1
|
Klandorf H, Dartigue V. Oxidative stress and plasma ceramides in broiler chickens. Front Physiol 2024; 15:1411332. [PMID: 39077757 PMCID: PMC11284268 DOI: 10.3389/fphys.2024.1411332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/19/2024] [Indexed: 07/31/2024] Open
Abstract
The selection for rapid growth in chickens has rendered meat-type (broiler) chickens susceptible to develop metabolic syndrome and thus inflammation. The sphingolipid ceramide has been linked as a marker of oxidative stress in mammals, however, the relationship between sphingolipid ceramide supply and oxidative stress in broiler chickens has not been investigated. Therefore, we employed a lipidomic approach to investigate the changes in circulating sphingolipid ceramides in context of allopurinol-induced oxidative stress in birds. Day zero hatched chicks (n = 60) were equally divided into six groups; an unsupplemented control, an allopurinol group (25 mg/kg body weight), a conjugated linoleic acid (CLA) group where half of the oil used in the control diet was substituted for a CLA oil mixture, a CLA and an allopurinol group utilizing the same dose of CLA and allopurinol, a berberine (BRB) group consisting of berberine supplementation (200 mg/kg feed), and a BRB and allopurinol group, utilizing the same dose of BRB and allopurinol. Conjugated linoleic acid and berberine were utilized to potentially enhance antioxidant activity and suppress the oxidative stress induced by allopurinol treatment. Body weight, plasma uric acid, nonesterified fatty acids (NEFA) and sphingolipid ceramides were quantified. Allopurinol induced an inflammatory state as measured by a significant reduction in plasma uric acid - an antioxidant in birds as well as a metabolic waste product. Results showed that both total and saturated sphingolipid ceramides declined (p < 0.05) with age in unsupplemented chicks, although plasma ceramides C16:0 and 18:0 increased in concentration over the study period. Simple total and saturated sphingolipid ceremide's were further decreased (p < 0.05) with allopurinol supplementation, however, this may be an indirect consequence of inducing an inflammatory state. Neither CLA or BRB were able to significantly attenuate the decline. The administration of allopurinol specifically targets the liver which in birds, is the primary organ for fatty acids synthesis. For this reason, sphingolipid ceramide production might have been unwittingly affected by the addition of allopurinol.
Collapse
|
2
|
Moseholm KF, Horn JW, Fitzpatrick AL, Djoussé L, Longstreth WT, Lopez OL, Hoofnagle AN, Jensen MK, Lemaitre RN, Mukamal KJ. Circulating sphingolipids and subclinical brain pathology: the cardiovascular health study. Front Neurol 2024; 15:1385623. [PMID: 38765262 PMCID: PMC11099203 DOI: 10.3389/fneur.2024.1385623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/08/2024] [Indexed: 05/21/2024] Open
Abstract
Background Sphingolipids are implicated in neurodegeneration and neuroinflammation. We assessed the potential role of circulating ceramides and sphingomyelins in subclinical brain pathology by investigating their association with brain magnetic resonance imaging (MRI) measures and circulating biomarkers of brain injury, neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in the Cardiovascular Health Study (CHS), a large and intensively phenotyped cohort of older adults. Methods Brain MRI was offered twice to CHS participants with a mean of 5 years between scans, and results were available from both time points in 2,116 participants (mean age 76 years; 40% male; and 25% APOE ε4 allele carriers). We measured 8 ceramide and sphingomyelin species in plasma samples and examined the associations with several MRI, including worsening grades of white matter hyperintensities and ventricular size, number of brain infarcts, and measures of brain atrophy in a subset with quantitative measures. We also investigated the sphingolipid associations with serum NfL and GFAP. Results In the fully adjusted model, higher plasma levels of ceramides and sphingomyelins with a long (16-carbon) saturated fatty acid were associated with higher blood levels of NfL [β = 0.05, false-discovery rate corrected P (PFDR) = 0.004 and β = 0.06, PFDR = < 0.001, respectively]. In contrast, sphingomyelins with very long (20- and 22-carbon) saturated fatty acids tended to have an inverse association with levels of circulating NfL. In secondary analyses, we found an interaction between ceramide d18:1/20:0 and sex (P for interaction = <0.001), such that ceramide d18:1/20:0 associated with higher odds for infarcts in women [OR = 1.26 (95%CI: 1.07, 1.49), PFDR = 0.03]. We did not observe any associations with GFAP blood levels, white matter grade, ventricular grade, mean bilateral hippocampal volume, or total brain volume. Conclusion Overall, our comprehensive investigation supports the evidence that ceramides and sphingomyelins are associated with increased aging brain pathology and that the direction of association depends on the fatty acid attached to the sphingosine backbone.
Collapse
Affiliation(s)
- Kristine F. Moseholm
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Jens W. Horn
- Department of Internal Medicine, Levanger Hospital, Health Trust Nord-Trøndelag, Levanger, Norway
| | - Annette L. Fitzpatrick
- Departments of Family Medicine and Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States
| | - Luc Djoussé
- Division of Aging, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - W. T. Longstreth
- Departments of Family Medicine and Epidemiology, School of Public Health, University of Washington, Seattle, WA, United States
- Department of Neurology, School of Medicine, University of Washington, Seattle, WA, United States
| | - Oscar L. Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Andrew N. Hoofnagle
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, WA, United States
| | - Majken K. Jensen
- Department of Public Health, Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Rozenn N. Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Kenneth J. Mukamal
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
| |
Collapse
|
3
|
Zhang J, Wang W, Cui X, Zhu P, Li S, Yuan S, Peng D, Peng C. Ganoderma lucidum ethanol extracts ameliorate hepatic fibrosis and promote the communication between metabolites and gut microbiota g_Ruminococcus through the NF-κB and TGF-β1/Smads pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117656. [PMID: 38154526 DOI: 10.1016/j.jep.2023.117656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/10/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ganoderma lucidum, a traditional edible medicinal mushroom, has been widely reported to improve liver diseases as a dietary intervention for people. Ganoderma lucidum extracts, primarily total triterpenoids (GLTTs), are one of the bioactive ingredients that have excellent beneficial effects on hepatic fibrosis. Therefore, its prevention and reversal are particularly critical due to the increasing number of patients with chronic liver diseases worldwide. AIM OF THE STUDY The study aimed to evaluate whether GLTTs had a hepatoprotective effect against hepatic fibrosis through metabolic perturbations and gut microbiota changes and its underlying mechanisms. MATERIALS AND METHODS The compound compositions of GLTTs were quantified, and carbon tetrachloride (CCl4)-induced hepatic fibrosis rats were used to investigate the cause of the improvement in various physiological states with GLTTs treatment, and to determine whether its consequent effect was associated with endogenous metabolites and gut microbiota using UPLC-Q-TOF-MSE metabolomics and 16S rRNA gene sequencing technology. RESULTS GLTTs alleviated physical status, reduced liver pathological indicators, proinflammatory cytokines, and deposition of hepatic collagen fibers via regulating the NF-κB and TGF-β1/Smads pathways. The untargeted metabolomics analysis identified 16 potential metabolites that may be the most relevant metabolites for gut microbiota dysbiosis and the therapeutic effects of GLTTs in hepatic fibrosis. Besides, although GLTTs did not significantly affect the α-diversity indexes, significant changes were observed in the composition of microflora structure. In addition, Spearman analysis revealed strong correlations between endogenous metabolites and gut microbiota g_Ruminococcus with hepatic fibrosis. CONCLUSION GLTTs could provide a potential target for the practical design and application of novel functional food ingredients or drugs in the therapy of hepatic fibrosis.
Collapse
Affiliation(s)
- Jing Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wen Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xinge Cui
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Pengling Zhu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Siyu Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shujie Yuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Generic Technology Research Center for Anhui TCM Industry, Anhui University of Chinese Medicine, Hefei, 230012, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; Rural Revitalization Collaborative Technical Service Center of Anhui Province, Anhui University of Chinese Medicine, Hefei, 230012, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230012, China; Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China; Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Anhui University of Chinese Medicine, Hefei, 230012, China.
| |
Collapse
|
4
|
Yuan H, Zhu B, Li C, Zhao Z. Ceramide in cerebrovascular diseases. Front Cell Neurosci 2023; 17:1191609. [PMID: 37333888 PMCID: PMC10272456 DOI: 10.3389/fncel.2023.1191609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Ceramide, a bioactive sphingolipid, serves as an important second messenger in cell signal transduction. Under stressful conditions, it can be generated from de novo synthesis, sphingomyelin hydrolysis, and/or the salvage pathway. The brain is rich in lipids, and abnormal lipid levels are associated with a variety of brain disorders. Cerebrovascular diseases, which are mainly caused by abnormal cerebral blood flow and secondary neurological injury, are the leading causes of death and disability worldwide. There is a growing body of evidence for a close connection between elevated ceramide levels and cerebrovascular diseases, especially stroke and cerebral small vessel disease (CSVD). The increased ceramide has broad effects on different types of brain cells, including endothelial cells, microglia, and neurons. Therefore, strategies that reduce ceramide synthesis, such as modifying sphingomyelinase activity or the rate-limiting enzyme of the de novo synthesis pathway, serine palmitoyltransferase, may represent novel and promising therapeutic approaches to prevent or treat cerebrovascular injury-related diseases.
Collapse
|
5
|
Burtscher J, Pepe G, Maharjan N, Riguet N, Di Pardo A, Maglione V, Millet GP. Sphingolipids and impaired hypoxic stress responses in Huntington disease. Prog Lipid Res 2023; 90:101224. [PMID: 36898481 DOI: 10.1016/j.plipres.2023.101224] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023]
Abstract
Huntington disease (HD) is a debilitating, currently incurable disease. Protein aggregation and metabolic deficits are pathological hallmarks but their link to neurodegeneration and symptoms remains debated. Here, we summarize alterations in the levels of different sphingolipids in an attempt to characterize sphingolipid patterns specific to HD, an additional molecular hallmark of the disease. Based on the crucial role of sphingolipids in maintaining cellular homeostasis, the dynamic regulation of sphingolipids upon insults and their involvement in cellular stress responses, we hypothesize that maladaptations or blunted adaptations, especially following cellular stress due to reduced oxygen supply (hypoxia) contribute to the development of pathology in HD. We review how sphingolipids shape cellular energy metabolism and control proteostasis and suggest how these functions may fail in HD and in combination with additional insults. Finally, we evaluate the potential of improving cellular resilience in HD by conditioning approaches (improving the efficiency of cellular stress responses) and the role of sphingolipids therein. Sphingolipid metabolism is crucial for cellular homeostasis and for adaptations following cellular stress, including hypoxia. Inadequate cellular management of hypoxic stress likely contributes to HD progression, and sphingolipids are potential mediators. Targeting sphingolipids and the hypoxic stress response are novel treatment strategies for HD.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| | - Giuseppe Pepe
- IRCCS Neuromed, Via Dell'Elettronica, 86077 Pozzilli, Italy
| | - Niran Maharjan
- Department of Neurology, Center for Experimental Neurology, Inselspital University Hospital, 3010 Bern, Switzerland; Department for Biomedical Research (DBMR), University of Bern, 3010 Bern, Switzerland
| | | | - Alba Di Pardo
- IRCCS Neuromed, Via Dell'Elettronica, 86077 Pozzilli, Italy
| | | | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, 1015 Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
6
|
Li H, Kucharavy HC, Hajj C, Zhao L, Hua G, Glass R, Paty PB, Fuks Z, Kolesnick R, Hubbard K, Haimovitz-Friedman A. Radiation-induced gastrointestinal (GI) syndrome as a function of age. Cell Death Discov 2023; 9:31. [PMID: 36697383 PMCID: PMC9876996 DOI: 10.1038/s41420-023-01298-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Previous studies show increased sensitivity of older mice (28-29 months) compared with young adult mice (3 months, possessing a mature immune system) to radiation-induced GI lethality. Age-dependent lethality was associated with higher levels of apoptotic stem cells in small intestinal crypts that correlated with sphingomyelinase activity, a source of pro-apoptotic ceramide. The objective of this study is to determine whether the cycling crypt base columnar cells (CBCs) in aging animals are specifically more sensitive to radiation effects than the CBCs in young adult mice, and to identify factors that contribute to increased radiosensitivity. Mortality induced by subtotal body radiation was assessed at different doses (13 Gy, 14 Gy, and 15 Gy) in young adult mice versus older mice. Each dose was evaluated for the occurrence of lethal GI syndrome. A higher death rate due to radiation-induced GI syndrome was observed in older mice as compared with young adult mice: 30 vs. 0% at 13 Gy, 90 vs. 40% at 14 Gy, and 100 vs. 60% at 15 Gy. Radiation-induced damage to crypts was determined by measuring crypt regeneration (H&E staining, Ki67 expression), CBC biomarkers (lgr5 and ascl2), premature senescence (SA-β-gal activity), and apoptosis of CBCs. At all three doses, crypt microcolony survival assays showed that the older mice had fewer regenerating crypts at 3.5 days post-radiation treatment. Furthermore, in the older animals, baseline CBCs numbers per circumference were significantly decreased, correlating with an elevated apoptotic index. Analysis of tissue damage showed an increased number of senescent CBCs per crypt circumference in older mice relative to younger mice, where the latter was not significantly affected by radiation treatment. It is concluded that enhanced sensitivity to radiation-induced GI syndrome and higher mortality in older mice can be attributed to a decreased capacity to regenerate crypts, presumably due to increased apoptosis and senescence of CBCs.
Collapse
Affiliation(s)
- Hongyan Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Herman C Kucharavy
- Department of Biology, The City College of New York, New York, NY, 10031, USA
- CUNY Graduate Center, New York, NY, 10016, USA
| | - Carla Hajj
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Liyang Zhao
- Laboratory of Signal Transduction, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guoqiang Hua
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ryan Glass
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Phillip B Paty
- Department of Surgery Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zvi Fuks
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard Kolesnick
- Laboratory of Signal Transduction, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karen Hubbard
- Department of Biology, The City College of New York, New York, NY, 10031, USA.
- CUNY Graduate Center, New York, NY, 10016, USA.
| | | |
Collapse
|
7
|
Momchilova A, Nikolaev G, Pankov S, Vassileva E, Krastev N, Robev B, Krastev D, Pinkas A, Pankov R. Effect of Quercetin and Fingolimod, Alone or in Combination, on the Sphingolipid Metabolism in HepG2 Cells. Int J Mol Sci 2022; 23:ijms232213916. [PMID: 36430423 PMCID: PMC9697772 DOI: 10.3390/ijms232213916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Combinations of anti-cancer drugs can overcome resistance to therapy and provide new more effective treatments. In this work we have analyzed the effect of the polyphenol quercetin and the anti-cancer sphingosine analog fingolimod on the sphingolipid metabolism in HepG2 cells, since sphingolipids are recognized as mediators of cell proliferation and apoptosis in cancer cells. Treatment of hepatocellular carcinoma HepG2 cells with quercetin and fingolimod, alone or in combination, induced different degrees of sphingomyelin (SM) reduction and a corresponding activation of neutral sphingomyelinase (nSMase). Western blot analysis showed that only treatments containing quercetin induced up-regulation of nSMase expression. The same treatment caused elevation of ceramide (CER) levels, whereas the observed alterations in sphingosine (SPH) content were not statistically significant. The two tested drugs induced a reduction of the pro-proliferative sphingolipid, sphingosine 1 phosphate (S1P), in the following order: quercetin, fingolimod, quercetin + fingolimod. The activity of the enzyme responsible for CER hydrolysis, alkaline ceramidase (ALCER) was down-regulated only in the incubations involving quercetin and fingolimod did not affect this activity. The enzyme, maintaining the balance between apoptosis and proliferation, sphingosine kinase 1 (SK1), was down-regulated by incubations in the following order: quercetin, fingolimod, quercetin + fingolimod. Western blot analysis showed down-regulation in SK1 expression upon quercetin but not upon fingolimod treatment. Studies on the effect of quercetin and fingolimod on the two proteins associated with apoptotic events, AKT and Bcl-2, showed that only quercetin, alone or in combination, down-regulated the activity of the two proteins. The reported observations provide information which can be useful in the search of novel anti-tumor approaches, aiming at optimization of the therapeutic effect and maximal preservation of healthy tissues.
Collapse
Affiliation(s)
- Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence: ; Tel.: +359-2-9792686 or +359-898-238971
| | - Georgi Nikolaev
- Biological Faculty, Sofia University “St. Kliment Ohridki”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria
| | - Stefan Pankov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Evgenia Vassileva
- Clinic of Neurology, Tsaritsa Yoanna University Hospital-ISUL, 1527 Sofia, Bulgaria
| | - Nikolai Krastev
- Department of Anatomy, Histology and Embryology, Medical University-Sofia, Blvd. Sv. Georgi Sofiisky 1, 1431 Sofia, Bulgaria
| | - Bozhil Robev
- Department of Medical Oncology, University Multi-Profile Hospital for Active Treatment (UMHAT) “St. Ivan Rilski”, 1606 Sofia, Bulgaria
| | - Dimo Krastev
- Medical College “Y. Filaretova”, Medical University-Sofia, Yordanka Filaretova Str. 3, 1606 Sofia, Bulgaria
| | - Adriana Pinkas
- CSTEP, Office of Continuing Education, Suffolk County Community College 30 Greene Ave., Sayville, NY 11782, USA
| | - Roumen Pankov
- Biological Faculty, Sofia University “St. Kliment Ohridki”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria
| |
Collapse
|
8
|
Momchilova A, Pankov R, Staneva G, Pankov S, Krastev P, Vassileva E, Hazarosova R, Krastev N, Robev B, Nikolova B, Pinkas A. Resveratrol Affects Sphingolipid Metabolism in A549 Lung Adenocarcinoma Cells. Int J Mol Sci 2022; 23:ijms231810870. [PMID: 36142801 PMCID: PMC9505893 DOI: 10.3390/ijms231810870] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 12/22/2022] Open
Abstract
Resveratrol is a naturally occurring polyphenol which has various beneficial effects, such as anti-inflammatory, anti-tumor, anti-aging, antioxidant, and neuroprotective effects, among others. The anti-cancer activity of resveratrol has been related to alterations in sphingolipid metabolism. We analyzed the effect of resveratrol on the enzymes responsible for accumulation of the two sphingolipids with highest functional activity—apoptosis promoting ceramide (CER) and proliferation-stimulating sphingosine-1-phosphate (S1P)—in human lung adenocarcinoma A549 cells. Resveratrol treatment induced an increase in CER and sphingosine (SPH) and a decrease in sphingomyelin (SM) and S1P. Our results showed that the most common mode of CER accumulation, through sphingomyelinase-induced hydrolysis of SM, was not responsible for a CER increase despite the reduction in SM in A549 plasma membranes. However, both the activity and the expression of CER synthase 6 were upregulated in resveratrol-treated cells, implying that CER was accumulated as a result of stimulated de novo synthesis. Furthermore, the enzyme responsible for CER hydrolysis, alkaline ceramidase, was not altered, suggesting that it was not related to changes in the CER level. The enzyme maintaining the balance between apoptosis and proliferation, sphingosine kinase 1 (SK1), was downregulated, and its expression was reduced, resulting in a decrease in S1P levels in resveratrol-treated lung adenocarcinoma cells. In addition, incubation of resveratrol-treated A549 cells with the SK1 inhibitors DMS and fingolimod additionally downregulated SK1 without affecting its expression. The present studies provide information concerning the biochemical processes underlying the influence of resveratrol on sphingolipid metabolism in A549 lung cancer cells and reveal possibilities for combined use of polyphenols with specific anti-proliferative agents that could serve as the basis for the development of complex therapeutic strategies.
Collapse
Affiliation(s)
- Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl.21, 1113 Sofia, Bulgaria
- Correspondence: ; Tel.:+359-2-9792686 or +359-898-238971
| | - Roumen Pankov
- Biological Faculty, Sofia University “St. Kliment Ohridki”, 8, Dragan Tzankov Str., 1164 Sofia, Bulgaria
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl.21, 1113 Sofia, Bulgaria
| | - Stefan Pankov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl.21, 1113 Sofia, Bulgaria
| | - Plamen Krastev
- Cardiology Clinic, University Hospital “St. Ekaterina”, 1431 Sofia, Bulgaria
| | - Evgenia Vassileva
- Clinic of Neurology, Tsaritsa Yoanna University Hospital-ISUL, 1527 Sofia, Bulgaria
| | - Rusina Hazarosova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl.21, 1113 Sofia, Bulgaria
| | - Nikolai Krastev
- Department of Anatomy, Histology and Embryology, Medical University—Sofia, Blvd. Sv. Georgi Sofiisky 1, 1431 Sofia, Bulgaria
- Medical Center Relax, 8 Ami Bue Str., 1606 Sofia, Bulgaria
| | - Bozhil Robev
- Department of Medical Oncology, University Multi-Profile Hospital for Active Treatment (UMHAT) “St. Ivan Rilski”, 1606 Sofia, Bulgaria
| | - Biliana Nikolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl.21, 1113 Sofia, Bulgaria
| | - Adriana Pinkas
- CSTEP, Office of Continuing Education, Suffolk County Community College 30 Greene Ave., Sayville, NY 11782, USA
| |
Collapse
|
9
|
Wu Y, Green CL, Wang G, Yang D, Li L, Li B, Wang L, Li M, Li J, Xu Y, Zhang X, Niu C, Hu S, Togo J, Mazidi M, Derous D, Douglas A, Speakman JR. Effects of dietary macronutrients on the hepatic transcriptome and serum metabolome in mice. Aging Cell 2022; 21:e13585. [PMID: 35266264 PMCID: PMC9009132 DOI: 10.1111/acel.13585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/13/2022] [Indexed: 12/18/2022] Open
Abstract
Dietary macronutrient composition influences both hepatic function and aging. Previous work suggested that longevity and hepatic gene expression levels were highly responsive to dietary protein, but almost unaffected by other macronutrients. In contrast, we found expression of 4005, 4232, and 4292 genes in the livers of mice were significantly associated with changes in dietary protein (5%–30%), fat (20%–60%), and carbohydrate (10%–75%), respectively. More genes in aging‐related pathways (notably mTOR, IGF‐1, and NF‐kappaB) had significant correlations with dietary fat intake than protein and carbohydrate intake, and the pattern of gene expression changes in relation to dietary fat intake was in the opposite direction to the effect of graded levels of caloric restriction consistent with dietary fat having a negative impact on aging. We found 732, 808, and 995 serum metabolites were significantly correlated with dietary protein (5%–30%), fat (8.3%–80%), and carbohydrate (10%–80%) contents, respectively. Metabolomics pathway analysis revealed sphingosine‐1‐phosphate signaling was the significantly affected pathway by dietary fat content which has also been identified as significant changed metabolic pathway in the previous caloric restriction study. Our results suggest dietary fat has major impact on aging‐related gene and metabolic pathways compared with other macronutrients.
Collapse
Affiliation(s)
- Yingga Wu
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- University of Chinese Academy of Sciences Beijing People’s Republic of China
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen Scotland UK
| | - Cara L. Green
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen Scotland UK
| | - Guanlin Wang
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- University of Chinese Academy of Sciences Beijing People’s Republic of China
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen Scotland UK
| | - Dengbao Yang
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
| | - Li Li
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- University of Chinese Academy of Sciences Beijing People’s Republic of China
| | - Baoguo Li
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- University of Chinese Academy of Sciences Beijing People’s Republic of China
| | - Lu Wang
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- University of Chinese Academy of Sciences Beijing People’s Republic of China
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen Scotland UK
| | - Min Li
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- University of Chinese Academy of Sciences Beijing People’s Republic of China
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen Scotland UK
- Shenzhen Key Laboratory of Metabolic Health Center for Energy Metabolism and Reproduction Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen People’s Republic of China
| | - Jianbo Li
- University of Dali Dali Yunnan Province People’s Republic of China
| | - Yanchao Xu
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
| | - Xueying Zhang
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- University of Chinese Academy of Sciences Beijing People’s Republic of China
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen Scotland UK
- Shenzhen Key Laboratory of Metabolic Health Center for Energy Metabolism and Reproduction Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen People’s Republic of China
| | - Chaoqun Niu
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- Shenzhen Key Laboratory of Metabolic Health Center for Energy Metabolism and Reproduction Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen People’s Republic of China
| | - Sumei Hu
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
| | - Jacques Togo
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- University of Chinese Academy of Sciences Beijing People’s Republic of China
| | - Mohsen Mazidi
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- University of Chinese Academy of Sciences Beijing People’s Republic of China
| | - Davina Derous
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen Scotland UK
| | - Alex Douglas
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen Scotland UK
| | - John R. Speakman
- State Key Laboratory of Molecular Developmental Biology Institute of Genetics and Developmental Biology Chinese Academy of Sciences Beijing People’s Republic of China
- Institute of Biological and Environmental Sciences University of Aberdeen Aberdeen Scotland UK
- Shenzhen Key Laboratory of Metabolic Health Center for Energy Metabolism and Reproduction Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen People’s Republic of China
- CAS Center of Excellence in Animal Evolution and Genetics Kunming People’s Republic of China
| |
Collapse
|
10
|
Hamsanathan S, Gurkar AU. Lipids as Regulators of Cellular Senescence. Front Physiol 2022; 13:796850. [PMID: 35370799 PMCID: PMC8965560 DOI: 10.3389/fphys.2022.796850] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Lipids are key macromolecules that perform a multitude of biological functions ranging from maintaining structural integrity of membranes, energy storage, to signaling molecules. Unsurprisingly, variations in lipid composition and its levels can influence the functional and physiological state of the cell and its milieu. Cellular senescence is a permanent state of cell cycle arrest and is a hallmark of the aging process, as well as several age-related pathologies. Senescent cells are often characterized by alterations in morphology, metabolism, chromatin remodeling and exhibit a complex pro-inflammatory secretome (SASP). Recent studies have shown that the regulation of specific lipid species play a critical role in senescence. Indeed, some lipid species even contribute to the low-grade inflammation associated with SASP. Many protein regulators of senescence have been well characterized and are associated with lipid metabolism. However, the link between critical regulators of cellular senescence and senescence-associated lipid changes is yet to be elucidated. Here we systematically review the current knowledge on lipid metabolism and dynamics of cellular lipid content during senescence. We focus on the roles of major players of senescence in regulating lipid metabolism. Finally, we explore the future prospects of lipid research in senescence and its potential to be targeted as senotherapeutics.
Collapse
Affiliation(s)
- Shruthi Hamsanathan
- Aging Institute of UPMC, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Aditi U. Gurkar
- Aging Institute of UPMC, The University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, United States
- *Correspondence: Aditi U. Gurkar,
| |
Collapse
|
11
|
Liu F, Chen X, Liu Y, Niu Z, Tang H, Mao S, Li N, Chen G, Xiang H. Serum cardiovascular-related metabolites disturbance exposed to different heavy metal exposure scenarios. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125590. [PMID: 33740723 PMCID: PMC8204224 DOI: 10.1016/j.jhazmat.2021.125590] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 05/23/2023]
Abstract
Health effects induced by heavy metal components of particulate matter need further research. A total of 32 healthy volunteers were recruited to walk for 4 h in two different exposure scenarios in Wuhan from May 1 to Jun 30, 2019. Metabolomics technology was used to identify serum cardiovascular-related metabolites disturbance, and the health risk assessment model was employed to assess the non-carcinogenic and carcinogenic risks associated with airborne heavy metals. The results showed that the average mass concentrations of Co, Ni, Cd, Cu, Ag and Ba in PM10 from May 1 to Jun 30, 2019 were 0.22, 0.49, 11.53, 2.23, 34.47 and 4.19 ng/m3, respectively, and were 0.86, 128.47, 291.85, 291.94, 98.55 and 422.62 ng/m3 in PM2.5, respectively. Healthy young adults briefly exposed to heavy metals were associated with serum cardiovascular-related metabolites disturbance, including increased SM(d18:1/17:0) and Sphingomyelin, and decreased GlcCer(d16:1/18:0) and Galabiosylceramide, simultaneously accompanied by activation of the sphingolipid metabolism pathway. Non-carcinogenic and carcinogenic risks of airborne heavy metals via the inhalation route were observed, Ni and Cd most influenced to potential health risks. Findings indicated exposure to increment of heavy metals may increase health risks by causing cardiovascular-related metabolites disturbance via activating the sphingolipid metabolism pathway.
Collapse
Affiliation(s)
- Feifei Liu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China; Global Health Institute, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Xiaolu Chen
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China; Global Health Institute, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Yisi Liu
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Zhiping Niu
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China; Global Health Institute, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Hong Tang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China; Global Health Institute, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Shuyuan Mao
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China; Global Health Institute, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Na Li
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China; Global Health Institute, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Gongbo Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Engineering Technology Research Center of Environmental and Health risk Assessment, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hao Xiang
- Department of Global Health, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China; Global Health Institute, School of Health Sciences, Wuhan University, 115# Donghu Road, Wuhan 430071, China.
| |
Collapse
|
12
|
McGurk KA, Keavney BD, Nicolaou A. Circulating ceramides as biomarkers of cardiovascular disease: Evidence from phenotypic and genomic studies. Atherosclerosis 2021; 327:18-30. [PMID: 34004484 DOI: 10.1016/j.atherosclerosis.2021.04.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 12/20/2022]
Abstract
There is a need for new biomarkers of atherosclerotic cardiovascular disease (ACVD), the main cause of death globally. Ceramides, a class of potent bioactive lipid mediators, have signalling roles in apoptosis, cellular stress and inflammation. Recent studies have highlighted circulating ceramides as novel biomarkers of coronary artery disease, type-2 diabetes and insulin resistance. Ceramides are highly regulated by enzymatic reactions throughout the body in terms of their activity and metabolism, including production, degradation and transport. The genetic studies that have been completed to date on the main ceramide species found in circulation are described, highlighting the importance of DNA variants in genes involved in ceramide biosynthesis as key influencers of heritable, circulating ceramide levels. We also review studies of disease associations with ceramides and discuss mechanistic insights deriving from recent genomic studies. The signalling activities of ceramides in vascular inflammation and apoptosis, associations between circulating ceramides and coronary artery disease risk, type-2 diabetes and insulin resistance, and the potential importance of ceramides with regard to ACVD risk factors, such as blood pressure, lipoproteins and lifestyle factors, are also discussed.
Collapse
Affiliation(s)
- Kathryn A McGurk
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, UK; Laboratory for Lipidomics and Lipid Research, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, UK
| | - Bernard D Keavney
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, UK; Manchester Heart Centre, Manchester University NHS Foundation Trust, UK
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Research, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, UK; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
13
|
Fan W, Tang S, Fan X, Fang Y, Xu X, Li L, Xu J, Li JL, Wang Z, Li X. SIRT1 regulates sphingolipid metabolism and neural differentiation of mouse embryonic stem cells through c-Myc-SMPDL3B. eLife 2021; 10:67452. [PMID: 34042046 PMCID: PMC8216717 DOI: 10.7554/elife.67452] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022] Open
Abstract
Sphingolipids are important structural components of cell membranes and prominent signaling molecules controlling cell growth, differentiation, and apoptosis. Sphingolipids are particularly abundant in the brain, and defects in sphingolipid degradation are associated with several human neurodegenerative diseases. However, molecular mechanisms governing sphingolipid metabolism remain unclear. Here, we report that sphingolipid degradation is under transcriptional control of SIRT1, a highly conserved mammalian NAD+-dependent protein deacetylase, in mouse embryonic stem cells (mESCs). Deletion of SIRT1 results in accumulation of sphingomyelin in mESCs, primarily due to reduction of SMPDL3B, a GPI-anchored plasma membrane bound sphingomyelin phosphodiesterase. Mechanistically, SIRT1 regulates transcription of Smpdl3b through c-Myc. Functionally, SIRT1 deficiency-induced accumulation of sphingomyelin increases membrane fluidity and impairs neural differentiation in vitro and in vivo. Our findings discover a key regulatory mechanism for sphingolipid homeostasis and neural differentiation, further imply that pharmacological manipulation of SIRT1-mediated sphingomyelin degradation might be beneficial for treatment of human neurological diseases. All cells in the brain start life as stem cells which are yet to have a defined role in the body. A wide range of molecules and chemical signals guide stem cells towards a neuronal fate, including a group of molecules called sphingolipids. These molecules sit in the membrane surrounding the cell and play a pivotal role in a number of processes which help keep the neuronal cell healthy. Various enzymes work together to break down sphingolipids and remove them from the membrane. Defects in these enzymes can result in excess levels of sphingolipids, which can lead to neurodegenerative diseases, such as Alzheimer’s, Parkinson’s and Huntington’s disease. But how these enzymes are used and controlled during neuronal development is still somewhat of a mystery. To help answer this question, Fan et al. studied an enzyme called SIRT1 which has been shown to alleviate symptoms in animal models of neurodegenerative diseases. Stem cells were extracted from a mouse embryo lacking the gene for SIRT1 and cultured in the laboratory. These faulty cells were found to have superfluous amounts of sphingolipids, which made their membranes more fluid and reduced their ability to develop into neuronal cells. Further investigation revealed that SIRT1 regulates the degradation of sphingolipids by promoting the production of another enzyme called SMPDL3B. Fan et al. also found that when female mice were fed a high-fat diet, this caused sphingolipids to accumulate in their embryos which lacked the gene for SIRT1; this, in turn, impaired the neural development of their offspring. These findings suggest that targeting SIRT1 may offer new strategies for treating neurological diseases. The discovery that embryos deficient in SIRT1 are sensitive to high-fat diets implies that activating this enzyme might attenuate some of the neonatal complications associated with maternal obesity.
Collapse
Affiliation(s)
- Wei Fan
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Triangle Park, United States
| | - Shuang Tang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Triangle Park, United States
| | - Xiaojuan Fan
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yi Fang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Triangle Park, United States
| | - Xiaojiang Xu
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, Triangle Park, United States
| | - Leping Li
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, Triangle Park, United States
| | - Jian Xu
- Children's Medical Center Research Institute, Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center, and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, Triangle Park, United States
| | - Zefeng Wang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Triangle Park, United States
| |
Collapse
|
14
|
Shen X, Zhang L, Jiang L, Xiong W, Tang Y, Lin L, Yu T. Alteration of sphingosine-1-phosphate with aging induces contractile dysfunction of colonic smooth muscle cells via Ca 2+ -activated K + channel (BK Ca ) upregulation. Neurogastroenterol Motil 2021; 33:e14052. [PMID: 33452855 DOI: 10.1111/nmo.14052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/13/2020] [Accepted: 11/13/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Age-associated changes alter calcium-activated potassium channel (BKCa ) expression of colon. Sphingolipids (SLs) are important cell membrane structural components; altered composition of SLs may affect BKCa expression. This study investigated the mechanism by which sphingosine-1-phosphate (S1P) contributes to age-associated contractile dysfunction. METHODS Fifty male Sprague Dawley rats of different ages were randomly assigned to five age-groups, namely 3, 6, 12, 18, and 24 months. BKCa expression, S1P levels, and phosphorylated myosin light chain (p-MLC) levels were tested in colonic tissues. In the absence and presence of S1P treatment, BKCa expression, p-MLC levels, and intracellular calcium mobilization were tested in vitro. BKCa small interfering RNA (siRNA) was used to investigate whether p-MLC expression and calcium mobilization were affected by BKCa in colonic smooth muscle cells (SMCs). The expressions of phosphorylated protein kinase B, c-Jun N-terminal kinases (JNKs), extracellular-regulated protein kinases, nuclear factor kappa-B (NF-κB), and protein kinase Cζ (PKCζ ) were examined to investigate the correlation between S1P and BKCa . KEY RESULTS Sphingosine-1-phosphate levels and sphingosine-1-phosphate receptor 2 (S1PR2) and BKCa expressions were upregulated and p-MLC expression was downregulated in the colonic tissues, age dependently. In the cultured SMCs, S1P treatment increased BKCa expression and reduced calcium concentration and p-MLC was observed. BKCa siRNA increased calcium concentration, and p-MLC levels significantly compared with control. We also showed that S1P upregulated BKCa through PKCζ , JNK, and NF-κB pathways. CONCLUSIONS AND INFERENCES In conclusion, S1P and S1PR2 participate in age-associated contractile dysfunction via BKCa upregulation through PKCζ , JNK, and NF-κB pathways.
Collapse
Affiliation(s)
- Xiaoxue Shen
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ling Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ling Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjie Xiong
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yurong Tang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lin Lin
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Yu
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Fuster JJ, Zuriaga MA, Zorita V, MacLauchlan S, Polackal MN, Viana-Huete V, Ferrer-Pérez A, Matesanz N, Herrero-Cervera A, Sano S, Cooper MA, González-Navarro H, Walsh K. TET2-Loss-of-Function-Driven Clonal Hematopoiesis Exacerbates Experimental Insulin Resistance in Aging and Obesity. Cell Rep 2020; 33:108326. [PMID: 33113366 PMCID: PMC7856871 DOI: 10.1016/j.celrep.2020.108326] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 09/18/2020] [Accepted: 10/07/2020] [Indexed: 01/10/2023] Open
Abstract
Human aging is frequently accompanied by the acquisition of somatic mutations in the hematopoietic system that induce clonal hematopoiesis, leading to the development of a mutant clone of hematopoietic progenitors and leukocytes. This somatic-mutation-driven clonal hematopoiesis has been associated with an increased incidence of cardiovascular disease and type 2 diabetes, but whether this epidemiological association reflects a direct, causal contribution of mutant hematopoietic and immune cells to age-related metabolic abnormalities remains unexplored. Here, we show that inactivating mutations in the epigenetic regulator TET2, which lead to clonal hematopoiesis, aggravate age- and obesity-related insulin resistance in mice. This metabolic dysfunction is paralleled by increased expression of the pro-inflammatory cytokine IL-1β in white adipose tissue, and it is suppressed by pharmacological inhibition of NLRP3 inflammasome-mediated IL-1β production. These findings support a causal contribution of somatic TET2 mutations to insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- José J Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Boston University School of Medicine, Boston, MA, USA.
| | - María A Zuriaga
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Boston University School of Medicine, Boston, MA, USA
| | - Virginia Zorita
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | | | - Vanesa Viana-Huete
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Alba Ferrer-Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Nuria Matesanz
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Andrea Herrero-Cervera
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA; Institute of Health Research-INCLIVA, Valencia, Spain
| | - Soichi Sano
- Boston University School of Medicine, Boston, MA, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Matthew A Cooper
- Institute for Molecular Bioscience, University of Queensland, QLD, Australia
| | - Herminia González-Navarro
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA; Institute of Health Research-INCLIVA, Valencia, Spain; Department of Didactics of Experimental and Social Sciences, University of Valencia, Valencia, Spain; CIBER Diabetes and Associated Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Kenneth Walsh
- Boston University School of Medicine, Boston, MA, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
16
|
Kim YR, Lee EJ, Shin KO, Kim MH, Pewzner-Jung Y, Lee YM, Park JW, Futerman AH, Park WJ. Hepatic triglyceride accumulation via endoplasmic reticulum stress-induced SREBP-1 activation is regulated by ceramide synthases. Exp Mol Med 2019; 51:1-16. [PMID: 31676768 PMCID: PMC6825147 DOI: 10.1038/s12276-019-0340-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/27/2019] [Accepted: 09/25/2019] [Indexed: 12/25/2022] Open
Abstract
The endoplasmic reticulum (ER) is not only important for protein synthesis and folding but is also crucial for lipid synthesis and metabolism. In the current study, we demonstrate an important role of ceramide synthases (CerS) in ER stress and NAFLD progression. Ceramide is important in sphingolipid metabolism, and its acyl chain length is determined by a family of six CerS in mammals. CerS2 generates C22-C24 ceramides, and CerS5 or CerS6 produces C16 ceramide. To gain insight into the role of CerS in NAFLD, we used a high-fat diet (HFD)-induced NAFLD mouse model. Decreased levels of CerS2 and increased levels of CerS6 were observed in the steatotic livers of mice fed a HFD. In vitro experiments with Hep3B cells indicated the protective role of CerS2 and the detrimental role of CerS6 in the ER stress response induced by palmitate treatment. In particular, CerS6 overexpression increased sterol regulatory element-binding protein-1 (SREBP-1) cleavage with decreased levels of INSIG-1, leading to increased lipogenesis. Blocking ER stress abrogated the detrimental effects of CerS6 on palmitate-induced SREBP-1 cleavage. In accordance with the protective role of CerS2 in the palmitate-induced ER stress response, CerS2 knockdown enhanced ER stress and SREBP-1 cleavage, and CerS2 heterozygote livers exhibited a stronger ER stress response and higher triglyceride levels following HFD. Finally, treatment with a low dose of bortezomib increased hepatic CerS2 expression and protected the development of NAFLD following HFD. These results indicate that CerS and its derivatives impact hepatic ER stress and lipogenesis differently and might be therapeutic targets for NAFLD. Promoting the activity of a protective membrane protein may help limit the development of non-alcoholic fatty liver disease (NAFLD) in obesity. Stress on a key cellular organelle, the endoplasmic reticulum (ER), contributes to NAFLD progression. Woo-Jae Park at Gachon University in Incheon, Joo-Won Park at Ewha Womans University, Seoul, and co-workers across South Korea have uncovered the role of a family of ER membrane proteins called ceramide synthases (CerS) in the regulation of ER stress during disease development. The team found increased levels of CerS6 in the livers of mouse fed a high-fat diet, while CerS2 decreased. The increased C16-ceramide by CerS6 overexpression triggered excess fat formation by increasing ER stress and SREBP-1 cleavage. However, when the team enhanced the expression of CerS2 using an existing chemotherapy drug, mice were protected from developing NAFLD.
Collapse
Affiliation(s)
- Ye-Ryung Kim
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea
| | - Eun-Ji Lee
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea.,Department of Biochemistry, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Kyong-Oh Shin
- College of Pharmacy, Chungbuk National University, Chongju, 28644, Republic of Korea
| | - Min Hee Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Yael Pewzner-Jung
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yong-Moon Lee
- College of Pharmacy, Chungbuk National University, Chongju, 28644, Republic of Korea
| | - Joo-Won Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, Seoul, 07084, Republic of Korea.
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Woo-Jae Park
- Department of Biochemistry, College of Medicine, Gachon University, Incheon, 21999, Republic of Korea. .,Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Republic of Korea.
| |
Collapse
|
17
|
Investigation of lipidomic perturbations in oxidatively stressed subcellular organelles and exosomes by asymmetrical flow field–flow fractionation and nanoflow ultrahigh performance liquid chromatography–tandem mass spectrometry. Anal Chim Acta 2019; 1073:79-89. [DOI: 10.1016/j.aca.2019.04.069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/23/2019] [Accepted: 04/27/2019] [Indexed: 12/22/2022]
|
18
|
Hu SJ, Jiang SS, Zhang J, Luo D, Yu B, Yang LY, Zhong HH, Yang MW, Liu LY, Hong FF, Yang SL. Effects of apoptosis on liver aging. World J Clin Cases 2019; 7:691-704. [PMID: 30968034 PMCID: PMC6448073 DOI: 10.12998/wjcc.v7.i6.691] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/10/2019] [Accepted: 01/26/2019] [Indexed: 02/05/2023] Open
Abstract
As an irreversible and perennial process, aging is accompanied by functional and morphological declines in organs. Generally, aging liver exhibits a decline in volume and hepatic blood flow. Even with a preeminent regenerative capacity to restore its functions after liver cell loss, its biosynthesis and metabolism abilities decline, and these are difficult to restore to previous standards. Apoptosis is a programmed death process via intrinsic and extrinsic pathways, in which Bcl-2 family proteins and apoptosis-related genes, such as p21 and p53, are involved. Apoptosis inflicts both favorable and adverse influences on liver aging. Apoptosis eliminates transformed abnormal cells but promotes age-related liver diseases, such as nonalcoholic fatty liver disease, liver fibrosis, cirrhosis, and liver cancer. We summarize the roles of apoptosis in liver aging and age-related liver diseases.
Collapse
Affiliation(s)
- Shao-Jie Hu
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Sha-Sha Jiang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Jin Zhang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Dan Luo
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Bo Yu
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Liang-Yan Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hua-Hua Zhong
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Mei-Wen Yang
- Department of Nurse, Nanchang University Hospital, Nanchang 330006, Jiangxi Province, China
| | - Li-Yu Liu
- Department of Nurse, Nanchang University Hospital, Nanchang 330006, Jiangxi Province, China
| | - Fen-Fang Hong
- Experimental Teaching Center, Nanchang University, Nanchang 330031, Jiangxi Province, China
| | - Shu-Long Yang
- Department of Physiology, College of Medicine, Nanchang University, Nanchang 330006, Jiangxi Province, China
| |
Collapse
|
19
|
Khayrullin A, Krishnan P, Martinez-Nater L, Mendhe B, Fulzele S, Liu Y, Mattison JA, Hamrick MW. Very Long-Chain C24:1 Ceramide Is Increased in Serum Extracellular Vesicles with Aging and Can Induce Senescence in Bone-Derived Mesenchymal Stem Cells. Cells 2019; 8:cells8010037. [PMID: 30634626 PMCID: PMC6356348 DOI: 10.3390/cells8010037] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/17/2018] [Accepted: 01/09/2019] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, function in cell-to-cell communication through delivery of proteins, lipids and microRNAs to target cells via endocytosis and membrane fusion. These vesicles are enriched in ceramide, a sphingolipid associated with the promotion of cell senescence and apoptosis. We investigated the ceramide profile of serum exosomes from young (24⁻40 yrs.) and older (75⁻90 yrs.) women and young (6⁻10 yrs.) and older (25⁻30 yrs.) rhesus macaques to define the role of circulating ceramides in the aging process. EVs were isolated using size-exclusion chromatography. Proteomic analysis was used to validate known exosome markers from Exocarta and nanoparticle tracking analysis used to characterize particle size and concentration. Specific ceramide species were identified with lipidomic analysis. Results show a significant increase in the average amount of C24:1 ceramide in EVs from older women (15.4 pmol/sample) compared to those from younger women (3.8 pmol/sample). Results were similar in non-human primate serum samples with increased amounts of C24:1 ceramide (9.3 pmol/sample) in older monkeys compared to the younger monkeys (1.8 pmol/sample). In vitro studies showed that primary bone-derived mesenchymal stem cells (BMSCs) readily endocytose serum EVs, and serum EVs loaded with C24:1 ceramide can induce BMSC senescence. Elevated ceramide levels have been associated with poor cardiovascular health and memory impairment in older adults. Our data suggest that circulating EVs carrying C24:1 ceramide may contribute directly to cell non-autonomous aging.
Collapse
Affiliation(s)
- Andrew Khayrullin
- Medical College of Georgia, Augusta University, CB1116 Laney Walker Blvd, Augusta, GA 30912, USA.
| | - Priyanka Krishnan
- Medical College of Georgia, Augusta University, CB1116 Laney Walker Blvd, Augusta, GA 30912, USA.
| | | | - Bharati Mendhe
- Medical College of Georgia, Augusta University, CB1116 Laney Walker Blvd, Augusta, GA 30912, USA.
| | - Sadanand Fulzele
- School of Medicine, Universidad Central Del Caribe, Bayamon, PR 00960, USA.
| | - Yutao Liu
- Medical College of Georgia, Augusta University, CB1116 Laney Walker Blvd, Augusta, GA 30912, USA.
| | - Julie A Mattison
- National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Mark W Hamrick
- Medical College of Georgia, Augusta University, CB1116 Laney Walker Blvd, Augusta, GA 30912, USA.
| |
Collapse
|
20
|
Trayssac M, Hannun YA, Obeid LM. Role of sphingolipids in senescence: implication in aging and age-related diseases. J Clin Invest 2018; 128:2702-2712. [PMID: 30108193 PMCID: PMC6025964 DOI: 10.1172/jci97949] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aging is defined as the progressive deterioration of physiological function with age. Incidence of many pathologies increases with age, including neurological and cardiovascular diseases and cancer. Aging tissues become less adaptable and renewable, and cells undergo senescence, a process by which they "irreversibly" stop dividing. Senescence has been shown to serve as a tumor suppression mechanism with clear desirable effects. However, senescence also has deleterious consequences, especially for cardiovascular, metabolic, and immune systems. Sphingolipids are a major class of lipids that regulate cell biology, owing to their structural and bioactive properties and diversity. Their involvement in the regulation of aging and senescence has been demonstrated and studied in multiple organisms and cell types, especially that of ceramide and sphingosine-1-phosphate; ceramide induces cellular senescence and sphingosine-1-phosphate delays it. These discoveries could be very useful in the future to understand aging mechanisms and improve therapeutic interventions.
Collapse
Affiliation(s)
- Magali Trayssac
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Yusuf A. Hannun
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Lina M. Obeid
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Northport Veterans Affairs Medical Center, Northport, New York, USA
| |
Collapse
|
21
|
Vozella V, Basit A, Misto A, Piomelli D. Age-dependent changes in nervonic acid-containing sphingolipids in mouse hippocampus. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1502-1511. [DOI: 10.1016/j.bbalip.2017.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 08/20/2017] [Accepted: 08/24/2017] [Indexed: 02/06/2023]
|
22
|
Green CL, Mitchell SE, Derous D, Wang Y, Chen L, Han JDJ, Promislow DEL, Lusseau D, Douglas A, Speakman JR. The effects of graded levels of calorie restriction: IX. Global metabolomic screen reveals modulation of carnitines, sphingolipids and bile acids in the liver of C57BL/6 mice. Aging Cell 2017; 16:529-540. [PMID: 28139067 PMCID: PMC5418186 DOI: 10.1111/acel.12570] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2016] [Indexed: 12/12/2022] Open
Abstract
Calorie restriction (CR) remains the most robust intervention to extend lifespan and improve health span. Using a global mass spectrometry-based metabolomic approach, we identified 193 metabolites that were significantly differentially expressed (SDE) in the livers of C57BL/6 mice, fed graded levels of CR (10, 20, 30 and 40% CR) compared to mice fed ad libitum for 12 h a day. The differential expression of metabolites also varied with the different feeding groups. Pathway analysis revealed that graded CR had an impact on carnitine synthesis and the carnitine shuttle pathway, sphingosine-1-phosphate (S1P) signalling and methionine metabolism. S1P, sphingomyelin and L-carnitine were negatively correlated with body mass, leptin, insulin-like growth factor- 1 (IGF-1) and major urinary proteins (MUPs). In addition, metabolites which showed a graded effect, such as ceramide, S1P, taurocholic acid and L-carnitine, responded in the opposite direction to previously observed age-related changes. We suggest that the modulation of this set of metabolites may improve liver processes involved in energy release from fatty acids. S1P also negatively correlated with catalase activity and body temperature, and positively correlated with food anticipatory activity. Injecting mice with S1P or an S1P receptor 1 agonist did not precipitate changes in body temperature, physical activity or food intake suggesting that these correlations were not causal relationships.
Collapse
Affiliation(s)
- Cara L. Green
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen UK
| | - Sharon E. Mitchell
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen UK
| | - Davina Derous
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen UK
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Chaoyang Beijing China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Innovation Center for Cell Signaling Network; Institute of Biochemistry and Cell Biology; Shanghai Institute of Biological Sciences; Chinese Academy of Sciences; Shanghai China
| | - Jing-Dong J. Han
- Key Laboratory of Computational Biology; Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai China
| | - Daniel E. L. Promislow
- Department of Pathology and Department of Biology; University of Washington; Seattle WA USA
| | - David Lusseau
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen UK
| | - Alex Douglas
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen UK
| | - John R. Speakman
- Institute of Biological and Environmental Sciences; University of Aberdeen; Aberdeen UK
- State Key Laboratory of Molecular Developmental Biology; Institute of Genetics and Developmental Biology; Chinese Academy of Sciences; Chaoyang Beijing China
| |
Collapse
|
23
|
Choi S, Kim JA, Li H, Shin K, Oh GT, Lee Y, Oh S, Pewzner‐Jung Y, Futerman AH, Suh SH. KCa 3.1 upregulation preserves endothelium-dependent vasorelaxation during aging and oxidative stress. Aging Cell 2016; 15:801-10. [PMID: 27363720 PMCID: PMC5013018 DOI: 10.1111/acel.12502] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2016] [Indexed: 01/24/2023] Open
Abstract
Endothelial oxidative stress develops with aging and reactive oxygen species impair endothelium-dependent relaxation (EDR) by decreasing nitric oxide (NO) availability. Endothelial KCa 3.1, which contributes to EDR, is upregulated by H2 O2 . We investigated whether KCa 3.1 upregulation compensates for diminished EDR to NO during aging-related oxidative stress. Previous studies identified that the levels of ceramide synthase 5 (CerS5), sphingosine, and sphingosine 1-phosphate were increased in aged wild-type and CerS2 mice. In primary mouse aortic endothelial cells (MAECs) from aged wild-type and CerS2 null mice, superoxide dismutase (SOD) was upregulated, and catalase and glutathione peroxidase 1 (GPX1) were downregulated, when compared to MAECs from young and age-matched wild-type mice. Increased H2 O2 levels induced Fyn and extracellular signal-regulated kinases (ERKs) phosphorylation and KCa 3.1 upregulation. Catalase/GPX1 double knockout (catalase(-/-) /GPX1(-/-) ) upregulated KCa 3.1 in MAECs. NO production was decreased in aged wild-type, CerS2 null, and catalase(-/-) /GPX1(-/-) MAECs. However, KCa 3.1 activation-induced, N(G) -nitro-l-arginine-, and indomethacin-resistant EDR was increased without a change in acetylcholine-induced EDR in aortic rings from aged wild-type, CerS2 null, and catalase(-/-) /GPX1(-/-) mice. CerS5 transfection or exogenous application of sphingosine or sphingosine 1-phosphate induced similar changes in levels of the antioxidant enzymes and upregulated KCa 3.1. Our findings suggest that, during aging-related oxidative stress, SOD upregulation and downregulation of catalase and GPX1, which occur upon altering the sphingolipid composition or acyl chain length, generate H2 O2 and thereby upregulate KCa 3.1 expression and function via a H2 O2 /Fyn-mediated pathway. Altogether, enhanced KCa 3.1 activity may compensate for decreased NO signaling during vascular aging.
Collapse
Affiliation(s)
- Shinkyu Choi
- Department of Physiology Medical School Ewha Womans University Seoul South Korea
| | - Ji Aee Kim
- Department of Physiology Medical School Ewha Womans University Seoul South Korea
| | - Hai‐yan Li
- Department of Physiology Medical School Ewha Womans University Seoul South Korea
| | - Kyong‐Oh Shin
- College of Pharmacy and MRC Chungbuk National University Chongju South Korea
| | - Goo Taeg Oh
- Department of Life Sciences Ewha Womans University Seoul South Korea
| | - Yong‐Moon Lee
- College of Pharmacy and MRC Chungbuk National University Chongju South Korea
| | - Seikwan Oh
- Department of Molecular Medicine Medical School Ewha Womans University Seoul South Korea
| | - Yael Pewzner‐Jung
- Department of Biological Chemistry Weizmann Institute of Science Rehovot Israel
| | - Anthony H. Futerman
- Department of Biological Chemistry Weizmann Institute of Science Rehovot Israel
| | - Suk Hyo Suh
- Department of Physiology Medical School Ewha Womans University Seoul South Korea
| |
Collapse
|
24
|
Van houcke J, De Groef L, Dekeyster E, Moons L. The zebrafish as a gerontology model in nervous system aging, disease, and repair. Ageing Res Rev 2015; 24:358-68. [PMID: 26538520 DOI: 10.1016/j.arr.2015.10.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/14/2015] [Accepted: 10/26/2015] [Indexed: 12/12/2022]
Abstract
Considering the increasing number of elderly in the world's population today, developing effective treatments for age-related pathologies is one of the biggest challenges in modern medical research. Age-related neurodegeneration, in particular, significantly impacts important sensory, motor, and cognitive functions, seriously constraining life quality of many patients. Although our understanding of the causal mechanisms of aging has greatly improved in recent years, animal model systems still have much to tell us about this complex process. Zebrafish (Danio rerio) have gained enormous popularity for this research topic over the past decade, since their life span is relatively short but, like humans, they are still subject to gradual aging. In addition, the extensive characterization of its well-conserved molecular and cellular physiology makes the zebrafish an excellent model to unravel the underlying mechanisms of aging, disease, and repair. This review provides a comprehensive overview of the progress made in zebrafish gerontology, with special emphasis on nervous system aging. We review the evidence that classic hallmarks of aging can also be recognized within this small vertebrate, both at the molecular and cellular level. Moreover, we illustrate the high level of similarity with age-associated human pathologies through a survey of the functional deficits that arise as zebrafish age.
Collapse
|
25
|
Wang K, Xu R, Schrandt J, Shah P, Gong YZ, Preston C, Wang L, Yi JK, Lin CL, Sun W, Spyropoulos DD, Rhee S, Li M, Zhou J, Ge S, Zhang G, Snider AJ, Hannun YA, Obeid LM, Mao C. Alkaline Ceramidase 3 Deficiency Results in Purkinje Cell Degeneration and Cerebellar Ataxia Due to Dyshomeostasis of Sphingolipids in the Brain. PLoS Genet 2015; 11:e1005591. [PMID: 26474409 PMCID: PMC4608763 DOI: 10.1371/journal.pgen.1005591] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 09/18/2015] [Indexed: 01/21/2023] Open
Abstract
Dyshomeostasis of both ceramides and sphingosine-1-phosphate (S1P) in the brain has been implicated in aging-associated neurodegenerative disorders in humans. However, mechanisms that maintain the homeostasis of these bioactive sphingolipids in the brain remain unclear. Mouse alkaline ceramidase 3 (Acer3), which preferentially catalyzes the hydrolysis of C18:1-ceramide, a major unsaturated long-chain ceramide species in the brain, is upregulated with age in the mouse brain. Acer3 knockout causes an age-dependent accumulation of various ceramides and C18:1-monohexosylceramide and abolishes the age-related increase in the levels of sphingosine and S1P in the brain; thereby resulting in Purkinje cell degeneration in the cerebellum and deficits in motor coordination and balance. Our results indicate that Acer3 plays critically protective roles in controlling the homeostasis of various sphingolipids, including ceramides, sphingosine, S1P, and certain complex sphingolipids in the brain and protects Purkinje cells from premature degeneration. Bioactive sphingolipids, such as ceramides and sphingosine-1-phosphates, have been implicated in neurodegenerative diseases. However, it remains unclear as to how the homeostasis of these bioactive lipids is sustained. Alkaline ceramidase 3 (ACER3) catalyzes the hydrolysis of saturated long-chain ceramides (C18:1-ceramide and C20:1-ceramide) to generate sphingosine (SPH), which is phosphorylated to form sphingosine-1-phosphate (S1P). In this study we found that Acer3 is upregulated with age in the mouse brain and blocking Acer3 upregulation elevates the levels of ceramides while reducing S1P levels in the brain, thereby resulting in Purkinje cell loss and cerebellar ataxia. This study not only offers novel insights into the role for the homeostasis of ceramides and their metabolites in regulating normal aging of the cerebellum, but also provides a useful genetic tool to dissect the mechanism by which an aberrant accumulation of ceramides results in age-related neurological disorders.
Collapse
Affiliation(s)
- Kai Wang
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook, New York, United States of America
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruijuan Xu
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook, New York, United States of America
| | - Jennifer Schrandt
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook, New York, United States of America
| | - Prithvi Shah
- Division of Rehabilitation Sciences, Department of Physical Therapy, School of Health Technology and Management, Stony Brook University, Stony Brook, New York, United States of America
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York, United States of America
| | - Yong Z. Gong
- Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Chet Preston
- Division of Rehabilitation Sciences, Department of Physical Therapy, School of Health Technology and Management, Stony Brook University, Stony Brook, New York, United States of America
| | - Louis Wang
- Division of Rehabilitation Sciences, Department of Physical Therapy, School of Health Technology and Management, Stony Brook University, Stony Brook, New York, United States of America
| | - Jae Kyo Yi
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook, New York, United States of America
| | - Chih-Li Lin
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook, New York, United States of America
| | - Wei Sun
- Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Demetri D. Spyropoulos
- Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Soyoung Rhee
- Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Mingsong Li
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Zhou
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoyu Ge
- Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Guofeng Zhang
- Biomedical Engineering and Physical Science Shared Resource, National Institute of Biomedical Imaging and Bioengineering, National Institute of Health, Bethesda, Maryland, United States of America
| | - Ashley J. Snider
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook, New York, United States of America
- Northport Veterans Affairs Medical Center, Northport, New York, United States of America
| | - Yusuf A. Hannun
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook, New York, United States of America
| | - Lina M. Obeid
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook, New York, United States of America
- Northport Veterans Affairs Medical Center, Northport, New York, United States of America
| | - Cungui Mao
- Department of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Stony Brook Cancer Center, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
Babenko NA, Kharchenko VS. Effects of inhibitors of key enzymes of sphingolipid metabolism on insulin-induced glucose uptake and glycogen synthesis in liver cells of old rats. BIOCHEMISTRY (MOSCOW) 2015; 80:104-12. [PMID: 25754045 DOI: 10.1134/s0006297915010125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sphingolipids play an important role in the development of insulin resistance. Ceramides are the most potent inhibitors of insulin signal transduction. Ceramides are generated in response to stress stimuli and in old age. In this work, we studied the possible contribution of different pathways of sphingolipid metabolism in age-dependent insulin resistance development in liver cells. Inhibition of key enzymes of sphingolipid synthesis (serine palmitoyl transferase, ceramide synthase) and degradation (neutral and acidic SMases) by means of specific inhibitors (myriocin, fumonisin B1, imipramine, and GW4869) was followed with the reduction of ceramide level and partly improved insulin regulation of glucose metabolism in "old" hepatocytes. Imipramine and GW4869 decreased significantly the acidic and neutral SMase activities, respectively. Treatment of "old" cells with myriocin or fumonisin B1 reduced the elevated in old age ceramide and SM synthesis. Ceramide and SM levels and glucose metabolism regulation by insulin could be improved with concerted action of all tested inhibitors of sphingolipid turnover on hepatocytes. The data demonstrate that not only newly synthesized ceramide and SM but also neutral and acidic SMase-dependent ceramide accumulation plays an important role in development of age-dependent insulin resistance.
Collapse
Affiliation(s)
- N A Babenko
- Department of Physiology of Ontogenesis, Institute of Biology, Kharkov Karazin National University, Kharkov, 61077, Ukraine.
| | | |
Collapse
|
27
|
Zhou YY, Ji XF, Fu JP, Zhu XJ, Li RH, Mu CK, Wang CL, Song WW. Gene Transcriptional and Metabolic Profile Changes in Mimetic Aging Mice Induced by D-Galactose. PLoS One 2015; 10:e0132088. [PMID: 26176541 PMCID: PMC4503422 DOI: 10.1371/journal.pone.0132088] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/10/2015] [Indexed: 01/09/2023] Open
Abstract
D-galactose injection has been shown to induce many changes in mice that represent accelerated aging. This mouse model has been widely used for pharmacological studies of anti-aging agents. The underlying mechanism of D-galactose induced aging remains unclear, however, it appears to relate to glucose and 1ipid metabolic disorders. Currently, there has yet to be a study that focuses on investigating gene expression changes in D-galactose aging mice. In this study, integrated analysis of gas chromatography/mass spectrometry-based metabonomics and gene expression profiles was used to investigate the changes in transcriptional and metabolic profiles in mimetic aging mice injected with D-galactose. Our findings demonstrated that 48 mRNAs were differentially expressed between control and D-galactose mice, and 51 potential biomarkers were identified at the metabolic level. The effects of D-galactose on aging could be attributed to glucose and 1ipid metabolic disorders, oxidative damage, accumulation of advanced glycation end products (AGEs), reduction in abnormal substance elimination, cell apoptosis, and insulin resistance.
Collapse
Affiliation(s)
- Yue-Yue Zhou
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Xiong-Fei Ji
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Jian-Ping Fu
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Xiao-Juan Zhu
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Rong-Hua Li
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Chang-Kao Mu
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Chun-Lin Wang
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
- * E-mail: (WWS); (CLW)
| | - Wei-Wei Song
- Key Laboratory of the Ministry of Education for Applied Marine Biotechnology, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
- * E-mail: (WWS); (CLW)
| |
Collapse
|
28
|
Tereshina EV, Ivanenko SI. Age-related obesity is a heritage of the evolutionary past. BIOCHEMISTRY (MOSCOW) 2015; 79:581-92. [PMID: 25108322 DOI: 10.1134/s0006297914070013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the process of human aging, an increase in the total amount of fat is observed mainly due to accumulation of lipids in non-adipose tissues. Insulin resistance, provoked by the intracellular accumulation of triglycerides, is often associated with development of such age-related diseases as atherosclerosis, type 2 diabetes, cancer, osteoporosis, and also with systemic inflammation and lipo- and glucose toxicity. Accumulation of lipids and lipophilic compounds is a biological phenomenon common for both prokaryotes and eukaryotes. Initially, it arose as an adaptation to starvation and shortage of nitrogen-containing nutrients, but later it converted into a depot of membrane material, needed on recommencement of cell division. In rodents and humans, the accumulation of non-metabolized fat in non-adipose tissues can be regarded as an adaptation to changes in the internal medium on a certain stage of ontogenesis as a result of age-related dysfunction of adipose tissue.
Collapse
Affiliation(s)
- E V Tereshina
- World Wide Medical Assistance, Oberwil B. Zug, 6317, Switzerland.
| | | |
Collapse
|
29
|
Mitochondrial fission mediates ceramide-induced metabolic disruption in skeletal muscle. Biochem J 2015; 456:427-39. [PMID: 24073738 DOI: 10.1042/bj20130807] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ceramide is a sphingolipid that serves as an important second messenger in an increasing number of stress-induced pathways. Ceramide has long been known to affect the mitochondria, altering both morphology and physiology. We sought to assess the impact of ceramide on skeletal muscle mitochondrial structure and function. A primary observation was the rapid and dramatic division of mitochondria in ceramide-treated cells. This effect is likely to be a result of increased Drp1 (dynamin-related protein 1) action, as ceramide increased Drp1 expression and Drp1 inhibition prevented ceramide-induced mitochondrial fission. Further, we found that ceramide treatment reduced mitochondrial O2 consumption (i.e. respiration) in cultured myotubes and permeabilized red gastrocnemius muscle fibre bundles. Ceramide treatment also increased H2O2 levels and reduced Akt/PKB (protein kinase B) phosphorylation in myotubes. However, inhibition of mitochondrial fission via Drp1 knockdown completely protected the myotubes and fibre bundles from ceramide-induced metabolic disruption, including maintained mitochondrial respiration, reduced H2O2 levels and unaffected insulin signalling. These data suggest that the forced and sustained mitochondrial fission that results from ceramide accrual may alter metabolic function in skeletal muscle, which is a prominent site not only of energy demand (via the mitochondria), but also of ceramide accrual with weight gain.
Collapse
|
30
|
Cutler RG, Thompson KW, Camandola S, Mack KT, Mattson MP. Sphingolipid metabolism regulates development and lifespan in Caenorhabditis elegans. Mech Ageing Dev 2014; 143-144:9-18. [PMID: 25437839 DOI: 10.1016/j.mad.2014.11.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 01/19/2023]
Abstract
Sphingolipids are a highly conserved lipid component of cell membranes involved in the formation of lipid raft domains that house many of the receptors and cell-to-cell signaling factors involved in regulating cell division, maturation, and terminal differentiation. By measuring and manipulating sphingolipid metabolism using pharmacological and genetic tools in Caenorhabditis elegans, we provide evidence that the synthesis and remodeling of specific ceramides (e.g., dC18:1-C24:1), gangliosides (e.g., GM1-C24:1), and sphingomyelins (e.g., dC18:1-C18:1) influence development rate and lifespan. We found that the levels of fatty acid chain desaturation and elongation in many sphingolipid species increased during development and aging, with no such changes in developmentally-arrested dauer larvae or normal adults after food withdrawal (an anti-aging intervention). Pharmacological inhibitors and small interfering RNAs directed against serine palmitoyl transferase and glucosylceramide synthase acted to slow development rate, extend the reproductive period, and increase lifespan. In contrast, worms fed an egg yolk diet rich in sphingolipids exhibited accelerated development and reduced lifespan. Our findings demonstrate that sphingolipid accumulation and remodeling are critical events that determine development rate and lifespan in the nematode model, with both development rate and aging being accelerated by the synthesis of sphingomyelin, and its metabolism to ceramides and gangliosides.
Collapse
Affiliation(s)
- Roy G Cutler
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Kenneth W Thompson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Kendra T Mack
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
31
|
Ageing, adipose tissue, fatty acids and inflammation. Biogerontology 2014; 16:235-48. [PMID: 25367746 DOI: 10.1007/s10522-014-9536-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 10/20/2014] [Indexed: 12/22/2022]
Abstract
A common feature of ageing is the alteration in tissue distribution and composition, with a shift in fat away from lower body and subcutaneous depots to visceral and ectopic sites. Redistribution of adipose tissue towards an ectopic site can have dramatic effects on metabolic function. In skeletal muscle, increased ectopic adiposity is linked to insulin resistance through lipid mediators such as ceramide or DAG, inhibiting the insulin receptor signalling pathway. Additionally, the risk of developing cardiovascular disease is increased with elevated visceral adipose distribution. In ageing, adipose tissue becomes dysfunctional, with the pathway of differentiation of preadipocytes to mature adipocytes becoming impaired; this results in dysfunctional adipocytes less able to store fat and subsequent fat redistribution to ectopic sites. Low grade systemic inflammation is commonly observed in ageing, and may drive the adipose tissue dysfunction, as proinflammatory cytokines are capable of inhibiting adipocyte differentiation. Beyond increased ectopic adiposity, the effect of impaired adipose tissue function is an elevation in systemic free fatty acids (FFA), a common feature of many metabolic disorders. Saturated fatty acids can be regarded as the most detrimental of FFA, being capable of inducing insulin resistance and inflammation through lipid mediators such as ceramide, which can increase risk of developing atherosclerosis. Elevated FFA, in particular saturated fatty acids, maybe a driving factor for both the increased insulin resistance, cardiovascular disease risk and inflammation in older adults.
Collapse
|
32
|
Variability of protein and lipid composition of human subtantia nigra in aging: Fourier transform infrared microspectroscopy study. Neurochem Int 2014; 76:12-22. [DOI: 10.1016/j.neuint.2014.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/17/2014] [Accepted: 06/22/2014] [Indexed: 11/24/2022]
|
33
|
Ohanian J, Liao A, Forman SP, Ohanian V. Age-related remodeling of small arteries is accompanied by increased sphingomyelinase activity and accumulation of long-chain ceramides. Physiol Rep 2014; 2:2/5/e12015. [PMID: 24872355 PMCID: PMC4098743 DOI: 10.14814/phy2.12015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The structure and function of large arteries alters with age leading to increased risk of cardiovascular disease. Age‐related large artery remodeling and arteriosclerosis is associated with increased collagen deposition, inflammation, and endothelial dysfunction. Bioactive sphingolipids are known to regulate these processes, and are also involved in aging and cellular senescence. However, less is known about age‐associated alterations in small artery morphology and function or whether changes in arterial sphingolipids occur in aging. We show that mesenteric small arteries from old sheep have increased lumen diameter and media thickness without a change in media to lumen ratio, indicative of outward hypertrophic remodeling. This remodeling occurred without overt changes in blood pressure or pulse pressure indicating it was a consequence of aging per se. There was no age‐associated change in mechanical properties of the arteries despite an increase in total collagen content and deposition of collagen in a thickened intima layer in arteries from old animals. Analysis of the sphingolipid profile showed an increase in long‐chain ceramide (C14–C20), but no change in the levels of sphingosine or sphingosine‐1‐phosphate in arteries from old compared to young animals. This was accompanied by a parallel increase in acid and neutral sphingomyelinase activity in old arteries compared to young. This study demonstrates remodeling of small arteries during aging that is accompanied by accumulation of long‐chain ceramides. This suggests that sphingolipids may be important mediators of vascular aging. In this study, we have investigated remodeling of small arteries in a large animal model of aging, the sheep. We show that there is age‐related formation of neointima and increased collagen deposition that is accompanied by changes in sphingolipid metabolism resulting in ceramide accumulation in the tissues. These are the first data implicating sphingolipids as important mediators of vascular aging in small arteries. Given that aging is a major risk factor for cardiovascular disease, our study opens a new area for further research into the mechanisms that underlie vascular remodeling in aging.
Collapse
Affiliation(s)
- Jacqueline Ohanian
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Aiyin Liao
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Simon P Forman
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Vasken Ohanian
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| |
Collapse
|
34
|
Calorie restriction in mammals and simple model organisms. BIOMED RESEARCH INTERNATIONAL 2014; 2014:308690. [PMID: 24883306 PMCID: PMC4026914 DOI: 10.1155/2014/308690] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/13/2014] [Accepted: 04/21/2014] [Indexed: 01/01/2023]
Abstract
Calorie restriction (CR), which usually refers to a 20–40% reduction in calorie intake, can effectively prolong lifespan preventing most age-associated diseases in several species. However, recent data from both human and nonhumans point to the ratio of macronutrients rather than the caloric intake as a major regulator of both lifespan and health-span. In addition, specific components of the diet have recently been identified as regulators of some age-associated intracellular signaling pathways in simple model systems. The comprehension of the mechanisms underpinning these findings is crucial since it may increase the beneficial effects of calorie restriction making it accessible to a broader population as well.
Collapse
|
35
|
Almaida-Pagán PF, Lucas-Sánchez A, Tocher DR. Changes in mitochondrial membrane composition and oxidative status during rapid growth, maturation and aging in zebrafish, Danio rerio. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:1003-11. [PMID: 24769342 DOI: 10.1016/j.bbalip.2014.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/01/2014] [Accepted: 04/17/2014] [Indexed: 11/25/2022]
Abstract
Considering membranes and membrane components as possible pacemakers of the main processes taking place inside mitochondria, changes in phospholipids or fatty acids could play a central role linking different mechanisms involved in cumulative damage to cell molecules and dysfunction during periods of high stress, such as rapid growth and aging. Changes affecting either lipid class or fatty acid compositions could affect phospholipid and membrane properties and alter mitochondrial function and cell viability. In the present study, mitochondrial oxidative status and mitochondrial membrane phospholipid compositions were analyzed throughout the life-cycle of zebrafish. TBARS content significantly increased in 18-month-old fish while aconitase activity decreased in 24-month-old fish, which have been related with oxidative damage to molecules. Mitochondria-specific superoxide dismutase decreased in 24-month-old animals although this change was not statistically significant. Age affected both mitochondrial phospholipid content and the peroxidation index of most phospholipid classes suggesting that oxidative damage to mitochondrial lipids was occurring.
Collapse
Affiliation(s)
- Pedro F Almaida-Pagán
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdom.
| | | | - Douglas R Tocher
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, Scotland, United Kingdom
| |
Collapse
|
36
|
Jo JY, Kim TH, Jeong HY, Lim SM, Kim HS, Im DS. Effect of Di-(2-ethylhexyl)-phthalate on Sphingolipid Metabolic Enzymes in Rat Liver. Toxicol Res 2013; 27:185-90. [PMID: 24278571 PMCID: PMC3834377 DOI: 10.5487/tr.2011.27.3.185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 07/14/2011] [Accepted: 08/11/2011] [Indexed: 12/29/2022] Open
Abstract
Di-(2-ethylhexyl)-phthalate (DEHP), the most widely utilized industrial plastizer and a ubiquitous environmental contaminant, can act on peroxisome proliferators-activated nuclear hormone receptor family (PPAR) isoforms. To understand the contribution of sphingolipid metabolism to DEHP-induced hepatotoxicity, effect of DEHP exposure on activities of sphingolipid metabolic enzymes in rat liver was investigated. DEHP (250, 500 or 750 mg/kg) was administered to the rats through oral gavage daily for 28 days. The activities of acidic and alkaline ceramidases were slightly increased in 250 mg/kg DEHP-administered rat livers and significantly elevated in 500 mg/kg DEHP-administered ones, although the level of 750 mg/kg DEHP-administered ones was not increased. Neutral ceramidase, acidic and neutral sphingomyelinases, sphingomyeline synthase and ceramide syhthase were not changed at all by DEHP exposure. Therefore, acidic and alkaline ceramidases might play important roles in DEHP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Ji-Yeong Jo
- Laboratories of Pharmacology, Pusan National University, Busan 609-735, Korea
| | | | | | | | | | | |
Collapse
|
37
|
Momchilova A, Petkova D, Staneva G, Markovska T, Pankov R, Skrobanska R, Nikolova-Karakashian M, Koumanov K. Resveratrol alters the lipid composition, metabolism and peroxide level in senescent rat hepatocytes. Chem Biol Interact 2013; 207:74-80. [PMID: 24183824 DOI: 10.1016/j.cbi.2013.10.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/20/2013] [Accepted: 10/18/2013] [Indexed: 01/27/2023]
Abstract
Investigations were performed on the influence of resveratrol on the lipid composition, metabolism, fatty acid and peroxide level in plasma membranes of hepatocytes, isolated from aged rats. Hepatocytes were chosen due to the central role of the liver in lipid metabolism and homeostasis. The obtained results showed that the level of sphingomyelin (SM) and phosphatidylserine (PS) was augmented in plasma membranes of resveratrol-treated senescent hepatocytes. The saturated/unsaturated fatty acids ratio of the two most abundant membrane phospholipids, phosphatidylcholine (PC) and phosphatidylethanolamine (PE), was decreased as a result of resveratrol treatment. The neutral sphingomyelinase was found to be responsible for the increase of SM and the decrease of ceramide in plasma membranes of resveratrol-treated senescent hepatocytes. Using labeled acetate as a precursor of lipid synthesis we demonstrated, that resveratrol treatment resulted in inhibition mainly of phospholipid synthesis, followed by fatty acids synthesis. Resveratrol induced reduction of specific membrane-associated markers of apoptosis such as localization of PS in the external plasma membrane monolayer and ceramide level. Finally, the content of lipid peroxides was investigated, because the unsaturated fatty acids, which were augmented as a result of resveratrol treatment, are an excellent target of oxidative attack. The results showed that the lipid peroxide level was significantly lower, ROS were slightly reduced and GSH was almost unchanged in resveratrol-treated hepatocytes. We suggest, that one possible biochemical mechanism, underlying the reported resveratrol-induced changes, is the partial inactivation of neutral sphingomyelinase, leading to increase of SM, the latter acting as a native membrane antioxidant. In conclusion, our studies indicate that resveratrol treatment induces beneficial alterations in the phospholipid and fatty acid composition, as well as in the ceramide and peroxide content in plasma membranes of senescent hepatocytes. Thus, the presented results imply that resveratrol could improve the functional activity of the membrane lipids in the aged liver by influencing specific membrane parameters, associated with the aging process.
Collapse
Affiliation(s)
- Albena Momchilova
- Department of Lipid-Protein Interactions in Biomembranes, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria.
| | - Diana Petkova
- Department of Lipid-Protein Interactions in Biomembranes, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria
| | - Galya Staneva
- Department of Lipid-Protein Interactions in Biomembranes, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria
| | - Tania Markovska
- Department of Lipid-Protein Interactions in Biomembranes, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria
| | - Roumen Pankov
- Department of Cytology, Histology and Embryology, Biological Faculty, Sofia University, 14, Dragan Cankov Str, 1164 Sofia, Bulgaria
| | - Ralica Skrobanska
- Department of Cytology, Histology and Embryology, Biological Faculty, Sofia University, 14, Dragan Cankov Str, 1164 Sofia, Bulgaria
| | | | - Kamen Koumanov
- Department of Lipid-Protein Interactions in Biomembranes, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. Bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
38
|
Lucas-Sánchez A, Almaida-Pagán PF, Tocher DR, Mendiola P, de Costa J. Age-related changes in mitochondrial membrane composition of Nothobranchius rachovii. J Gerontol A Biol Sci Med Sci 2013; 69:142-51. [PMID: 23685767 DOI: 10.1093/gerona/glt066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial membrane composition may be a critical factor in the mechanisms of the aging process by influencing the propagation of reactions involved in mitochondrial function during periods of high stress. Changes affecting either lipid class or fatty acid compositions could affect phospholipid properties and alter mitochondrial function and cell viability. In the present study, mitochondrial membrane phospholipid compositions were analyzed throughout the life cycle of Nothobranchius rachovii. Mitochondrial phospholipids showed several changes with age. Proportions of cardiolipin decreased and those of sphingomyelin increased between 11- and 14-month-old fish. Fatty acid compositions of individual phospholipids in mitochondria were also significantly affected with age. These data suggest increasing damage to mitochondrial lipids during the life cycle of N. rachovii that could be one of the main factors related with and contributing to degraded mitochondrial function associated with the aging process.
Collapse
Affiliation(s)
- Alejandro Lucas-Sánchez
- Department of Physiology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain.
| | | | | | | | | |
Collapse
|
39
|
Ceramide and its transport protein (CERT) contribute to deterioration of mitochondrial structure and function in aging oocytes. Mech Ageing Dev 2012; 134:43-52. [PMID: 23246342 DOI: 10.1016/j.mad.2012.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/03/2012] [Accepted: 12/01/2012] [Indexed: 11/22/2022]
Abstract
In women as well as in mice, oocytes exhibit decreased developmental potential (oocyte quality) with advanced age. Our current data implicate alterations in the levels of oocyte ceramide and associated changes in mitochondrial function and structure as being prominent elements contributing to reduced oocyte quality. Both ROS levels and ATP content were significantly reduced in aged oocytes. The decreased in ROS levels are of intrigue because it is contrary to what has been previously reported. Lowered levels of both ROS and ATP indicate diminished mitochondrial function that was accompanied by alterations in mitochondrial structure. Interestingly, developmental potential of old oocytes was improved by microinjection of mitochondria isolated from young oocytes. Co-treatment of aged oocytes with ceramide and a cytoplasmic lipid carrier (l-carnitine) improved both mitochondrial morphology and function, and totally rescued spontaneous in vitro fragmentation. In addition, ceramide localization was altered in old oocytes possibly due to downregulation of the ceramide transport protein (CERT). However, knockdown of CERT alone was not sufficient to increase young oocyte's susceptibility to death, because the sequential manipulation of ceramide levels (its chronic decrease, followed by downregulation of CERT, and finally a ceramide spike) were all necessary to replicate the aging phenotype. These results indicate that oocyte aging is due to a multiplicity of events; and that with increasing biological age, changes in levels of both ceramide and its transport protein contribute to deterioration of oocyte mitochondrial structure and function. Hence, those changes may represent potential targets to manipulate when attempting to ameliorate aging phenotypes in germ cells.
Collapse
|
40
|
Babenko NA, Hassouneh LKM, Kharchenko VS, Garkavenko VV. Vitamin E prevents the age-dependent and palmitate-induced disturbances of sphingolipid turnover in liver cells. AGE (DORDRECHT, NETHERLANDS) 2012; 34:905-15. [PMID: 21796379 PMCID: PMC3682064 DOI: 10.1007/s11357-011-9288-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 07/04/2011] [Indexed: 05/31/2023]
Abstract
Sphingolipid turnover has been shown to be activated at old age and in response to various stress stimuli including oxidative stress. Reduction of vitamin E content in the liver under the pro-oxidant action is associated with enhanced sphingolipid turnover and ceramide accumulation in hepatocytes. In the present paper, the correction of sphingolipid metabolism in the liver cells of old rats and in the palmitate-treated young hepatocytes using α-tocopherol has been investigated. 3- and 24-month-old rats, [(14) C]palmitic acid, [methyl-(14) C-choline]sphingomyelin (SM), and [(14) C]serine were used. α-Tocopherol administration to old rats or addition to the culture medium of old liver slices or hepatocytes prevented age-dependent increase of ceramide synthesis and lipid accumulation, and increased SM content in liver tissue and cells. α-Tocopherol treatment of old cells decreased the neutral and acid sphingomyelinase (SMase) activities in hepatocytes and serine palmitoyl transferase activity in the liver cell microsomes. Effect of α- or γ-tocopherol, but not of δ-tocopherol, on the newly synthesized ceramide content in old cells was correlated with the action of inhibitor of serine palmitoyl transferase (SPT) activity (myriocin) and SMase inhibitors (glutathione, imipramine). Addition of α-tocopherol as well as myriocin to the culture medium of young hepatocytes, treated by palmitate, abolished ceramide accumulation and synthesis. The data obtained demonstrate that α-tocopherol normalized elevated ceramide content in the old liver cells via inhibition of acid and neutral SMase activities and lipid synthesis de novo. α-Tocopherol, reducing ceramide synthesis, prevented palmitate-induced aging-like ceramide accumulation in young liver cells.
Collapse
Affiliation(s)
- Nataliya A Babenko
- Department of Physiology of Ontogenesis, Institute of Biology, Kharkov Karazin National University, 4 Svobody pl., Kharkov, Ukraine.
| | | | | | | |
Collapse
|
41
|
Babenko NA, Kharchenko VS. Ceramides inhibit phospholipase D-dependent insulin signaling in liver cells of old rats. BIOCHEMISTRY (MOSCOW) 2012; 77:180-6. [DOI: 10.1134/s0006297912020095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
42
|
The Roles of Neutral Sphingomyelinases in Neurological Pathologies. Neurochem Res 2012; 37:1137-49. [DOI: 10.1007/s11064-011-0692-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 11/25/2011] [Accepted: 12/29/2011] [Indexed: 12/14/2022]
|
43
|
Kujjo LL, Perez GI. Ceramide and mitochondrial function in aging oocytes: joggling a new hypothesis and old players. Reproduction 2012; 143:1-10. [DOI: 10.1530/rep-11-0350] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Maternal aging adversely affects oocyte quality (function and developmental potential) and consequently lowers pregnancy rates while increasing spontaneous abortions. Substantial evidence, especially from egg donation studies, implicates the decreased quality of an aging oocyte as a major factor in the etiology of female infertility. Nevertheless, the cellular and molecular mechanisms responsible for the decreased oocyte quality with advanced maternal aging are not fully characterized. Herein we present information in the published literature and our own data to support the hypothesis that during aging induced decreases in mitochondrial ceramide levels and associated alterations in mitochondrial structure and function are prominent elements contributing to reduced oocyte quality. Hence, by examining the molecular determinants that underlie impairments in oocyte mitochondria, we expect to sieve to a better understanding of the mechanistic anatomy of oocyte aging.
Collapse
|
44
|
Huang H, Kasumov T, Gatmaitan P, Heneghan HM, Kashyap SR, Schauer PR, Brethauer SA, Kirwan JP. Gastric bypass surgery reduces plasma ceramide subspecies and improves insulin sensitivity in severely obese patients. Obesity (Silver Spring) 2011; 19:2235-40. [PMID: 21546935 PMCID: PMC3809956 DOI: 10.1038/oby.2011.107] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bariatric surgery is associated with near immediate remission of type 2 diabetes and hyperlipidemia. The mechanisms underlying restoration of normal glucose tolerance postoperatively are poorly understood. Herein, we examined the effect of Roux-en-Y gastric bypass surgery (RYGB) on weight loss, insulin sensitivity, plasma ceramides, proinflammatory markers, and cardiovascular risk factors before and at 3 and 6 months after surgery. Thirteen patients (10 female; age 48.5 ± 2.7 years; BMI, 47.4 ± 1.5 kg/m(2)) were included in the study, all of whom had undergone laparoscopic RYGB surgery. Insulin sensitivity, inflammatory mediators and fasting lipid profiles were measured at baseline, 3 and 6 months postoperatively, using enzymatic analysis. Plasma ceramide subspecies (C14:0, C16:0, C18:0, C18:1, C20:0, C24:0, and C24:1) were quantified using electrospray ionization tandem mass spectrometry after separation with HPLC. At 3 months postsurgery, body weight was reduced by 25%, fasting total cholesterol, triglycerides, low-density lipoproteins, and free fatty acids were decreased, and insulin sensitivity was increased compared to presurgery values. These changes were all sustained at 6 months. In addition, total plasma ceramide levels decreased significantly postoperatively (9.3 ± 0.5 nmol/ml at baseline vs. 7.6 ± 0.4 at 3 months, and 7.3 ± 0.3 at 6 months, P < 0.05). At 6 months, the improvement in insulin sensitivity correlated with the change in total ceramide levels (r = -0.68, P = 0.02), and with plasma tumor necrosis factor-α (TNF-α) (r = -0.62, P = 0.04). We conclude that there is a potential role for ceramide lipids as mediators of the proinflammatory state and improved insulin sensitivity after gastric bypass surgery.
Collapse
Affiliation(s)
- Hazel Huang
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Accumulation of long-chain glycosphingolipids during aging is prevented by caloric restriction. PLoS One 2011; 6:e20411. [PMID: 21687659 PMCID: PMC3110726 DOI: 10.1371/journal.pone.0020411] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 05/02/2011] [Indexed: 12/11/2022] Open
Abstract
Background Chronic kidney disease and end-stage renal disease are major causes of morbidity and mortality that are seen far more commonly in the aged population. Interestingly, kidney function declines during aging even in the absence of underlying renal disease. Declining renal function has been associated with age-related cellular damage and dysfunction with reports of increased levels of apoptosis, necrosis, and inflammation in the aged kidney. Bioactive sphingolipids have been shown to regulate these same cellular processes, and have also been suggested to play a role in aging and cellular senescence. Methodology/Principal Findings We hypothesized that alterations in kidney sphingolipids play a role in the declining kidney function that occurs during aging. To begin to address this, the sphingolipid profile was measured in young (3 mo), middle aged (9 mo) and old (17 mo) C57BL/6 male mice. Interestingly, while modest changes in ceramides and sphingoid bases were evident in kidneys from older mice, the most dramatic elevations were seen in long-chain hexosylceramides (HexCer) and lactosylceramides (LacCer), with C14- and C16-lactosylceramides elevated as much as 8 and 12-fold, respectively. Increases in long-chain LacCers during aging are not exclusive to the kidney, as they also occur in the liver and brain. Importantly, caloric restriction, previously shown to prevent the declining kidney function seen in aging, inhibits accumulation of long-chain HexCer/LacCers and prevents the age-associated elevation of enzymes involved in their synthesis. Additionally, long-chain LacCers are also significantly elevated in human fibroblasts isolated from elderly individuals. Conclusion/Significance This study demonstrates accumulation of the glycosphingolipids HexCer and LacCer in several different organs in rodents and humans during aging. In addition, data demonstrate that HexCer and LacCer metabolism is regulated by caloric restriction. Taken together, data suggest that HexCer/LacCers are important mediators of cellular processes fundamental to mammalian aging.
Collapse
|
46
|
Abstract
Evidence has consistently indicated that activation of sphingomyelinases and/or ceramide synthases and the resulting accumulation of ceramide mediate cellular responses to stressors such as lipopolysaccharide, interleukin 1beta, tumor necrosis factor alpha, serum deprivation, irradiation and various antitumor treatments. Recent studies had identified the genes encoding most of the enzymes responsible for the generation of ceramide and ongoing research is aimed at characterizing their individual functions in cellular response to stress. This chapter discusses the seminal and more recent discoveries in regards to the pathways responsible for the accumulation of ceramide during stress and the mechanisms by which ceramide affects cell functions. The former group includes the roles of neutral sphingomyelinase 2, serine palmitoyltransferase, ceramide synthases, as well as the secretory and endosomal/lysosomal forms of acid sphingomyelinase. The latter summarizes the mechanisms by which ceramide activate its direct targets, PKCzeta, PP2A and cathepsin D. The ability of ceramide to affect membrane organization is discussed in the light of its relevance to cell signaling. Emerging evidence to support the previously assumed notion that ceramide acts in a strictly structure-specific manner are also included. These findings are described in the context of several physiological and pathophysiological conditions, namely septic shock, obesity-induced insulin resistance, aging and apoptosis of tumor cells in response to radiation and chemotherapy.
Collapse
|
47
|
Regulation of phosphatidic Acid metabolism by sphingolipids in the central nervous system. J Lipids 2010; 2011:342576. [PMID: 21490799 PMCID: PMC3068476 DOI: 10.1155/2011/342576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Accepted: 10/14/2010] [Indexed: 12/12/2022] Open
Abstract
This paper explores the way ceramide, sphingosine, ceramide 1-phosphate, and sphingosine 1-phosphate modulate the generation of second lipid messengers from phosphatidic acid in two experimental models of the central nervous system: in vertebrate rod outer segments prepared from dark-adapted retinas as well as in rod outer segments prepared from light-adapted retinas and in rat cerebral cortex synaptosomes under physiological aging conditions. Particular attention is paid to lipid phosphate phosphatase, diacylglycerol lipase, and monoacylglycerol lipase. Based on the findings reported in this paper, it can be concluded that proteins related to phototransduction phenomena are involved in the effects derived from sphingosine 1-phosphate/sphingosine or ceramide 1-phosphate/ceramide and that age-related changes occur in the metabolism of phosphatidic acid from cerebral cortex synaptosomes in the presence of either sphingosine 1-phosphate/sphingosine or ceramide 1-phosphate/ceramide. The present paper demonstrates, in two different models of central nervous system, how sphingolipids influence phosphatidic acid metabolism under different physiological conditions such as light and aging.
Collapse
|
48
|
Monette JS, Gómez LA, Moreau RF, Dunn KC, Butler JA, Finlay LA, Michels AJ, Shay KP, Smith EJ, Hagen TM. (R)-α-Lipoic acid treatment restores ceramide balance in aging rat cardiac mitochondria. Pharmacol Res 2010; 63:23-9. [PMID: 20934512 DOI: 10.1016/j.phrs.2010.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 09/29/2010] [Accepted: 09/29/2010] [Indexed: 01/11/2023]
Abstract
Inflammation results in heightened mitochondrial ceramide levels, which cause electron transport chain dysfunction, elevates reactive oxygen species, and increases apoptosis. As mitochondria in aged hearts also display many of these characteristics, we hypothesized that mitochondrial decay stems partly from an age-related ceramidosis that heretofore has not been recognized for the heart. Intact mitochondria or their purified inner membranes (IMM) were isolated from young (4-6 mo) and old (26-28 mo) rats and analyzed for ceramides by LC-MS/MS. Results showed that ceramide levels increased by 32% with age and three ceramide isoforms, found primarily in the IMM (e.g. C(16)-, C(18)-, and C(24:1)-ceramide), caused this increase. The ceramidosis may stem from enhanced hydrolysis of sphingomyelin, as neutral sphingomyelinase (nSMase) activity doubled with age but with no attendant change in ceramidase activity. Because (R)-α-lipoic acid (LA) improves many parameters of cardiac mitochondrial decay in aging and lowers ceramide levels in vascular endothelial cells, we hypothesized that LA may limit cardiac ceramidosis and thereby improve mitochondrial function. Feeding LA [0.2%, w/w] to old rats for two weeks prior to mitochondrial isolation reversed the age-associated decline in glutathione levels and concomitantly improved Complex IV activity. This improvement was associated with lower nSMase activity and a remediation in mitochondrial ceramide levels. In summary, LA treatment lowers ceramide levels to that seen in young rat heart mitochondria and restores Complex IV activity which otherwise declines with age.
Collapse
Affiliation(s)
- Jeffrey S Monette
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mencarelli C, Losen M, Hammels C, De Vry J, Hesselink MKC, Steinbusch HWM, De Baets MH, Martínez-Martínez P. The ceramide transporter and the Goodpasture antigen binding protein: one protein--one function? J Neurochem 2010; 113:1369-86. [PMID: 20236389 DOI: 10.1111/j.1471-4159.2010.06673.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Goodpasture antigen-binding protein (GPBP) and its splice variant the ceramide transporter (CERT) are multifunctional proteins that have been found to play important roles in brain development and biology. However, the function of GPBP and CERT is controversial because of their involvement in two apparently unrelated research fields: GPBP was initially isolated as a protein associated with collagen IV in patients with the autoimmune disease Goodpasture syndrome. Subsequently, a splice variant lacking a serine-rich domain of 26 amino acids (GPBPDelta26) was found to mediate the cytosolic transport of ceramide and was therefore (re)named CERT. The two splice forms likely carry out different functions in specific sub-cellular localizations. Selective GPBP knockdown induces extensive apoptosis and tissue loss in the brain of zebrafish. GPBP/GPBPDelta26 knock-out mice die as a result of structural and functional defects in endoplasmic reticulum and mitochondria. Because both mitochondria and ceramide play an important role in many biological events that regulate neuronal differentiation, cellular senescence, proliferation and cell death, we propose that GPBP and CERT are pivotal in neurodegenerative processes. In this review, we discuss the current state of knowledge on GPBP and CERT, including the molecular and biochemical characterization of GPBP in the field of autoimmunity as well as the fundamental research on CERT in ceramide transport, biosynthesis, localization, metabolism and cell homeostasis.
Collapse
Affiliation(s)
- Chiara Mencarelli
- Department of Neuroscience, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
50
|
López-Lluch G, Rodríguez-Aguilera JC, Santos-Ocaña C, Navas P. Is coenzyme Q a key factor in aging? Mech Ageing Dev 2010; 131:225-35. [PMID: 20193705 DOI: 10.1016/j.mad.2010.02.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 01/19/2010] [Accepted: 02/20/2010] [Indexed: 01/28/2023]
Abstract
Coenzyme Q (Q) is a key component for bioenergetics and antioxidant protection in the cell. During the last years, research on diseases linked to Q-deficiency has highlighted the essential role of this lipid in cell physiology. Q levels are also affected during aging and neurodegenerative diseases. Therefore, therapies based on dietary supplementation with Q must be considered in cases of Q deficiency such as in aging. However, the low bioavailability of dietary Q for muscle and brain obligates to design new mechanisms to increase the uptake of this compound in these tissues. In the present review we show a complete picture of the different functions of Q in cell physiology and their relationship to age and age-related diseases. Furthermore, we describe the problems associated with dietary Q uptake and the mechanisms currently used to increase its uptake or even its biosynthesis in cells. Strategies to increase Q levels in tissues are indicated.
Collapse
Affiliation(s)
- Guillermo López-Lluch
- Centro Andaluz de Biología del Desarrollo (CABD), Universidad Pablo de Olavide, CIBERER-Instituto de Salud Carlos III, Carretera de Utrera, Km 1, 41013 Sevilla, Spain
| | | | | | | |
Collapse
|