1
|
Kotulska K, Larysz-Brysz M, LePecheur M, Marcol W, Olakowska E, Lewin-Kowalik J, London J. APP/SOD1 overexpressing mice present reduced neuropathic pain sensitivity. Brain Res Bull 2011; 85:321-8. [DOI: 10.1016/j.brainresbull.2011.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 04/23/2011] [Accepted: 05/08/2011] [Indexed: 10/18/2022]
|
2
|
Huang TT, Mantha S, Epstein C. The Role of Oxidative Imbalance in the Pathogenesis of Down Syndrome. ACTA ACUST UNITED AC 2009. [DOI: 10.1201/9780203912874.ch18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
3
|
Kotulska K, LePecheur M, Marcol W, Lewin-Kowalik J, Larysz-Brysz M, Paly E, Matuszek I, London J. Overexpression of copper/zinc-superoxide dismutase in transgenic mice markedly impairs regeneration and increases development of neuropathic pain after sciatic nerve injury. J Neurosci Res 2006; 84:1091-7. [PMID: 16862565 DOI: 10.1002/jnr.21000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Despite the general capacity of peripheral nervous system to regenerate, peripheral nerve injury is often followed by incomplete recovery of function, sometimes with the burden of neuropathic pain. The mechanisms of both regeneration and nociception have not been clarified, but it is known that inflammatory reactions are involved. Cu/Zn-superoxide dismutase (SOD1) is an important scavenger protein that acts against oxidative stress. It has been shown to play an important role in apoptosis and inflammation. The aim of this study was to examine the role of SOD1 overexpression in peripheral nerve regeneration and neuropathic pain-related behavior in mice. Sciatic nerves of SOD1-overexpressing and FVB/N wild type-mice were transected and immediately resutured. Evaluation of motor and sensory function and autotomy was carried out during 4 weeks of followup. We found markedly worse sciatic function index outcome as well as more significant atrophy of denervated muscles in SOD1-overexpressing animals compared with wild type. Autotomy was markedly worse in SOD1 transgenic mice than in wild-type animals. Histological evaluation revealed that the intensity of regeneration features, including numbers of GAP-43-positive growth cones, Schwann cells, and macrophages in the distal stump of the transected nerve, was also decreased in transgenic mice. Neuroma formation at the injury site was significantly more prominent in this group. Taken together, our findings suggest that SOD1 overexpression is deleterious for nerve regeneration processes and aggravates neuropathic pain-like state in mice. This can be at least partially ascribed to disturbed inflammatory reactions at the injury site.
Collapse
Affiliation(s)
- Katarzyna Kotulska
- Department of Child Neurology and Epileptology, The Children's Memorial Health Institute, Warsaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Laurent J, Paly E, Marche PN, London J. Early thymic T cell development in young transgenic mice overexpressing human Cu/Zn superoxide dismutase, a model of Down syndrome. Free Radic Biol Med 2006; 40:1971-80. [PMID: 16716898 DOI: 10.1016/j.freeradbiomed.2006.01.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 12/05/2005] [Accepted: 01/24/2006] [Indexed: 12/20/2022]
Abstract
Previous studies have shown that transgenic mice overexpressing Cu/Zn superoxide dismutase, a model of Down syndrome, exhibit premature thymic involution. We have performed a flow cytometry analysis of the developing thymus in these homozygous transgenic mice (hSOD1/hSOD1: Tg-SOD). Longitudinal follow-up analysis from day 3 to day 280 showed an early thymic development in Tg-SOD mice compared with controls. This early thymic development was associated with an increased migration of mature T cells to peripheral lymphoid organs. BrdU labeling showed no difference between Tg-SOD and control mice, confirming that the greater number of peripheral T cells in Tg-SOD mice was not due to extensive proliferation of these cells but rather to a greater pool of emigrant T cells in Tg-SOD.
Collapse
Affiliation(s)
- Julien Laurent
- CePo-Centre Pluridisciplinaire d'Oncology, Avenue PierreDecker, 4CH Lausanne, Switzerland
| | | | | | | |
Collapse
|
5
|
Lalonde R, Le Pêcheur M, Strazielle C, London J. Exploratory activity and motor coordination in wild-type SOD1/SOD1 transgenic mice. Brain Res Bull 2005; 66:155-62. [PMID: 15982533 DOI: 10.1016/j.brainresbull.2005.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 03/30/2005] [Accepted: 04/18/2005] [Indexed: 11/30/2022]
Abstract
SOD1 is one of several overexpressed genes in trisomy 21. In order to dissect possible genetic causes of the syndrome, wild-type SOD1/SOD1 transgenic mice were compared to FVB/N non-transgenic controls at 5 months of age in tests of exploratory activity and motor coordination. Wild-type SOD1/SOD1 transgenic mice had fewer stereotyped movements in an open-field and fell sooner from a rotorod than controls. In contrast, wild-type SOD1/SOD1 transgenic mice had fewer falls on a wire suspension test. There was no intergroup difference for ambulatory movements in the open-field, exploration of the elevated plus-maze, emergence from a small compartment, and motor coordination on a stationary beam. These results indicate that homozygous mice expressing human SOD1 are impaired in their ability to adjust their posture in response to a moving surface and make fewer small-amplitude movements without any change in general exploratory activity.
Collapse
Affiliation(s)
- R Lalonde
- Université de Rouen, Faculté de Médecine et de Pharmacie, INSERM U614, Bâtiment de Recherche, 22 bld Gambetta, Salle 1D18, 76183 Rouen Cedex, France.
| | | | | | | |
Collapse
|
6
|
Shin JH, London J, Le Pecheur M, Weitzdoerfer R, Hoeger H, Lubec G. Proteome analysis in hippocampus of mice overexpressing human Cu/Zn-superoxide dismutase 1. Neurochem Int 2005; 46:641-53. [PMID: 15863242 DOI: 10.1016/j.neuint.2004.06.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Accepted: 06/03/2004] [Indexed: 11/23/2022]
Abstract
Cu/Zn-superoxide dismutase 1 (SOD1), encoded on chromosome 21, is a key enzyme in metabolism of oxygen free radicals and oxidative stress. Transgenic mice overexpressing human SOD1 (Tg-hSOD1) are useful model for Down syndrome (trisomy 21) and familial amyotrophic lateral sclerosis (ALS). It was shown recently that Tg-hSOD1 mice develop a characteristic set of neurodegenerative changes in hippocampus and we therefore decided to study differential protein expression patterns, constructing a mouse hippocampal proteome map using two-dimensional electrophoresis (2-DE) with in-gel digestion of spots followed by matrix-assisted laser desorption/ionisation-time of flight (MALDI-TOF) identification and quantitatively compared protein profiles between non-transgenic mice, hemizygous and homozygous Tg-hSOD1 mice. In total 1056 spots were analysed, resulting in the identification of 445 polypeptides that were the products of 157 different genes. Among these a series of proteins involved in scaffolding, metabolism, signaling and other functions were deranged. Our findings suggest that overexpressed SOD1 directly or by generating reactive oxygen species may lead to aberrant protein expressional patterns that in turn may lead to or reflect neurodegeneration observed in this animal model.
Collapse
Affiliation(s)
- Joo-Ho Shin
- Department of Pediatrics, Medical University of Vienna, Wahringer Gurtel 18-20, 1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
7
|
Abstract
The deterioration of the immune system with progressive aging is believed to contribute to morbidity and mortality in elderly humans due to the increased incidence of infection, autoimmunity, and cancer. Dysregulation of T-cell function is thought to play a critical part in these processes. One of the consequences of an aging immune system is the process termed thymic involution, where the thymus undergoes a progressive reduction in size due to profound changes in its anatomy associated with loss of thymic epithelial cells and a decrease in thymopoiesis. This decline in the output of newly developed T cells results in diminished numbers of circulating naive T cells and impaired cell-mediated immunity. A number of theories have been forwarded to explain this 'thymic menopause' including the possible loss of thymic progenitors or epithelial cells, a diminished capacity to rearrange T-cell receptor genes and alterations in the production of growth factors and hormones. Although to date no interventions fully restore thymic function in the aging host, systemic administration of various cytokines and hormones or bone marrow transplantation have resulted in increased thymic activity and T-cell output with age. In this review, we shall examine the current literature on thymic involution and discuss several interventional strategies currently being explored to restore thymic function in elderly subjects.
Collapse
Affiliation(s)
- Dennis D Taub
- Laboratory of Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | |
Collapse
|
8
|
Shin JH, Yang JW, Le Pecheur M, London J, Hoeger H, Lubec G. Altered expression of hypothetical proteins in hippocampus of transgenic mice overexpressing human Cu/Zn-superoxide dismutase 1. Proteome Sci 2004; 2:2. [PMID: 15193154 PMCID: PMC446209 DOI: 10.1186/1477-5956-2-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2004] [Accepted: 06/11/2004] [Indexed: 11/25/2022] Open
Abstract
Background Cu/Zn-superoxide dismutase 1 (SOD1), encoded on chromosome 21, is a key enzyme in the metabolism of reactive oxygen species (ROS) and pathogenetically relevant for several disease states including Down syndrome (DS; trisomy 21). Systematically studying protein expression in human brain and animal models of DS we decided to carry out "protein hunting" for hypothetical proteins, i.e. proteins that have been predicted based upon nucleic sequences only, in a transgenic mouse model overexpressing human SOD1. Results We applied a proteomics approach using two-dimensional electrophoresis (2-DE) with in-gel digestion of spots followed by mass spectrometric (matrix-assisted laser desorption/ionization-time of flight) identification and quantification of hypothetical proteins using specific software. Hippocampi of wild type, hemizygous and homozygous SOD1 transgenic mice (SOD1-TGs) were analysed. We identified fourteen hypothetical proteins in mouse hippocampus. Of these, expression levels of 2610008O03Rik protein (Q9D0K2) and 4632432E04Rik protein (Q9D358) were significantly decreased (P < 0.05 and 0.001) and hypothetical protein (Q99KP6) was significantly increased (P < 0.05) in hippocampus of SOD1-TGs as compared with non-transgenic mice. Conclusions The biological meaning of aberrant expression of these proteins may be impairment of metabolism, signaling and transcription machinery in SOD1-TGs brain that in turn may help to explain deterioration of these systems in DS brain.
Collapse
Affiliation(s)
- Joo-Ho Shin
- Department of Pediatrics, University of Vienna, Vienna, Austria
| | - Jae-Won Yang
- Department of Pediatrics, University of Vienna, Vienna, Austria
| | - Marie Le Pecheur
- Biochemisty Department, Universite Paris 7 Denis - Diderot, Paris, France
| | - Jacqueline London
- Biochemisty Department, Universite Paris 7 Denis - Diderot, Paris, France
| | - Harald Hoeger
- Institute for Animal Breeding, University of Vienna, Vienna, Austria
| | - Gert Lubec
- Department of Pediatrics, University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Bowler RP, Nicks M, Olsen DA, Thøgersen IB, Valnickova Z, Højrup P, Franzusoff A, Enghild JJ, Crapo JD. Furin proteolytically processes the heparin-binding region of extracellular superoxide dismutase. J Biol Chem 2002; 277:16505-11. [PMID: 11861638 DOI: 10.1074/jbc.m105409200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme that attenuates brain and lung injury from oxidative stress. A polybasic region in the carboxyl terminus distinguishes EC-SOD from other superoxide dismutases and determines EC-SOD's tissue half-life and affinity for heparin. There are two types of EC-SOD that differ based on the presence or absence of this heparin-binding region. It has recently been shown that proteolytic removal of the heparin-binding region is an intracellular event (Enghild, J. J., Thogersen, I. B., Oury, T. D., Valnickova, Z., Hojrup, P., and Crapo, J. D. (1999) J. Biol. Chem. 274, 14818-14822). By using mammalian cell lines, we have now determined that removal of the heparin-binding region occurs after passage through the Golgi network but before being secreted into the extracellular space. Specific protease inhibitors and overexpression of intracellular proteases implicate furin as a processing protease. In vitro experiments using furin and purified EC-SOD suggest that furin proteolytically cleaves EC-SOD in the middle of the polybasic region and then requires an additional carboxypeptidase to remove the remaining lysines and arginines. A mutation in Arg(213) renders EC-SOD resistant to furin processing. These results indicate that furin-dependent processing of EC-SOD is important for determining the tissue distribution and half-life of EC-SOD.
Collapse
Affiliation(s)
- Russell P Bowler
- National Jewish Medical and Research Center, Denver, Colorado 80206, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Anisimov VN. Mutant and genetically modified mice as models for studying the relationship between aging and carcinogenesis. Mech Ageing Dev 2001; 122:1221-55. [PMID: 11438116 DOI: 10.1016/s0047-6374(01)00262-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Increased interest is emerging in using mouse models to assess the genetics of aging and age-related diseases, including cancer. However, only limited information is available regarding the relationship between aging and spontaneous tumor development in genetically modified mice. Analysis of various transgenic and knockout rodent models with either a shortened or an extended life span, provides a unique opportunity to evaluate interactions of genes involved in the aging process and carcinogenesis. There are only a few models which show life span extension. Ames dwarf mutant mice, p66(-/-) knockout mice, alpha MUPA and MGMT transgenic mice live longer than wild-type strains. The incidence of spontaneous tumors in these mutant mice was usually similar to those in controls, whereas the latent period of tumor development was increased. Practically all models of accelerated aging showed increased incidence and shorter latency of tumors. This phenomenon has been observed in animals which display a phenotype that more closely resembles natural aging, and in animals which manifest only some features of the normal aging process. These observations are in agreement with an earlier established positive correlation between tumor incidence and the rate of tumor incidence increase associated with aging and the aging rate in a population. Thus, genetically modified animals are a valuable tool in unravelling mechanisms underlying aging and cancer. Systemic evaluation of newly generated models should include onco-gerontological studies.
Collapse
Affiliation(s)
- V N Anisimov
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov Research Institute of Oncology, Pesochny-2, 197758, St Petersburg, Russia.
| |
Collapse
|
11
|
Pahlavani MA, Mele JF, Richardson A. Effect of overexpression of human Cu/Zn-SOD on activation-induced lymphocyte proliferation and apoptosis. Free Radic Biol Med 2001; 30:1319-27. [PMID: 11368930 DOI: 10.1016/s0891-5849(01)00529-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The process of lymphocyte proliferation and apoptosis is known to be linked to oxidative stress. In the present study, we have used a new transgenic mouse model to investigate the effect of human Cu/Zn superoxide dismutase (Cu/Zn-SOD) overexpression on activation-induced lymphocytes proliferation and apoptosis. Cu/Zn-SOD activity was 3.5-fold higher in the spleen of the transgenic mice overexpressing Cu/Zn-SOD (Tg-Cu/Zn-SOD) compared to the wild-type littermates. Proliferative response of lymphocytes to lipopolysaccharide (LPS), Concanavalin A (Con A), and anti-CD3 was measured by [3H]-thymidine incorporation. Activation-induced apoptosis was determined by incubating the T cells with anti-CD3 (primary stimulus) for 72 h, followed by restimulation with Con A (secondary stimulus) for various times. Apoptosis was assessed by measuring DNA fragmentation using a spectrofluorimetric assay and monitoring the expression of the specific apoptotic markers (Fas/CD95 receptor and Fas/CD95 ligand (Fas-L) using flow cytometry. There was no significant difference in proliferative response of lymphocytes to LPS, Con A, or anti-CD3 in transgenic mice overexpressing human Cu/Zn superoxide dismutase (Tg-Cu/Zn-SOD) compared to wild-type littermates. In addition, no significant difference was observed in lymphocyte populations and subsets between Tg-Cu/Zn-SOD mice and wild-type littermates. However, splenic T cells from Tg-Cu/Zn-SOD mice exhibited a significantly (p <.05) higher level of activation-induced DNA fragmentation than T cells from wild-type littermates. The increase in DNA fragmentation was paralleled with an increase in the proportion of T cells expressing Fas and Fas-L molecules. The possible consequences of Cu/Zn-SOD overproduction on activation-induced apoptosis are discussed.
Collapse
Affiliation(s)
- M A Pahlavani
- South Texas Veterans Health Care System, Audie L. Murphy Veterans Hospital, and Department of Physiology, University of Texas Health Science Center, San Antonio, TX 78284, USA.
| | | | | |
Collapse
|
12
|
Nabarra B, Mulotte M, Casanova M, Godard C, London J. Ultrastructural study of the FVB/N mouse thymus: presence of an immature epithelial cell in the medulla and premature involution. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2001; 25:231-243. [PMID: 11164888 DOI: 10.1016/s0145-305x(00)00054-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
FVB/N inbred mice have been widely used to generate a variety of transgenic lines, but their physiology and especially their immunological characteristics are poorly documented. We therefore studied the ultrastructure of the thymus and the distribution of thymocyte subpopulations in FVB/N mice at several ages. In young FVB/N mice the stromal microenvironment exhibits the three types of epithelial cells and the two types of bone-marrow derived cells (macrophages and interdigitated cells) previously described in other strains of mice. Moreover, in the thymic medulla of young FVB/N mice, a fourth cell type with the morphological characteristics of an immature epithelial cell was present in relatively high number. Furthermore, thymocyte subpopulations distribution shows an earlier thymocyte maturation than in other strains. Finally, changes associated with thymic involution were observed about 5 months earlier than in many other mouse strains. Our results demonstrated that the FVB/N strain has a specific immunological status.
Collapse
Affiliation(s)
- B Nabarra
- INSERM U.345 Institut Necker, 156 rue de Vaugirard, 75730 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
13
|
Jaarsma D, Haasdijk ED, Grashorn JA, Hawkins R, van Duijn W, Verspaget HW, London J, Holstege JC. Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant SOD1. Neurobiol Dis 2000; 7:623-43. [PMID: 11114261 DOI: 10.1006/nbdi.2000.0299] [Citation(s) in RCA: 251] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytosolic Cu/Zn superoxide dismutase (SOD1) is a ubiquitous small cytosolic metalloenzyme that catalyzes the conversion of superoxide anion to hydrogen peroxide (H(2)O(2)). Mutations in the SOD1 gene cause a familial form of amyotrophic lateral sclerosis (fALS). The mechanism by which mutant SOD1s causes ALS is not understood. Transgenic mice expressing multiple copies of fALS-mutant SOD1s develop an ALS-like motoneuron disease resembling ALS. Here we report that transgenic mice expressing a high concentration of wild-type human SOD1 (hSOD1(WT)) develop an array of neurodegenerative changes consisting of (1) swelling and vacuolization of mitochondria, predominantly in axons in the spinal cord, brain stem, and subiculum; (2) axonal degeneration in a number of long fiber tracts, predominantly the spinocerebellar tracts; and (3) at 2 years of age, a moderate loss of spinal motoneurons. Parallel to the development of neurodegenerative changes, hSOD1(WT) mice also develop mild motor abnormalities. Interestingly, mitochondrial vacuolization was associated with accumulation of hSOD1 immunoreactivity, suggesting that the development of mitochondrial pathology is associated with disturbed SOD1 turnover. In this study we also crossed hSOD1(WT) mice with a line of fALS-mutant SOD1 mice (hSOD1(G93A)) to generate "double" transgenic mice that express high levels of both wild-type and G93A mutant hSOD1. The "double" transgenic mice show accelerated motoneuron death, earlier onset of paresis, and earlier death as compared with hSOD1(G93A) littermates. Thus in vivo expression of high levels of wild-type hSOD1 is not only harmful to neurons in itself, but also increases or facilitates the deleterious action of a fALS-mutant SOD1. Our data indicate that it is important for motoneurons to control the SOD1 concentration throughout their processes, and that events that lead to improper synthesis, transport, or breakdown of SOD1 causing its accumulation are potentially dangerous.
Collapse
Affiliation(s)
- D Jaarsma
- Department of Anatomy, Erasmus University, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Lau LL, Spain LM. Altered aging-related thymic involution in T cell receptor transgenic, MHC-deficient, and CD4-deficient mice. Mech Ageing Dev 2000; 114:101-21. [PMID: 10799708 DOI: 10.1016/s0047-6374(00)00091-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
During aging in mice and humans, a gradual decline in thymus integrity and function occurs (thymic involution). To determine whether T cell reactivity or development affects thymic involution, we compared the thymic phenotype in old (12 months) and young (2 months) mice transgenic for rearranged alphabeta or beta 2B4 T cell receptor (TCR) genes, mice made deficient for CD4 by gene targetting (CD4(-/-)), mice made deficient for major histocompatibility complex (MHC) class I (beta2M-/-) or class II genes (A(beta)(b-/-) on C57Bl/6 background) or both. The expected aging-related reductions in thymic weights were observed for all strains except those bearing disruption of both class I and class II MHC genes. Therefore, disruption of MHC class I and class II appeared to reverse or delay aging-related thymic atrophy at 12 months. Immunohistochemical analysis of aging-associated alterations in thymic morphology revealed that TCR alphabeta transgenes, CD4 disruption, and MHC class II disruption all reduced or eliminated these changes. All strains examined at 12 months showed alterations in the distribution of immature thymocyte populations relative to young controls. These results show that aging-associated thymic structural alterations, size reductions, and thymocyte developmental delays can be separated and are therefore causally unrelated. Furthermore, these results suggest that the T cell repertoire and/or its development play a role in aging-related thymic involution.
Collapse
MESH Headings
- Aging/immunology
- Alleles
- Animals
- CD4 Antigens/genetics
- CD4 Antigens/immunology
- Down-Regulation
- Female
- Histocompatibility Antigens Class II/genetics
- Histocompatibility Antigens Class II/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Knockout
- Mice, Transgenic
- Organ Size
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Thymus Gland/cytology
- Thymus Gland/pathology
- Thymus Gland/physiology
- Transgenes
- beta 2-Microglobulin/genetics
- beta 2-Microglobulin/immunology
Collapse
Affiliation(s)
- L L Lau
- Wistar Institute, Philadelphia, PA 19104, USA
| | | |
Collapse
|