1
|
Kumar M, Choi YG, Wong T, Li PH, Chow BKC. Beyond the classic players: Mas-related G protein-coupled receptor member X2 role in pruritus and skin diseases. J Eur Acad Dermatol Venereol 2024. [PMID: 39044547 DOI: 10.1111/jdv.20249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024]
Abstract
Chronic spontaneous urticaria (CSU), atopic dermatitis (AD), psoriasis and rosacea are highly prevalent inflammatory skin conditions which impose a significant burden on patients' quality of life. Their pathophysiology is likely multifactorial, involving genetic, immune and environmental factors. Recent advancements in the field have demonstrated the key role of mast cells (MC) in the pathophysiology of these conditions. The Mas-related G protein-coupled receptor X2 (MRGPRX2) has emerged as a promising non-IgE-mediated MC activation receptor. MRGPRX2 is predominately expressed on MC and activated by endogenous and exogenous ligands, leading to MC degranulation and release of various pro-inflammatory mediators. Mounting evidence on the presence of endogenous MRGPRX2 agonists (substance P, cortistatin-14, LL37, PAMP-12 and VIP) and its high expression among patients with CSU, AD, rosacea, psoriasis and chronic pruritus emphasizes the pathogenic role of MRGPRX2 in these conditions. Despite the currently available treatments, there remains a pressing need for novel drug targets and treatment options for these chronic inflammatory skin conditions. Here, we reviewed the pathogenic role of MRGPRX2 and its potential as a novel therapeutic target and provided an update on future research directions.
Collapse
Affiliation(s)
- Mukesh Kumar
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ye Gi Choi
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Trevor Wong
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Philip H Li
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | - Billy K C Chow
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| |
Collapse
|
2
|
Biazus Soares G, Mahmoud O, Yosipovitch G, Mochizuki H. The mind-skin connection: A narrative review exploring the link between inflammatory skin diseases and psychological stress. J Eur Acad Dermatol Venereol 2024; 38:821-834. [PMID: 38311707 DOI: 10.1111/jdv.19813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/16/2023] [Indexed: 02/06/2024]
Abstract
Inflammatory skin diseases are known to negatively impact patient psychology, with individuals experiencing higher rates of stress and subsequent diminished quality of life, as well as mental health issues including anxiety and depression. Moreover, increased psychological stress has been found to exacerbate existing inflammatory skin diseases. The association between inflammatory skin diseases and psychological stress is a timely topic, and a framework to better understand the relationship between the two that integrates available literature is needed. In this narrative review article, we discuss potential neurobiological mechanisms behind psychological stress due to inflammatory skin diseases, focusing mainly on proinflammatory cytokines in the circulating system (the brain-gut-skin communications) and the default mode network in the brain. We also discuss potential descending pathways from the brain that lead to aggravation of inflammatory skin diseases due to psychological stress, including the central and peripheral hypothalamic-pituitary-adrenal axes, peripheral nerves and the skin barrier function.
Collapse
Affiliation(s)
- G Biazus Soares
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - O Mahmoud
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - G Yosipovitch
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - H Mochizuki
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami Itch Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
3
|
Woźniak E, Owczarczyk-Saczonek A, Lange M, Czarny J, Wygonowska E, Placek W, Nedoszytko B. The Role of Mast Cells in the Induction and Maintenance of Inflammation in Selected Skin Diseases. Int J Mol Sci 2023; 24:ijms24087021. [PMID: 37108184 PMCID: PMC10139379 DOI: 10.3390/ijms24087021] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Under physiological conditions, skin mast cells play an important role as guardians that quickly react to stimuli that disturb homeostasis. These cells efficiently support, fight infection, and heal the injured tissue. The substances secreted by mast cells allow for communication inside the body, including the immune, nervous, and blood systems. Pathologically non-cancerous mast cells participate in allergic processes but also may promote the development of autoinflammatory or neoplastic disease. In this article, we review the current literature regarding the role of mast cells in autoinflammatory, allergic, neoplastic skin disease, as well as the importance of these cells in systemic diseases with a pronounced course with skin symptoms.
Collapse
Affiliation(s)
- Ewelina Woźniak
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, The University of Warmia and Mazury, 10-229 Olsztyn, Poland
| | - Agnieszka Owczarczyk-Saczonek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, The University of Warmia and Mazury, 10-229 Olsztyn, Poland
| | - Magdalena Lange
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Justyna Czarny
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-214 Gdansk, Poland
| | - Ewa Wygonowska
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, The University of Warmia and Mazury, 10-229 Olsztyn, Poland
| | - Waldemar Placek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, The University of Warmia and Mazury, 10-229 Olsztyn, Poland
| | - Bogusław Nedoszytko
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-214 Gdansk, Poland
- Invicta Fertility and Reproductive Centre, Molecular Laboratory, 81-740 Sopot, Poland
| |
Collapse
|
4
|
Pruritus in Chronic Kidney Disease: An Update. ALLERGIES 2022. [DOI: 10.3390/allergies2030009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chronic kidney disease-associated pruritus (CKDaP) is an often under-diagnosed and under-recognized condition, despite its considerable prevalence within the chronic kidney disease (CKD) population. Universally accepted guidelines are also lacking. The true prevalence of CKDaP worldwide therefore remains unknown, although its negative impact on mortality and health-related quality of life outcomes is very clear. The pathophysiological mechanisms leading to the onset of CKDaP are only partly understood. CKDaP is currently believed to be caused by a multifactorial process, from local skin changes, metabolic alterations, the development of neuropathy and dysregulation of opioid pathways, and psychological factors. Much work has been carried out towards a more systematic and structured approach to clinical diagnosis. Various tools are now available to assess the severity of CKDaP. Many of these tools require greater validation before they can be incorporated into the guidelines and into routine clinical practice. Further efforts are also needed in order to increase the awareness of clinicians and patients so that they can identify the CKDaP signs and symptoms in a timely manner. Currently established treatment options for CKDaP focus on the prevention of xerosis via topical emollients, the optimization of dialysis management, early referral to kidney transplantation if appropriate, oral antihistamine, and a variety of neuropathic agents. Other novel treatment options include the following: topical analgesics, topical tacrolimus, cannabinoid-containing compounds, antidepressants, oral leukotrienes, opioids, and non-pharmacological alternative therapies (i.e., phototherapy, dietary supplements, acupuncture/acupressure). We provide an updated review on the evidence relating to the epidemiology, the pathophysiology, the clinical assessment and diagnosis, and the management of CKDaP.
Collapse
|
5
|
Yin C, Wang C, Wang C. Aberrantly Expressed Small Noncoding RNAome in Keloid Skin Tissue. Front Genet 2022; 13:803083. [PMID: 35495137 PMCID: PMC9045488 DOI: 10.3389/fgene.2022.803083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/17/2022] [Indexed: 11/29/2022] Open
Abstract
The skin is an organ that protects against injury and infection but can be damaged easily. Wound healing is a subtle balance which, if broken, can lead to keloid formation. Small noncoding (nc) RNAs can be of “housekeeping,” for example, ribosomal RNAs and transfer RNAs, or “regulatory,” for example, microRNAs (miRNAs or miRs), small nucleolar RNAs (snoRNAs), and P-element–induced Wimpy testis (PIWI)-interacting RNA (piRNA) types. We examined five types of small ncRNAs [miR, piRNA, snoRNA, small nuclear (sn) RNA, and repeat-associated small interfering RNA (rasiRNA)] in keloid skin tissue (KST) using sequencing and real-time reverse transcription-quantitative polymerase chain reaction. All comparisons were made in relation to expression in normal skin tissue (obtained by abdominoplasty). The expression of three piRNAs was upregulated, and the expression of six piRNAs was downregulated in KST. The expression of 12 snoRNAs was upregulated, and the expression of two snoRNAs was downregulated in KST. The expression of two snRNAs was downregulated in KST. The expression of 18 miRs was upregulated, and the expression of three miRNAs was downregulated in KST. The expression of one rasiRNA was upregulated, and the expression of one rasiRNA was downregulated in KST. We revealed the differential expression of small ncRNAs in KST, which may aid the development of new treatment for keloids.
Collapse
Affiliation(s)
- Chuang Yin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuandong Wang
- Department of Orthopedic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Chen Wang, ; Chuandong Wang,
| | - Chen Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Chen Wang, ; Chuandong Wang,
| |
Collapse
|
6
|
Anderson ZT, Dawson AD, Slominski AT, Harris ML. Current Insights Into the Role of Neuropeptide Y in Skin Physiology and Pathology. Front Endocrinol (Lausanne) 2022; 13:838434. [PMID: 35418942 PMCID: PMC8996770 DOI: 10.3389/fendo.2022.838434] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropeptide Y is widely distributed within the body and has long been implicated as a contributor to skin disease based on the correlative clinical data. However, until recently, there have been few empirical investigations to determine whether NPY has a pathophysiological role in the skin. Due to appearance-altering phenotypes of atopic dermatitis, psoriasis, and vitiligo, those suffering from these diseases often face multiple forms of negative social attention. This often results in psychological stress, which has been shown to exacerbate inflammatory skin diseases - creating a vicious cycle that perpetuates disease. This has been shown to drive severe depression, which has resulted in suicidal ideation being a comorbidity of these diseases. Herein, we review what is currently known about the associations of NPY with skin diseases and stress. We also review and provide educated guessing what the effects NPY can have in the skin. Inflammatory skin diseases can affect physical appearance to have significant, negative impacts on quality of life. No cure exists for these conditions, highlighting the need for identification of novel proteins/neuropetides, like NPY, that can be targeted therapeutically. This review sets the stage for future investigations into the role of NPY in skin biology and pathology to stimulate research on therapeutic targeting NPY signaling in order to combat inflammatory skin diseases.
Collapse
Affiliation(s)
- Zoya T. Anderson
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alex D. Dawson
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrzej T. Slominski
- Department of Dermatology, Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, United States
- Veteran Administration Medical Center, Birmingham, AL, United States
| | - Melissa L. Harris
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
7
|
Schricker S, Kimmel M. Unravelling the pathophysiology of chronic kidney disease-associated pruritus. Clin Kidney J 2022; 14:i23-i31. [PMID: 34987780 PMCID: PMC8702819 DOI: 10.1093/ckj/sfab200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Indexed: 12/12/2022] Open
Abstract
For decades, itch related to chronic kidney disease (CKDaP) has been a clinical problem, but the aetiology and pathophysiology of CKDaP are still not yet fully understood—currently the underlying pathophysiological mechanisms are thought to be multifactorial. As new therapeutic targets have recently been identified and clinical trials have shown promising results, our current understanding of the interrelationships has expanded significantly. Here we review the pathophysiology and recent findings on modulation and sensitization of itch contributing to the development of CKDaP, covering hypothesis regarding immune system dysfunction, metabolic changes, uremic toxin deposition, peripheral neuropathy and imbalances in the endogenous opioid system.
Collapse
Affiliation(s)
- Severin Schricker
- Department of General Internal Medicine and Nephrology, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Martin Kimmel
- Department of Internal Medicine, Division of Nephrology, Hypertension and Autoimmune Disorders, Alb-Fils Kliniken, Göppingen, Germany
| |
Collapse
|
8
|
Grandi V, Paroli G, Puliti E, Bacci S, Pimpinelli N. Single ALA-PDT irradiation induces increase in mast cells degranulation and neuropeptide acute response in chronic venous ulcers: A pilot study. Photodiagnosis Photodyn Ther 2021; 34:102222. [PMID: 33601002 DOI: 10.1016/j.pdpdt.2021.102222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/14/2021] [Accepted: 02/08/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND The behavior of mast cells, their interaction with neuronal cells or nerve fibers, the expression of neuropeptides and the distribution of skin neuronal cells or nerve fibers after ALA-PDT treated vs untreated chronic wounds were investigated. METHODS Nineteen patients suffering from chronic venous ulcers (CVU) were enrolled in this study. Skin samples from wound bed before and after irradiation with ALA-PDT were taken. All specimens were anonymized and analyzed by immunohistochemistry. RESULTS After completion of ALA-PDT, mast cells showed an increase of degranulation index and expression of NGF and VIP. Amongst all the neuronal mediators tested, all except for SP showed an increase of cellular expression after ALA-PDT therapy. CONCLUSION Our study shows preliminary evidences that ALA-PDT induces rapid recruitment of mast cells around dermal fibers in chronic venous ulcers. This finding is also associated with increase in expression of multiple peripheral neuropeptides except SP by skin neuronal cells. ALA-PDT may promote healing of chronic venous ulcers via stimulation of quiescent peripheral nerves, possibly after release of inflammatory molecules by degranulating mast cells.
Collapse
Affiliation(s)
- Vieri Grandi
- Department of Health Sciences, Division of Dermatology, University of Florence, Italy; St John's Institute of Dermatology, GSTT NHS Foundation Trust, London, United Kingdom
| | - Gaia Paroli
- Department of Biology, Research Unit of Histology and Embriology, University of Florence, Italy
| | - Elisa Puliti
- Department of Biology, Research Unit of Histology and Embriology, University of Florence, Italy
| | - Stefano Bacci
- Department of Biology, Research Unit of Histology and Embriology, University of Florence, Italy.
| | - Nicola Pimpinelli
- Department of Health Sciences, Division of Dermatology, University of Florence, Italy
| |
Collapse
|
9
|
Fischer TW, Bergmann A, Kruse N, Kleszczynski K, Skobowiat C, Slominski AT, Paus R. New effects of caffeine on corticotropin-releasing hormone (CRH)-induced stress along the intrafollicular classical hypothalamic-pituitary-adrenal (HPA) axis (CRH-R1/2, IP 3 -R, ACTH, MC-R2) and the neurogenic non-HPA axis (substance P, p75 NTR and TrkA) in ex vivo human male androgenetic scalp hair follicles. Br J Dermatol 2021; 184:96-110. [PMID: 32271938 PMCID: PMC7962141 DOI: 10.1111/bjd.19115] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Human hair is highly responsive to stress, and human scalp hair follicles (HFs) contain a peripheral neuroendocrine equivalent of the systemic hypothalamic-pituitary-adrenal (HPA) stress axis. Androgenetic alopecia (AGA) is supposed to be aggravated by stress. We used corticotropin-releasing hormone (CRH), which triggers the HPA axis, to induce a stress response in human ex vivo male AGA HFs. Caffeine is known to reverse testosterone-mediated hair growth inhibition in the same hair organ culture model. OBJECTIVES To investigate whether caffeine would antagonize CRH-mediated stress in these HFs. METHODS HFs from balding vertex area scalp biopsies of men affected by AGA were incubated with CRH (10-7 mol L-1 ) with or without caffeine (0·001% or 0·005%). RESULTS Compared to controls, CRH significantly enhanced the expression of catagen-inducing transforming growth factor-β2 (TGF-β2) (P < 0·001), CRH receptors 1 and 2 (CRH-R1/2) (P < 0·01), adrenocorticotropic hormone (ACTH) (P < 0·001) and melanocortin receptor 2 (MC-R2) (P < 0·001), and additional stress-associated parameters, substance P and p75 neurotrophin receptor (p75NTR ). CRH inhibited matrix keratinocyte proliferation and expression of anagen-promoting insulin-like growth factor-1 (IGF-1) and the pro-proliferative nerve growth factor receptor NGF-tyrosine kinase receptor A (TrkA). Caffeine significantly counteracted all described stress effects and additionally enhanced inositol trisphosphate receptor (IP3 -R), for the first time detected in human HFs. CONCLUSIONS These findings provide the first evidence in ex vivo human AGA HFs that the stress mediator CRH induces not only a complex intrafollicular HPA response, but also a non-HPA-related stress response. Moreover, we show that these effects can be effectively antagonized by caffeine. Thus, these data strongly support the hypothesis that stress can impair human hair physiology and induce hair loss, and that caffeine may effectively counteract stress-induced hair damage and possibly prevent stress-induced hair loss.
Collapse
Affiliation(s)
- T W Fischer
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
| | - A Bergmann
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - N Kruse
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - K Kleszczynski
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
| | - C Skobowiat
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - A T Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- VA Medical Center, Birmingham, AL, 35294, USA
| | - R Paus
- Department of Dermatology, Allergology and Venerology, University of Lübeck, Lübeck, Germany
- Centre for Dermatology Research, University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester, UK
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
10
|
Aalkjær C, Nilsson H, De Mey JGR. Sympathetic and Sensory-Motor Nerves in Peripheral Small Arteries. Physiol Rev 2020; 101:495-544. [PMID: 33270533 DOI: 10.1152/physrev.00007.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Small arteries, which play important roles in controlling blood flow, blood pressure, and capillary pressure, are under nervous influence. Their innervation is predominantly sympathetic and sensory motor in nature, and while some arteries are densely innervated, others are only sparsely so. Innervation of small arteries is a key mechanism in regulating vascular resistance. In the second half of the previous century, the physiology and pharmacology of this innervation were very actively investigated. In the past 10-20 yr, the activity in this field was more limited. With this review we highlight what has been learned during recent years with respect to development of small arteries and their innervation, some aspects of excitation-release coupling, interaction between sympathetic and sensory-motor nerves, cross talk between endothelium and vascular nerves, and some aspects of their role in vascular inflammation and hypertension. We also highlight what remains to be investigated to further increase our understanding of this fundamental aspect of vascular physiology.
Collapse
Affiliation(s)
| | - Holger Nilsson
- Department Physiology, Gothenburg University, Gothenburg, Sweden
| | - Jo G R De Mey
- Deptartment Pharmacology and Personalized Medicine, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
11
|
Kühn H, Kolkhir P, Babina M, Düll M, Frischbutter S, Fok JS, Jiao Q, Metz M, Scheffel J, Wolf K, Kremer AE, Maurer M. Mas-related G protein-coupled receptor X2 and its activators in dermatologic allergies. J Allergy Clin Immunol 2020; 147:456-469. [PMID: 33071069 DOI: 10.1016/j.jaci.2020.08.027] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/28/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
The Mas-related G protein-coupled receptor X2 (MRGPRX2) is a multiligand receptor responding to various exogenous and endogenous stimuli. Being highly expressed on skin mast cells, MRGPRX2 triggers their degranulation and release of proinflammatory mediators, and it promotes multicellular signaling cascades, such as itch induction and transmission in sensory neurons. The expression of MRGPRX2 by skin mast cells and the levels of the MRGPRX2 agonists (eg, substance P, major basic protein, eosinophil peroxidase) are upregulated in the serum and/or skin of patients with inflammatory and pruritic skin diseases, such as chronic spontaneous urticaria or atopic dermatitis. Therefore, MRGPRX2 and its agonists might be potential biomarkers for the progression of cutaneous inflammatory diseases and the response to treatment. In addition, they may represent promising targets for prevention and treatment of signs and symptoms in patients with skin diseases or drug reactions. To assess this possibility, this review explores the role and relevance of MRGPRX2 and its activators in cutaneous inflammatory disorders and chronic pruritus.
Collapse
Affiliation(s)
- Helen Kühn
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Pavel Kolkhir
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; I.M. Sechenov First Moscow State Medical University (Sechenov University), Division of Immune-mediated Skin Diseases, Moscow, Russia
| | - Magda Babina
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Miriam Düll
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Frischbutter
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jie Shen Fok
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Respiratory Medicine, Box Hill Hospital, Melbourne, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia
| | - Qingqing Jiao
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Martin Metz
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jörg Scheffel
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Katharina Wolf
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas E Kremer
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Marcus Maurer
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
12
|
The diversity of neuronal phenotypes in rodent and human autonomic ganglia. Cell Tissue Res 2020; 382:201-231. [PMID: 32930881 PMCID: PMC7584561 DOI: 10.1007/s00441-020-03279-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/10/2020] [Indexed: 12/29/2022]
Abstract
Selective sympathetic and parasympathetic pathways that act on target organs represent the terminal actors in the neurobiology of homeostasis and often become compromised during a range of neurodegenerative and traumatic disorders. Here, we delineate several neurotransmitter and neuromodulator phenotypes found in diverse parasympathetic and sympathetic ganglia in humans and rodent species. The comparative approach reveals evolutionarily conserved and non-conserved phenotypic marker constellations. A developmental analysis examining the acquisition of selected neurotransmitter properties has provided a detailed, but still incomplete, understanding of the origins of a set of noradrenergic and cholinergic sympathetic neuron populations, found in the cervical and trunk region. A corresponding analysis examining cholinergic and nitrergic parasympathetic neurons in the head, and a range of pelvic neuron populations, with noradrenergic, cholinergic, nitrergic, and mixed transmitter phenotypes, remains open. Of particular interest are the molecular mechanisms and nuclear processes that are responsible for the correlated expression of the various genes required to achieve the noradrenergic phenotype, the segregation of cholinergic locus gene expression, and the regulation of genes that are necessary to generate a nitrergic phenotype. Unraveling the neuron population-specific expression of adhesion molecules, which are involved in axonal outgrowth, pathway selection, and synaptic organization, will advance the study of target-selective autonomic pathway generation.
Collapse
|
13
|
Xavier FE. Nitrergic perivascular innervation in health and diseases: Focus on vascular tone regulation. Acta Physiol (Oxf) 2020; 230:e13484. [PMID: 32336027 DOI: 10.1111/apha.13484] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
Abstract
For a long time, the vascular tone was considered to be regulated exclusively by tonic innervation of vasoconstrictor adrenergic nerves. However, accumulating experimental evidence has revealed the existence of nerves mediating vasodilatation, including perivascular nitrergic nerves (PNN), in a wide variety of mammalian species. Functioning of nitrergic vasodilator nerves is evidenced in several territories, including cerebral, mesenteric, pulmonary, renal, penile, uterine and cutaneous arteries. Nitric oxide (NO) is the main neurogenic vasodilator in cerebral arteries and acts as a counter-regulatory mechanism for adrenergic vasoconstriction in other vascular territories. In the penis, NO relaxes the vascular and cavernous smooth muscles leading to penile erection. Furthermore, when interacting with other perivascular nerves, NO can act as a neuromodulator. PNN dysfunction is involved in the genesis and maintenance of vascular disorders associated with arterial and portal hypertension, diabetes, ageing, obesity, cirrhosis and hormonal changes. For example defective nitrergic function contributes to enhanced sympathetic neurotransmission, vasoconstriction and blood pressure in some animal models of hypertension. In diabetic animals and humans, dysfunctional nitrergic neurotransmission in the corpus cavernosum is associated with erectile dysfunction. However, in some vascular beds of hypertensive and diabetic animals, an increased PNN function has been described as a compensatory mechanism to the increased vascular resistance. The present review summarizes current understanding on the role of PNN in control of vascular tone, its alterations under different conditions and the associated mechanisms. The knowledge of these changes can serve to better understand the mechanisms involved in these disorders and help in planning new treatments.
Collapse
Affiliation(s)
- Fabiano E. Xavier
- Departamento de Fisiologia e Farmacologia Centro de Biociências Universidade Federal de Pernambuco Recife Brazil
| |
Collapse
|
14
|
Clayton RW, Langan EA, Ansell DM, de Vos IJHM, Göbel K, Schneider MR, Picardo M, Lim X, van Steensel MAM, Paus R. Neuroendocrinology and neurobiology of sebaceous glands. Biol Rev Camb Philos Soc 2020; 95:592-624. [PMID: 31970855 DOI: 10.1111/brv.12579] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
The nervous system communicates with peripheral tissues through nerve fibres and the systemic release of hypothalamic and pituitary neurohormones. Communication between the nervous system and the largest human organ, skin, has traditionally received little attention. In particular, the neuro-regulation of sebaceous glands (SGs), a major skin appendage, is rarely considered. Yet, it is clear that the SG is under stringent pituitary control, and forms a fascinating, clinically relevant peripheral target organ in which to study the neuroendocrine and neural regulation of epithelia. Sebum, the major secretory product of the SG, is composed of a complex mixture of lipids resulting from the holocrine secretion of specialised epithelial cells (sebocytes). It is indicative of a role of the neuroendocrine system in SG function that excess circulating levels of growth hormone, thyroxine or prolactin result in increased sebum production (seborrhoea). Conversely, growth hormone deficiency, hypothyroidism, and adrenal insufficiency result in reduced sebum production and dry skin. Furthermore, the androgen sensitivity of SGs appears to be under neuroendocrine control, as hypophysectomy (removal of the pituitary) renders SGs largely insensitive to stimulation by testosterone, which is crucial for maintaining SG homeostasis. However, several neurohormones, such as adrenocorticotropic hormone and α-melanocyte-stimulating hormone, can stimulate sebum production independently of either the testes or the adrenal glands, further underscoring the importance of neuroendocrine control in SG biology. Moreover, sebocytes synthesise several neurohormones and express their receptors, suggestive of the presence of neuro-autocrine mechanisms of sebocyte modulation. Aside from the neuroendocrine system, it is conceivable that secretion of neuropeptides and neurotransmitters from cutaneous nerve endings may also act on sebocytes or their progenitors, given that the skin is richly innervated. However, to date, the neural controls of SG development and function remain poorly investigated and incompletely understood. Botulinum toxin-mediated or facial paresis-associated reduction of human sebum secretion suggests that cutaneous nerve-derived substances modulate lipid and inflammatory cytokine synthesis by sebocytes, possibly implicating the nervous system in acne pathogenesis. Additionally, evidence suggests that cutaneous denervation in mice alters the expression of key regulators of SG homeostasis. In this review, we examine the current evidence regarding neuroendocrine and neurobiological regulation of human SG function in physiology and pathology. We further call attention to this line of research as an instructive model for probing and therapeutically manipulating the mechanistic links between the nervous system and mammalian skin.
Collapse
Affiliation(s)
- Richard W Clayton
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore
| | - Ewan A Langan
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Department of Dermatology, Allergology und Venereology, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| | - David M Ansell
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Division of Cell Matrix Biology and Regenerative Medicine, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, U.K
| | - Ivo J H M de Vos
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore
| | - Klaus Göbel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore.,Department of Dermatology, Cologne Excellence Cluster on Stress Responses in Aging Associated Diseases (CECAD), and Centre for Molecular Medicine Cologne, The University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany
| | - Marlon R Schneider
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, Berlin, 10589, Germany
| | - Mauro Picardo
- Cutaneous Physiopathology and Integrated Centre of Metabolomics Research, San Gallicano Dermatological Institute IRCCS, Via Elio Chianesi 53, Rome, 00144, Italy
| | - Xinhong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Maurice A M van Steensel
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, 11 Mandalay Road, #17-01 Clinical Sciences Building, 308232, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Ralf Paus
- Centre for Dermatology, School of Biological Sciences, University of Manchester, and NIHR Manchester Biomedical Research Centre, Stopford Building, Oxford Road, Manchester, M13 9PT, U.K.,Dr. Phllip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB 2023A, Miami, FL, 33136, U.S.A.,Monasterium Laboratory, Mendelstraße 17, Münster, 48149, Germany
| |
Collapse
|
15
|
Evdokimov D, Dinkel P, Frank J, Sommer C, Üçeyler N. Characterization of dermal skin innervation in fibromyalgia syndrome. PLoS One 2020; 15:e0227674. [PMID: 31929578 PMCID: PMC6957156 DOI: 10.1371/journal.pone.0227674] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 12/24/2019] [Indexed: 11/30/2022] Open
Abstract
Introduction We characterized dermal innervation in patients with fibromyalgia syndrome (FMS) as potential contribution to small fiber pathology. Methods Skin biopsies of the calf were collected (86 FMS patients, 35 healthy controls). Skin was immunoreacted with antibodies against protein gene product 9.5, calcitonine gene-related peptide, substance P, CD31, and neurofilament 200 for small fiber subtypes. We assessed two skin sections per patient; on each skin section, two dermal areas (150 x 700 μm each) were investigated for dermal nerve fiber length (DNFL). Results In FMS patients we found reduced DNFL of fibers with vessel contact compared to healthy controls (p<0.05). There were no differences for the other nerve fiber subtypes. Discussion We found less dermal nerve fibers in contact with blood vessels in FMS patients than in controls. The pathophysiological relevance of this finding is unclear, but we suggest the possibility of a relationship with impaired thermal tolerance commonly reported by FMS patients.
Collapse
Affiliation(s)
| | - Philine Dinkel
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Johanna Frank
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University of Würzburg, Würzburg, Germany
| | - Nurcan Üçeyler
- Department of Neurology, University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
16
|
Low DA, Jones H, Cable NT, Alexander LM, Kenney WL. Historical reviews of the assessment of human cardiovascular function: interrogation and understanding of the control of skin blood flow. Eur J Appl Physiol 2019; 120:1-16. [PMID: 31776694 PMCID: PMC6969866 DOI: 10.1007/s00421-019-04246-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/19/2019] [Indexed: 02/06/2023]
Abstract
Several techniques exist for the determination of skin blood flow that have historically been used in the investigation of thermoregulatory control of skin blood flow, and more recently, in clinical assessments or as an index of global vascular function. Skin blood flow measurement techniques differ in their methodology and their strengths and limitations. To examine the historical development of techniques for assessing skin blood flow by describing the origin, basic principles, and important aspects of each procedure and to provide recommendations for best practise. Venous occlusion plethysmography was one of the earliest techniques to intermittently index a limb’s skin blood flow under conditions in which local muscle blood flow does not change. The introduction of laser Doppler flowmetry provided a method that continuously records an index of skin blood flow (red cell flux) (albeit from a relatively small skin area) that requires normalisation due to high site-to-site variability. The subsequent development of laser Doppler and laser speckle imaging techniques allows the mapping of skin blood flow from larger surface areas and the visualisation of capillary filling from the dermal plexus in two dimensions. The use of iontophoresis or intradermal microdialysis in conjunction with laser Doppler methods allows for the local delivery of pharmacological agents to interrogate the local and neural control of skin blood flow. The recent development of optical coherence tomography promises further advances in assessment of the skin circulation via three-dimensional imaging of the skin microvasculature for quantification of vessel diameter and vessel recruitment.
Collapse
Affiliation(s)
- David A Low
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK.
| | - Helen Jones
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - N Tim Cable
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Liverpool, UK
| | - Lacy M Alexander
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - W Larry Kenney
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
17
|
Donadio V, Incensi A, Vacchiano V, Infante R, Magnani M, Liguori R. The autonomic innervation of hairy skin in humans: an in vivo confocal study. Sci Rep 2019; 9:16982. [PMID: 31740757 PMCID: PMC6861237 DOI: 10.1038/s41598-019-53684-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
The autonomic innervation of the skin includes different subsets of adrenergic and cholinergic fibers both in humans and animals. The corresponding chemical code is complex and often difficult to ascertain. Accordingly, a detailed histochemical description of skin autonomic fiber subtypes is lacking in humans. To characterize skin autonomic nerve subtypes may help to better understand the selective damage of specific skin autonomic fibers affecting human diseases such as the adrenergic fibers directed to skin vessels in Parkinson’s disease or the cholinergic sudomotor fibers in Ross Syndrome. The present study aimed at characterizing subtypes of autonomic fibers in relation to their target organs by means of an immunofluorescent technique and confocal microscopy. We studied 8 healthy subjects (5 males and 3 females) aged 45 ± 2 (mean ± SE) years without predisposing causes for peripheral neuropathy or autonomic disorders. They underwent skin biopsy from proximal (thigh) and distal (leg) hairy skin. A combination of adrenergic (i.e. tyrosine-hydroxylase- TH and dopamine beta-hydroxylase- DbH) and cholinergic (vesicular acetylcholine transporter- VACHT) autonomic markers and neuropeptidergic (i.e. neuropeptide Y- NPY, calcitonin gene-related peptide- CGRP, substance P- SP, and vasoactive intestinal peptide- VIP) markers were used to characterize skin autonomic fibers. The analysed skin autonomic structures included: 58 sweat glands, 91 skin arterioles and 47 arrector pili muscles. Our results showed that all skin structures presented a sympathetic adrenergic but also cholinergic innervation although in different proportions. Sympathetic adrenergic fibers were particularly abundant around arterioles and arrector pili muscles whereas sympathetic cholinergic fibers were mainly found around sweat glands. Neuropeptides were differently expressed in sympathetic fibers: NPY were found in sympathetic adrenergic fibers around skin arterioles and very seldom sweat glands but not in adrenergic fibers of arrector pili muscles. By contrast CGRP, SP and VIP were expressed in sympathetic cholinergic fibers. Cholinergic fibers expressing CGRP, SP or VIP without TH or DbH staining were found in arterioles and arrector pili muscles and they likely represent parasympathetic fibers. In addition, all skin structures contained a small subset of neuropeptidergic fibers devoid of adrenergic and cholinergic markers with a likely sensory function. No major differences were found between males and females and proximal and distal sites. In summary hairy skin contains sympathetic adrenergic and cholinergic fibers differently distributed around skin structures with a specific distribution of neuropeptides. The autonomic skin innervation also contains a small amount of fibers, likely to be parasympathetic and sensory.
Collapse
Affiliation(s)
- Vincenzo Donadio
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.
| | - Alex Incensi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Veria Vacchiano
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Rossella Infante
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Martina Magnani
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| |
Collapse
|
18
|
Regeneration of Dermis: Scarring and Cells Involved. Cells 2019; 8:cells8060607. [PMID: 31216669 PMCID: PMC6627856 DOI: 10.3390/cells8060607] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/12/2019] [Accepted: 06/15/2019] [Indexed: 12/31/2022] Open
Abstract
There are many studies on certain skin cell specifications and their contribution to wound healing. In this review, we provide an overview of dermal cell heterogeneity and their participation in skin repair, scar formation, and in the composition of skin substitutes. The papillary, reticular, and hair follicle associated fibroblasts differ not only topographically, but also functionally. Human skin has a number of particular characteristics that are different from murine skin. This should be taken into account in experimental procedures. Dermal cells react differently to skin wounding, remodel the extracellular matrix in their own manner, and convert to myofibroblasts to different extents. Recent studies indicate a special role of papillary fibroblasts in the favorable outcome of wound healing and epithelial-mesenchyme interactions. Neofolliculogenesis can substantially reduce scarring. The role of hair follicle mesenchyme cells in skin repair and possible therapeutic applications is discussed. Participation of dermal cell types in wound healing is described, with the addition of possible mechanisms underlying different outcomes in embryonic and adult tissues in the context of cell population characteristics and extracellular matrix composition and properties. Dermal white adipose tissue involvement in wound healing is also overviewed. Characteristics of myofibroblasts and their activity in scar formation is extensively discussed. Cellular mechanisms of scarring and possible ways for its prevention are highlighted. Data on keloid cells are provided with emphasis on their specific characteristics. We also discuss the contribution of tissue tension to the scar formation as well as the criteria and effectiveness of skin substitutes in skin reconstruction. Special attention is given to the properties of skin substitutes in terms of cell composition and the ability to prevent scarring.
Collapse
|
19
|
Mehta D, Granstein RD. Immunoregulatory Effects of Neuropeptides on Endothelial Cells: Relevance to Dermatological Disorders. Dermatology 2019; 235:175-186. [PMID: 30808842 DOI: 10.1159/000496538] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/31/2018] [Indexed: 11/19/2022] Open
Abstract
Many skin diseases, including psoriasis and atopic dermatitis, have a neurogenic component. In this regard, bidirectional interactions between components of the nervous system and multiple target cells in the skin and elsewhere have been receiving increasing attention. Neuropeptides released by sensory nerves that innervate the skin can directly modulate functions of keratinocytes, Langerhans cells, dermal dendritic cells, mast cells, dermal microvascular endothelial cells and infiltrating immune cells. As a result, neuropeptides and neuropeptide receptors participate in a complex, interdependent network of mediators that modulate the skin immune system, skin inflammation, and wound healing. In this review, we will focus on recent studies demonstrating the roles of α-melanocyte-stimulating hormone, calcitonin gene-related peptide, substance P, somatostatin, vasoactive intestinal peptide, pituitary adenylate cyclase-activating peptide, and nerve growth factor in modulating inflammation and immunity in the skin through their effects on dermal microvascular endothelial cells.
Collapse
Affiliation(s)
- Devina Mehta
- Department of Dermatology, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
20
|
Chartier SR, Mitchell SAT, Majuta LA, Mantyh PW. The Changing Sensory and Sympathetic Innervation of the Young, Adult and Aging Mouse Femur. Neuroscience 2018; 387:178-190. [PMID: 29432884 PMCID: PMC6086773 DOI: 10.1016/j.neuroscience.2018.01.047] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/09/2018] [Accepted: 01/23/2018] [Indexed: 12/17/2022]
Abstract
Although bone is continually being remodeled and ultimately declines with aging, little is known whether similar changes occur in the sensory and sympathetic nerve fibers that innervate bone. Here, immunohistochemistry and confocal microscopy were used to examine changes in the sensory and sympathetic nerve fibers that innervate the young (10 days post-partum), adult (3 months) and aging (24 months) C57Bl/6 mouse femur. In all three ages examined, the periosteum was the most densely innervated bone compartment. With aging, the total number of sensory and sympathetic nerve fibers clearly declines as the cambium layer of the periosteum dramatically thins. Yet even in the aging femur, there remains a dense sensory and sympathetic innervation of the periosteum. In cortical bone, sensory and sympathetic nerve fibers are largely confined to vascularized Haversian canals and while there is no significant decline in the density of sensory fibers, there was a 75% reduction in sympathetic nerve fibers in the aging vs. adult cortical bone. In contrast, in the bone marrow the overall density/unit area of both sensory and sympathetic nerve fibers appeared to remain largely unchanged across the lifespan. The preferential preservation of sensory nerve fibers suggests that even as bone itself undergoes a marked decline with age, the nociceptors that detect injury and signal skeletal pain remain relatively intact.
Collapse
Affiliation(s)
- Stephane R Chartier
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, United States
| | | | - Lisa A Majuta
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, United States
| | - Patrick W Mantyh
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, United States; Cancer Center, University of Arizona, Tucson, AZ 85724, United States.
| |
Collapse
|
21
|
Kozłowska A, Mikołajczyk A, Majewski M. Neurochemical difference between somato- and viscero-projecting sensory neurons in the pig. J Chem Neuroanat 2018; 94:8-20. [PMID: 30098395 DOI: 10.1016/j.jchemneu.2018.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 01/05/2023]
Abstract
The chemical coding of porcine somato (skin)- and viscero (urinary bladder)-projecting sensory neurons have been studied and compared using immunohistochemistry. Cell bodies of skin and bladder afferents were identified following Fast Blue injections into the skin of the hind leg as well as into wall of the urinary bladder, respectively. Immunohistochemistry revealed that small and medium-sized neurons projecting to both skin and bladder contained all of the studied substances i.e. substance P (SP), calcitonin gene-related pepide (CGRP), transient receptor potential vanilloid (TRPV1), lectin from Bandeiraea simplicifolia - Griffonia simplicifolia isolectin B4 (IB4) and galanin (GAL). Moreover, small-sized sensory neurons projecting to the bladder and skin of hind leg showed predominantly immunoreactivity to SP and TRPV1 and CGRP, as well as to CGRP and TRPV1 and IB4. It is worth stressing that the subset of sensory neurons innervating the skin exhibited these substances more often than bladder-projecting neurons. In addition, medium-sized skin-projecting neurons contained SP/GAL; SP/CGRP and CGRP/IB4 much more often than their bladder counterparts. On the other hand, small-sized perikarya that innervate the skin were less frequently expressed TRPV1, CGRP and GAL than the bladder-projecting neurons. In conclusion, the present report describes, for the first time, significant differences in the chemical coding between somato- and viscero-projecting sensory neurons in dorsal root ganglia. Moreover, these results provide morphological basis for further functional studies, which may explain the exact roles played by various subpopulations of somato- and viscero-projecting sensory neurons.
Collapse
Affiliation(s)
- Anna Kozłowska
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury Olsztyn, Poland.
| | - Anita Mikołajczyk
- Department of Public Health, Epidemiology and Microbiology, Faculty of Health Sciences, Collegium Medicum, University of Warmia and Mazury Olsztyn, Poland.
| | - Mariusz Majewski
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury Olsztyn, Poland.
| |
Collapse
|
22
|
Kozłowska A, Mikołajczyk A, Majewski M. Detailed Characterization of Sympathetic Chain Ganglia (SChG) Neurons Supplying the Skin of the Porcine Hindlimb. Int J Mol Sci 2017; 18:ijms18071463. [PMID: 28686209 PMCID: PMC5535954 DOI: 10.3390/ijms18071463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/30/2017] [Accepted: 07/01/2017] [Indexed: 11/16/2022] Open
Abstract
It is generally known that in the skin sympathetic fibers innervate various dermal structures, including sweat glands, blood vessels, arrectores pilorum muscles and hair follicles. However, there is a lack of data about the distribution and chemical phenotyping of the sympathetic chain ganglia (SChG) neurons projecting to the skin of the pig, a model that is physiologically and anatomically very representative for humans. Thus, the present study was designed to establish the origin of the sympathetic fibers supplying the porcine skin of the hind leg, and the pattern(s) of putative co-incidence of dopamine-β-hydroxylase (DβH) with pituitary adenylate cyclase-activating polypeptide (PACAP), somatostatin (SOM), neuronal nitric oxide synthase, substance P, vasoactive intestinal peptide, neuropeptide Y (NPY), leu5-enkephalin and galanin (GAL) using combined retrograde tracing and double-labeling immunohistochemistry. The Fast Blue-positive neurons were found in the L₂-S₂ ganglia. Most of them were small-sized and contained DβH with PACAP, SOM, NPY or GAL. The findings of the present study provide a detailed description of the distribution and chemical coding of the SChG neurons projecting to the skin of the porcine hind leg. Such data may be the basis for further studies concerning the plasticity of these ganglia under experimental or pathological conditions.
Collapse
Affiliation(s)
- Anna Kozłowska
- Department of Human Physiology, Faculty of Medical Sciences, University of Warmia and Mazury Olsztyn, Olsztyn 10-082, Poland.
| | - Anita Mikołajczyk
- Department of Public Health, Epidemiology and Microbiology, Faculty of Medical Sciences, University of Warmia and Mazury Olsztyn, Olsztyn 10-082, Poland.
| | - Mariusz Majewski
- Department of Human Physiology, Faculty of Medical Sciences, University of Warmia and Mazury Olsztyn, Olsztyn 10-082, Poland.
| |
Collapse
|
23
|
Bertolini M, Pretzlaff M, Sulk M, Bähr M, Gherardini J, Uchida Y, Reibelt M, Kinori M, Rossi A, Bíró T, Paus R. Vasoactive intestinal peptide, whose receptor-mediated signalling may be defective in alopecia areata, provides protection from hair follicle immune privilege collapse. Br J Dermatol 2016; 175:531-41. [PMID: 27059672 DOI: 10.1111/bjd.14645] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Alopecia areata (AA) is an autoimmune disorder whose pathogenesis involves the collapse of the relative immune privilege (IP) of the hair follicle (HF). Given that vasoactive intestinal peptide (VIP) is an immunoinhibitory neuropeptide released by perifollicular sensory nerve fibres, which play a role in IP maintenance, it may modulate human HF-IP and thus be therapeutically relevant for AA. OBJECTIVES To answer the following questions: Do human HFs express VIP receptors, and does their stimulation protect from or restore experimentally induced HF-IP collapse? Is VIP signalling defective in AA HFs? METHODS Firstly, VIP and VIP receptor (VPAC1, VPAC2) expression in human scalp HFs and AA skin was assessed. In HF organ culture, we then explored whether VIP treatment can restore and/or protect from interferon-γ-induced HF-IP collapse, assessing the expression of the key IP markers by quantitative (immuno-)histomorphometry. RESULTS Here we provide the first evidence that VIP receptors are expressed in the epithelium of healthy human HFs at the gene and protein level. Furthermore, VIP receptor protein expression, but not VIP(+) nerve fibres, is significantly downregulated in lesional hair bulbs of patients with AA, suggesting defects in VIP receptor-mediated signalling. Moreover, we show that VIP protects the HF from experimentally induced IP collapse in vitro, but does not fully restore it once collapsed. CONCLUSIONS These pilot data suggest that insufficient VIP receptor-mediated signalling may contribute to impairing HF-IP in patients with AA, and that VIP is a promising candidate 'HF-IP guardian' that may be therapeutically exploited to inhibit the progression of AA lesions.
Collapse
Affiliation(s)
- M Bertolini
- Department of Dermatology, University of Münster, Münster, Germany.
| | - M Pretzlaff
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - M Sulk
- Department of Dermatology, University of Münster, Münster, Germany
| | - M Bähr
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - J Gherardini
- Department of Dermatology, University of Münster, Münster, Germany
| | - Y Uchida
- Department of Dermatology, University of Münster, Münster, Germany.,Department of Dermatology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - M Reibelt
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - M Kinori
- Department of Ophthalmology, Sheba Medical Center, Tel Hashomer, Israel
| | - A Rossi
- Department of Internal Medicine and Medical Specialties, University 'La Sapienza', Rome, Italy
| | - T Bíró
- DE-MTA 'Lendület' Cellular Physiology Research Group, Departments of Immunology and Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - R Paus
- Department of Dermatology, University of Münster, Münster, Germany.,Centre for Dermatology Research, Institute of Inflammation and Repair, University of Manchester, Manchester, U.K
| |
Collapse
|
24
|
Hosaka F, Yamamoto M, Cho KH, Jang HS, Murakami G, Abe SI. Human nasociliary nerve with special reference to its unique parasympathetic cutaneous innervation. Anat Cell Biol 2016; 49:132-7. [PMID: 27382515 PMCID: PMC4927428 DOI: 10.5115/acb.2016.49.2.132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/26/2016] [Accepted: 06/02/2016] [Indexed: 02/08/2023] Open
Abstract
The frontal nerve is characterized by its great content of sympathetic nerve fibers in contrast to cutaneous branches of the maxillary and mandibular nerves. However, we needed to add information about composite fibers of cutaneous branches of the nasociliary nerve. Using cadaveric specimens from 20 donated cadavers (mean age, 85), we performed immunohistochemistry of tyrosine hydroxylase (TH), neuronal nitric oxide synthase (nNOS), and vasoactive intestinal polypeptide (VIP). The nasocilliary nerve contained abundant nNOS-positive fibers in contrast to few TH- and VIP-positive fibers. The short ciliary nerves also contained nNOS-positive fibers, but TH-positive fibers were more numerous than nNOS-positive ones. Parasympathetic innervation to the sweat gland is well known, but the original nerve course seemed not to be demonstrated yet. The present study may be the first report on a skin nerve containing abundant nNOS-positive fibers. The unique parasympathetic contents in the nasocilliary nerve seemed to supply the forehead sweat glands as well as glands in the eyelid and nasal epithelium.
Collapse
Affiliation(s)
- Fumio Hosaka
- Division of Ophthalmology, Iwamizawa Municipal Hospital, Iwamizawa, Japan
| | | | - Kwang Ho Cho
- Department of Neurology, Wonkwang University School of Medicine and Hospital, Institute of Wonkwang Medical Science, Iksan, Korea
| | - Hyung Suk Jang
- Division of Physical Therapy, Ongoul Rehabilitation Hospital, Jeonju, Korea
| | - Gen Murakami
- Division of Internal Medicine, Iwamizawa Kojin-kai Hospital, Iwamizawa, Japan
| | - Shin-Ichi Abe
- Department of Anatomy, Tokyo Dental College, Chiba, Japan
| |
Collapse
|
25
|
Matsubayashi T, Cho KH, Jang HS, Murakami G, Yamamoto M, Abe SI. Significant Differences in Sympathetic Nerve Fiber Density Among the Facial Skin Nerves: A Histologic Study Using Human Cadaveric Specimens. Anat Rec (Hoboken) 2016; 299:1054-9. [PMID: 27072367 DOI: 10.1002/ar.23347] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/03/2016] [Accepted: 02/22/2016] [Indexed: 12/24/2022]
Abstract
Sympathetic nerve fibers in the skin nerves are connected with vasomotor, thermoregulatory, sensory input modulatory, and immunologic events; however, to our knowledge, no histological information is available for skin nerves in the human face. Using specimens from 17 donated cadavers (mean age, 86 years), we measured a sectional area of tyrosine hydroxylase (TH)-positive fibers in (1) the frontal nerve (V1), (2) the infraorbital nerve (V2), (3) the mental nerve (V3), (4) the greater auricular nerve (C2), (5) the auriculotemporal nerve (ATN), and (6) the zygomatic branch of the facial nerve (VII). The V1, V2, and V3 were obtained at their entrances to the subcutaneous tissue from the bony canal or notch. The V1, C2, ATN, and/or VII usually contained abundant TH-positive fibers (almost 3%-8% of the nerve sectional area), whereas the V2 and V3 consistently carried few TH-positive fibers (<1%). The difference between these two groups was quite significant (P < 0.001). Thus, from the superior cervical ganglion, the sympathetic nerve fibers reached the forehead through the frontal nerve trunk, whereas artery-bounded fibers came to the cheek, nose, and mouth. The sympathetic palsy caused by trigeminal nerve involvement is mainly characterized by the symptoms seen in the distribution of the ophthalmic division of the trigeminal nerve, such as in Horner's syndrome. It suggests that the forehead and the other facial areas are representative parts of those different sympathetic innervations that could be useful for evaluating the sympathetic function of the face in various diseases. Anat Rec, 299:1054-1059, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Kwang Ho Cho
- Department of Neurology, Wonkwang University School of Medicine and Hospital, Institute of Wonkwang Medical Science, Iksan, Korea
| | - Hyung Suk Jang
- Division of Physical Therapy, Ongoul Rehabilitation Hospital, Jeonju, Korea
| | - Gen Murakami
- Department of Anatomy, Tokyo Dental College, Chiba City, Japan.,Division of Internal Medicine, Iwamizawa Kojin-Kai Hospital, Iwamizawa, Japan
| | | | - Shin-Ichi Abe
- Department of Anatomy, Tokyo Dental College, Chiba City, Japan
| |
Collapse
|
26
|
Yang DJ, Lee KS, Ko CM, Moh SH, Song J, Hur LC, Cheon YW, Yang SH, Choi YH, Kim KW. Leucine-enkephalin promotes wound repair through the regulation of hemidesmosome dynamics and matrix metalloprotease. Peptides 2016; 76:57-64. [PMID: 26763532 DOI: 10.1016/j.peptides.2015.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/03/2015] [Accepted: 12/29/2015] [Indexed: 11/17/2022]
Abstract
The skin responds to environmental stressors by coordinated actions of neuropeptides and their receptors. An endogenous peptide for δ-opioid receptor (DOPr), Leu-enkephalin (L-ENK), is expressed in the skin and its expression is altered in pathological conditions. Although the importance of DOPr is rapidly gaining recognition, the molecular mechanisms underlying its effects on wound healing are largely undefined. We show here that L-ENK induced activation of Erk, P90(RSK), and Elk-1 and promoted the disruption of hemidesmosomes and the expression of matrix metalloprotease (MMP)-2 and MMP-9, important processes for wound healing. Treatment with Erk inhibitor blocked activation of P90(RSK) and Elk-1 and significantly blunted wound repair. Therefore, our results suggest that activation of Erk and its downstream effectors, P90(RSK) and Elk-1, are critical for DOPr-mediated skin homeostasis.
Collapse
Affiliation(s)
- Dong Joo Yang
- Department of Pharmacology, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea; Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea
| | - Kyung Suk Lee
- Department of Plastic and Reconstructive Surgery, Gyeongsang National University Hospital, Gyeongsang National University School of Medicine, Jinju 52828, Republic of Korea
| | - Chang Mann Ko
- Department of Pharmacology, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea
| | - Sang Hyun Moh
- Anti-aging Research Institute of BIO-FD&C Co. Ltd., Incheon 21990, Republic of Korea
| | - Jihyeok Song
- Anti-aging Research Institute of BIO-FD&C Co. Ltd., Incheon 21990, Republic of Korea
| | - Lucia C Hur
- Derma-Lucia Skinceuticals LLC, 7500 Escala Drive, Austin, TX 78735, USA
| | - Young Woo Cheon
- Department of Plastic and Reconstructive Surgery, Gachon University Gil Medical Center, Gachon University, School of Medicine, 1198 Guwol-Dong, Namdong-Gu, Incheon 21565, Republic of Korea
| | - Seung Ho Yang
- Department of Pharmacology, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea
| | - Yun-Hee Choi
- Anti-aging Research Institute of BIO-FD&C Co. Ltd., Incheon 21990, Republic of Korea.
| | - Ki Woo Kim
- Department of Pharmacology, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea; Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea.
| |
Collapse
|
27
|
Chartier SR, Thompson ML, Longo G, Fealk MN, Majuta LA, Mantyh PW. Exuberant sprouting of sensory and sympathetic nerve fibers in nonhealed bone fractures and the generation and maintenance of chronic skeletal pain. Pain 2014; 155:2323-36. [PMID: 25196264 PMCID: PMC4254205 DOI: 10.1016/j.pain.2014.08.026] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/17/2014] [Accepted: 08/12/2014] [Indexed: 01/14/2023]
Abstract
Skeletal injury is a leading cause of chronic pain and long-term disability worldwide. While most acute skeletal pain can be effectively managed with nonsteroidal anti-inflammatory drugs and opiates, chronic skeletal pain is more difficult to control using these same therapy regimens. One possibility as to why chronic skeletal pain is more difficult to manage over time is that there may be nerve sprouting in nonhealed areas of the skeleton that normally receive little (mineralized bone) to no (articular cartilage) innervation. If such ectopic sprouting did occur, it could result in normally nonnoxious loading of the skeleton being perceived as noxious and/or the generation of a neuropathic pain state. To explore this possibility, a mouse model of skeletal pain was generated by inducing a closed fracture of the femur. Examined animals had comminuted fractures and did not fully heal even at 90+days post fracture. In all mice with nonhealed fractures, exuberant sensory and sympathetic nerve sprouting, an increase in the density of nerve fibers, and the formation of neuroma-like structures near the fracture site were observed. Additionally, all of these animals exhibited significant pain behaviors upon palpation of the nonhealed fracture site. In contrast, sprouting of sensory and sympathetic nerve fibers or significant palpation-induced pain behaviors was never observed in naïve animals. Understanding what drives this ectopic nerve sprouting and the role it plays in skeletal pain may allow a better understanding and treatment of this currently difficult-to-control pain state.
Collapse
Affiliation(s)
| | | | - Geraldine Longo
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Michelle N Fealk
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Lisa A Majuta
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Patrick W Mantyh
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA; Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
28
|
Mantyh PW. The neurobiology of skeletal pain. Eur J Neurosci 2014; 39:508-19. [PMID: 24494689 PMCID: PMC4453827 DOI: 10.1111/ejn.12462] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/19/2013] [Accepted: 11/25/2013] [Indexed: 12/13/2022]
Abstract
Disorders of the skeleton are one of the most common causes of chronic pain and long-term physical disability in the world. Chronic skeletal pain is caused by a remarkably diverse group of conditions including trauma-induced fracture, osteoarthritis, osteoporosis, low back pain, orthopedic procedures, celiac disease, sickle cell disease and bone cancer. While these disorders are diverse, what they share in common is that when chronic skeletal pain occurs in these disorders, there are currently few therapies that can fully control the pain without significant unwanted side effects. In this review we focus on recent advances in our knowledge concerning the unique population of primary afferent sensory nerve fibers that innervate the skeleton, the nociceptive and neuropathic mechanisms that are involved in driving skeletal pain, and the neurochemical and structural changes that can occur in sensory and sympathetic nerve fibers and the CNS in chronic skeletal pain. We also discuss therapies targeting nerve growth factor or sclerostin for treating skeletal pain. These therapies have provided unique insight into the factors that drive skeletal pain and the structural decline that occurs in the aging skeleton. We conclude by discussing how these advances have changed our understanding and potentially the therapeutic options for treating and/or preventing chronic pain in the injured, diseased and aged skeleton.
Collapse
Affiliation(s)
- Patrick W Mantyh
- Department of Pharmacology and Arizona Cancer Center, University of Arizona, Tucson, AZ, 85716, USA
| |
Collapse
|
29
|
Nerve-derived transmitters including peptides influence cutaneous immunology. Brain Behav Immun 2013; 34:1-10. [PMID: 23517710 PMCID: PMC3750093 DOI: 10.1016/j.bbi.2013.03.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/27/2013] [Accepted: 03/10/2013] [Indexed: 01/01/2023] Open
Abstract
Clinical observations suggest that the nervous and immune systems are closely related. For example, inflammatory skin disorders; such as psoriasis, atopic dermatitis, rosacea and acne; are widely believed to be exacerbated by stress. A growing body of research now suggests that neuropeptides and neurotransmitters serve as a link between these two systems. Neuropeptides and neurotransmitters are released by nerves innervating the skin to influence important actors of the immune system, such as Langerhans cells and mast cells, which are located within close anatomic proximity. Catecholamines and other sympathetic transmitters that are released in response to activation of the sympathetic nervous system are also able to reach the skin and affect immune cells. Neuropeptides appear to direct the outcome of Langerhans cell antigen presentation with regard to the subtypes of Th cells generated and neuropeptides induce the degranulation of mast cells, among other effects. Additionally, endothelial cells, which release many inflammatory mediators and express cell surface molecules that allow leukocytes to exit the bloodstream, appear to be regulated by certain neuropeptides and transmitters. This review focuses on the evidence that products of nerves have important regulatory activities on antigen presentation, mast cell function and endothelial cell biology. These activities are highly likely to have clinical and therapeutic relevance.
Collapse
|
30
|
A CRPS-IgG-transfer-trauma model reproducing inflammatory and positive sensory signs associated with complex regional pain syndrome. Pain 2013; 155:299-308. [PMID: 24145209 DOI: 10.1016/j.pain.2013.10.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 11/21/2022]
Abstract
The aetiology of complex regional pain syndrome (CRPS), a highly painful, usually post-traumatic condition affecting the limbs, is unknown, but recent results have suggested an autoimmune contribution. To confirm a role for pathogenic autoantibodies, we established a passive-transfer trauma model. Prior to undergoing incision of hind limb plantar skin and muscle, mice were injected either with serum IgG obtained from chronic CRPS patients or matched healthy volunteers, or with saline. Unilateral hind limb plantar skin and muscle incision was performed to induce typical, mild tissue injury. Mechanical hyperalgesia, paw swelling, heat and cold sensitivity, weight-bearing ability, locomotor activity, motor coordination, paw temperature, and body weight were investigated for 8days. After sacrifice, proinflammatory sensory neuropeptides and cytokines were measured in paw tissues. CRPS patient IgG treatment significantly increased hind limb mechanical hyperalgesia and oedema in the incised paw compared with IgG from healthy subjects or saline. Plantar incision induced a remarkable elevation of substance P immunoreactivity on day 8, which was significantly increased by CRPS-IgG. In this IgG-transfer-trauma model for CRPS, serum IgG from chronic CRPS patients induced clinical and laboratory features resembling the human disease. These results support the hypothesis that autoantibodies may contribute to the pathophysiology of CRPS, and that autoantibody-removing therapies may be effective treatments for long-standing CRPS.
Collapse
|
31
|
Chéret J, Lebonvallet N, Carré JL, Misery L, Le Gall-Ianotto C. Role of neuropeptides, neurotrophins, and neurohormones in skin wound healing. Wound Repair Regen 2013; 21:772-88. [PMID: 24134750 DOI: 10.1111/wrr.12101] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 07/01/2013] [Indexed: 12/01/2022]
Abstract
Due to the close interactions between the skin and peripheral nervous system, there is increasing evidence that the cutaneous innervation is an important modulator of the normal wound healing process. The communication between sensory neurons and skin cells involves a variety of molecules (neuropeptides, neurohormones, and neurotrophins) and their specific receptors expressed by both neuronal and nonneuronal skin cells. It is well established that neurotransmitters and nerve growth factors released in skin have immunoregulatory roles and can exert mitogenic actions; they could also influence the functions of the different skin cell types during the wound healing process.
Collapse
Affiliation(s)
- Jérémy Chéret
- Laboratory of Neurosciences of Brest (EA4685), University of Western Brittany, Brest, France
| | | | | | | | | |
Collapse
|
32
|
Roggenkamp D, Köpnick S, Stäb F, Wenck H, Schmelz M, Neufang G. Epidermal nerve fibers modulate keratinocyte growth via neuropeptide signaling in an innervated skin model. J Invest Dermatol 2013; 133:1620-8. [PMID: 23283070 DOI: 10.1038/jid.2012.464] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Atopic eczema is a chronic inflammatory skin disease characterized by cutaneous nerve fiber sprouting and epidermal hyperplasia, pointing to an involvement of the peripheral nervous system in cutaneous homeostasis. However, the interaction of sensory neurons and skin cells is poorly understood. Using an innervated skin model, we investigated the influence of sensory neurons on epidermal morphogenesis. Neurons induced the proliferation of keratinocytes, resulting in an increase in the epidermal thickness. Inhibition of calcitonin gene-related peptide (CGRP), but not substance P (SP) signaling, reversed this effect. Human CGRP enhanced keratinocyte proliferation and epidermal thickness in skin models, demonstrating a key role of CGRP in modulating epidermal morphogenesis, whereas SP had only a moderate effect. Innervated skin models composed of atopic skin cells showed increased neurite outgrowth, accompanied by elevated CGRP release. As atopic keratinocytes were sensitized to CGRP owing to higher expression levels of the CGRP receptor components, receptor activity-modifying protein 1 (RAMP1) and receptor component protein (RCP), atopic innervated skin models displayed a thicker epidermis than did healthy controls. We conclude that neural CGRP controls local keratinocyte growth. Our results show that the crosstalk of the cutaneous peripheral nervous system and skin cells significantly influences epidermal morphogenesis and homeostasis in healthy and atopic skin.
Collapse
|
33
|
Fealey RD. Interoception and autonomic nervous system reflexes thermoregulation. HANDBOOK OF CLINICAL NEUROLOGY 2013; 117:79-88. [DOI: 10.1016/b978-0-444-53491-0.00007-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Jia M, Belyavskaya E, Deuster P, Sternberg EM. Development of a Sensitive Microarray Immunoassay for the Quantitative Analysis of Neuropeptide Y. Anal Chem 2012; 84:6508-14. [DOI: 10.1021/ac3014548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Min Jia
- Section on Neuroendocrine Immunology & Behavior, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Elena Belyavskaya
- Section on Neuroendocrine Immunology & Behavior, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Patricia Deuster
- Department
of Military and Emergency Medicine, Uniformed Services University of the Health Sciences, Bethesda,
Maryland 20814, United States
| | - Esther M. Sternberg
- Section on Neuroendocrine Immunology & Behavior, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
35
|
Ding W, Manni M, Stohl LL, Zhou XK, Wagner JA, Granstein RD. Pituitary adenylate cyclase-activating peptide and vasoactive intestinal polypeptide bias Langerhans cell Ag presentation toward Th17 cells. Eur J Immunol 2012; 42:901-11. [PMID: 22531916 DOI: 10.1002/eji.201141958] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Epidermal Langerhans cells (LCs) are dendritic APCs that play an important role in cutaneous immune responses. LCs are associated with epidermal nerves and the neuropeptides vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) inhibit LC Ag presentation for Th1-type immune responses. Here, we examined whether PACAP or VIP modulates LC Ag presentation for induction of IL-17A-producing CD4(+) T cells. Treatment with VIP or PACAP prior to in vitro LC Ag presentation to CD4(+) T cells enhanced IL-17A, IL-6, and IL-4 production, decreased interferon (IFN)-γ and interleukin (IL)-22 release, and increased RORγt and Gata3 mRNA expression while decreasing T-bet expression. The CD4(+) T-cell population was increased in IL-17A- and IL-4-expressing cells and decreased in IFN-γ-expressing cells. Addition of anti-IL-6 mAb blocked the enhanced IL-17A production seen with LC preexposure to VIP or PACAP. Intradermal administration of VIP or PACAP prior to application of a contact sensitizer at the injection site, followed by harvesting of draining lymph node CD4(+) T cells and stimulation with anti-CD3/anti-CD28 mAbs, enhanced IL-17A and IL-4 production but reduced production of IL-22 and IFN-γ. PACAP and VIP are endogenous mediators that likely regulate immunity and immune-mediated diseases within the skin.
Collapse
Affiliation(s)
- Wanhong Ding
- Department of Dermatology, Weill Cornell Medical College, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
36
|
Acupuncture as treatment of hot flashes and the possible role of calcitonin gene-related Peptide. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2012:579321. [PMID: 22110545 PMCID: PMC3205728 DOI: 10.1155/2012/579321] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 08/29/2011] [Indexed: 11/18/2022]
Abstract
The mechanisms behind hot flashes in menopausal women are not fully understood. The flashes in women are probably preceded by and actually initiated by a sudden downward shift in the set point for the core body temperature in the thermoregulatory center that is affected by sex steroids, β-endorphins, and other central neurotransmitters. Treatments that influence these factors may be expected to reduce hot flashes. Since therapy with sex steroids for hot flashes has appeared to cause a number of side effects and risks and women with hot flashes and breast cancer as well as men with prostate cancer and hot flashes are prevented from sex steroid therapy there is a great need for alternative therapies. Acupuncture affecting the opioid system has been suggested as an alternative treatment option for hot flashes in menopausal women and castrated men. The heat loss during hot flashes may be mediated by the potent vasodilator and sweat gland activator calcitonin gene-related peptide (CGRP) the concentration of which increases in plasma during flashes in menopausal women and, according to one study, in castrated men with flushes. There is also evidence for connections between the opioid system and the release of CGRP. In this paper we discuss acupuncture as a treatment alternative for hot flashes and the role of CGRP in this context.
Collapse
|
37
|
Amatya B, El-Nour H, Holst M, Theodorsson E, Nordlind K. Expression of tachykinins and their receptors in plaque psoriasis with pruritus. Br J Dermatol 2011; 164:1023-9. [PMID: 21299544 DOI: 10.1111/j.1365-2133.2011.10241.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
UNLABELLED BACKGROUND Various mediators of pruritus have been suggested that might be responsible for the mechanism of pruritus in psoriasis. OBJECTIVES To study the expression levels of members of the tachykinin family, substance P and neurokinin (NK) A and their receptors, NK-1 and NK-2, in psoriasis and to correlate their expression with the intensity of pruritus. A possible correlation with chronic stress and depression was also evaluated. METHODS Biopsies were obtained from 28 patients with chronic plaque psoriasis; the majority had pruritus. The samples were taken from lesional and nonlesional areas on the back and also from 10 healthy controls, for immunohistochemistry staining, and from lesional skin for radioimmunoassay. Prior to biopsy, the clinical severity of the psoriasis of each patient was assessed by the Psoriasis Area and Severity Index (PASI) and the intensity of pruritus was measured by using a visual analogue scale (VAS). Levels of depression and stress were measured using Beck's Depression Inventory (BDI) and the salivary cortisol test, respectively. RESULTS Substance P-, NKA- and NK-2 receptor-immunoreactive nerves, and non-neuronal inflammatory cells positive for substance P and NKA and their respective receptors, NK-1 and NK-2, were numerous in psoriasis compared with healthy controls. The numbers of substance P-positive nerves and NK-2 receptor-positive cells in lesional skin were significantly correlated to pruritus intensity. The cortisol ratio was inversely correlated with the number of NK-1 receptor-immunoreactive inflammatory cells in lesional and nonlesional psoriasis skin. There was also a positive correlation between the BDI score and the number of substance P-positive cells in nonlesional skin and with NK-1 receptor-positive cells in lesional and nonlesional skin. CONCLUSIONS Tachykinins may play a role in psoriasis per se, in addition to pruritus in this disease. Targeting the combined NK-1 and NK-2 receptors might be a possible treatment.
Collapse
Affiliation(s)
- B Amatya
- Department of Medicine, Dermatology and Venereology Unit, Karolinska University Hospital, Solna, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
38
|
Abstract
BACKGROUND The human face is a highly specialized organ for receiving the sensory information from the environment and for its transmission to the cortex. The advent of facial transplantation has shown that excellent reconstruction of disfiguring defects can be achieved; thus, the expectations are now focused on functional recovery of the transplant. So far, restoration of facial sensation has not received the same attention as the recovery of motor function. METHODS A thorough review of the literature was performed to investigate the current knowledge on the sensory pathways of the human face and their functions to evaluate current methods of sensory assessment and the available data on normal sensation. RESULTS The presence of Meissner and Ruffini corpuscles, Merkel disks, hair-associated fibers, and intraepidermal free nerve endings was confirmed. Occurrence of extensive cross-communications between trigeminal and facial nerve was substantiated. Two-point discrimination and pressure thresholds represented the most objective measures of facial sensation. Age, sex, and smoker status of the patients were shown to influence normal sensibility values. The most suitable areas for sensory testing based on the tested modality and innervation were inferred. The anatomical course of the nerves and their variations had implications for the harvest of face allografts and repair of the sensory nerves. CONCLUSIONS This review has illustrated the complexity of sensory pathways of the face and their influence on somatic and visceral responses. In view of the discussed data, during facial transplantation, it is important to consider different mechanisms of restoration of facial sensation.
Collapse
|
39
|
Castañeda-Corral G, Jimenez-Andrade JM, Bloom AP, Taylor RN, Mantyh WG, Kaczmarska MJ, Ghilardi JR, Mantyh PW. The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A. Neuroscience 2011; 178:196-207. [PMID: 21277945 DOI: 10.1016/j.neuroscience.2011.01.039] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 01/16/2011] [Accepted: 01/20/2011] [Indexed: 12/13/2022]
Abstract
Although skeletal pain is a leading cause of chronic pain and disability, relatively little is known about the specific populations of nerve fibers that innervate the skeleton. Recent studies have reported that therapies blocking nerve growth factor (NGF) or its cognate receptor, tropomyosin receptor kinase A (TrkA) are efficacious in attenuating skeletal pain. A potential factor to consider when assessing the analgesic efficacy of targeting NGF-TrkA signaling in a pain state is the fraction of NGF-responsive TrkA+ nociceptors that innervate the tissue from which the pain is arising, as this innervation and the analgesic efficacy of targeting NGF-TrkA signaling may vary considerably from tissue to tissue. To explore this in the skeleton, tissue slices and whole mount preparations of the normal, adult mouse femur were analyzed using immunohistochemistry and confocal microscopy. Analysis of these preparations revealed that 80% of the unmyelinated/thinly myelinated sensory nerve fibers that express calcitonin gene-related peptide (CGRP) and innervate the periosteum, mineralized bone and bone marrow also express TrkA. Similarly, the majority of myelinated sensory nerve fibers that express neurofilament 200 kDa (NF200) which innervate the periosteum, mineralized bone and bone marrow also co-express TrkA. In the normal femur, the relative density of CGRP+, NF200+ and TrkA+ sensory nerve fibers per unit volume is: periosteum>bone marrow>mineralized bone>cartilage with the respective relative densities being 100:2:0.1:0. The observation that the majority of sensory nerve fibers innervating the skeleton express TrkA+, may in part explain why therapies that block NGF/TrkA pathway are highly efficacious in attenuating skeletal pain.
Collapse
Affiliation(s)
- G Castañeda-Corral
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
European Federation of Neurological Societies/Peripheral Nerve Society Guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Ner. J Peripher Nerv Syst 2010; 15:79-92. [DOI: 10.1111/j.1529-8027.2010.00269.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Cutaneous nociception and neurogenic inflammation evoked by PACAP38 and VIP. J Headache Pain 2010; 11:309-16. [PMID: 20454993 PMCID: PMC3476346 DOI: 10.1007/s10194-010-0214-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 04/06/2010] [Indexed: 12/21/2022] Open
Abstract
Pituitary adenylate cyclase-activating peptide-38 (PACAP38) and vasoactive intestinal peptide (VIP) belong to the same secretin–glucagon superfamily and are present in nerve fibers in dura and skin. Using a model of acute cutaneous pain we explored differences in pain perception and vasomotor responses between PACAP38 and VIP in 16 healthy volunteers in a double-blind, placebo-controlled, crossover study. All participants received intradermal injections of 200 pmol PACAP38, 200 pmol VIP and placebo into the volar forearm. Measurements included pain intensity on a visual analog scale (VAS), blood flow by laser Doppler flowmetry, visual flare and wheal. Pain intensities after PACAP38 and VIP were mild and limited to a short time of about 100 s after injection. The area under the VAS-time curve was larger following PACAP38 (P = 0.004) and VIP (P = 0.01) compared to placebo. We found no statistical difference in pain perception between PACAP38 and VIP. Skin blood flow increase, flare and wheal were larger after both PACAP38 (P = 0.011) and VIP (P = 0.001) compared to placebo. VIP induced a considerably larger increase in skin blood flow, flare and wheal than PACAP38 (P = 0.002). In conclusion, we found that peripheral nociceptive cutaneous responses elicited by PACAP38 and VIP are similar in healthy volunteers. This suggests that acute pain and vasomotor responses following intradermal injections of PACAP38 and VIP are primarily mediated by VPAC receptors.
Collapse
|
42
|
Bigliardi PL, Tobin DJ, Gaveriaux-Ruff C, Bigliardi-Qi M. Opioids and the skin - where do we stand? Exp Dermatol 2009; 18:424-30. [DOI: 10.1111/j.1600-0625.2009.00844.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
43
|
Lauria G, Lombardi R, Camozzi F, Devigili G. Skin biopsy for the diagnosis of peripheral neuropathy. Histopathology 2008; 54:273-85. [PMID: 18637969 DOI: 10.1111/j.1365-2559.2008.03096.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skin biopsy has become an accepted tool for investigating small nerve fibres, which are invisible to conventional neurophysiological tests even though they are affected early on in peripheral neuropathies of varying aetiology. Morphometric analysis of epidermal and dermal nerves has proved to be reliable, reproducible and unaffected by the severity of neuropathy, making skin biopsy useful for diagnosing small fibre neuropathy (SFN) in clinical practice. The possibility of obtaining skin biopsy specimens from different sites of the body, to repeat them within the area of the same sensory nerve, to distinguish between somatic and autonomic nerves and to investigate the expression of nerve-related proteins has widened the potential applications of this technique to clinical research. Skin biopsy performed using a minimally invasive disposable punch is a safe and painless procedure. Using specific antibodies with bright-field immunohistochemistry or immunofluorescence technique, it is possible to investigate unmyelinated fibres innervating the epidermis of hairy and glabrous skin, large myelinated fibres supplying specialized corpuscles in glabrous skin, and autonomic fibres innervating sweat glands, blood vessels and arrector pilorum muscles. This review discusses the features of skin innervation in hairy and glabrous skin, the functional properties of skin nerve fibres and their changes in peripheral neuropathies.
Collapse
Affiliation(s)
- G Lauria
- Neuromuscular Diseases Unit, National Neurological Institute Carlo Besta, Milan, Italy.
| | | | | | | |
Collapse
|
44
|
Hendrix S, Picker B, Liezmann C, Peters EMJ. Skin and hair follicle innervation in experimental models: a guide for the exact and reproducible evaluation of neuronal plasticity. Exp Dermatol 2008; 17:214-27. [PMID: 18261087 DOI: 10.1111/j.1600-0625.2007.00653.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The remodelling of skin innervation is an instructive example of neuronal plasticity in the peripheral nervous system. Cutaneous innervation displays dramatic plasticity during morphogenesis, adult remodelling, skin diseases and after skin nerve lesions. To recognize even subtle changes or abnormalities of cutaneous innervation under different experimental conditions, it is critically important to use a quantitative approach. Here, we introduce a simple, fast and reproducible quantitative method based on immunofluorescence histochemistry for the exact quantification of peripheral nerve fibres. Computer-generated schematic representations of cutaneous innervation in defined skin compartments are presented with the aim of standardizing reports on gene and protein expression patterns. This guide should become a useful tool when screening new mouse mutants, disease models affecting innervation or mice treated with pharmaceuticals for discrete morphologic abnormalities of skin innervation in a highly reproducible and quantifiable manner. Moreover, this method can be easily transferred to other densely innervated peripheral organs.
Collapse
Affiliation(s)
- Sven Hendrix
- Institute for Cell Biology and Neurobiology, Center for Anatomy, Charité-Universitätsmedizin, Berlin, Germany
| | | | | | | |
Collapse
|
45
|
Ding W, Wagner JA, Granstein RD. CGRP, PACAP, and VIP Modulate Langerhans Cell Function by Inhibiting NF-κB Activation. J Invest Dermatol 2007; 127:2357-67. [PMID: 17495962 DOI: 10.1038/sj.jid.5700858] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The neuropeptides calcitonin gene-related peptide (CGRP), pituitary adenylate cyclase-activating polypeptide (PACAP), and vasoactive intestinal peptide (VIP) suppress Langerhans cell (LC) antigen presentation and modulate cytokine production. We have tested the hypothesis that these neuropeptides (NP) inhibit LC function by modulating activation of NF-kappaB. Lipopolysaccharide (LPS) activates NF-kappaB in both a LC-like cell line (XS52) and epidermal LC enriched to approximately 95% and this effect is inhibited by each of the NP. Furthermore, CGRP, PACAP, and VIP suppress phosphorylation of IkappaB kinase beta (P-IKKbeta), prevent degradation of the IkappaB alpha, and inhibit activation of NF-kappaB. Thus, these NP modulate LC function by reducing NF-kappaB activation. Bay 11-7085, an inhibitor of IKK, reduced tumor necrosis factor-alpha (TNFalpha) production from LPS-stimulated XS52 cells and inhibited the ability of LC to present antigen to a T-cell clone in vitro. Each NP also inhibited LPS-induced secretion of TNFalpha by XS52 cells and LC enriched to approximately 95% homogeneity. We suggest that the inhibitory activities of CGRP, PACAP, and VIP on LC function are mediated, at least in part, by inhibition of P-IKKbeta, which prevents IkappaB alpha degradation and activation of NF-kappaB. Modulation of this signaling pathway may be useful for therapeutic modulation of immunity in the skin.
Collapse
Affiliation(s)
- Wanhong Ding
- Department of Dermatology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
46
|
Holowatz LA, Thompson-Torgerson CS, Kenney WL. Altered mechanisms of vasodilation in aged human skin. Exerc Sport Sci Rev 2007; 35:119-25. [PMID: 17620930 DOI: 10.1097/jes.0b013e3180a02f85] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Human skin blood flow increases in response to increased body core and local skin temperature via distinct reflex and local mechanisms requiring functional nitric oxide (NO) for full expression. The mechanisms mediating cutaneous vasodilation are impaired with primary aging, resulting in attenuated vasodilation. This article highlights recent findings of how age-related vascular impairments in NO signaling contribute to attenuated cutaneous vasodilation.
Collapse
Affiliation(s)
- Lacy A Holowatz
- Department of Kinesiology, The Pennsylvania State University, Noll Laboratory, University Park, PA 16802, USA.
| | | | | |
Collapse
|
47
|
Roosterman D, Goerge T, Schneider SW, Bunnett NW, Steinhoff M. Neuronal Control of Skin Function: The Skin as a Neuroimmunoendocrine Organ. Physiol Rev 2006; 86:1309-79. [PMID: 17015491 DOI: 10.1152/physrev.00026.2005] [Citation(s) in RCA: 416] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This review focuses on the role of the peripheral nervous system in cutaneous biology and disease. During the last few years, a modern concept of an interactive network between cutaneous nerves, the neuroendocrine axis, and the immune system has been established. We learned that neurocutaneous interactions influence a variety of physiological and pathophysiological functions, including cell growth, immunity, inflammation, pruritus, and wound healing. This interaction is mediated by primary afferent as well as autonomic nerves, which release neuromediators and activate specific receptors on many target cells in the skin. A dense network of sensory nerves releases neuropeptides, thereby modulating inflammation, cell growth, and the immune responses in the skin. Neurotrophic factors, in addition to regulating nerve growth, participate in many properties of skin function. The skin expresses a variety of neurohormone receptors coupled to heterotrimeric G proteins that are tightly involved in skin homeostasis and inflammation. This neurohormone-receptor interaction is modulated by endopeptidases, which are able to terminate neuropeptide-induced inflammatory or immune responses. Neuronal proteinase-activated receptors or transient receptor potential ion channels are recently described receptors that may have been important in regulating neurogenic inflammation, pain, and pruritus. Together, a close multidirectional interaction between neuromediators, high-affinity receptors, and regulatory proteases is critically involved to maintain tissue integrity and regulate inflammatory responses in the skin. A deeper understanding of cutaneous neuroimmunoendocrinology may help to develop new strategies for the treatment of several skin diseases.
Collapse
|
48
|
Schlereth T, Dittmar JO, Seewald B, Birklein F. Peripheral amplification of sweating--a role for calcitonin gene-related peptide. J Physiol 2006; 576:823-32. [PMID: 16931551 PMCID: PMC1890409 DOI: 10.1113/jphysiol.2006.116111] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Neuropeptides are the mediators of neurogenic inflammation. Some pain disorders, e.g. complex regional pain syndromes, are characterized by increased neurogenic inflammation and by exaggerated sudomotor function. The aim of this study was to explore whether neuropeptides have a peripheral effect on human sweating. We investigated the effects of different concentrations of calcitonin gene-related peptide (CGRP), vasoactive intestinal peptide (VIP) and substance P (SP) on acetylcholine-induced axon reflex sweating in healthy subjects (total n = 18). All substances were applied via dermal microdialysis. The experiments were done in a parallel setting: ACh alone and ACh combined with CGRP, VIP or SP in various concentrations were applied. Acetylcholine (10(-2) m) always elicited a sweating response, neuropeptides alone did not. However, CGRP significantly enhanced ACh-induced sweating (P < 0.01). Post hoc tests revealed that CGRP in physiological concentrations of 10(-7)-10(-9) m was most effective. VIP at any concentration had no significant effect on axon reflex sweating. The duration of the sweating response (P < 0.01), but not the amount of sweat, was reduced by SP. ACh-induced skin blood flow was significantly increased by CGRP (P < 0.01), but unaltered by VIP and SP. The results indicate that CGRP amplifies axon reflex sweating in human skin.
Collapse
Affiliation(s)
- Tanja Schlereth
- Department of Neurology, Johannes Gutenberg-University Langenbeckstr. 1, D-55101 Mainz, Germany.
| | | | | | | |
Collapse
|
49
|
Dallos A, Kiss M, Polyánka H, Dobozy A, Kemény L, Husz S. Effects of the neuropeptides substance P, calcitonin gene-related peptide, vasoactive intestinal polypeptide and galanin on the production of nerve growth factor and inflammatory cytokines in cultured human keratinocytes. Neuropeptides 2006; 40:251-63. [PMID: 16904178 DOI: 10.1016/j.npep.2006.06.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 05/23/2006] [Accepted: 06/13/2006] [Indexed: 11/26/2022]
Abstract
Neuropeptides released from the cutaneous sensory nerve endings have neurotransmitter and immunoregulatory roles; they exert mitogenic actions and can influence the functions of different cell types in the skin. The aims of this study were a systematic investigation of the effects of the neuropeptides substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP) and galanin (GAL) on the inflammatory cytokine production (IL-1alpha, IL-8 and TNF-alpha) of the keratinocytes, and a study of their role in the production and secretion of nerve growth factor (NGF) and its precursor molecule (proNGF). Cultures of normal human keratinocytes were treated with 10(-8)M SP, CGRP, VIP or GAL for 30 min. After different time intervals, cells were harvested for total RNA isolation; in addition, cell lysates and supernatants were collected. The effects of the neuropeptides on the mRNA expressions of the different cytokines and NGF were investigated by Q-RT-PCR and the protein levels were studied by means of ELISA assays and Western blotting. Each of the four neuropeptides induced increases in the expressions of IL-1alpha, IL-8 and TNF-alpha mRNA. Increases appeared in the amount of the IL-1alpha protein in the supernatants of neuropeptide-treated cells, and the IL-8 secretion was mildly elevated, while secretion of TNF-alpha remained undetectable. The four neuropeptides increased the NGF mRNA expression to different extents. In the cell lysates of the keratinocytes, only proNGF could be detected, its concentration in the neuropeptide-treated cells being approximately twice that in the time-matched controls. Both control cultures and neuropeptide-treated cultures were found to secrete proNGF and mature NGF, but neuropeptide-treated cell cultures produced markedly higher (3-7-fold) amounts of NGF-like immunoreactive materials. The results demonstrated that neuropeptides released from cutaneous nerves after an injurious stimulus are able to induce an upregulation of IL-1alpha and IL-8 production; they are additionally able to influence the expressions of proNGF/NGF and their secretion from the keratinocytes. These findings may contribute toward an understanding of the neural influence on skin health and disease.
Collapse
Affiliation(s)
- Attila Dallos
- Department of Dermatology and Allergology, University of Szeged, Korányi fasor 6, H-6720 Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
50
|
Peters EMJ, Arck PC, Paus R. Hair growth inhibition by psychoemotional stress: a mouse model for neural mechanisms in hair growth control. Exp Dermatol 2006; 15:1-13. [PMID: 16364026 DOI: 10.1111/j.0906-6705.2005.00372.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Stress has long been discussed controversially as a cause of hair loss. However, solid proof of stress-induced hair growth inhibition had long been missing. If psychoemotional stress can affect hair growth, this must be mediated via definable neurorendocrine and/or neuroimmunological signaling pathways. Revisiting and up-dating relevant background data on neural mechanisms of hair growth control, we sketch essentials of hair follicle (HF) neurobiology and discuss the modulation of murine hair growth by neuropeptides, neurotransmitters, neurotrophins, and mast cells. Exploiting an established mouse model for stress, we summarize recent evidence that sonic stress triggers a cascade of molecular events including plasticity of the peptidergic peri- and interfollicular innervation and neuroimmune crosstalk. Substance P (SP) and NGF (nerve growth factor) are recruited as key mediators of stress-induced hair growth-inhibitory effects. These effects include perifollicular neurogenic inflammation, HF keratinocyte apoptosis, inhibition of proliferation within the HF epithelium, and premature HF regression (catagen induction). Intriguingly, most of these effects can be abrogated by treatment of stressed mice with SP-receptor neurokinin-1 receptor (NK-1) antagonists or NGF-neutralizing antibodies - as well as, surprisingly, by topical minoxidil. Thus there is now solid in vivo-evidence for the existence of a defined brain- HF axis. This axis can be utilized by psychoemotional and other stressors to prematurely terminate hair growth. Stress-induced hair growth inhibition can therefore serve as a highly instructive model for exploring the brain-skin connection and provides a unique experimental model for dissecting general principles of skin neuroendocrinology and neuroimmunology well beyond the HF.
Collapse
Affiliation(s)
- Eva M J Peters
- Biomedical Research Center, Psychoneuroimmunology Research Group, Internal Medicine, Psychosomatics, University Medicine Berlin, Charité Virchow Campus, Germany.
| | | | | |
Collapse
|