1
|
Abatemi-Usman S, Adamu Y, Nwoko K, Akindele O, Ayanlade A, Alanazi AH, Krupp E. Exposure of stranded harbour porpoises to trace elements along the coastline. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 377:126389. [PMID: 40345372 DOI: 10.1016/j.envpol.2025.126389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 04/07/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
The total concentrations of 31 metals and metalloids were determined in the liver of 101 harbour porpoises stranded along the Scottish coastline using CV-AFS, ICP-MS and MP-AES techniques. The proportion of male to female animals was 44:57, with an age range of 0.1 to 15-yr. Principal component analysis showed significant differences by sex (p < 0.01) in the concentrations of 42 % of the elements and were higher in male animals. Higher liver content of elements were observed in the adult age group than in the juveniles. Age-related bioaccumulation of Hg (p < 0.0001) was observed similar to what had also been found in the liver of pilot whales stranded on the coast of Scotland. A strong and positive correlation (p < 0.0001) was shown between Hg and Se, RS = 0.93. A similar correlation (p < 0.0001) was observed between Al and Ga in males, RS = 0.85 and females, RS = 0.91. There was limited information on the interrelationships found between B, Li and Sr. Adult mammals had significantly higher Hg:Se molar ratios than the juveniles (p < 0.0001). However, Se was found in molar excess to Hg in all individuals.
Collapse
Affiliation(s)
- Sa'adatu Abatemi-Usman
- Trace Element Speciation Laboratory (TESLA), Department of Chemistry, School of Natural and Computing Sciences, University of Aberdeen, Aberdeen, UK; National Oil Spill Detection and Response Agency, Central Business District, Abuja, Nigeria.
| | - Yakubu Adamu
- Department of Physics, School of Natural and Computing Sciences, University of Aberdeen, Aberdeen, UK
| | - Kenneth Nwoko
- Trace Element Speciation Laboratory (TESLA), Department of Chemistry, School of Natural and Computing Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Ayansina Ayanlade
- Department of Geography, Obafemi Awolowo University, Ile-Ife, Nigeria; Central European University, Vienna, Austria
| | - Ahmed Hamad Alanazi
- Department of Chemistry, College of Science, Jouf University, Sakaka 2014, Saudi Arabia
| | - Eva Krupp
- Trace Element Speciation Laboratory (TESLA), Department of Chemistry, School of Natural and Computing Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
2
|
Techetach M, Achtak H, Lozano-Bilbao E, Kouali H, Rafiq F, Kerkich M, Dahbi A. Accumulation of trace metals in the digestive gland and muscle of the common octopus (Octopus vulgaris) from the northwestern Atlantic coast of Morocco. MARINE POLLUTION BULLETIN 2025; 216:118037. [PMID: 40288307 DOI: 10.1016/j.marpolbul.2025.118037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 04/20/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
The present study aimed to assess trace metal (TM) accumulation in the digestive gland and muscle of Octopus vulgaris, collected along the northwestern Atlantic coast of Morocco. Essential TMs (Cu and Zn) were the most abundant in tissues, with the following sequence: Cu > Zn > Cd > Cr in the digestive gland and Zn > Cu > Cr > Cd in muscle. In addition, TM concentrations were consistently and significantly higher in the digestive gland. For non-essential TMs, Cd was significantly more elevated in digestive glands than in muscle, with concentrations up to 702 times higher, and exhibited greater interindividual variability. Also, significant relationships were found in the digestive gland between Cd and Cu levels and the size of samples. In contrast, sex and maturity stage had no effect on TM content or distribution pattern among tissues. Metal ratios (Cd/Zn and Cd/Cu) in the digestive gland clearly correlated with biometric traits and TM levels, indicating a complex interactive behavior between these pollutants during the bioaccumulation process. These findings enhance our understanding of metal partitioning in O. vulgaris and highlight their potential as bioindicators.
Collapse
Affiliation(s)
- Mohamed Techetach
- Laboratory of Ecotoxicology, Bioresources and Coastal Geomorphology, Department of Biology, Polydisciplinary Faculty, Cadi Ayyad University, 46000 Safi, Morocco.
| | - Hafid Achtak
- Laboratory of Ecotoxicology, Bioresources and Coastal Geomorphology, Department of Biology, Polydisciplinary Faculty, Cadi Ayyad University, 46000 Safi, Morocco
| | - Enrique Lozano-Bilbao
- Grupo de Investigación en Ecología Marina Aplicada y Pesquerías (EMAP), Instituto de Investigación de Estudios Ambientales y Recursos Naturales (i-UNAT), Universidad de Las Palmas de Gran Canaria, Campus de Tafira, Las Palmas de Gran Canaria, 35017 Las Palmas, Spain
| | - Hassnae Kouali
- Laboratory of Ecotoxicology, Bioresources and Coastal Geomorphology, Department of Biology, Polydisciplinary Faculty, Cadi Ayyad University, 46000 Safi, Morocco
| | - Fatima Rafiq
- Laboratory of Ecotoxicology, Bioresources and Coastal Geomorphology, Department of Biology, Polydisciplinary Faculty, Cadi Ayyad University, 46000 Safi, Morocco
| | - Maha Kerkich
- Laboratory of Ecology, Biodiversity and Environment, Faculty of Sciences, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Abdallah Dahbi
- Laboratory of Ecotoxicology, Bioresources and Coastal Geomorphology, Department of Biology, Polydisciplinary Faculty, Cadi Ayyad University, 46000 Safi, Morocco
| |
Collapse
|
3
|
Alba-Preciado MA, Leyva-Morales JB, Granados-Amores J, García-Hernández J, Aguilera-Márquez D, Bastidas-Bastidas PDJ, Zamora-Arellano NY, González-Ramírez CA, Granados-Amores A, Dueñas-Romero JDJ. Distribution and health risk assessment of heavy metals in the octopus (Octopus hubbsorum) in the Mexican Pacific. Food Chem Toxicol 2025; 200:115362. [PMID: 40024565 DOI: 10.1016/j.fct.2025.115362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 03/04/2025]
Abstract
Heavy metal (HM) concentrations in coastal marine species and the health risks (HR) for the consumption of these resources remain relatively unknown. We determined the concentrations of Cd, Cu, Hg, Pb, and Zn in the arm and mantle tissues of 150 Octopus hubbsorum specimens collected from seven sites in the Mexican Pacific in 2021. Samples were processed by microwave-assisted acid digestion, and concentrations were determined by anodic stripping voltammetry. The HR for adults and children exposed to HM through the consumption of O. hubbsorum was determined by the hazard quotient (HQ) and risk index (HI). Five HM were found in all samples. The concentrations followed the order of Zn > Cu > Cd > Pb > Hg, with most sites exhibiting Cd and Pb concentrations above the maximum permissible limit (MPL) established by national and international standards. However, the values of HQ and HI did not exceed one (<1) for any heavy metal, indicating that there is no HR due to consuming octopus. Nonetheless, O. hubbsorum exhibited concentrations of some HM above the MPL; therefore, caution should be taken when consuming this species considering the additive and/or potentiation effect that could occur, especially in coastal communities where consumption is higher.
Collapse
Affiliation(s)
- María Azucena Alba-Preciado
- Programa de Doctorado en Ciencias Biológico-Agropecuarias, Universidad Autónoma de Nayarit, Xalisco, C.P. 63780, Nayarit, Mexico.
| | - José Belisario Leyva-Morales
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma, 42184, Hidalgo, Mexico; Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O'Higgins, Avenida Viel 1497, Santiago de Chile, 8370993, Chile.
| | - Jasmin Granados-Amores
- Escuela Nacional de Ingeniería Pesquera, Universidad Autónoma de Nayarit, Apartado Postal 10, C.P. 63740, San Blas, Nayarit, Mexico.
| | - Jaqueline García-Hernández
- Centro de Investigación en Alimentación y Desarrollo A.C. Unidad Guaymas, Carretera al Varadero Nacional Km. 6.6, Col. Las Playitas, C.P. 85480, Guaymas, Sonora, Mexico.
| | - Daniela Aguilera-Márquez
- Centro de Investigación en Alimentación y Desarrollo A.C. Unidad Guaymas, Carretera al Varadero Nacional Km. 6.6, Col. Las Playitas, C.P. 85480, Guaymas, Sonora, Mexico.
| | - Pedro de Jesús Bastidas-Bastidas
- Centro de Investigación en Alimentación y Desarrollo A.C. Unidad Culiacán, Carretera al Eldorado Km. 5.5, Campo El Díez, C.P. 80110, Culiacán, Sinaloa, Mexico.
| | - Nydia Yuriana Zamora-Arellano
- Universidad Politécnica de Sinaloa, dirección Carretera Municipal Libre Mazatlán Higueras Km 3 Colonia Genaro Estrada, C.P. 82199, Mazatlán, Sinaloa, Mexico.
| | - César Abelardo González-Ramírez
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Mineral de la Reforma, 42184, Hidalgo, Mexico.
| | - Andrés Granados-Amores
- Universidad Autónoma de Baja California Sur (UABCS), Unidad Pichilingue, Km. 16.5 de la Carretera La Paz-Pichilingue, C.P. 23000, La Paz, Baja California Sur, Mexico.
| | - José de Jesús Dueñas-Romero
- Programa de Doctorado en Ciencias Biológico-Agropecuarias, Universidad Autónoma de Nayarit, Xalisco, C.P. 63780, Nayarit, Mexico.
| |
Collapse
|
4
|
Chan Y, Robinson NJ, Dourdeville K, Haas HL, Nielsen J, Paladino FV, Prescott R, Patel SH. Heavy metal concentrations suggest pollution risk varies between sea turtle species in the northwest Atlantic Ocean. CHEMOSPHERE 2025; 373:144190. [PMID: 39908845 DOI: 10.1016/j.chemosphere.2025.144190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/07/2025]
Abstract
Heavy metal pollution poses an increasing threat to marine life globally. Due to bioaccumulation, the risks of heavy metal pollution are particularly acute for large species at high trophic levels although this will vary based on a species' diet and foraging location. Here, we assessed exposure risk to heavy metal pollution in three sea turtle species: the green (Chelonia mydas), Kemp's ridley (Lepidochelys kempii), and loggerhead (Caretta caretta) turtles. Specifically, we collected skin and scute samples from deceased turtles found after cold-stunning in Cape Cod Bay, Massachusetts, USA (green: n = 8, Kemp's ridley: n = 30, loggerhead: n = 17). Using ICP-MS, we analyzed samples for aluminum, arsenic, cadmium, cobalt, chromium, iron, manganese, nickel, lead, selenium, silver, and zinc concentrations. Across all species, heavy metal concentrations were predominantly higher and more variable in scute than skin. When comparing species, PCA analysis revealed loggerhead turtles had the least variability in metal heavy concentrations, potentially driven by a generalist foraging strategy, relative to green and Kemp's ridley turtles. Nevertheless, all three species had concentrations of As and Cd near values considered toxic in vertebrates with loggerhead turtles having the highest concentrations. These findings underscore the importance of considering inter-specific differences when assessing the risks of heavy metal exposure in sea turtles and highlight As and Cd as key pollutants of concern in the northwest Atlantic.
Collapse
Affiliation(s)
- YiWynn Chan
- Department of Biological Sciences, Purdue University Fort Wayne, 2101 E Coliseum Blvd, Fort Wayne, Indiana, 46805, USA.
| | - Nathan J Robinson
- Institut de Ciències del Mar, Spanish National Research Council - Consejo Superior de Investigaciones Científicas, Passeig Marítim de la Barceloneta, 37-49., 08003, Barcelona, Spain; Fundación Oceanogràfic de la Comunitat Valenciana, Ciudad de las Artes y las Ciencias, C/ d'Eduardo Primo Yúfera, 1B, Quatre Carreres, 46013, València, Spain.
| | - Karen Dourdeville
- Mass Audubon Wellfleet Bay Wildlife Sanctuary, 291 US-6, South Wellfleet, Massachusetts, 02663, USA.
| | - Heather L Haas
- NOAA Fisheries Northeast Fisheries Science Center, 166 Water Street, Woods Hole, MA, 02543, USA.
| | - James Nielsen
- Mass Audubon Wellfleet Bay Wildlife Sanctuary, 291 US-6, South Wellfleet, Massachusetts, 02663, USA.
| | - Frank V Paladino
- Department of Biological Sciences, Purdue University Fort Wayne, 2101 E Coliseum Blvd, Fort Wayne, Indiana, 46805, USA; The Leatherback Trust, Edificio Los Yoses, Oficina No. 4, Avenida Central, Calle 35, San José, Costa Rica.
| | - Robert Prescott
- Mass Audubon Wellfleet Bay Wildlife Sanctuary, 291 US-6, South Wellfleet, Massachusetts, 02663, USA.
| | - Samir H Patel
- Coonamessett Farm Foundation, Inc.233 Hatchville Rd, East Falmouth, MA, 02536, USA.
| |
Collapse
|
5
|
Lima GDS, Suarez CA, Gemeiner H, Serafini PP, de Deus JPA, Viana JLM, Menegario AA. Potentially toxic elements (PTEs) in seabirds foraging across a heterogeneous landscape: Cross-species bioaccumulation patterns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125609. [PMID: 39734045 DOI: 10.1016/j.envpol.2024.125609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 12/31/2024]
Abstract
Seabirds are particularly susceptible to potentially toxic elements (PTEs) due to the tendency of biomagnification of some elements, thus serving as potential bioindicators for assessing environmental health. In this study, we analyzed As, Cd, Cu and Zn concentrations in liver samples from nine seabird species (51 specimens) collected along the Southwestern Atlantic Ocean. Results revealed substantial variations in PTE concentrations among species, with taxonomic orders influencing accumulation patterns. The observed PTE concentrations in seabirds suggest potential trends in bioaccumulation, influenced by species-specific behaviors and diets. For instance, As ranged from 0.47 mg kg-1 in Nannopterum brasilianus to 70.25 mg kg-1 in Thalassarche melanophris, while Cd ranged from 0.01 mg kg-1 in N. brasilianus to 232.73 mg kg-1 in Spheniscus magellanicus. Generalized Linear Model (GLM) results identified body length and species as the main factors influencing PTE concentrations for most elements. Spearman correlation analysis revealed a strong positive correlation between Cd and Cu (ρ = 0.68), Cd and Zn (ρ = 0.67) and between Zn and Cu (ρ = 0.56), suggesting that seabirds with higher Cd levels also tend to have higher Cu and Zn concentrations. Multivariate statistical analysis demonstrated distinct PTE compositions among bird groups. Although significant variations in total concentrations of elements like Zn and Cu were observed among species, the relative contributions of each element to the overall load in the organism showed a convergence in proportions. This underscores the need for further research on homeostatic processes and the potential impacts of environmental PTEs on seabird health.
Collapse
Affiliation(s)
- Guilherme Dos Santos Lima
- São Paulo State University (Unesp), Environmental Studies Center (CEA), Rio Claro, SP, Brazil; Postgraduate Program in Geosciences and Environment, Institute of Geosciences and Exact Sciences (IGCE), Rio Claro, SP, Brazil
| | - Carlos Alfredo Suarez
- São Paulo State University (Unesp), Environmental Studies Center (CEA), Rio Claro, SP, Brazil
| | - Hendryk Gemeiner
- São Paulo State University (Unesp), Basin Studies Laboratory (LEBAC), Rio Claro, SP, Brazil
| | - Patricia Pereira Serafini
- Santa Catarina Federal University (UFSC), Department of Biochemistry, Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Florianópolis, SC, Brazil; Centro Nacional de Pesquisa e Conservação de Aves Silvestres, Instituto Chico Mendes de Conservação da Biodiversidade, ICMBio, Florianópolis, SC, Brazil
| | - Jean Pablo Alves de Deus
- São Paulo State University (Unesp), Department of Biodiversity, Institute of Biosciences, Laboratory of Spatial Ecology and Conservation (LEEC), Rio Claro, SP, Brazil
| | | | - Amauri Antonio Menegario
- São Paulo State University (Unesp), Environmental Studies Center (CEA), Rio Claro, SP, Brazil; Postgraduate Program in Geosciences and Environment, Institute of Geosciences and Exact Sciences (IGCE), Rio Claro, SP, Brazil.
| |
Collapse
|
6
|
Sedak M, Đokić M, Bilandžić N, Gomerčić T, Benić M, Zadravec M, Đuras M. Cetacean species found stranded along Croatian coast of the Adriatic Sea as bioindicators of non-essential trace elements in the environment. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107206. [PMID: 39718295 DOI: 10.1016/j.aquatox.2024.107206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024]
Abstract
In tissues of toothed whales from the Adriatic Sea (muscle, liver, kidney, lung, spleen, adipose tissue and skin) the concentrations of cadmium (Cd), lead (Pb) and arsenic (As) were analysed. In total, 186 dolphins were analysed; 155 bottlenose (Tursiops truncatus), 25 striped (Stenella coeruleoalba) and 6 Risso's dolphins (Grampus griseus). Cadmium concentrations in tissue samples ranged from 0.001 mg/kg in muscle to 16.8 mg/kg wet weight in kidney. Arsenic concentrations in dolphin samples ranged from 0.010 to 12.9 mg/kg ww. The lowest As concentration was found in spleen and highest in liver of bottlenose dolphin. Cadmium and As levels in Risso's dolphins showed higher concentrations in all tissues in comparison to bottlenose and striped dolphins. >50 % of the measured Pb values for all three species of dolphins and examined tissues were lower than 0.1 mg/kg. The accumulation of Cd and As during the lifetime was confirmed. None of the dolphins analysed in this study were exposed to concentrations of Cd in the liver higher than 20 mg/kg wet weight, which can cause renal failure in marine mammals. Numerous species of marine mammals inhabit coastal environments alongside humans and utilize similar food sources, such as fish and cephalopods. Consequently, these mammals can function as valuable indicators of public health concerns.
Collapse
Affiliation(s)
- Marija Sedak
- Department of Veterinary Public Health, Laboratory for Residue Control, Croatian Veterinary Institute, Savska cesta 143, Zagreb 10000, Croatia
| | - Maja Đokić
- Department of Veterinary Public Health, Laboratory for Residue Control, Croatian Veterinary Institute, Savska cesta 143, Zagreb 10000, Croatia.
| | - Nina Bilandžić
- Department of Veterinary Public Health, Laboratory for Residue Control, Croatian Veterinary Institute, Savska cesta 143, Zagreb 10000, Croatia
| | - Tomislav Gomerčić
- Department of Biology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, Zagreb 10000, Croatia
| | - Miroslav Benić
- Laboratory for Mastitis and Raw Milk Quality, Department for Bacteriology and Parasitology, Croatian Veterinary Institute, Savska cesta 143, Zagreb 10000, Croatia
| | - Manuela Zadravec
- Department of Veterinary Public Health, Laboratory for feed mycrobiology, Croatian Veterinary Institute, Savska cesta 143, Zagreb 10000, Croatia
| | - Martina Đuras
- Department of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, Zagreb 10000, Croatia
| |
Collapse
|
7
|
Prabakaran K, Charoenpong C, Bureekul S, Wang X, Sompongchaiyakul P. Heavy metal contamination in marine fish from the Andaman sea: Influence of habitat and health risk assessment. MARINE POLLUTION BULLETIN 2025; 210:117299. [PMID: 39616902 DOI: 10.1016/j.marpolbul.2024.117299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/17/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
This study investigates Hg, Cd, Cu, Zn, and Pb concentrations in 324 fish samples from 43 species, including two cephalopod species, in the Andaman Sea. The fish were categorized into pelagic and demersal groups. The findings revealed average heavy metal concentrations in the order: Zn > Cu > Hg > Pb > Cd, with pelagic fish showing higher levels than demersal fish. Certain larger pelagic fish had mercury concentrations above prescribed limits, posing possible health hazards, even though they are less commonly consumed by humans. Cd and Pb levels in certain species exceeded regulatory thresholds of 0.05-1 μg/g and 0.3 μg/g, respectively, while Cu and Zn remained within safe limits. Although the overall cancer risk was low, the Target Hazard Quotient (THQ) and Hazard Index (HI) values surpassed 1, indicating significant health risks from consuming species such as Alopias superciliosus, Isurus oxyrinchus, Lepturacanthus savala, Makaira mazara, and Sphyraena barracuda. These findings underscore the need for ongoing monitoring and public advisories to mitigate health risks.
Collapse
Affiliation(s)
- K Prabakaran
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chawalit Charoenpong
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sujaree Bureekul
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Xiangfeng Wang
- Asian School of the Environment, Nanyang Technological University, Singapore; Earth Observatory of Singapore, Nanyang Technological University, Singapore, Singapore
| | - Penjai Sompongchaiyakul
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
8
|
Foord CS, Robb K, Nugegoda D. Trace element concentrations in dolphins of south-east Australia; mercury a cause for concern in the region. MARINE POLLUTION BULLETIN 2024; 209:117130. [PMID: 39461174 DOI: 10.1016/j.marpolbul.2024.117130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024]
Abstract
Concentrations of nine trace elements (As, Cd, Cr, Cu, Hg, Mn, Ni, Se, Zn) in hepatic, renal and epidermal tissues were investigated in three dolphin species (Burrunan dolphin, Tursiops australis; common bottlenose dolphin, T. truncatus; short-beaked common dolphin, Delphinus delphis) within southeast Australia. Elevated hepatic Hg was found in critically endangered Burrunan dolphins (62.5-4990 mg/kg dw) and common bottlenose dolphins (102-1770 mg/kg dw), amongst the highest for the taxa globally, exceeding the short-beaked common dolphins (3.24-370 mg/kg dw), likely due to dietary differences. Hepatic Hg:Se molar ratios exceeded 1 in 60 % of dolphins, suggesting Hg toxicity. Essential trace elements showed little variation across species, but epidermal Se was notably low in Burrunan dolphins. Due to ongoing freshwater skin disease/health concerns, and the importance Se plays in epidermal health, it is recommended that epidermal Se and skin health are further investigated within the Burrunan dolphin.
Collapse
Affiliation(s)
- Chantel S Foord
- Ecotoxicology Research Group, School of Science, Royal Melbourne Institute of Technology, Bundoora, VIC 3083, Australia; Marine Mammal Foundation, PO Box 2046, Hampton East, VIC 3188, Australia.
| | - Kate Robb
- Marine Mammal Foundation, PO Box 2046, Hampton East, VIC 3188, Australia
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, School of Science, Royal Melbourne Institute of Technology, Bundoora, VIC 3083, Australia
| |
Collapse
|
9
|
Binkowski LJ, Fort J, Churlaud C, Gallien F, Le Guillou G, Bustamante P. Levels of trace elements in the blood of chick gulls from the English Channel: Spatial and trophic implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175891. [PMID: 39218093 DOI: 10.1016/j.scitotenv.2024.175891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/31/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Anthropogenic activity has disturbed the natural distribution and circulation of trace elements in the environment. This has led to increased background levels of numerous elements, causing global pollution. In this context, seabirds are relevant bioindicators of environmental contamination. This study focuses on the ecological factors that influence the concentrations of 14 trace elements in the blood of the chicks of three sympatric gull species from the French coast of the English Channel. Between 2015 and 2017, 174 birds were sampled in the industrialised Seine Estuary (in the city of Le Havre and on Ratier Island) and in the remote Chausey Islands, 200 km to the west. We also considered the Se:Hg molar ratio using Hg concentrations in those birds. Ag and V concentrations were below the quantification limit in all cases, while the fraction of non-quantified samples was higher than 30 % for Cd, Cr and Ni. Among the elements quantified in the samples, the lowest concentrations were noted for Co and the highest for Fe, building the following order: Co < Cd < Ni < Mn ≤ Pb < Cr < Hg < Cu < Se < As < Zn < Fe. No unanimous scheme of concentrations among elements, species and sites existed. Similarly, different models were fitted and different factors were significant for different species and elements. We observed the biomagnification of As and the biodilution of Pb. Pb concentrations were also highest in the industrial site in the city of Le Havre. Despite the high proportion of non-quantified samples for Cd, Cr and Ni, we continued to notice higher concentrations in the marine environment of the Chausey Islands. Concentrations of some elements clearly revealed habitat dependence. In some cases the Se:Hg molar ratio was lower than 4, a threshold for diminishing Hg toxicity by Se.
Collapse
Affiliation(s)
- Lukasz J Binkowski
- Institute of Biology and Earth Sciences, University of the National Education Commission, Krakow, Podchorazych 2, 30-084 Krakow, Poland.
| | - Jérôme Fort
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Carine Churlaud
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Fabrice Gallien
- Groupe Ornithologique Normand, 181 rue d'Auge, 14000 Caen, France
| | | | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
10
|
Dos Santos I, Paiva VH, Norte AC, Churlaud C, Ceia FR, Pais de Faria J, Pereira JM, Cerveira LR, Laranjeiro MI, Veríssimo SN, Ramos JA, Bustamante P. Assessing the impacts of trace element contamination on the physiology and health of seabirds breeding along the western and southern coasts of Portugal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124528. [PMID: 38992829 DOI: 10.1016/j.envpol.2024.124528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/08/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
Coastal seabirds serve as sentinels of ecosystem health due to their vulnerability to contamination from human activities. However, our understanding on how contaminant burdens affect the physiological and health condition of seabirds is still scarce, raising the uncertainty on the species' vulnerability vs tolerance to environmental contamination. Here, we quantified 15 Trace Elements (TE) in the blood of gull (yellow-legged gull Larus michahellis and Audouin's gull Ichthyaetus audouinii) and shearwater (Cory's shearwater Calonectris borealis) adults, breeding in five colonies along the Portuguese coastline. Additionally, stable isotopes of carbon (δ13C) and nitrogen (δ15N) were quantified to elucidate foraging habitat and trophic ecology of adults, to identify potential patterns of TE contamination among colonies. We used immuno-haematological parameters as response variables to assess the influence of TE concentrations, stable isotope values, and breeding colony on adults' physiological and health condition. Remarkably, we found blood mercury (Hg) and lead (Pb) concentrations to exceed reported toxicity thresholds in 25% and 13% of individuals, respectively, raising ecotoxicological concerns for these populations. The breeding colony was the primary factor explaining variation in five out of six models, underlining the influence of inherent species needs on immuno-haematological parameters. Model selection indicated a negative relationship between erythrocyte sedimentation rate and both Hg and selenium (Se) concentrations, but a positive relationship with δ13C. The number of immature erythrocyte counts was positively related to Hg and Se, particularly in yellow-legged gulls from one colony, highlighting the colony-site context's influence on haematological parameters. Further research is needed to determine whether essential TE concentrations, particularly copper (Cu) and Se, are falling outside the normal range for seabirds or meet species-specific requirements. Continuous monitoring of non-essential TE concentrations like aluminium (Al), Hg, and Pb, is crucial due to their potential hazardous concentrations, as observed in our study colonies.
Collapse
Affiliation(s)
- Ivo Dos Santos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences ,Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France.
| | - Vitor H Paiva
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences ,Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Ana C Norte
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences ,Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Carine Churlaud
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Filipe R Ceia
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences ,Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Joana Pais de Faria
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences ,Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Jorge M Pereira
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences ,Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Lara R Cerveira
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences ,Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Maria I Laranjeiro
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences ,Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Politécnico de Leiria, 2520-641 Peniche, Portugal; Institut de Ciències del Mar (ICM), CSIC, Passeig Maritim de la Barceloneta 37-49, 08003 Barcelona, Spain
| | - Sara N Veríssimo
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences ,Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Jaime A Ramos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences ,Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
11
|
Lima GDS, Pedrobom JH, Suarez CA, Torres-Florez JP, Vidal LG, Domit C, Menegario AA. Bioaccumulation of trace elements in marine mammals: New data and transplacental transfer on threatened species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174854. [PMID: 39032751 DOI: 10.1016/j.scitotenv.2024.174854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Coastal areas are affected by urban, industrial and agriculture pollutants runoff, wastewater and stormwater discharges, making this environment the final repository of chemical contaminants. These contaminants have the potential to spread out to the entire food chain, impacting marine life and the quality of their habitat. In this aspect, the concept of marine mammals as bioindicators provides an approach to the degree of contamination in the environment and to the identification and management of multiple sources of contaminants. The present study analyzed several elements like As, Ba, Cd, Cr, Cu, Hg, Mn, Mo, Ni, Pb, V and Zn in liver tissue from two dolphin species: Sotalia guianensis, a near-threatened species, and the vulnerable Pontoporia blainvillei. In the study, we also investigated if dolphins (population) recorded using the heaviest urban areas have higher concentrations of contaminants in their tissues. Dolphin samples (n = 40 S. guianensis; n = 97 P. blainvillei) were collected by daily monitoring carried out by Santos Basin Beach Monitoring Project (PMP-BS), from stranded individuals found in São Paulo state. The Spearman's rank correlation showed distinct correlations in the accumulation of trace elements by both species, indicating different sources of exposure to the elements studied or distinct biochemical processes between species. Interspecific and intraspecific variations were observed, possibly related to the individual distribution and feeding habits. Correlations were observed between age and concentrations of trace elements, positive for Cd, Hg and Mo. Finally, our findings indicate high levels of Cu, Zn, and concentrations of As, V and Hg in fetuses, in particular, an analysis was performed on a fetus found inside a stranded individual, indicating placental transfer as the first route of exposure for some elements.
Collapse
Affiliation(s)
- Guilherme Dos Santos Lima
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Rio Claro, SP 13506-900, Brazil; Postgraduate Program in Geosciences and Environment, Institute of Geosciences and Exact Sciences (IGCE), Rio Claro, SP 13506-900, Brazil
| | - Jorge Henrique Pedrobom
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Rio Claro, SP 13506-900, Brazil; Nova Analitica Company, Diadema, SP 09941-202, Brazil
| | - Carlos Alfredo Suarez
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Rio Claro, SP 13506-900, Brazil
| | - Juan Pablo Torres-Florez
- Department of Marine Research, Fujairah Research Centre, Sakamkam Road, Fujairah, United Arab Emirates; Centro Ballena Azul / Blue Whale Center, Valdivia, Chile
| | - Lara Gama Vidal
- Laboratory of Ecology and Conservation, Federal University of Paraná (UFPR), Pontal do Paraná, PR 83255-000, Brazil; Postgraduate Program in Coastal and Oceanic Systems (PGSISCO), Federal University of Paraná (UFPR), Pontal do Paraná, PR 83255-000, Brazil
| | - Camila Domit
- Laboratory of Ecology and Conservation, Federal University of Paraná (UFPR), Pontal do Paraná, PR 83255-000, Brazil; Postgraduate Program in Coastal and Oceanic Systems (PGSISCO), Federal University of Paraná (UFPR), Pontal do Paraná, PR 83255-000, Brazil
| | - Amauri Antonio Menegario
- Environmental Studies Center (CEA), São Paulo State University (UNESP), Rio Claro, SP 13506-900, Brazil; Postgraduate Program in Geosciences and Environment, Institute of Geosciences and Exact Sciences (IGCE), Rio Claro, SP 13506-900, Brazil.
| |
Collapse
|
12
|
Whitehead DA, Gayford JH, Pancaldi F, Gobbato J, Boldrin G, Tringali M, Ketchum JT, Magaña FG, Seveso D, Montano S. Heavy metal and trace element concentrations in the blood of scalloped hammerhead sharks (Sphyrna lewini) from La Paz Bay, México. MARINE POLLUTION BULLETIN 2024; 201:116155. [PMID: 38401387 DOI: 10.1016/j.marpolbul.2024.116155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/26/2024]
Abstract
Sharks are particularly susceptible to bioaccumulation due to their life history characteristics and trophic position within marine ecosystems. Despite this, studies of bioaccumulation cover only a small proportion of extant species. In this study we report concentrations of trace elements and heavy metals in blood samples of Sphyrna lewini for the first time. We report high concentrations of several trace elements and heavy metals, with concentrations of some elements exceeding the limit determined safe for human consumption. High elemental concentrations may reflect biochemical differences between blood plasma and other tissues; however, they may also be symptomatic of high levels of exposure triggered by anthropogenic activities. We also provide evidence of elemental accumulation through ontogeny, the nature of which differs from that previously reported. Ultimately, this baseline study increases our understanding of interspecific and intraspecific variation in bioaccumulation and ecotoxicology in elasmobranchs which may prove important in ensuring adequate management.
Collapse
Affiliation(s)
- Darren A Whitehead
- Investigación Tiburones Mexico A.C, Mexico; Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, 23096 La Paz, Mexico.
| | - Joel H Gayford
- Department of Life Sciences, Silwood Park Campus, Imperial College London, United Kingdom; Shark Measurements, London, United Kingdom
| | - Francesca Pancaldi
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, 23096 La Paz, Mexico
| | - Jacopo Gobbato
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza Della Scienza 1, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Maldives
| | - Giulia Boldrin
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza Della Scienza 1, 20126 Milan, Italy
| | - Maria Tringali
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza Della Scienza 1, 20126 Milan, Italy
| | - James T Ketchum
- Pelagios Kakunjá A.C., 23060 La Paz, Mexico; Centro de Investigaciones Biológicas Noroeste (CIBNOR), La Paz, B.C.S., Mexico; MigraMar, Bodega Bay, CA, United States of America
| | - Felipe Galvan Magaña
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, 23096 La Paz, Mexico
| | - Davide Seveso
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza Della Scienza 1, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Maldives
| | - Simone Montano
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Piazza Della Scienza 1, 20126 Milan, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll 12030, Maldives
| |
Collapse
|
13
|
Page A, Hay C, Marks W, Bennett B, Gribble MO, Noke Durden W, Stolen M, Jablonski T, Gordon N, Kolkmeyer T, Jiang M, Pegg N, Brown H, Burton S. Trace element bioaccumulation, tissue distribution, and elimination in odontocetes stranded in Florida and Georgia, USA over a 15-year period (2007-2021). Heliyon 2024; 10:e25552. [PMID: 38356552 PMCID: PMC10865268 DOI: 10.1016/j.heliyon.2024.e25552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Odontocetes obtain nutrients including essential elements through their diet and are exposed to heavy metal contaminants via ingestion of contaminated prey. We evaluated the prevalence, concentration, and tissue distribution of essential and non-essential trace elements, including heavy metal toxicants, in tissue (blubber, kidney, liver, skeletal muscle, skin) and fecal samples collected from 90 odontocetes, representing nine species, that stranded in Georgia and Florida, USA during 2007-2021. Samples were analyzed for concentrations of seven essential (cobalt, copper, iron, manganese, molybdenum, selenium, zinc) and five non-essential (arsenic, cadmium, lead, mercury, thallium) elemental analytes using inductively-coupled plasma mass spectrometry. Risso's dolphins (Grampus griseus) and short-finned pilot whales (Globicephala macrorhynchus) had the highest median concentrations of mercury, cadmium, and lead, while dwarf sperm whales (Kogia sima) had the lowest. Adult pygmy and dwarf sperm whales that stranded in 2019-2021 had higher concentrations of arsenic, copper, iron, lead, manganese, selenium, thallium, and zinc compared to those that stranded in 2010-2018, suggesting an increasing risk of exposure over time. The highest concentrations of many elements (e.g., cadmium, cobalt, copper, manganese, molybdenum, thallium, zinc) were in fecal samples, illustrating the usefulness of this noninvasively collected sample. Aside from fecal samples, hepatic tissues had the highest concentrations of iron, manganese, mercury, molybdenum, and selenium in most species; renal tissues had the highest concentrations of cadmium; skin had the highest concentrations of zinc; and copper, arsenic, and lead concentrations were primarily distributed among the liver and kidneys. Phylogenetic differences in patterns of trace element concentrations likely reflect species-specific differences in diet, trophic level, and feeding strategies, while heterogeneous distributions of elemental analytes among different organ types reflect differences in elemental biotransformation, elimination, and storage. This study illustrates the importance of monitoring toxic contaminants in stranded odontocetes, which serve as important sentinels of environmental contamination, and whose health may be linked to human health.
Collapse
Affiliation(s)
- Annie Page
- Florida Atlantic University, Harbor Branch Oceanographic University, Fort Pierce, FL, USA
| | - Clara Hay
- Florida Atlantic University, Harbor Branch Oceanographic University, Fort Pierce, FL, USA
- United States Coast Guard Academy, New London, CT, USA
| | - Wendy Marks
- Florida Atlantic University, Harbor Branch Oceanographic University, Fort Pierce, FL, USA
| | - Baylin Bennett
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | | | | | - Nadia Gordon
- Florida Fish & Wildlife Conservation Commission, Fish & Wildlife Research Institute, Jacksonville, FL, USA
| | - Trip Kolkmeyer
- Georgia Department of Natural Resources, Brunswick, GA, USA
| | - Mingshun Jiang
- Florida Atlantic University, Harbor Branch Oceanographic University, Fort Pierce, FL, USA
| | - Nicole Pegg
- Florida Atlantic University, Harbor Branch Oceanographic University, Fort Pierce, FL, USA
| | - Hunter Brown
- Florida Atlantic University, Harbor Branch Oceanographic University, Fort Pierce, FL, USA
| | - Steve Burton
- Florida Atlantic University, Harbor Branch Oceanographic University, Fort Pierce, FL, USA
| |
Collapse
|
14
|
Asvad SR, Esmaili-Sari A, Behrooz RD, Rajaei F, Valinasab T, Chakraborty P. Comparison of Cd, Cu, Se, and Zn Concentration in the Muscle and Hepatopancreas of Sepia pharaonis and Uroteuthis duvauceli in the North of Persian Gulf (Iran). Biol Trace Elem Res 2024; 202:743-753. [PMID: 37266897 DOI: 10.1007/s12011-023-03712-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023]
Abstract
The objective of this research was to examine and contrast the levels of cadmium (Cd), copper (Cu), zinc (Zn), and selenium (Se) in the muscle and hepatopancreas tissues of two species, namely pharaoh cuttlefish (Sepia pharaonis) and Indian squid (Uroteuthis duvauceli), from the Persian Gulf. A total of thirty individuals of each species were gathered in January 2009 from the northern waters of the Persian Gulf. The metal concentrations were significantly higher in muscle tissue (p < 0.05) than in other tissues. S. pharaonis had higher metal concentrations than U. duvauceli. In the muscle and hepatopancreas samples of S. pharaonis, the highest mean concentrations were found to be for Zn (58.45 ± 0.96 µg/g dw) and Cu (1541.47 ± 192.15 µg/g dw), respectively. In U. duvauceli, the highest concentration of measured elements was seen for Zn in both muscle (36.52 ± 0.56 µg/g dw) and hepatopancreas (60.94 ± 2.65 µg/g dw). Se had the lowest concentration among the elements measured in both species. There was a negative and significant correlation between Cu and biometrical factors (total body length and weight) in both muscle and hepatopancreas samples of S. pharaonic and only in the muscle samples of U. duvauceli (p < 0.01, R2 = - 052; p < 0.01, R2 = - 0.055). However, there was a strong correlation between Zn and biometrical factors in hepatopancreas samples of both species. The comparison of metal concentrations with standards revealed that only Cd levels in S. pharaonis exceeded the ESFA and WHO standards, whereas other metals were below the standards.
Collapse
Affiliation(s)
- Seyed Reza Asvad
- Department of Environment Faculty of Natural Resources & Marine Sciences, Tarbiat Modares University, Nour, Mazandaran, Iran.
| | - Abbas Esmaili-Sari
- Department of Environment Faculty of Natural Resources & Marine Sciences, Tarbiat Modares University, Nour, Mazandaran, Iran
| | - Reza Dahmardeh Behrooz
- Department of Environmental Sciences, Faculty of Natural Resources, University of Zabol, Sistan, 98615-538, Zabol, Iran.
| | - Fatemeh Rajaei
- Department of Environmental Sciences, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Zanjan, Iran
| | - Touraj Valinasab
- Agricultural Research, Education and Extension Organization, Iranian Fisheries Science Research Institute, Tehran, Iran
| | - Paromita Chakraborty
- Environmental Science and Technology Laboratory, Centre for Research in Environment, Sustainability Advocacy and Climate Change, SRM Institute of Science and Technology, Kancheepuram District603203, Tamil Nadu, Kattankulathur-Chennai, India
| |
Collapse
|
15
|
Carrasco-Puig P, Colmenero AI, Ruiz-García D, Molera-Arribas AJ, Hernández-Martínez AM, Raga JA, Barría C. Heavy metal concentrations in sharks, rays and chimaeras from the western Mediterranean Sea. MARINE POLLUTION BULLETIN 2024; 199:115942. [PMID: 38154172 DOI: 10.1016/j.marpolbul.2023.115942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/30/2023]
Abstract
The potential bioaccumulation of pollutants, such as heavy metals, may pose a threat to the western Mediterranean chondrichthyans and human consumers. Therefore, the first extensive assessment of cadmium (Cd), lead (Pb), and copper (Cu) concentrations in the muscle tissue of 17 species of sharks, rays, and chimaeras in this region was conducted via Microwave Assisted Extraction (MAE) and Graphite Furnace Atomic Absorption Spectrometry (GFAAS). Significant differences between species were observed, particularly related to the rabbit fish (Chimaera monstrosa) and the velvet belly lantern shark (Etmopterus spinax), which exceeded the European Union (EU) Commission Regulation 2023/915 threshold of Cd. Overall, heavy metal concentrations correlated negatively with size and trophic level but positively with depth. Although the consumption of these species may entail minimal risk to adult humans, caution is advised, especially for children. These findings are important due to the widespread consumption of chondrichthyans in many western Mediterranean regions.
Collapse
Affiliation(s)
- Pol Carrasco-Puig
- Association for the Study and Conservation of Elasmobranchs and its Ecosystems (Catsharks), Barcelona, Spain; Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain.
| | - Ana I Colmenero
- Association for the Study and Conservation of Elasmobranchs and its Ecosystems (Catsharks), Barcelona, Spain; Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | - David Ruiz-García
- Association for the Study and Conservation of Elasmobranchs and its Ecosystems (Catsharks), Barcelona, Spain; Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Alejandro J Molera-Arribas
- Instituto de Investigación en Medio Ambiente y Ciencia Marina (IMEDMAR-UCV), Universidad Católica de Valencia San Vicente Mártir, Calpe, Alicante, Spain
| | - Ana M Hernández-Martínez
- Instituto de Investigación en Medio Ambiente y Ciencia Marina (IMEDMAR-UCV), Universidad Católica de Valencia San Vicente Mártir, Calpe, Alicante, Spain
| | - Juan A Raga
- Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Claudio Barría
- Association for the Study and Conservation of Elasmobranchs and its Ecosystems (Catsharks), Barcelona, Spain
| |
Collapse
|
16
|
Polizzi P, Romero MB, Chiodi Boudet L, Dolagaratz Carricavur A, Gerpe M. What do small cetaceans tell us about trace elements pollution on the Argentinean coast? Franciscana dolphin as a biomonitor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167428. [PMID: 37793446 DOI: 10.1016/j.scitotenv.2023.167428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/14/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Trace elements (TEs) constitute the oldest emerging pollutants globally, most occur from natural sources, but a few are derived from anthropogenic sources. Marine mammals are considered bioindicators of ecosystem contamination. The aims of this review is compile reports on essential and nonessential TEs occurrence in small cetaceans from Argentinean waters; and to review the existing information on the concentration of TEs in the Franciscana dolphin, a biomonitor species of the Argentine coastal marine ecosystem. We searched reports where levels of TEs were present in small cetaceans from and eight species were analysed: Pontoporia blainvillei, Tursiops truncatus gephyreus, Kogia breviceps, Delphinus delphis, Lagenorhynchus obscurus, Lagenodelphis hasei, Cephaloryhchus commersonii and Ziphius cavirostris. Essential TEs like Zn, Cu, Mn, Cr, Fe, Co, Ni, Mo, Se, As, Au, Ag, Sn, and nonessential TE as Pb, Cd, Hg, As was considered. The reports compiled in this article analysed kidney, liver, muscle and occasionally brain, skin, lung and spleen, covering a temporal range of 30 years, from 1982 to 2016. Of data analysis, we identify knowledge gaps, species of small cetaceans for which the concentration of trace metals is not yet known and areas on the Argentine coast where there are no reports that analyse them. The most recent information corresponds to the 2010 decade, and in those subsequent publications, the samples were taken at that time. This emphasizes the importance of reviewing this data, in order to compare old and new datasets, create contamination timelines and evaluate possible increases or decreases of contaminants in different study areas. The information recopilated will serve as valuable baselines to detect the future impact of increasing human, even natural, activities on marine ecosystems in the South Atlantic Ocean.
Collapse
Affiliation(s)
- P Polizzi
- Toxicología Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3250, CC1260, 7600 Mar del Plata, Argentina.
| | - M B Romero
- Toxicología Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3250, CC1260, 7600 Mar del Plata, Argentina
| | - L Chiodi Boudet
- Toxicología Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3250, CC1260, 7600 Mar del Plata, Argentina
| | - A Dolagaratz Carricavur
- Toxicología Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3250, CC1260, 7600 Mar del Plata, Argentina
| | - M Gerpe
- Toxicología Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad Nacional de Mar del Plata (UNMdP), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Funes 3250, CC1260, 7600 Mar del Plata, Argentina
| |
Collapse
|
17
|
Cammilleri G, Galluzzo FG, Pulvirenti A, Pantano L, Calabrese V, Gentile A, Cumbo V, Macaluso A, Macaluso V, Vella A, Ferrantelli V. Toxic metals in Loggerhead sea turtles ( Caretta caretta) stranded freshly dead along Sicilian coasts. Vet Q 2023; 43:1-10. [PMID: 36644861 PMCID: PMC9870007 DOI: 10.1080/01652176.2023.2169781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The Loggerhead sea turtle (Caretta caretta) is a marine reptile belonging to a monophyletic group of chelonians. As these animals are long-lived, they have the ability to accumulate pollutants. AIM To collect epidemiological data on toxic metals in marine Loggerhead sea turtles. MATERIALS AND METHODS Forty Loggerhead sea turtles comprising 25 males and 15 females stranded freshly dead between 2013 and 2018 along the coasts of Sicily, Southern Italy, were examined for arsenic, cadmium, and lead accumulation in muscle and adipose tissues by means of a validated ICP-MS method. A modified K index as a growth condition factor, namely Fulton's K index, was used. Samples were tested in duplicate. A Wilcoxon rank sum test was carried out to evaluate metal contents differences between muscle and adipose tissues and between genders. RESULTS The Fulton's K index suggested a good body condition of the C. caretta recovered with mean values of 5.34 ± 3.40 (n = 40; ±SD). Detectable concentrations of lead were found in 70% of the samples analysed with mean values of 0.65 ± 1.67 mg/kg wet weight and 0.51 ± 1.29 mg/kg wet weight in muscle and adipose tissues, respectively. No significant differences in arsenic, cadmium, and lead were detected between genders. In addition, no significant correlation was found between modified K index and concentrations of arsenic, cadmium, and lead. CLINICAL RELEVANCE Findings on muscle and adipose tissues suggest chronic exposure of Caretta caretta to high concentrations of especially lead which might negatively affect health and welfare of these marine turtles although body condition was good.
Collapse
Affiliation(s)
- Gaetano Cammilleri
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Palermo, Italy
| | - Francesco Giuseppe Galluzzo
- Dipartimento di Scienze della Vita, Università degli studi di Modena e Reggio Emilia, Modena, Italy,CONTACT Francesco Giuseppe Galluzzo Dipartimento di Scienze della Vita, Università degli studi di Modena e Reggio Emilia, Via Università 4, 41121Modena, Italy
| | - Andrea Pulvirenti
- Dipartimento di Scienze della Vita, Università degli studi di Modena e Reggio Emilia, Modena, Italy
| | - Licia Pantano
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Palermo, Italy
| | - Vittorio Calabrese
- Dipartimento di Scienze Biomediche e Biotecnologiche, Università degli Studi di Catania, Catania, Italy
| | - Antonino Gentile
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Palermo, Italy
| | - Valentina Cumbo
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Palermo, Italy
| | - Andrea Macaluso
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Palermo, Italy
| | - Vito Macaluso
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Palermo, Italy
| | - Antonio Vella
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, Palermo, Italy
| | | |
Collapse
|
18
|
Bustamante P, Guillen-Arruebarruena A, Lacoue-Labarthe T, Chouvelon T, Spitz J, Warnau M, Alonso Hernandez CM. Variation of 210-polonium in the cephalopod community from the Bay of Biscay, North-East Atlantic. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 268-269:107265. [PMID: 37562207 DOI: 10.1016/j.jenvrad.2023.107265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
Among natural radionuclides, 210Po is the major contributor to the radiation dose received by marine organisms. In cephalopods, 210Po is concentrated in the digestive gland, which contains over 90% of the whole-body burden of the nuclide. Although previous studies showed that 210Po was taken up independently of 210Pb, its parent nuclide, very little is known about the factors influencing its levels in cephalopods. To the best of our knowledge, no studies investigated 210Po levels in different species at the same time. In the present study, 210Po was analysed in the digestive gland of 62 individuals from 11 species representing a large range of feeding ecologies and habitats, including squids, cuttlefish and octopus species from coastal to deep-oceanic habitats. Among species, the highest activity was measured in Loligo vulgaris (5720 ± 3606 Bq/kg) and the lowest in T. megalops (188 Bq/kg). However, considering the habitats (benthic vs pelagic and neritic vs oceanic), no significant differences appeared. At the species level, no differences between sexes were found so both sexes were plotted together to test the size effect for species with at least 8 individuals (i.e., Eledone cirrhosa, L. vulgaris, L. forbesi and Sepia officinalis). In the first three species, 210Po levels decreased significantly with increasing size or weight but not in S. officinalis. In squid, this could be related to ontogenetic changes in diet from a high proportion of crustaceans (high Po content) in small individuals to fish (low Po content) in larger individuals, while the high dietary plasticity of S. officinalis at all stages of its life cycle could explain the lack of decrease in 210Po with size. In comparison to the few data from the literature, the levels of 210Po concentrations in the cephalopod community of the Bay of Biscay were overall in the same range than those reported in other cephalopods, varying across 4 orders of magnitude. Further studies are needed to understand the mechanism of retention in the cephalopod digestive gland.
Collapse
Affiliation(s)
- Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France.
| | | | - Thomas Lacoue-Labarthe
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000, La Rochelle, France
| | - Tiphaine Chouvelon
- Observatoire Pelagis, UAR 3462 CNRS-La Rochelle Université, 5 allées de l'Océan, 17000, La Rochelle, France; Ifremer, Unité Contamination Chimique des Écosystèmes Marins (CCEM), Centre Atlantique, Rue de l'île d'Yeu, BP 21105, 44311, Nantes, France
| | - Jérôme Spitz
- Observatoire Pelagis, UAR 3462 CNRS-La Rochelle Université, 5 allées de l'Océan, 17000, La Rochelle, France; Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 CNRS-La Rochelle Université, 405 Route de Prissé la Charrière, 79360, Villiers-en-Bois, France
| | - Michel Warnau
- International Atomic Energy Agency - Environment Laboratories (IAEA-EL), 4 Quai Antoine 1(er), MC-98000, Monaco
| | - Carlos M Alonso Hernandez
- Centro de Estudios Ambientales de Cienfuegos, AP5, Ciudad Nuclear, Cienfuegos, Cuba; International Atomic Energy Agency - Environment Laboratories (IAEA-EL), 4 Quai Antoine 1(er), MC-98000, Monaco
| |
Collapse
|
19
|
Stockin KA, Machovsky-Capuska GE, Palmer EI, Amiot C. Multidimensional trace metals and nutritional niche differ between sexually immature and mature common dolphins (Delphinus delphis). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121935. [PMID: 37263561 DOI: 10.1016/j.envpol.2023.121935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023]
Abstract
There is a need to understand the links between metals and nutrition for apex marine predators, which may be subject to different ecotoxicological effects at different life stages. We combined stomach content analyses (SCA), prey composition analysis (PCA), the Multidimensional Niche Framework (MNNF) with Bayesian multivariate ellipses, trace metal analysis and nicheROVER to investigate nutrition and trace metals across sex, age, and sexual maturity status in common dolphins (Delphinus delphis) from New Zealand. A broader prey composition niche breadth (SEAc) was estimated for immature compared to mature conspecifics, showing a higher degree of prey and nutrient generalism driven by protein (P) intake. Cd and Zn niche similarities suggests these metals were incorporated through similar prey in both immature and mature dolphins, whereas Hg and Se niche divergence indicates uptake occurred via different prey. Our multidisciplinary assessment demonstrated how nutrients and metal interactions differ in common dolphins depending upon sexual maturity. This approach has relevance when considering how marine pollution, environmental fluctuations and climate change may affect nutritional and trace metal interactions during different reproductive stages within marine predators.
Collapse
Affiliation(s)
- Karen A Stockin
- Cetacean Ecology Research Group, School of Natural Sciences, Massey University, Auckland, 0745, New Zealand; Animal Welfare Science and Bioethics Centre, School of Veterinary Science, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand.
| | - Gabriel E Machovsky-Capuska
- Cetacean Ecology Research Group, School of Natural Sciences, Massey University, Auckland, 0745, New Zealand; Nutri Lens, East Ryde, NSW, 2113, Australia
| | - Emily I Palmer
- Cetacean Ecology Research Group, School of Natural Sciences, Massey University, Auckland, 0745, New Zealand
| | - Christophe Amiot
- UFR Science et Technologie, Nantes Université, 44000, Nantes, France; BiodivAG, Angers Université, Angers, 49000, France
| |
Collapse
|
20
|
Delgado-Suarez I, Lozano-Bilbao E, Hardisson A, Paz S, Gutiérrez ÁJ. Metal and trace element concentrations in cetaceans worldwide: A review. MARINE POLLUTION BULLETIN 2023; 192:115010. [PMID: 37167666 DOI: 10.1016/j.marpolbul.2023.115010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/13/2023]
Abstract
This bibliographical review is a compilation of different scientific publications that reported data on metal concentrations in the muscle tissue of different species of cetaceans from seas and oceans around the world. Forty-nine scientific articles were selected, published over a fifteen-year period (2006-2021) with data on heavy metals and trace elements. The different groups of cetaceans considered in this study generally presented low concentrations of Cd and Pb. The same cannot be said of Hg. The highest concentrations of Hg were found in the groups of false killer whales. Similarly, the use of these groups of cetaceans as bioindicators of metal contamination shows that the Mediterranean Sea is one of the most metallically contaminated areas in the world. This may be due to the closed nature of the Mediterranean Sea and to the fact that it is also a highly populated and industrialized area.
Collapse
Affiliation(s)
- Indira Delgado-Suarez
- Toxicology Area, Department of Obstetrics and Gynecology, Pediatrics, Preventive Medicine and Public Health, Toxicology, Legal and Forensic Medicine and Parasitology, University of La Laguna, 38200, La Laguna, Santa Cruz de Tenerife, Spain
| | - Enrique Lozano-Bilbao
- Toxicology Area, Department of Obstetrics and Gynecology, Pediatrics, Preventive Medicine and Public Health, Toxicology, Legal and Forensic Medicine and Parasitology, University of La Laguna, 38200, La Laguna, Santa Cruz de Tenerife, Spain
| | - Arturo Hardisson
- Toxicology Area, Department of Obstetrics and Gynecology, Pediatrics, Preventive Medicine and Public Health, Toxicology, Legal and Forensic Medicine and Parasitology, University of La Laguna, 38200, La Laguna, Santa Cruz de Tenerife, Spain
| | - Soraya Paz
- Toxicology Area, Department of Obstetrics and Gynecology, Pediatrics, Preventive Medicine and Public Health, Toxicology, Legal and Forensic Medicine and Parasitology, University of La Laguna, 38200, La Laguna, Santa Cruz de Tenerife, Spain
| | - Ángel J Gutiérrez
- Toxicology Area, Department of Obstetrics and Gynecology, Pediatrics, Preventive Medicine and Public Health, Toxicology, Legal and Forensic Medicine and Parasitology, University of La Laguna, 38200, La Laguna, Santa Cruz de Tenerife, Spain.
| |
Collapse
|
21
|
Toro-Valdivieso C, Jugdaohsingh R, Powell JJ, Hoffman JI, Forcada J, Moore C, Blacklaws B. Heavy metal contamination in pristine environments: lessons from the Juan Fernandez fur seal ( Arctocephalus philippii philippii). ROYAL SOCIETY OPEN SCIENCE 2023; 10:221237. [PMID: 36998770 PMCID: PMC10049756 DOI: 10.1098/rsos.221237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Heavy metals, including mercury (Hg) and cadmium (Cd), occur naturally or anthropogenically and are considered toxic to the environment and human health. However, studies on heavy metal contamination focus on locations close to industrialized settlements, while isolated environments with little human activity are often ignored due to perceived low risk. This study reports heavy metal exposure in Juan Fernandez fur seals (JFFS), a marine mammal endemic to an isolated and relatively pristine archipelago off the coast of Chile. We found exceptionally high concentrations of Cd and Hg in JFFS faeces. Indeed, they are among the highest reported for any mammalian species. Following analysis of their prey, we concluded that diet is the most likely source of Cd contamination in JFFS. Furthermore, Cd appears to be absorbed and incorporated into JFFS bones. However, it was not associated with mineral changes observed in other species, suggesting Cd tolerance/adaptations in JFFS bones. The high levels of silicon found in JFFS bones may counteract the effects of Cd. These findings are relevant to biomedical research, food security and the treatment of heavy metal contamination. It also contributes to understanding the ecological role of JFFS and highlights the need for surveillance of apparently pristine environments.
Collapse
Affiliation(s)
| | - Ravin Jugdaohsingh
- Biominerals Research Laboratory, Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge CB3 0ES, UK
| | - Jonathan J. Powell
- Biominerals Research Laboratory, Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge CB3 0ES, UK
| | - Joseph I. Hoffman
- British Antarctic Survey, High Cross, Madingley Rd, Cambridge CB3 0ET, UK
- Department of Animal Behaviour, Bielefeld University, Bielefeld 33501, Germany
| | - Jaume Forcada
- British Antarctic Survey, High Cross, Madingley Rd, Cambridge CB3 0ET, UK
| | - Charles Moore
- Algalita Marine Research Foundation, 148N Marina Dr, Long Beach, CA 90803, USA
| | - Barbara Blacklaws
- Department of Veterinary Medicine, University of Cambridge, Madingley Rd, Cambridge CB3 0ES, UK
| |
Collapse
|
22
|
Bianchini K, Mallory ML, Provencher JF. Trends in hepatic cadmium concentrations in marine bird species from the Canadian Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159959. [PMID: 36343822 DOI: 10.1016/j.scitotenv.2022.159959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is a trace element of toxicological concern that has been monitored in marine birds inhabiting the Canadian Arctic since 1975. Despite nearly 50 years of monitoring, research to date has largely evaluated single species, locations, or time points, and there is as of yet no holistic overview that jointly considers all available Cd data. We addressed this information gap by combining and analyzing most of the existing data on hepatic Cd concentrations in marine birds from the Canadian Arctic. Using data collected between 1975 and 2018 from eight seabird species from 12 Arctic breeding colonies, we examined temporal, spatial, and interspecific variation in hepatic Cd levels, and we evaluated possible drivers of marine bird Cd loads. Hepatic Cd concentrations ranged from 1.6 to 124 μg/g dry weight across species, and were highest in thick-billed murres (Uria lomvia) and king eiders (Somateria spectabilis), and lowest in black guillemots (Cepphus grylle), black-legged kittiwakes (Rissa tridactyla), and long-tailed ducks (Clangula hyemalis). All sites with multiple years of data showed interannual fluctuations in Cd, which were correlated with the North Atlantic Oscillation (NAO) index and with the previous year's June sea ice coverage, where marine birds exhibited higher Cd concentrations in positive NAO years and following years with lower sea ice coverage. Climate change is likely to shift the NAO to being more negative and to reduce sea ice coverage, and our results thus identify various ways by which climate change could alter Cd concentrations in marine birds in the Canadian Arctic. Understanding variations in marine bird contaminant burdens, and how these may be alters by other stressors such as climate change, is important for long-term marine bird conservation efforts.
Collapse
Affiliation(s)
- Kristin Bianchini
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, Nova Scotia B4P 2R6, Canada
| | - Mark L Mallory
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, Nova Scotia B4P 2R6, Canada
| | - Jennifer F Provencher
- Canadian National Wildlife Research Centre, Environment and Climate Change Canada, 1125 Colonel By Drive, Ottawa, Ontario K1A 0H3, Canada.
| |
Collapse
|
23
|
Trevizani TH, Domit C, Santos MCDO, Figueira RCL. Bioaccumulation of heavy metals in estuaries in the southwest Atlantic Ocean. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26703-26717. [PMID: 36370314 DOI: 10.1007/s11356-022-23974-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
The southwestern Atlantic Ocean is home to highly productive regions, composed of a mosaic of both protected and anthropogenically impacted areas, including the estuaries of Paranaguá, Cananéia, and Santos. In this study, concentrations of metals were measured in sediments and in marine organisms, collected from these three Brazilian estuaries. The higher concentrations of metals in the sediments from the Santos estuary are due to having the greatest intensity of anthropogenic activities. There is bioaccumulation of As, Cu, Ni, and Pb in benthic invertebrates, As in fish, and Se and Zn in all studied trophic groups. Comparing the biota among estuaries, levels were highest for Cr, Cu, Pb, Se, and Zn in Paranaguá, As in Cananéia, and Ni in Santos; results justified due to anthropogenic activities, natural sources, and geochemical and hydrodynamics characteristics of each region that affect the bioavailability of metals. The results showed that these regions of the Atlantic present higher levels of metals in the biota than several coastal regions worldwide, and signal that food security may be compromised. Highlighting the need for better impact assessment, monitoring, and managing is deemed necessary as these regions are globally recognized as hotspots of biodiversity and are considered priority areas for conservation.
Collapse
Affiliation(s)
| | - Camila Domit
- Laboratório de Ecologia e Conservação - Centro de Estudos Do Mar, Universidade Federal Do Paraná, Pontal Do Paraná, Paraná, Brazil
| | | | | |
Collapse
|
24
|
Gouveneaux A, Minet A, Jozet-Alves C, Knigge T, Bustamante P, Lacoue-Labarthe T, Bellanger C. Cuttlefish color change as an emerging proxy for ecotoxicology. Front Physiol 2023; 14:1162709. [PMID: 36969601 PMCID: PMC10030679 DOI: 10.3389/fphys.2023.1162709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Lately, behavioral ecotoxicology has flourished because of increasing standardization of analyses of endpoints like movement. However, research tends to focus on a few model species, which limits possibilities of extrapolating and predicting toxicological effects and adverse outcomes at the population and ecosystem level. In this regard, it is recommended to assess critical species-specific behavioral responses in taxa playing key roles in trophic food webs, such as cephalopods. These latter, known as masters of camouflage, display rapid physiological color changes to conceal themselves and adapt to their surrounding environments. The efficiency of this process depends on visual abilities and acuity, information processing, and control of chromatophores dynamics through nervous and hormonal regulation with which many contaminants can interfere. Therefore, the quantitative measurement of color change in cephalopod species could be developed as a powerful endpoint for toxicological risk assessment. Based on a wide body of research having assessed the effect of various environmental stressors (pharmaceutical residues, metals, carbon dioxide, anti-fouling agents) on the camouflage abilities of juvenile common cuttlefish, we discuss the relevance of this species as a toxicological model and address the challenge of color change quantification and standardization through a comparative review of the available measurement techniques.
Collapse
Affiliation(s)
- Anaïd Gouveneaux
- Ethologie Animale et Humaine (EthoS), UMR 6552 CNRS, Université Caen Normandie, Caen, France
- Stress Environnementaux et Biosurveillance des Milieux Aquatiques (SEBIO), UMR-I 02, Université Le Havre Normandie, Le Havre, France
| | - Antoine Minet
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Christelle Jozet-Alves
- Ethologie Animale et Humaine (EthoS), UMR 6552 CNRS, Université Caen Normandie, Caen, France
| | - Thomas Knigge
- Stress Environnementaux et Biosurveillance des Milieux Aquatiques (SEBIO), UMR-I 02, Université Le Havre Normandie, Le Havre, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Thomas Lacoue-Labarthe
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, La Rochelle, France
| | - Cécile Bellanger
- Ethologie Animale et Humaine (EthoS), UMR 6552 CNRS, Université Caen Normandie, Caen, France
- *Correspondence: Cécile Bellanger,
| |
Collapse
|
25
|
Hoseini SM, Namroodi S, Sayadshirazi A, Zaccaroni A. Trace Elements and Contaminants Concentrations in Tissues of Caspian Seals ( Pusa caspica) along the Iranian Coast. TOXICS 2022; 11:39. [PMID: 36668765 PMCID: PMC9865950 DOI: 10.3390/toxics11010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The Caspian seal (Pusa caspica) is an endangered species that only lives in the Caspian Sea. Little information is available on its exposure to contaminants, and no data exists for Southern sub-populations. From 2011 to 2016, tissues samples were collected from 20 Caspian seals to (i) Define the concentration of trace elements in five different matrices and the concentration of 30 pesticides in their blubber; (ii) Determine whether differences in contaminant concentrations are age- or sex-related; (iii) Evaluate if detected concentrations can represent a risk to the species. Age- and sex-related variations were detected for Zn and Hg in the blubber and Fe in the kidney by age only. Exceptionally high Hg concentrations and low levels of hepatic Zn were detected, raising some concern about the reproductive health of seals. Similarly, the DDTs levels detected were in the range of adverse reproductive effects in marine mammals. Based on these results, potentially adverse effects on the immune and endocrine systems of the Caspian seal cannot be ruled out. Therefore, it is of the utmost importance that pollutant monitoring becomes an integral component of conservation strategies for the Caspian seal.
Collapse
Affiliation(s)
- Seyedeh Malihe Hoseini
- Department of Environmental Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences & Natural Resources, Gorgan 4913815739, Iran
| | - Somayeh Namroodi
- Department of Environmental Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences & Natural Resources, Gorgan 4913815739, Iran
| | | | - Annalisa Zaccaroni
- Department Veterinary Medical Sciences, University of Bologna, 47042 Cesenatico, Italy
- MarLab, 06250 Mougins, France
| |
Collapse
|
26
|
Vega-Barba C, Páez-Osuna F, Galván-Magaña F, Baró-Camarasa I, Aguilar-Palomino B, Galván-Piña VH, Marmolejo-Rodríguez AJ. Trace elements in the silky shark Carcharhinus falciformis in the Central Pacific Mexican Shelf. MARINE POLLUTION BULLETIN 2022; 185:114263. [PMID: 36327932 DOI: 10.1016/j.marpolbul.2022.114263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Mercury (Hg), cadmium (Cd) and copper (Cu) concentrations were determined in muscle, liver and fin of the silky shark (Carcharhinus falciformis) caught in the Central Pacific Mexican Shelf. Liver tissue presented the highest concentrations of Cd (2.83 μg g-1 wet weight (ww)) and Cu (2.34 μg g-1 ww). For muscle and fin, Cu presented the highest concentrations (0.97 and 1.80 μg g-1 ww, respectively). Liver concentrations were influenced by the maturation stages for the three elements. Immature organisms exhibited lower trace element concentrations than adults. No significant differences were found between sexes, except for Cu concentrations in muscle, where adult females present higher levels than adult males. One muscle sample (2.3 %) exceeded the Mexican Legislation for Hg (1.0 μg g-1 ww) and five muscles samples (11.6 %) exceeded the Mexican limit for Cd (0.5 μg g-1 ww). Meat consumption of this species can be a risk to human health if it is ingested regularly.
Collapse
Affiliation(s)
- Christian Vega-Barba
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n, Col. Playa Palo de Sta. Rita, La Paz, Baja California Sur C.P. 23096, Mexico
| | - Federico Páez-Osuna
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, P.O. Box 811, Mazatlán 82000, Sinaloa, Mexico; Miembro de El Colegio de Sinaloa, Antonio Rosales 435 pte., Centro Histórico, C.P. 80000 Culiacán, Sinaloa, Mexico
| | - Felipe Galván-Magaña
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n, Col. Playa Palo de Sta. Rita, La Paz, Baja California Sur C.P. 23096, Mexico
| | - Isis Baró-Camarasa
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n, Col. Playa Palo de Sta. Rita, La Paz, Baja California Sur C.P. 23096, Mexico
| | - Bernabé Aguilar-Palomino
- Departamento de Estudios para el Desarrollo Sustentable de Zonas Costeras, Universidad de Guadalajara, Gómez Farías 82, San Patricio-Melaque, Jalisco C.P. 48980, Mexico
| | - Víctor Hugo Galván-Piña
- Departamento de Estudios para el Desarrollo Sustentable de Zonas Costeras, Universidad de Guadalajara, Gómez Farías 82, San Patricio-Melaque, Jalisco C.P. 48980, Mexico
| | - Ana J Marmolejo-Rodríguez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n, Col. Playa Palo de Sta. Rita, La Paz, Baja California Sur C.P. 23096, Mexico.
| |
Collapse
|
27
|
Fernández-Robledo A, Lares ML, Schramm-Urrutia Y. Trace metal concentrations in California sea lions from rookeries exposed to different levels of coastal urbanization in Baja California, Mexico. MARINE POLLUTION BULLETIN 2022; 184:114163. [PMID: 36182783 DOI: 10.1016/j.marpolbul.2022.114163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Concentrations of total mercury, total selenium, and cadmium ([THg], [TSe], [Cd]) were determined in hair of California sea lion (Zalophus californianus) pups from four islands of the Gulf of California and the Baja California Pacific coast (NG, CG, NP, and CP) to identify geographical differences and the effect of Se against Hg toxicity (TSe:THg molar ratio). THg displayed a strong north-south trend for both ecoregions, while TSe presented a significantly high concentration only for CG. TSe:THg molar ratios decreased when [THg] increased, with the lowest ratios presenting in NG pups, in which [THg] exceeded toxicological thresholds of concern. [Cd] presented similar values at all study sites except CG, which presented the lowest level. The present study shows that proximity to urbanized coastal areas has a strong influence on [THg] in pups, while [TSe] and [Cd] are probably more related to the physiological requirements of the species, and environmental conditions.
Collapse
Affiliation(s)
- A Fernández-Robledo
- Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada, Km. 107 Carretera Tijuana-Ensenada, Ensenada 22860, Baja California, Mexico
| | - M L Lares
- Departamento de Oceanografía Biológica, Centro de Investigación Científica y de Educación Superior de Ensenada, Km. 107 Carretera Tijuana-Ensenada, Ensenada 22860, Baja California, Mexico.
| | - Y Schramm-Urrutia
- Universidad Autónoma de Baja California, Facultad de Ciencias Marinas, Carretera Transpeninsular Ensenada-Tijuana No. 3917, Fraccionamiento Playitas, 22860 Ensenada, Baja California, Mexico
| |
Collapse
|
28
|
Hinton B, Stockin KA, Bury SJ, Peters KJ, Betty EL. Isotopic Niche Analysis of Long-Finned Pilot Whales (Globicephala melas edwardii) in Aotearoa New Zealand Waters. BIOLOGY 2022; 11:biology11101414. [PMID: 36290319 PMCID: PMC9598128 DOI: 10.3390/biology11101414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 08/31/2022] [Indexed: 11/25/2022]
Abstract
Simple Summary Isotopic niche analyses can elucidate a species’ foraging ecology. Using isotopic values of δ13C, δ15N and δ34S, the isotopic niche of long-finned pilot whales (Globicephala melas edwardii) in Aotearoa New Zealand was investigated for animals that stranded in six different events across two locations between 2009 and 2017. Generalised additive models revealed that stranding event was a stronger predictor for δ13C and δ15N values than body length, sex, or reproductive status, indicating that spatiotemporal differences explained isotopic variation of G. m. edwardii in New Zealand waters better than ontogenetic factors. Abstract The quantification of a species’ trophic niche is important to understand the species ecology and its interactions with the ecosystem it resides in. Despite the high frequency of long-finned pilot whale (Globicephala melas edwardii) strandings on the Aotearoa New Zealand coast, their trophic niche remains poorly understood. To assess the isotopic niche of G. m. edwardii within New Zealand, ontogenetic (sex, total body length, age, maturity status, reproductive group) and spatiotemporal (stranding location, stranding event, and stranding year) variation were investigated. Stable isotopes of carbon (δ13C) and nitrogen (δ15N) were examined from skin samples of 125 G. m. edwardii (67 females and 58 males) collected at mass-stranding events at Onetahua Farewell Spit in 2009 (n = 20), 2011 (n = 20), 2014 (n = 27) and 2017 (n = 20) and at Rakiura Stewart Island in 2010 (n = 19) and 2011 (n = 19). Variations in δ34S values were examined for a subset of 36 individuals. General additive models revealed that stranding event was the strongest predictor for δ13C and δ15N values, whilst sex was the strongest predictor of δ34S isotopic values. Although similar within years, δ13C values were lower in 2014 and 2017 compared to all other years. Furthermore, δ15N values were higher within Farewell Spit 2017 compared to any other stranding event. This suggests that the individuals stranded in Farewell Spit in 2017 may have been feeding at a higher trophic level, or that the nitrogen baseline may have been higher in 2017 than in other years. Spatiotemporal differences explained isotopic variation of G. m. edwardii in New Zealand waters better than ontogenetic factors.
Collapse
Affiliation(s)
- Bethany Hinton
- Cetacean Ecology Research Group, School of Natural Sciences, Massey University, Auckland 0745, New Zealand
- Correspondence: (B.H.); (E.L.B.)
| | - Karen A. Stockin
- Cetacean Ecology Research Group, School of Natural Sciences, Massey University, Auckland 0745, New Zealand
| | - Sarah J. Bury
- Environmental Isotopes and Molecular Biology Group, National Institute of Water and Atmospheric Research, Wellington 6021, New Zealand
| | - Katharina J. Peters
- Cetacean Ecology Research Group, School of Natural Sciences, Massey University, Auckland 0745, New Zealand
- School of Earth and Environment, University of Canterbury, Christchurch 8041, New Zealand
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, 8057 Zurich, Switzerland
- Global Ecology, College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Emma L. Betty
- Cetacean Ecology Research Group, School of Natural Sciences, Massey University, Auckland 0745, New Zealand
- Correspondence: (B.H.); (E.L.B.)
| |
Collapse
|
29
|
Andrews PLR, Ponte G, Rosas C. Methodological considerations in studying digestive system physiology in octopus: limitations, lacunae and lessons learnt. Front Physiol 2022; 13:928013. [PMID: 36160859 PMCID: PMC9501996 DOI: 10.3389/fphys.2022.928013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Current understanding of cephalopod digestive tract physiology is based on relatively “old” literature and a “mosaic of data” from multiple species. To provide a background to the discussion of methodologies for investigating physiology we first review the anatomy of the cephalopod digestive tract with a focus on Octopus vulgaris, highlighting structure-function relationships and species differences with potential functional consequences (e.g., absence of a crop in cuttlefish and squid; presence of a caecal sac in squid). We caution about extrapolation of data on the digestive system physiology from one cephalopod species to another because of the anatomical differences. The contribution of anatomical and histological techniques (e.g., digestive enzyme histochemistry and neurotransmitter immunohistochemistry) to understanding physiological processes is discussed. For each major digestive tract function we briefly review current knowledge, and then discuss techniques and their limitations for the following parameters: 1) Measuring motility in vitro (e.g., spatiotemporal mapping, tension and pressure), in vivo (labelled food, high resolution ultrasound) and aspects of pharmacology; 2) Measuring food ingestion and the time course of digestion with an emphasis on understanding enzyme function in each gut region with respect to time; 3) Assessing transepithelial transport of nutrients; 4) Measuring the energetic cost of food processing, impact of environmental temperature and metabolic rate (flow-through/intermittent respirometry); 4) Investigating neural (brain, gastric ganglion, enteric) and endocrine control processes with an emphasis on application of molecular techniques to identify receptors and their ligands. A number of major knowledge lacunae are identified where available techniques need to be applied to cephalopods, these include: 1) What is the physiological function of the caecal leaflets and intestinal typhlosoles in octopus? 2) What role does the transepithelial transport in the caecum and intestine play in ion, water and nutrient transport? 3) What information is signalled from the digestive tract to the brain regarding the food ingested and the progress of digestion? It is hoped that by combining discussion of the physiology of the cephalopod digestive system with an overview of techniques and identification of key knowledge gaps that this will encourage a more systematic approach to research in this area.
Collapse
Affiliation(s)
- Paul L. R. Andrews
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
- *Correspondence: Paul L. R. Andrews,
| | - Giovanna Ponte
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| |
Collapse
|
30
|
Sabino MA, Bodin N, Govinden R, Arrisol R, Churlaud C, Pethybridge H, Bustamante P. The role of tropical small-scale fisheries in trace element delivery for a Small Island Developing State community, the Seychelles. MARINE POLLUTION BULLETIN 2022; 181:113870. [PMID: 35835052 DOI: 10.1016/j.marpolbul.2022.113870] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
The concentrations of 13 trace elements were determined in 1032 muscles of 54 small-scale fisheries species collected from the Seychelles waters between 2013 and 2019. Overall, profiles were dominated by zinc (Zn) > arsenic (As) > iron (Fe) > copper (Cu) > selenium (Se), with the spiny lobsters, spanner crab and octopus exhibiting the highest levels of As, Cu and Zn while fish had higher Fe concentrations. Both taxonomy-dependent processes and ecological factors explained the interspecific differences of trace element profiles observed. A benefit-risk assessment revealed that crustaceans and cephalopods were good sources of Cu and Zn. One portion of any fish could provide 30-100 % of daily Se needs, and one portion of demersal and pelagic teleost fish could bring 5-20 % of Cu, Fe and Zn needs, especially for young adult and adult women. Finally, our analysis showed that there was very low health risks associated with small-scale fisheries consumption for the Seychelles population.
Collapse
Affiliation(s)
- Magali A Sabino
- Seychelles Fishing Authority (SFA), Fishing Port, Victoria, Mahé, Seychelles; Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Nathalie Bodin
- Seychelles Fishing Authority (SFA), Fishing Port, Victoria, Mahé, Seychelles; Institute for Research and Development (IRD), Fishing Port, Victoria, Mahé, Seychelles; Sustainable Ocean Seychelles (SOS), BeauBelle, Mahé, Seychelles.
| | - Rodney Govinden
- Seychelles Fishing Authority (SFA), Fishing Port, Victoria, Mahé, Seychelles
| | - Rona Arrisol
- Seychelles Fishing Authority (SFA), Fishing Port, Victoria, Mahé, Seychelles
| | - Carine Churlaud
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | | | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| |
Collapse
|
31
|
Vizuete J, Hernández-Moreno D, López-Beceiro A, Fidalgo LE, Soler F, Pérez-López M, Míguez-Santiyán MP. Heavy metals and metalloid levels in the tissues of yellow-legged gulls (Larus michahellis) from Spain: sex, age, and geographical location differences. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:54292-54308. [PMID: 35298802 PMCID: PMC9356949 DOI: 10.1007/s11356-022-19627-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/05/2022] [Indexed: 05/21/2023]
Abstract
In the present study, mercury (Hg), cadmium (Cd), lead (Pb), selenium (Se), and arsenic (As) were measured in liver, kidney, and feathers of adult, juvenile, and chick seagulls (Larus michahellis) collected from the northwest of Spain. Age, sex, and the geographical location of samples were considered variables that can influence metal bioaccumulation, for which concentrations were determined by means of ICP-MS. The mean concentrations (dry weight) found in seagulls were 7.01 ± 0.37 mg Hg/kg, 22.82 ± 2.83 mg Cd/kg, 7.36 ± 1.36 mg Pb/kg, 18.64 ± 0.63 mg Se/kg, and 10.64 ± 0.59 mg As/kg. Regarding the different factors analyzed, Hg was the only metal showing sex-related differences, being significantly higher (p < 0.05) the concentrations found in feathers of males (1.26 ± 0.12 mg/kg) than those in females (0.99 ± 0.11 mg/kg). A highly significant (p < 0.01) increase in levels of some metals was found in liver related to the increase of age: Hg (adults (A) 3.33 ± 0.22 mg/kg vs chicks (C) 1.76 ± 0.28 mg/kg), Cd (A 4.74 ± 0.62 mg/kg vs C 1.79 ± 0.2), Pb (A 0.65 ± 0.12 mg/kg vs juveniles 0.4 ± 0.11 mg/kg), and Se (A 7.56 ± 0.43 mg/kg vs C 5.24 ± 0.53 mg/kg). Positive correlations between Cd-Hg and Se-Hg were found in liver (p < 0.001), kidney (p < 0.001), and feathers (p < 0.05 and p < 0.001, respectively). The associations found may reflect antagonistic interactions between Se and Cd on Hg toxicity. The results suggest that L. michahellis can reveal local contamination around the foraging and breeding sites and can be a very useful monitoring instrument for assessing heavy metal contamination and sentinel species of environmental health.
Collapse
Affiliation(s)
- Jorge Vizuete
- Toxicology Area, Faculty of Veterinary Medicine (UEX), 10003, Caceres, Spain
| | - David Hernández-Moreno
- Department of Environment and Agronomy, National Institute of Agriculture and Food Research and Technology (INIA), Spanish National Research Council (CSIC), Carretera de la Coruña Km 7, Madrid, Spain.
| | - Ana López-Beceiro
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine (USC), 27003, Lugo, Spain
| | - Luis Eusebio Fidalgo
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine (USC), 27003, Lugo, Spain
| | - Francisco Soler
- Toxicology Area, Faculty of Veterinary Medicine (UEX), 10003, Caceres, Spain
- IMPROCAR Research Institutes, Caceres, Spain
| | - Marcos Pérez-López
- Toxicology Area, Faculty of Veterinary Medicine (UEX), 10003, Caceres, Spain
- INBIO G+C Research Institutes, Caceres, Spain
| | - María Prado Míguez-Santiyán
- Toxicology Area, Faculty of Veterinary Medicine (UEX), 10003, Caceres, Spain
- INBIO G+C Research Institutes, Caceres, Spain
| |
Collapse
|
32
|
Castro-Rendón RD, Calle-Morán MD, García-Arévalo I, Ordiano-Flores A, Galván-Magaña F. Mercury and Cadmium Concentrations in Muscle Tissue of the Blue Shark (Prionace glauca) in the Central Eastern Pacific Ocean. Biol Trace Elem Res 2022; 200:3400-3411. [PMID: 34599733 DOI: 10.1007/s12011-021-02932-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/14/2021] [Indexed: 03/19/2023]
Abstract
Blue sharks (Prionace glauca) are an important resource in Ecuador's fisheries; however, biological and ecological information of this species in the area is scarce. The goal of this study was to determine Hg and Cd concentration levels in muscle tissue, as well as its relationship with size, sex, and sexual maturity stages. A total of 80 specimens (34 females and 46 males) collected from the Ecuadorian longline fishing fleet between June and December 2012 were examined. Sizes for females ranged from 97 to 280 cm total length, with values of Hg between 0.20 to 2.38 mg kg-1 wet weight (x̄ = 0.71, ± 0.61) and values of Cd between 0.01 and 0.12 mg kg-1 (x̄ = 0.04, ± 0.02). Sizes for males ranged from 137 to 290 cm TL with values of Hg between 0.17 and 2.94 mg kg-1 (x̄ = 0.81, ± 0.68) and Cd concentrations between 0.01 and 0.12 mg kg-1 (x̄ = 0.04, ± 0.03). A Spearman's rank correlation showed a medium positive association between TL and Hg concentrations (ρ = 0.66; p < 0.05), but there was no correlation between TL and Cd concentrations (ρ = 0.00, p < 0.05). Of the analyzed sharks, 46% and 20% had Hg and Cd concentrations, respectively, greater than the limit established by authorities for fishes consumed by humans.
Collapse
Affiliation(s)
- Rubén D Castro-Rendón
- Facultad de Artes Y Ciencias Liberales, Universidad de Especialidades Espíritu Santo (UEES), Escuela de Ciencias Ambientales, Km 2.5 vía La Puntilla, C.P. 092301, Guayaquil, Ecuador
| | - Marcos D Calle-Morán
- Facultad de Ciencias del Mar, Programa de Doctorado en Ciencias Con Mención en Recursos Acuáticos, Universidad Autónoma de Sinaloa, Paseo Clausen S/N, C.P. 82000, Mazatlán, Mexico
| | - Isabel García-Arévalo
- Facultad de Ciencias del Mar, Programa de Doctorado en Ciencias Con Mención en Recursos Acuáticos, Universidad Autónoma de Sinaloa, Paseo Clausen S/N, C.P. 82000, Mazatlán, Mexico
- Laboratoire de Biogéochimie Des Contaminants Métalliques, Ifremer, Centre Atlantique, 44311 Cedex 3, Nantes, France
| | - Alfredo Ordiano-Flores
- Centro de Investigación Y Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, 22860, Ensenada, C.P, Mexico
| | - Felipe Galván-Magaña
- Instituto Politecnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n. C.P. 23096, La Paz, Mexico.
| |
Collapse
|
33
|
Dias de Farias DS, Rossi S, da Costa Bomfim A, Lima Fragoso AB, Santos-Neto EB, José de Lima Silva F, Lailson-Brito J, Navoni JA, Gavilan SA, Souza do Amaral V. Bioaccumulation of total mercury, copper, cadmium, silver, and selenium in green turtles (Chelonia mydas) stranded along the Potiguar Basin, northeastern Brazil. CHEMOSPHERE 2022; 299:134331. [PMID: 35339524 DOI: 10.1016/j.chemosphere.2022.134331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/01/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Sea turtles face several threats and pollution has become a major concern for their conservation worldwide. We analyzed samples of the liver, muscles, and kidneys of 38 Chelonia mydas stranded along the Potiguar Basin, northeastern Brazil, between 2015 and 2018 to determine the total Hg concentration (THg), as well as the concentrations of Cu, Cd, Ag, and Se. The relation between turtle size and element concentrations revealed a negative correlation for THg and Se (liver, muscles, and kidneys), Cu and Cd (liver and kidneys) and a positive correlation for Ag in the three organs analyzed. Concentrations of THg, Cu, Ag, and Se were high in the liver, highlighting the Cu concentration (median = 25.1150 μg g-1 w.w.), while the kidneys had the highest Cd levels (median = 12.2200 μg g-1 w.w.). There was significant difference between element concentrations and the three organs analyzed, except for Ag and Se concentrations in the muscle and kidney samples. Our study showed that green turtles found in Potiguar Basin, northeastern Brasil, have bioaccumulated inorganic elements which indicate the need of further investigations on the environmental quality of the region.
Collapse
Affiliation(s)
- Daniel Solon Dias de Farias
- Programa de Doutorado em Desenvolvimento e Meio Ambiente - DDMA, Universidade Federal do Rio Grande do Norte, Brazil; Projeto Cetáceos da Costa Branca - Universidade do Estado do Rio Grande do Norte (PCCB-UERN), Campus Central, CEP 59600-000, Mossoró, Rio Grande do Norte, Brazil; Centro de Estudos e Monitoramento Ambiental (CEMAM), CEP 59655-000, Areia Branca/Rio Grande do Norte, Brazil; Laboratório de Morfofisiologia de Vertebrados, Departamento de Morfologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Silmara Rossi
- Laboratório de Morfofisiologia de Vertebrados, Departamento de Morfologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Aline da Costa Bomfim
- Programa de Doutorado em Desenvolvimento e Meio Ambiente - DDMA, Universidade Federal do Rio Grande do Norte, Brazil; Projeto Cetáceos da Costa Branca - Universidade do Estado do Rio Grande do Norte (PCCB-UERN), Campus Central, CEP 59600-000, Mossoró, Rio Grande do Norte, Brazil; Centro de Estudos e Monitoramento Ambiental (CEMAM), CEP 59655-000, Areia Branca/Rio Grande do Norte, Brazil; Laboratório de Morfofisiologia de Vertebrados, Departamento de Morfologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Ana Bernadete Lima Fragoso
- Projeto Cetáceos da Costa Branca - Universidade do Estado do Rio Grande do Norte (PCCB-UERN), Campus Central, CEP 59600-000, Mossoró, Rio Grande do Norte, Brazil; Centro de Estudos e Monitoramento Ambiental (CEMAM), CEP 59655-000, Areia Branca/Rio Grande do Norte, Brazil
| | - Elitieri Batista Santos-Neto
- Laboratório de Mamíferos Aquáticos e Bioindicadores "Profa. Izabel Gurgel" (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Flávio José de Lima Silva
- Projeto Cetáceos da Costa Branca - Universidade do Estado do Rio Grande do Norte (PCCB-UERN), Campus Central, CEP 59600-000, Mossoró, Rio Grande do Norte, Brazil; Centro de Estudos e Monitoramento Ambiental (CEMAM), CEP 59655-000, Areia Branca/Rio Grande do Norte, Brazil
| | - José Lailson-Brito
- Laboratório de Mamíferos Aquáticos e Bioindicadores "Profa. Izabel Gurgel" (MAQUA), Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Julio Alejandro Navoni
- Programa de Doutorado em Desenvolvimento e Meio Ambiente - DDMA, Universidade Federal do Rio Grande do Norte, Brazil; Programa de Pós-graduação em Uso Sustentável de Recursos Naturais do Instituto Federal do Rio Grande do Norte/ IFRN, Brazil
| | - Simone Almeida Gavilan
- Projeto Cetáceos da Costa Branca - Universidade do Estado do Rio Grande do Norte (PCCB-UERN), Campus Central, CEP 59600-000, Mossoró, Rio Grande do Norte, Brazil; Centro de Estudos e Monitoramento Ambiental (CEMAM), CEP 59655-000, Areia Branca/Rio Grande do Norte, Brazil; Laboratório de Morfofisiologia de Vertebrados, Departamento de Morfologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Viviane Souza do Amaral
- Programa de Doutorado em Desenvolvimento e Meio Ambiente - DDMA, Universidade Federal do Rio Grande do Norte, Brazil; Universidade Federal do Rio Grande do Norte (UFRN). Laboratório de Genética Toxicológica. Departamento de Biologia e Genética, Avenida Senador Salgado Filho, 3000, Lagoa Nova, Natal, Campus Central, RN, Brazil.
| |
Collapse
|
34
|
Méndez-Fernandez P, Spitz J, Dars C, Dabin W, Mahfouz C, André JM, Chouvelon T, Authier M, Caurant F. Two cetacean species reveal different long-term trends for toxic trace elements in European Atlantic French waters. CHEMOSPHERE 2022; 294:133676. [PMID: 35077732 DOI: 10.1016/j.chemosphere.2022.133676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Cetaceans have been naturally exposed to toxic trace elements (TEs) on an evolutionary time scale. Hence, they have developed mechanisms to control and/or mitigate their toxic effects. These long-lived species located at high trophic positions and bioaccumulating toxic elements are assumed to be good biomonitoring organisms. However, anthropogenic emissions have strongly increased environmental levels of toxic TEs in the last decades, questioning the efficiency of the detoxication mechanisms in cetaceans. In this context, temporal trends of mercury (Hg), cadmium (Cd) and lead (Pb) concentrations were studied through the analysis of 264 individuals from two cetacean species the common dolphin (Delphinus delphis) and the harbour porpoise (Phocoena phocoena) and belonging to two different Management Units (MUs) for the latter. These individuals stranded along the French Atlantic coasts from 2000s to 2017. All the trends presented were age- and sex-corrected and stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) were measured as proxies of their feeding ecology. Results showed that Pb concentrations clearly decreased over time in both species and MUs. This decrease agrees with the lead petrol regulation after 2000s, supporting the use of these species as valuable bioindicators of changes for TE levels in the marine environment. A significant long-term increase of total Hg concentrations was only observed in common dolphins. Cadmium concentrations also revealed different trends over the period in both species. The different Hg and Cd trends observed in the two species, probably reflected a contrasted contamination of habitat and prey species than a global increase of the contamination in the environment. These results highlight the necessity and gain of using different species to monitor changes in marine environments, each of them informing on the contamination of its own ecological niche. Lastly, the Se:Hg molar ratios of species suggested a low risk for Hg toxicity over time.
Collapse
Affiliation(s)
- Paula Méndez-Fernandez
- Observatoire Pelagis, UMS 3462- La Rochelle Université - CNRS, 5 Allées de L'océan, 17000, La Rochelle, France.
| | - Jérôme Spitz
- Observatoire Pelagis, UMS 3462- La Rochelle Université - CNRS, 5 Allées de L'océan, 17000, La Rochelle, France; Centre D'Etudes Biologiques de Chizé-La Rochelle, UMR 7372- Université de La Rochelle-CNRS, 5 Allées de L'océan, 17000, La Rochelle, France
| | - Cécile Dars
- Observatoire Pelagis, UMS 3462- La Rochelle Université - CNRS, 5 Allées de L'océan, 17000, La Rochelle, France
| | - Willy Dabin
- Observatoire Pelagis, UMS 3462- La Rochelle Université - CNRS, 5 Allées de L'océan, 17000, La Rochelle, France
| | - Celine Mahfouz
- National Center for Marine Sciences, National Council for Scientific Research in Lebanon (CNRS-L), Beirut, Lebanon
| | | | - Tiphaine Chouvelon
- Observatoire Pelagis, UMS 3462- La Rochelle Université - CNRS, 5 Allées de L'océan, 17000, La Rochelle, France; Ifremer, Unité Biogéochimie et Écotoxicologie, Laboratoire de Biogéochimie des Contaminants Métalliques (BE/LBCM), Rue de L'île D'Yeu, BP 21105, 44311, Nantes Cedex 03, France
| | - Matthieu Authier
- Observatoire Pelagis, UMS 3462- La Rochelle Université - CNRS, 5 Allées de L'océan, 17000, La Rochelle, France
| | - Florence Caurant
- Observatoire Pelagis, UMS 3462- La Rochelle Université - CNRS, 5 Allées de L'océan, 17000, La Rochelle, France; Centre D'Etudes Biologiques de Chizé-La Rochelle, UMR 7372- Université de La Rochelle-CNRS, 5 Allées de L'océan, 17000, La Rochelle, France
| |
Collapse
|
35
|
Cordero-Maldonado C, Espinoza P. Cadmium and lead levels in muscle tissue of blue shark (Prionace glauca) in the Southeastern Pacific Waters. MARINE POLLUTION BULLETIN 2022; 177:113523. [PMID: 35290836 DOI: 10.1016/j.marpolbul.2022.113523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Prionace glauca is a top predator, prone to bioaccumulate trace elements, representing the most captured elasmobranch species for human consumption in Peru. Concentrations of cadmium and lead in the edible muscle tissue of the blue shark captured in the south Peruvian coastal waters and offshore north-central Chile were determined. The Cd and Pb levels varied between 0.004 and 0.014 and 0.004 and 0.03 mg kg-1, respectively. We found direct correlation of Cd concentration with the total length, nevertheless there was no clear relationship regarding sex, seasons, and capture areas. Both metals were below the safety limits for human consumption. The target hazard quotient (THQ) values suggest that its consumption does not represent a risk to the human health. In Peru, this is only the second paper that reports Cd and Pb in sharks. We recommend increasing the sampling by including larger sharks and in other regions of the Peruvian coastline.
Collapse
Affiliation(s)
- Cristel Cordero-Maldonado
- Carrera de Biología Marina, Facultad de Ciencias Veterinarias y Biológicas, Universidad Científica del Sur, Lima, Peru.
| | - Pepe Espinoza
- Carrera de Biología Marina, Facultad de Ciencias Veterinarias y Biológicas, Universidad Científica del Sur, Lima, Peru; Instituto del Mar del Perú, Esquina Gamarra con General Valle, Chucuito, Callao, Peru
| |
Collapse
|
36
|
Ajala M, Ameur WB, Annabi A. First evidence of the utility of cephalopods for biomonitoring program in the field: case of Sepia officinalis south west of Mediterranean Sea (Gulf of Gabes, Tunisia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28675-28687. [PMID: 34988792 DOI: 10.1007/s11356-021-17804-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
This study was carried out to determine the concentration of selected heavy metals in common cuttlefish (Sepia officinalis) caught in the south west of Mediterranean Sea (Gulf of Gabes, Tunisia). To reach this objective, cuttlefish samples were collected from each area (Sfax and Djerba) situated along the Gulf of Gabes, and the concentrations of heavy metals (Cu, Zn, Pb, and Cd) were measured in the gills, gonads, digestive glands, and muscles. Sample preparation and quantification of the metals were accomplished via the wet digestion method and atomic absorption spectroscopy. The levels of heavy metals varied significantly among organs and sites. In fact, the population from Sfax (Gargour) shows the highest concentrations of copper, zinc, and lead compared to the population from Djerba. Globally, recorded metal concentrations were within the range or below the levels in similar species from other regions across the world. To our knowledge, this study is the first that interests to the bioaccumulation of metals in this cuttlefish species from the two investigated areas and to the evaluation of their levels in different tissues.
Collapse
Affiliation(s)
- Marwa Ajala
- Ecologie de La Faune Terrestre UR17ES44, Département Des Sciences de La Vie, Faculté Des Sciences de Gabès, Université de Gabès, Gabès, Tunisia
| | - Walid Ben Ameur
- Ecologie de La Faune Terrestre UR17ES44, Département Des Sciences de La Vie, Faculté Des Sciences de Gabès, Université de Gabès, Gabès, Tunisia
| | - Ali Annabi
- Ecologie de La Faune Terrestre UR17ES44, Département Des Sciences de La Vie, Faculté Des Sciences de Gabès, Université de Gabès, Gabès, Tunisia.
| |
Collapse
|
37
|
Manhães BMR, Vannuci-Silva M, Brião JA, Guari EB, Botta S, Colosio AC, Ramos HGC, Barbosa LA, Cunha IAG, Azevedo AF, Cunha HA, Bisi TL, Lailson-Brito J. Temporal trends of trace elements bioaccumulation by a vulnerable cetacean (Pontoporia blainvillei) before and after one of the largest mining disasters worldwide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150196. [PMID: 34798738 DOI: 10.1016/j.scitotenv.2021.150196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/24/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
One of the largest environmental disasters worldwide occurred on November 5th, 2015, when the Fundão dam collapsed in Mariana (Minas Gerais State, Southeast Brazil). The tailing mud flooded the Doce River basin and reached the sea in the coast of Espírito Santo State (ES), Southeast Brazil. This coastal region is the habitat of the most isolated population of franciscana dolphins (Pontoporia blainvillei), with the lowest populational census and lowest genetic diversity in Franciscana Management Area Ia (FMA Ia) - 18° 25'S and 21° 17'S. This study aimed to assess the bioaccumulation of trace-elements (As, Cd, Cu, Fe, Hg, Mn, and Zn) in muscle, liver and kidney of franciscana dolphins collected near the Doce River's mouth before (n = 32) and after (n = 19) the tailing mud reached the sea. The Generalized Additive Model (GAM) showed increasing temporal trends of Hg and Zn in muscle and liver after the dam failure, probably related to higher concentrations and bioavailability in the water column and sediments from the Doce River. Declining trends were found for As and Cu muscular and hepatic concentrations and Fe concentrations in kidney due to their lower bioavailability after the disaster, caused by association with tailings mud trapped in the riverbanks and suspended particulate material. Additionally, higher As and Hg concentrations found in the first period of sampling may be due to historical contamination by mining activities. The full extent of the impacts caused by the Fundão dam failure is still unknown. However, due to their rapid increase and remobilization process, toxic effects can be induced in the biota by these elements. Elements' bioaccumulation in this study contributes to the knowledge of franciscana dolphins from FMA Ia. Considering the conservation concern regarding this franciscana population and its scarce knowledge, the impact of this disaster can be alarming for species conservation.
Collapse
Affiliation(s)
- B M R Manhães
- Laboratório de Mamíferos Aquáticos e Bioindicadores "Profª Izabel Gurgel", Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Oceanografia, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, Brazil.
| | - M Vannuci-Silva
- Laboratório de Mamíferos Aquáticos e Bioindicadores "Profª Izabel Gurgel", Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Oceanografia, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, Brazil
| | - J A Brião
- Laboratório de Mamíferos Aquáticos e Bioindicadores "Profª Izabel Gurgel", Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, Brazil
| | - E B Guari
- Laboratório de Mamíferos Aquáticos e Bioindicadores "Profª Izabel Gurgel", Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, Brazil
| | - S Botta
- Laboratório de Ecologia e Conservação da Megafauna Marinha (ECOMEGA), Instituto de Oceanografia, Universidade Federal do Rio Grande (FURG), Brazil
| | - A C Colosio
- Instituto Baleia Jubarte, Caravelas, Bahia, Brazil
| | - H G C Ramos
- Instituto Baleia Jubarte, Caravelas, Bahia, Brazil
| | - L A Barbosa
- Instituto ORCA, Vila Velha, Espírito Santo, Brazil
| | - I A G Cunha
- Instituto ORCA, Vila Velha, Espírito Santo, Brazil
| | - A F Azevedo
- Laboratório de Mamíferos Aquáticos e Bioindicadores "Profª Izabel Gurgel", Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Oceanografia, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, Brazil
| | - H A Cunha
- Laboratório de Mamíferos Aquáticos e Bioindicadores "Profª Izabel Gurgel", Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Oceanografia, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, Brazil
| | - T L Bisi
- Laboratório de Mamíferos Aquáticos e Bioindicadores "Profª Izabel Gurgel", Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Oceanografia, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, Brazil
| | - J Lailson-Brito
- Laboratório de Mamíferos Aquáticos e Bioindicadores "Profª Izabel Gurgel", Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, Brazil; Programa de Pós-Graduação em Oceanografia, Faculdade de Oceanografia, Universidade do Estado do Rio de Janeiro (UERJ), Rua São Francisco Xavier, 524, Rio de Janeiro, Brazil
| |
Collapse
|
38
|
Willis KA, Serra-Gonçalves C, Richardson K, Schuyler QA, Pedersen H, Anderson K, Stark JS, Vince J, Hardesty BD, Wilcox C, Nowak BF, Lavers JL, Semmens JM, Greeno D, MacLeod C, Frederiksen NPO, Puskic PS. Cleaner seas: reducing marine pollution. REVIEWS IN FISH BIOLOGY AND FISHERIES 2022. [PMID: 34366578 DOI: 10.22541/au.160382467.73347721/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
UNLABELLED In the age of the Anthropocene, the ocean has typically been viewed as a sink for pollution. Pollution is varied, ranging from human-made plastics and pharmaceutical compounds, to human-altered abiotic factors, such as sediment and nutrient runoff. As global population, wealth and resource consumption continue to grow, so too does the amount of potential pollution produced. This presents us with a grand challenge which requires interdisciplinary knowledge to solve. There is sufficient data on the human health, social, economic, and environmental risks of marine pollution, resulting in increased awareness and motivation to address this global challenge, however a significant lag exists when implementing strategies to address this issue. This review draws upon the expertise of 17 experts from the fields of social sciences, marine science, visual arts, and Traditional and First Nations Knowledge Holders to present two futures; the Business-As-Usual, based on current trends and observations of growing marine pollution, and a More Sustainable Future, which imagines what our ocean could look like if we implemented current knowledge and technologies. We identify priority actions that governments, industry and consumers can implement at pollution sources, vectors and sinks, over the next decade to reduce marine pollution and steer us towards the More Sustainable Future. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11160-021-09674-8.
Collapse
Affiliation(s)
- Kathryn A Willis
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- CSIRO Oceans & Atmosphere, Hobart, TAS Australia
- School of Social Sciences, College of Arts, Law and Education, University of Tasmania, Hobart, TAS Australia
| | - Catarina Serra-Gonçalves
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | - Kelsey Richardson
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- CSIRO Oceans & Atmosphere, Hobart, TAS Australia
- School of Social Sciences, College of Arts, Law and Education, University of Tasmania, Hobart, TAS Australia
| | | | | | - Kelli Anderson
- Institute for Marine and Antarctic Studies, Fisheries and Aquaculture, University of Tasmania, Newnham, TAS Australia
| | - Jonathan S Stark
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Australian Antarctic Division, Hobart, TAS Australia
| | - Joanna Vince
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- School of Social Sciences, College of Arts, Law and Education, University of Tasmania, Hobart, TAS Australia
| | - Britta D Hardesty
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- CSIRO Oceans & Atmosphere, Hobart, TAS Australia
| | - Chris Wilcox
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- CSIRO Oceans & Atmosphere, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | - Barbara F Nowak
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, Fisheries and Aquaculture, University of Tasmania, Newnham, TAS Australia
| | - Jennifer L Lavers
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | - Jayson M Semmens
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | - Dean Greeno
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- School of Creative Arts and Media, College of Arts, Law and Education, University of Tasmania, Hobart, TAS Australia
| | - Catriona MacLeod
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | - Nunnoq P O Frederiksen
- The PISUNA Project, Qeqertalik Municipality, Attu, Greenland
- Snowchange Cooperative, Selkie, Finland
| | - Peter S Puskic
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| |
Collapse
|
39
|
Willis KA, Serra-Gonçalves C, Richardson K, Schuyler QA, Pedersen H, Anderson K, Stark JS, Vince J, Hardesty BD, Wilcox C, Nowak BF, Lavers JL, Semmens JM, Greeno D, MacLeod C, Frederiksen NPO, Puskic PS. Cleaner seas: reducing marine pollution. REVIEWS IN FISH BIOLOGY AND FISHERIES 2022; 32:145-160. [PMID: 34366578 PMCID: PMC8326648 DOI: 10.1007/s11160-021-09674-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/08/2021] [Indexed: 05/06/2023]
Abstract
UNLABELLED In the age of the Anthropocene, the ocean has typically been viewed as a sink for pollution. Pollution is varied, ranging from human-made plastics and pharmaceutical compounds, to human-altered abiotic factors, such as sediment and nutrient runoff. As global population, wealth and resource consumption continue to grow, so too does the amount of potential pollution produced. This presents us with a grand challenge which requires interdisciplinary knowledge to solve. There is sufficient data on the human health, social, economic, and environmental risks of marine pollution, resulting in increased awareness and motivation to address this global challenge, however a significant lag exists when implementing strategies to address this issue. This review draws upon the expertise of 17 experts from the fields of social sciences, marine science, visual arts, and Traditional and First Nations Knowledge Holders to present two futures; the Business-As-Usual, based on current trends and observations of growing marine pollution, and a More Sustainable Future, which imagines what our ocean could look like if we implemented current knowledge and technologies. We identify priority actions that governments, industry and consumers can implement at pollution sources, vectors and sinks, over the next decade to reduce marine pollution and steer us towards the More Sustainable Future. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11160-021-09674-8.
Collapse
Affiliation(s)
- Kathryn A. Willis
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
-
CSIRO Oceans & Atmosphere, Hobart, TAS Australia
- School of Social Sciences, College of Arts, Law and Education, University of Tasmania, Hobart, TAS Australia
| | - Catarina Serra-Gonçalves
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | - Kelsey Richardson
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
-
CSIRO Oceans & Atmosphere, Hobart, TAS Australia
- School of Social Sciences, College of Arts, Law and Education, University of Tasmania, Hobart, TAS Australia
| | | | | | - Kelli Anderson
- Institute for Marine and Antarctic Studies, Fisheries and Aquaculture, University of Tasmania, Newnham, TAS Australia
| | - Jonathan S. Stark
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Australian Antarctic Division, Hobart, TAS Australia
| | - Joanna Vince
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- School of Social Sciences, College of Arts, Law and Education, University of Tasmania, Hobart, TAS Australia
| | - Britta D. Hardesty
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
-
CSIRO Oceans & Atmosphere, Hobart, TAS Australia
| | - Chris Wilcox
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
-
CSIRO Oceans & Atmosphere, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | - Barbara F. Nowak
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, Fisheries and Aquaculture, University of Tasmania, Newnham, TAS Australia
| | - Jennifer L. Lavers
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | - Jayson M. Semmens
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | - Dean Greeno
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- School of Creative Arts and Media, College of Arts, Law and Education, University of Tasmania, Hobart, TAS Australia
| | - Catriona MacLeod
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| | -
Nunnoq P. O. Frederiksen
- The PISUNA Project, Qeqertalik Municipality, Attu, Greenland
- Snowchange Cooperative, Selkie, Finland
| | - Peter S. Puskic
- Centre for Marine Sociology, University of Tasmania, Hobart, TAS Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS Australia
| |
Collapse
|
40
|
Cumbo V, Galluzzo FG, Cammilleri G, Mascetti A, Lo Cascio G, Giangrosso IE, Pulvirenti A, Seminara S, Ferrantelli V. Trace elements in stomach oil of Scopoli's shearwater (Calonectris diomedea) from Linosa's colony. MARINE POLLUTION BULLETIN 2022; 174:113242. [PMID: 34906783 DOI: 10.1016/j.marpolbul.2021.113242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Calonectris diomedea is a colonial Procellariiform breeding on Mediterranean islands. The stomach oil produced during chick rearing is a peculiar trait of this species. The composition of the stomach oil is likely to reflect the composition of the prey ingested and might reveal the contaminants uptake with prey becoming a possible tool for the marine pollution monitoring. We examined the concentration of 15 trace elements by ICP-MS and direct mercury analyser. The principal component analysis revealed a heterogeneous pattern of metal concentration, showing a significant separation between samples collected 20 and 70 days after hatching. The data obtained in this work give preliminary information on the feeding habits and breeding ecology of Linosa's colony of Scopoli's shearwater. The trace metals variability found suggest that the stomach oil may have a role as trophic markers to understand predator-prey relationships and to have evidence on the accumulation of pollutants in the latter.
Collapse
Affiliation(s)
- Valentina Cumbo
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Francesco Giuseppe Galluzzo
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy; Dipartimento di Scienze della Vita, Università degli studi di Modena e Reggio Emilia, Via Università 4, 41121 Modena, Italy
| | - Gaetano Cammilleri
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy.
| | | | - Giovanni Lo Cascio
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Innocenzo Ezio Giangrosso
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Andrea Pulvirenti
- Dipartimento di Scienze della Vita, Università degli studi di Modena e Reggio Emilia, Via Università 4, 41121 Modena, Italy
| | - Salvatore Seminara
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| | - Vincenzo Ferrantelli
- Food Department, Istituto Zooprofilattico Sperimentale della Sicilia, Via Gino Marinuzzi 3, 90129 Palermo, Italy
| |
Collapse
|
41
|
Lozano-Bilbao E, Alcázar-Treviño J, Alduán M, Lozano G, Hardisson A, Rubio C, González-Weller D, Paz S, Carrillo M, Gutiérrez ÁJ. Metal content in stranded pelagic vs deep-diving cetaceans in the Canary Islands. CHEMOSPHERE 2021; 285:131441. [PMID: 34246100 DOI: 10.1016/j.chemosphere.2021.131441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/25/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
The Canary Islands are home to many cetacean species, many of which are resident species. The present work aims to analyze, for the first time to the best of the authors' knowledge, the macronutrients, micronutrients and trace elements and toxic heavy metals in muscle and liver tissue of six species of stranded cetaceans in the Canary Islands. The study species were: Tursiops truncatus, Stenella frontalis, Delphinus delphis, Grampus griseus, Globicephala macrorynchus and Physeter macrocephalus. Statistical analysis studied the significant differences between the concentrations in muscle and liver tissues, with the differences in element content depending on the type of diving and length of the species. The results indicate that there are differences between muscle and liver for Ca, Cd, Co, Cu, K, Mg, Mn, Mo, Ni, Pb, Sr, V and Zn. Deep-diving animals differ in their concentrations of Cr, Cu, Mg, Mn, Mo, and Zn with respect to shallow-diving animals in muscle and in liver in Al, B, Cr, K, Mn and Mo. As for the differences between sex, the males present differences in their concentrations of B, Cd, K and Mg in muscle tissue with respect to the females, while differences in the liver were only detected in the Fe content. The study of the correlations shows that as the size of the animal increases, the concentration of Cd increases while the concentrations of Al, Cu and Zn decrease. The specimens foraging in shallower waters had the highest concentration of the macronutrient.
Collapse
Affiliation(s)
- Enrique Lozano-Bilbao
- Departamento de Biología Animal y Edafología y Geología, Unidad Departamental de Ciencias Marinas, Universidad de La Laguna, 38206, La Laguna, Santa Cruz de Tenerife, Spain; Grupo interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, 38071, San Cristóbal de La Laguna, Tenerife, Spain
| | - Jesús Alcázar-Treviño
- Departamento de Biología Animal y Edafología y Geología, Unidad Departamental de Ciencias Marinas, Universidad de La Laguna, 38206, La Laguna, Santa Cruz de Tenerife, Spain; BIOECOMAC, Departamento de Biología Animal y Edafología y Geología, Universidad de La Laguna (ULL), Avenida Astrofísico F. Sánchez S/n. 38, 38206, San Cristóbal de La Laguna Tenerife, Spain
| | - Manuel Alduán
- Departamento de Biología Animal y Edafología y Geología, Unidad Departamental de Ciencias Marinas, Universidad de La Laguna, 38206, La Laguna, Santa Cruz de Tenerife, Spain
| | - Gonzalo Lozano
- Departamento de Biología Animal y Edafología y Geología, Unidad Departamental de Ciencias Marinas, Universidad de La Laguna, 38206, La Laguna, Santa Cruz de Tenerife, Spain; Grupo interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, 38071, San Cristóbal de La Laguna, Tenerife, Spain
| | - Arturo Hardisson
- Grupo interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, 38071, San Cristóbal de La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, 38200, La Laguna, Santa Cruz de Tenerife, Spain
| | - Carmen Rubio
- Grupo interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, 38071, San Cristóbal de La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, 38200, La Laguna, Santa Cruz de Tenerife, Spain
| | - Dailos González-Weller
- Grupo interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, 38071, San Cristóbal de La Laguna, Tenerife, Spain; Servicio Público Canario de Salud, Laboratorio Central, Santa Cruz de Tenerife, Spain
| | - Soraya Paz
- Grupo interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, 38071, San Cristóbal de La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, 38200, La Laguna, Santa Cruz de Tenerife, Spain
| | | | - Ángel J Gutiérrez
- Grupo interuniversitario de Toxicología Alimentaria y Ambiental, Facultad de Medicina, Universidad de La Laguna (ULL), Campus de Ofra, 38071, San Cristóbal de La Laguna, Tenerife, Spain; Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Área de Toxicología, Universidad de La Laguna, 38200, La Laguna, Santa Cruz de Tenerife, Spain.
| |
Collapse
|
42
|
Escánez A, Lozano-Bilbao E, Paz S, Hardisson A, González-Weller D, Rubio C, Lozano G, Gutiérrez ÁJ. Assessments of metallic contents in rare cephalopods from the Canary Islands: relationships with depth habitat and body size. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54161-54169. [PMID: 34402011 DOI: 10.1007/s11356-021-15916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
This study investigated 20 elements in the muscle of 11 cephalopod species caught in the Canary Islands inhabiting from coastal to meso-bathypelagic habitats. Among them, trace element contents from large and elusive cephalopods such as Architeuthis dux, Taningia danae, Lepidoteuthis grimaldii, and Haliphron atlanticus were determined. Statistically significant differences in element concentration were found among class sizes and habitat. Large species that are inhabiting in deepest waters such as Loligo forbesii, A. dux, T. danae, H. atlanticus, and L. grimaldii showed a high load and variability in Fe and Al, while coastal species were characterized by a homogeneous element composition, being the Zn loads highest than other elements. Metal contents in large and elusive cephalopod species were dominated by Fe, Ni, Al, Zn, and Sr, with these species being able to carry important amounts of these elements to predators such as deep-diving odontocetes that reside around the Canary waters.
Collapse
Affiliation(s)
- Alejandro Escánez
- Departamento de Biología Animal, Geología y Edafología, Universidad de La Laguna, CP: 38200, San Cristóbal de La Laguna, Canary Islands, Spain
| | - Enrique Lozano-Bilbao
- Área de Toxicología, Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, CP: 38200, San Cristóbal de La Laguna, Canary Islands, Spain.
| | - Soraya Paz
- Área de Toxicología, Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, CP: 38200, San Cristóbal de La Laguna, Canary Islands, Spain
| | - Arturo Hardisson
- Área de Toxicología, Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, CP: 38200, San Cristóbal de La Laguna, Canary Islands, Spain
| | - Dailos González-Weller
- Servicio Público Canario de Salud, Laboratorio Central, 38006, Santa Cruz de Tenerife, Spain
| | - Carmen Rubio
- Área de Toxicología, Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, CP: 38200, San Cristóbal de La Laguna, Canary Islands, Spain
| | - Gonzalo Lozano
- Departamento de Biología Animal, Geología y Edafología, Universidad de La Laguna, CP: 38200, San Cristóbal de La Laguna, Canary Islands, Spain
| | - Ángel J Gutiérrez
- Área de Toxicología, Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, CP: 38200, San Cristóbal de La Laguna, Canary Islands, Spain
| |
Collapse
|
43
|
Petrovic J, Jovetic M, Štulić M, Vujadinović D, Lorenzo JM, Iammarino M, Djekic IV, Tomasevic I. Exposure assessment in the Serbian population and occurrence of histamine and heavy metals in fish and seafood. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Dragan Vujadinović
- University of East Sarajevo Faculty of Technology Zvornik Bosnia and Herzegovina
| | | | - Marco Iammarino
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata Chemistry Foggia Italy
| | - Ilija V. Djekic
- Faculty of Agriculture University of Belgrade Belgrade Serbia
| | - Igor Tomasevic
- Faculty of Agriculture University of Belgrade Belgrade Serbia
| |
Collapse
|
44
|
Laranjeiro MI, Alves LMF, da Silva JM, Pereira JM, Norte AC, Paiva VH, Lemos MFL, Ramos JA, Novais SC, Ceia FR. Year-round element quantification of a wide-ranging seabird and their relationships with oxidative stress, trophic ecology, and foraging patterns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117502. [PMID: 34098370 DOI: 10.1016/j.envpol.2021.117502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/26/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Multidisciplinary approaches are essential to diligently assess environmental health status of ecosystems. In this study, year-round chemical elements' exposure and impacts were assessed on the wide-ranging Cory's shearwater Calonectris borealis breeding in Berlenga Island, offshore Portugal, North Atlantic Ocean. The aim was to identify potential contamination and oxidative stress sources associated with trophic ecology, habitat and spatial use, and foraging patterns. A set of 20 chemical elements were quantified, along with oxidative stress biomarkers, stable isotope analyses, and GPS tracking data. Birds presented higher accumulation to some non-essential elements along the year (i.e. arsenic, As; cadmium, Cd; mercury, Hg; lead, Pb; and strontium, Sr), in which concentrations were similar or surpassed other procellariform seabird populations all over the world. No significant differences were found for any of the elements between different periods within the breeding season, with exception of Hg. However, a Principal Component Analysis taking into consideration a group of elements showed differences between pre-laying and chick-rearing periods, with overall higher concentrations in the former. Individuals spending more time engaging in an intensive search for food, and in more coastal environments, presented overall higher element concentrations, and particularly Hg. Contrary to expectations, no relationships were found between chemical elements and oxidative stress. On the other hand, spatial use and foraging patterns of Cory's shearwaters influenced their oxidative stress responses. Our results highlight the need for multidisciplinary approaches to deepen understanding of the large-scale vulnerability of bioindicators such as seabirds and, by extension, the overall environmental health of ecosystems in which they rely.
Collapse
Affiliation(s)
- Maria I Laranjeiro
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Luís M F Alves
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Joana M da Silva
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Jorge M Pereira
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal; Environment and Sustainability Institute, University of Exeter, Penryn Campus, Penryn, Cornwall, TR10 9FE, UK
| | - Ana C Norte
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Vítor H Paiva
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Jaime A Ramos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre, ESTM, Politécnico de Leiria, 2520-641, Peniche, Portugal
| | - Filipe R Ceia
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| |
Collapse
|
45
|
Cáceres-Saez I, Haro D, Blank O, Aguayo-Lobo A, Dougnac C, Arredondo C, Cappozzo HL, Ribeiro Guevara S. Trace elements in subantarctic false killer whale (Pseudorca crassidens) tissues, including the skin as an offshore bioindicator. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31746-31757. [PMID: 33609246 DOI: 10.1007/s11356-021-12890-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
On a global scale, cetaceans are recognized well indicators of marine ecosystem health. Trace elements accumulate in their bodies and potentially constitute a toxicological threat. Here, the concentrations of essential Se; unknown physiological elements Br, Rb, Cs, Ni, and Sr; and pollutants arsenic, Cd, Hg, and Ag were assessed in the skin of false killer whales (Pseudorca crassidens) stranded at Estrecho de Magallanes, South America, and next, tissue comparisons and relationships between elemental concentrations in the skin and internal tissues (liver, kidney, spleen, lung, skeletal muscle, and testis) were assessed. Results showed elemental concentration variations among tissues. Selenium concentration was found to be higher in the liver 398 (75) μg g-1 dry weight (DW) (standard deviation in parenthesis), followed by skin. Rubidium and Br concentrations were higher in testis 7.92 (0.42) and 99.1 (5.4) μg g-1 DW, respectively, and Cs in muscle 0.36 (0.12) μg g-1 DW, while Ni concentrations range (<0.05-0.91 μg g-1 DW) did not show differences among tissues. Cadmium and arsenic were found to be higher in kidneys, 71.2 (17.6) and 2.54 (1.77) μg g-1 DW, respectively, while Hg was highest in the liver 1068 (234) μg g-1 DW. Concerning inter-tissue relationships, a positive skin-to-kidney and skin-to-muscle correlations were observed for Cs concentrations, and also Hg showed positive skin-to-spleen, skin-to-kidney, and skin-to-testis correlations, which support its use as potential offshore marine biomonitor.
Collapse
Affiliation(s)
- Iris Cáceres-Saez
- Consejo Nacional de Investigaciones Científicas y Técnicas, Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Avenida Ángel Gallardo 470 (C1405DJR), Buenos Aires, Argentina.
| | - Daniela Haro
- Centro Bahía Lomas, Facultad de Ciencias, Universidad Santo Tomas, Avenida Costanera, 01834, Punta Arenas, Chile
| | - Olivia Blank
- Clínica Veterinaria Timaukel y Centro de Rehabilitación de Aves Leñadura (CRAL), José Pithon, 01316, Punta Arenas, Chile
| | - Anelio Aguayo-Lobo
- Instituto Antártico Chileno (INACH), Plaza Muñoz Gamero, 1055, Punta Arenas, Chile
| | | | - Cristóbal Arredondo
- Wildlife Conservation Society, Balmaceda, 586, Punta Arenas, Chile
- Tarukari, Non-government Organization (no number), Santiago, Chile
| | - H Luis Cappozzo
- Consejo Nacional de Investigaciones Científicas y Técnicas, Museo Argentino de Ciencias Naturales Bernardino Rivadavia, Avenida Ángel Gallardo 470 (C1405DJR), Buenos Aires, Argentina
| | - Sergio Ribeiro Guevara
- Laboratorio de Análisis por Activación Neutrónica, Centro Atómico Bariloche, Av. Bustillo, 8500, Bariloche, Argentina
| |
Collapse
|
46
|
Lischka A, Bustamante P, Braid H, Piatkowski U, Lacoue-Labarthe T. Trophic ecology drives trace element concentrations in the Antarctic octopod community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144373. [PMID: 33454479 DOI: 10.1016/j.scitotenv.2020.144373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/30/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Despite the Antarctic Ocean being considered a pristine environment, elevated trace element concentrations have been reported in many marine organisms. The Antarctic Ocean is particularly vulnerable to climate change, which can also affect the bioaccumulation of trace element concentrations in biota. While Antarctic octopods are key components of the regional food webs as prey for a variety of predators (e.g., seals, fish, and seabirds), their contamination state by trace elements remains largely unknown. This study investigated the trace element concentrations in relation to the trophic ecology in Antarctic octopods. Stable isotope values (δ13C and δ15N) and trace element concentrations (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, V, and Zn) were measured in eight different species (Adelieledone polymorpha, Pareledone aequipapillae, P. albimaculata, P. aurata, P. charcoti, P. cornuta, P. felix, and P. turqueti) sampled near Elephant Island, close to the Antarctic Peninsula. Stable isotopes of δ15N varied among species, with significant differences between A. polymorpha and P. aurata suggesting potential niche segregation. Trace element concentrations also differed among species and with sampling depth, which likely reflects their trophic ecology. The data presented in this study provides the first insight into the trace element concentrations for these endemic octopods in this vulnerable habitat and their stable isotope values.
Collapse
Affiliation(s)
- A Lischka
- AUT Lab for Cephalopod Ecology & Systematics, School of Science, Auckland University of Technology, Private Bag 92006, 1142 Auckland, New Zealand.
| | - P Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - H Braid
- AUT Lab for Cephalopod Ecology & Systematics, School of Science, Auckland University of Technology, Private Bag 92006, 1142 Auckland, New Zealand
| | - U Piatkowski
- GEOMAR, Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - T Lacoue-Labarthe
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
47
|
Damseaux F, Siebert U, Pomeroy P, Lepoint G, Das K. Habitat and resource segregation of two sympatric seals in the North Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:142842. [PMID: 33342563 DOI: 10.1016/j.scitotenv.2020.142842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 06/12/2023]
Abstract
The study of ecological niche segregation in sympatric species is essential to understand ecosystem functioning and its response to potential changes. In the North Sea, sympatric grey and harbour seals may present competition for food resources sustained by intense fishing activities and recent increase of seal populations. In order to coexist and reduce inter-specific competition, sympatric species must segregate at least one aspect of their ecological niches: temporal, spatial or resource segregation. We aim to study the foraging resources and foraging distributions of grey seals and harbour seals and the potential competition between these species in the North Sea. Therefore, we analysed stable isotopic composition of C, N and S (δ13C, δ15N and δ34S values), and the concentrations of Hg and Se in blood of harbour and grey seals from the North Sea. Blood samples were collected on 45 grey seals and 37 harbour seals sampled along German and Scottish coasts. Stable isotope ratios were performed with an isotope ratio mass spectrometer coupled to an N-C-S elemental analyser for automated analyses. Total mercury concentrations (T-Hg) were determined by atomic absorption spectroscopy and Se concentrations by ICP-MS. The multi-tracer approach shown spatial and resource partitioning within grey and harbour seal living along German and Scottish coasts. Data indicate 1) the offshore foraging distribution of grey seals as reflected by the lower δ15N values and T-Hg concentrations and higher Se concentrations and 2) the inshore foraging distribution of harbour seals because of higher δ15N values and T-Hg concentrations and lower Se concentrations. The SIAR mixing model revealed 3) a more selective diet of grey seals compared to harbour seals and 4) the importance of sandeels in grey seal diet reflected by their high δ34S values. Lastly, diet ellipse overlaps between grey seals and harbour seals sampled along the German coasts suggested 5) a potential sharing of food resources, possibly due to the increase number of grey seals number in this area during the foraging season - all year except breeding and moulting periods. The multi-tracer approach of this study provides a more robust discrimination among diet resources and spatial foraging distributions of grey seals and harbour seals in the North Sea.
Collapse
Affiliation(s)
- France Damseaux
- Freshwater and Oceanic sciences Unit of reSearch (FOCUS), Laboratory of Oceanology, University of Liège B6c, 11 Allée du 6 Août, 4000 Liège, Belgium
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, 25761 Büsum, Germany
| | - Patrick Pomeroy
- Sea Mammal Research Unit, Scottish Oceans Institute, East Sands, University of St Andrews, KY16 8LB, UK
| | - Gilles Lepoint
- Freshwater and Oceanic sciences Unit of reSearch (FOCUS), Laboratory of Oceanology, University of Liège B6c, 11 Allée du 6 Août, 4000 Liège, Belgium
| | - Krishna Das
- Freshwater and Oceanic sciences Unit of reSearch (FOCUS), Laboratory of Oceanology, University of Liège B6c, 11 Allée du 6 Août, 4000 Liège, Belgium.
| |
Collapse
|
48
|
Lischka A, Betty EL, Braid HE, Pook CJ, Gaw S, Bolstad KSR. Trace element concentrations, including Cd and Hg, in long-finned pilot whales (Globicephala melas edwardii) mass stranded on the New Zealand coast. MARINE POLLUTION BULLETIN 2021; 165:112084. [PMID: 33582419 DOI: 10.1016/j.marpolbul.2021.112084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
The Southern Hemisphere long-finned pilot whale (Globicephala melas edwardii) is a top predator in the New Zealand pelagic food web, feeding predominantly on arrow squids. This study quantified trace element concentrations (Al, As, Cd, Co, Cr, Cu, Fe, Hg, Ni, Mn, Pb, Se, V, Zn) in four tissues (blubber, kidney, liver, muscle) from 21 individuals from stranding sites in New Zealand. Maximum Cd and Hg concentrations were measured in liver and kidney, respectively. Selenium had a positive correlation with Cd and Hg, suggesting the involvement of Se in Cd and Hg detoxification. Arrow squids from the whales' stomach contents were DNA barcoded and identified as Nototodarus sloanii. Trace element concentrations were measured in squid samples from the whale stomach contents. The significant correlation for Hg between the squid tissue and the whale tissue suggests that arrow squids play a major role in trace element uptake by G. m. edwardii.
Collapse
Affiliation(s)
- A Lischka
- AUT Lab for Cephalopod Ecology & Systematics, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.
| | - E L Betty
- Cetacean Ecology Research Group, School of Natural and Computational Sciences, College of Sciences, Massey University, Private Bag 102904, Auckland 0745, New Zealand
| | - H E Braid
- AUT Lab for Cephalopod Ecology & Systematics, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| | - C J Pook
- Liggins Institute, University of Auckland, 85 Park Rd, Grafton, Auckland 1023, New Zealand
| | - S Gaw
- School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - K S R Bolstad
- AUT Lab for Cephalopod Ecology & Systematics, School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand
| |
Collapse
|
49
|
Minet A, Manceau A, Valada-Mennuni A, Brault-Favrou M, Churlaud C, Fort J, Nguyen T, Spitz J, Bustamante P, Lacoue-Labarthe T. Mercury in the tissues of five cephalopods species: First data on the nervous system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143907. [PMID: 33333333 DOI: 10.1016/j.scitotenv.2020.143907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/27/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Mercury (Hg), one of the elements most toxic to biota, accumulates within organisms throughout their lifespan and biomagnifies along trophic chain. Due to their key role in marine systems, cephalopods constitute a major vector of Hg in predators. Further, they grow rapidly and display complex behaviours, which can be altered by neurotoxic Hg. This study investigated Hg concentrations within 81 cephalopod specimens sampled in the Bay of Biscay, which belonged to five species: Eledone cirrhosa, Sepia officinalis, Loligo vulgaris, Todaropsis eblanae and Illex coindetii. Hg concentrations were measured in the digestive gland, the mantle muscle and the optic lobes of the brain. The digestive gland and the mantle were tissues with the most concentrated Hg among all species considered (up to 1.50 μg.g-1 dw), except E. cirrhosa. This benthic cephalopod had 1.3-fold higher Hg concentrations in the brain (up to 1.89 μg.g-1 dw) than in the mantle, while other species had 2-fold lower concentrations of Hg in the brain than in the mantle. Brain-Hg concentrations can be predicted from muscle-Hg concentrations for a given species, which facilitates the assessment of Hg toxicokinetics in cephalopods. In the most contaminated E. cirrhosa individual, the chemical form of Hg in its digestive gland, mantle muscle and optic lobes, was determined using High energy-Resolution X-ray Absorption Near Edge Structure (HR XANES) spectroscopy. In the digestive gland, 33 ± 11% of total Hg was inorganic Hg speciated as a dicysteinate complex (Hg(Cys)2), which suggested that the demethylation of dietary MeHg occurs in this organ. All Hg found in the mantle muscle and the optic lobes is methylated and bound to one cysteinyl group (MeHgCys complex), which implies that dietary MeHg is distributed to these tissues via the bloodstream. These results raised the questions regarding interspecific differences observed regarding Hg brain concentrations and the possible effect of Hg on cephalopod functional brain plasticity and behaviour.
Collapse
Affiliation(s)
- Antoine Minet
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Alain Manceau
- Univ. Grenoble Alpes, ISTerre, CNRS, CS 40700, 38058 Grenoble, France
| | - Anaïs Valada-Mennuni
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Maud Brault-Favrou
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Carine Churlaud
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Jérôme Fort
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Thành Nguyen
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Université des Sciences et des Technologies de Hanoï (USTH), 18 Hoàng Quốc Việt, Nghĩa Đô, Cầu Giấy, Hà Nội, Viet Nam
| | - Jérôme Spitz
- Centre d'Études Biologiques de Chizé (CEBC), UMR 7372 CNRS - La Rochelle Université, 5 Allées de l'Océan, 17000 La Rochelle, France; Observatoire PELAGIS, UMS 3462 CNRS -La Rochelle Université, 5 Allées de l'Océan, 17000 La Rochelle, France
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Thomas Lacoue-Labarthe
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France.
| |
Collapse
|
50
|
Martins MF, Costa PG, Gadig OBF, Bianchini A. Metal contamination in threatened elasmobranchs from an impacted urban coast. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143803. [PMID: 33293088 DOI: 10.1016/j.scitotenv.2020.143803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Guitarfishes and angelsharks are two of the most endangered elasmobranch groups. Despite this, limited knowledge exists regarding the effects of environmental contamination in these groups. For this reason, this study assessed the concentrations of metals in liver and muscle of three guitarfishes (Pseudobatos horkelii, P. percellens, and Zapteryx brevirostris) and one angelshark species (Squatina guggenheim) captured during the year of 2019 in one of the most impacted areas in South America: the São Paulo State coast, Brazil, Southwest Atlantic. Cadmium (Cd) Chromium (Cr) Cupper (Cu) Iron (Fe), Mercury (Hg), and Lead (Pb) were determined by atomic spectrometry, with samples being previously acid digested. Among the non-essential metals, Cd had the highest mean concentrations for all species, followed by Pb and Hg, whereas Fe had the highest mean levels among the essential metals analyzed, followed by Cu and Cr. Liver and muscle samples had different concentrations, with liver presenting the highest concentrations. Except for Cd, non-essential metals had relatively low concentrations when compared to other elasmobranch species reported in the literature, which could be explained by the efficiency in metabolizing these compounds or differential life history patterns among the species studied herein and other. Considering that all species analyzed herein are typically consumed, human health impacts must be considered, especially concerning Cd concentrations. Furthermore, Cd, Cr and Pb were above the safety limits, indicating potential hazard for human consumption. In conclusion, our results suggest that these species are exposed to metals and that concentrations above the safety limits observed for these species must be taken into consideration regarding human consumption.
Collapse
Affiliation(s)
- Mariana F Martins
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Av. Itália Km 8, 96203-900 Rio Grande, Brazil.
| | - Patrícia G Costa
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Av. Itália Km 8, 96203-900 Rio Grande, Brazil
| | - Otto B F Gadig
- Elasmobranch Research Laboratory, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Campus do Litoral Paulista, Praça Infante Dom Henrique s/n°, 11330-900 São Vicente, Brazil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Av. Itália Km 8, 96203-900 Rio Grande, Brazil
| |
Collapse
|