The preferred orientation and spatial frequency of suppressive profiles differed substantially from those of facilitatory profiles, and the neurons with suppressive subfields had greater orientation selectivity than those without suppressive subfields. The peak suppression occurred with longer delays than the peak facilitation. These results suggest that the receptive field profiles of the majority of V2 neurons reflect the orderly convergence of V1 inputs over space, but that a subset of V2 neurons exhibit more complex response profiles having both suppressive and facilitatory subfields. These V2 neurons with heterogeneous subfield profiles could play an important role in the initial processing of complex stimulus features.
Collapse
Affiliation(s)
- X Tao
- University of Houston College of Optometry, Houston, Texas 77204-2020, USA
| | | | | | | | | | | |
Collapse
|
50
|
Tracking the processes behind conscious perception: A review of event-related potential correlates of visual consciousness. Conscious Cogn 2011; 20:972-83. [DOI: 10.1016/j.concog.2011.03.019] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 03/01/2011] [Accepted: 03/18/2011] [Indexed: 11/21/2022]
|