1
|
Huss NP, Majeed ST, Wills BM, Tarakanova VL, Brockman KL, Jondle CN. Nontypeable Haemophilus influenzae challenge during gammaherpesvirus infection enhances viral reactivation and latency. Virology 2024; 597:110153. [PMID: 38941745 PMCID: PMC11257779 DOI: 10.1016/j.virol.2024.110153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Gammaherpesviruses are ubiquitous, lifelong pathogens associated with multiple cancers that infect over 95% of the adult population. Increases in viral reactivation, due to stress and other unknown factors impacting the immune response, frequently precedes lymphomagenesis. One potential stressor that could promote viral reactivation and increase viral latency would be the myriad of infections from bacterial and viral pathogens that we experience throughout our lives. Using murine gammaherpesvirus 68 (MHV68), a mouse model of gammaherpesvirus infection, we examined the impact of bacterial challenge on gammaherpesvirus infection. We challenged MHV68 infected mice during the establishment of latency with nontypeable Haemophilus influenzae (NTHi) to determine the impact of bacterial infection on viral reactivation and latency. Mice infected with MHV68 and then challenged with NTHi, saw increases in viral reactivation and viral latency. These data support the hypothesis that bacterial challenge can promote gammaherpesvirus reactivation and latency establishment, with possible consequences for viral lymphomagenesis.
Collapse
Affiliation(s)
- Nicholas P Huss
- Department of Investigative Medicine and Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
| | - Sheikh Tahir Majeed
- Department of Investigative Medicine and Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA
| | - Brandon M Wills
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Vera L Tarakanova
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Kenneth L Brockman
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Christopher N Jondle
- Department of Investigative Medicine and Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, 49007, USA.
| |
Collapse
|
2
|
Stevenson FK, Forconi F. The essential microenvironmental role of oligomannoses specifically inserted into the antigen-binding sites of lymphoma cells. Blood 2024; 143:1091-1100. [PMID: 37992212 DOI: 10.1182/blood.2023022703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/24/2023] Open
Abstract
ABSTRACT There are 2 mandatory features added sequentially en route to classical follicular lymphoma (FL): first, the t(14;18) translocation, which upregulates BCL2, and second, the introduction of sequence motifs into the antigen-binding sites of the B-cell receptor (BCR), to which oligomannose-type glycan is added. Further processing of the glycan is blocked by complementarity-determining region-specific steric hindrance, leading to exposure of mannosylated immunoglobulin (Ig) to the microenvironment. This allows for interaction with the local lectin, dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN), expressed by tissue macrophages and follicular dendritic cells. The major function of DC-SIGN is to engage pathogens, but this is subverted by FL cells. DC-SIGN induces tumor-specific low-level BCR signaling in FL cells and promotes membrane changes with increased adhesion to VCAM-1 via proximal kinases and actin regulators but, in contrast to engagement by anti-Ig, avoids endocytosis and apoptosis. These interactions appear mandatory for the early development of FL, before the acquisition of other accelerating mutations. BCR-associated mannosylation can be found in a subset of germinal center B-cell-like diffuse large B-cell lymphoma with t(14;18), tracking these cases back to FL. This category was associated with more aggressive behavior: both FL and transformed cases and, potentially, a significant number of cases of Burkitt lymphoma, which also has sites for N-glycan addition, could benefit from antibody-mediated blockade of the interaction with DC-SIGN.
Collapse
Affiliation(s)
- Freda K Stevenson
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Francesco Forconi
- School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
3
|
Samayoa-Reyes G, Weigel C, Koech E, Waomba K, Jackson C, Onditi IA, Sabourin KR, Kenney S, Baiocchi RA, Oakes CC, Ogolla S, Rochford R. Effect of Malaria Infection on Epstein-Barr Virus Persistence in Kenyan Children. J Infect Dis 2024; 229:73-82. [PMID: 37433031 PMCID: PMC10786253 DOI: 10.1093/infdis/jiad264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND The 2 cofactors in the etiology of Burkitt lymphoma (BL) are Epstein-Barr virus (EBV) and repeated Plasmodium falciparum malaria infections. This study evaluated EBV loads in mucosal and systemic compartments of children with malaria and controls. Age was analyzed as a covariate because immunity to malaria in endemic regions is age dependent. METHODS Children (2-10 years) with clinical malaria from Western Kenya and community controls without malaria were enrolled. Saliva and blood samples were collected, EBV viral load was assessed by quantitative polymerase chain reaction, and EpiTYPER MassARRAY was used to assess methylation of 3 different EBV genes. RESULTS Regardless of the compartment, we detected EBV more frequently in malaria cases compared to controls, although the difference was not significant. When EBV was detected, there were no differences in viral load between cases and controls. However, EBV methylation was significantly lower in the malaria group compared to controls in both plasma and saliva (P < .05), indicating increased EBV lytic replication. In younger children before development of immunity to malaria, there was a significant effect of malaria on EBV load in peripheral blood mononuclear cells (P = .04). CONCLUSIONS These data suggest that malaria can directly modulate EBV persistence in children, increasing their risk for BL.
Collapse
Affiliation(s)
- Gabriela Samayoa-Reyes
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Christoph Weigel
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio, USA
| | - Emmily Koech
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Kevin Waomba
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Conner Jackson
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ian A Onditi
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Katherine R Sabourin
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Shannon Kenney
- Department of Oncology, McArdle Laboratory, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Robert A Baiocchi
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio, USA
| | - Christopher C Oakes
- Department of Internal Medicine, Division of Hematology, The Ohio State University, Columbus, Ohio, USA
| | - Sidney Ogolla
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
4
|
Shukla A, Kumari S, Sankar M, Nair MS. Insights into the mechanism of binding of doxorubicin and a chlorin compound with 22-mer c-Myc G quadruplex. Biochim Biophys Acta Gen Subj 2023; 1867:130482. [PMID: 37821013 DOI: 10.1016/j.bbagen.2023.130482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND The interaction of small molecules with G quadruplexes is in focus due to its role in molecular recognition and therapeutic drug design. Stabilization of G-quadruplex structures in the promoter regions of oncogenes by small molecule binding has been demonstrated as a potential approach for cancer therapy. METHODS In this study, electronic spectroscopy (ultraviolet-visible, fluorescence, circular dichroism), differential scanning calorimetry, and molecular modeling were employed to explore the interactions between the chemotherapy drug doxorubicin and a chlorin compound 5,10,15,20-tetraphenyl-[2,3]-[bis(carboxy)-methano]chlorin (H2TPC(DAC)), and the c-Myc 22-mer G quadruplex DNA. RESULTS Spectroscopic studies indicated external binding of the compounds with partial stacking at the end quartets. Calorimetric studies and temperature dependent circular dichroism data displayed increased melting temperatures of G quadruplex structure on binding with the compounds. Circular dichroism spectra indicated that the G quadruplex structure is intact upon ligand binding. Both the compounds showed binding affinities of the order of 106 M-1. Fluorescence lifetime studies revealed static quenching as major mechanism for fluorescence quenching. Polymerase chain reaction stop assay hinted that binding of both ligands under study could inhibit the amplification of the DNA sequence. CONCLUSION Results show that doxorubicin and H2TPC(DAC) bind to the 22-mer c-Myc quadruplex structure with good affinity and induce stability. SIGNIFICANCE Doxorubicin and H2TPC(DAC) have demonstrated their affinity towards c-Myc G quadruplex DNA, stabilizing it and inhibiting expression and polymerization. The results can be of practical use in designing new analogs for the two compounds, which can become potent anti-cancer agents targeting the c-Myc GQ structure.
Collapse
Affiliation(s)
- Aishwarya Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Soni Kumari
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Muniappan Sankar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Maya S Nair
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
5
|
Dinh VT, Loaëc N, Quillévéré A, Le Sénéchal R, Keruzoré M, Martins RP, Granzhan A, Blondel M. The hide-and-seek game of the oncogenic Epstein-Barr virus-encoded EBNA1 protein with the immune system: An RNA G-quadruplex tale. Biochimie 2023; 214:57-68. [PMID: 37473831 DOI: 10.1016/j.biochi.2023.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
The Epstein-Barr virus (EBV) is the first oncogenic virus described in human. EBV infects more than 90% of the human population worldwide, but most EBV infections are asymptomatic. After the primary infection, the virus persists lifelong in the memory B cells of the infected individuals. Under certain conditions the virus can cause several human cancers, that include lymphoproliferative disorders such as Burkitt and Hodgkin lymphomas and non-lymphoid malignancies such as 100% of nasopharyngeal carcinoma and 10% of gastric cancers. Each year, about 200,000 EBV-related cancers emerge, hence accounting for at least 1% of worldwide cancers. Like all gammaherpesviruses, EBV has evolved a strategy to escape the host immune system. This strategy is mainly based on the tight control of the expression of its Epstein-Barr nuclear antigen-1 (EBNA1) protein, the EBV-encoded genome maintenance protein. Indeed, EBNA1 is essential for viral genome replication and maintenance but, at the same time, is also highly antigenic and T cells raised against EBNA1 exist in infected individuals. For this reason, EBNA1 is considered as the Achilles heel of EBV and the virus has seemingly evolved a strategy that employs the binding of nucleolin, a host cell factor, to RNA G-quadruplex (rG4) within EBNA1 mRNA to limit its expression to the minimal level required for function while minimizing immune recognition. This review recapitulates in a historical way the knowledge accumulated on EBNA1 immune evasion and discusses how this rG4-dependent mechanism can be exploited as an intervention point to unveil EBV-related cancers to the immune system.
Collapse
Affiliation(s)
- Van-Trang Dinh
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France.
| | - Nadège Loaëc
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Alicia Quillévéré
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Ronan Le Sénéchal
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Marc Keruzoré
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | | | - Anton Granzhan
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Marc Blondel
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France.
| |
Collapse
|
6
|
Diakite M, Shaw-Saliba K, Lau CY. Malignancy and viral infections in Sub-Saharan Africa: A review. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2023; 3:1103737. [PMID: 37476029 PMCID: PMC10358275 DOI: 10.3389/fviro.2023.1103737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
The burden of malignancy related to viral infection is increasing in Sub-Saharan Africa (SSA). In 2018, approximately 2 million new cancer cases worldwide were attributable to infection. Prevention or treatment of these infections could reduce cancer cases by 23% in less developed regions and about 7% in developed regions. Contemporaneous increases in longevity and changes in lifestyle have contributed to the cancer burden in SSA. African hospitals are reporting more cases of cancer related to infection (e.g., cervical cancer in women and stomach and liver cancer in men). SSA populations also have elevated underlying prevalence of viral infections compared to other regions. Of 10 infectious agents identified as carcinogenic by the International Agency for Research on Cancer, six are viruses: hepatitis B and C viruses (HBV and HCV, respectively), Epstein-Barr virus (EBV), high-risk types of human papillomavirus (HPV), Human T-cell lymphotropic virus type 1 (HTLV-1), and Kaposi's sarcoma herpesvirus (KSHV, also known as human herpesvirus type 8, HHV-8). Human immunodeficiency virus type 1 (HIV) also facilitates oncogenesis. EBV is associated with lymphomas and nasopharyngeal carcinoma; HBV and HCV are associated with hepatocellular carcinoma; KSHV causes Kaposi's sarcoma; HTLV-1 causes T-cell leukemia and lymphoma; HPV causes carcinoma of the oropharynx and anogenital squamous cell cancer. HIV-1, for which SSA has the greatest global burden, has been linked to increasing risk of malignancy through immunologic dysregulation and clonal hematopoiesis. Public health approaches to prevent infection, such as vaccination, safer injection techniques, screening of blood products, antimicrobial treatments and safer sexual practices could reduce the burden of cancer in Africa. In SSA, inequalities in access to cancer screening and treatment are exacerbated by the perception of cancer as taboo. National level cancer registries, new screening strategies for detection of viral infection and public health messaging should be prioritized in SSA's battle against malignancy. In this review, we discuss the impact of carcinogenic viruses in SSA with a focus on regional epidemiology.
Collapse
Affiliation(s)
- Mahamadou Diakite
- University Clinical Research Center, University of Sciences, Techniques, and Technologies, Bamako, Mali
| | - Kathryn Shaw-Saliba
- Collaborative Clinical Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Chuen-Yen Lau
- HIV Dynamics and Replication Program, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
7
|
Fioresi R, Demurtas P, Perini G. Deep learning for MYC binding site recognition. FRONTIERS IN BIOINFORMATICS 2022; 2:1015993. [PMID: 36544623 PMCID: PMC9760990 DOI: 10.3389/fbinf.2022.1015993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022] Open
Abstract
Motivation: The definition of the genome distribution of the Myc transcription factor is extremely important since it may help predict its transcriptional activity particularly in the context of cancer. Myc is among the most powerful oncogenes involved in the occurrence and development of more than 80% of different types of pediatric and adult cancers. Myc regulates thousands of genes which can be in part different, depending on the type of tissues and tumours. Myc distribution along the genome has been determined experimentally through chromatin immunoprecipitation This approach, although powerful, is very time consuming and cannot be routinely applied to tumours of individual patients. Thus, it becomes of paramount importance to develop in silico tools that can effectively and rapidly predict its distribution on a given cell genome. New advanced computational tools (DeeperBind) can then be successfully employed to determine the function of Myc in a specific tumour, and may help to devise new directions and approaches to experiments first and personalized and more effective therapeutic treatments for a single patient later on. Results: The use of DeeperBind with DeepRAM on Colab platform (Google) can effectively predict the binding sites for the MYC factor with an accuracy above 0.96 AUC, when trained with multiple cell lines. The analysis of the filters in DeeperBind trained models shows, besides the consensus sequence CACGTG classically associated to the MYC factor, also the other consensus sequences G/C box or TGGGA, respectively bound by the SP1 and MIZ-1 transcription factors, which are known to mediate the MYC repressive response. Overall, our findings suggest a stronger synergy between the machine learning tools as DeeperBind and biological experiments, which may reduce the time consuming experiments by providing a direction to guide them.
Collapse
|
8
|
Camponeschi A, Kläsener K, Sundell T, Lundqvist C, Manna PT, Ayoubzadeh N, Sundqvist M, Thorarinsdottir K, Gatto M, Visentini M, Önnheim K, Aranburu A, Forsman H, Ekwall O, Fogelstrand L, Gjertsson I, Reth M, Mårtensson IL. Human CD38 regulates B cell antigen receptor dynamic organization in normal and malignant B cells. J Exp Med 2022; 219:213348. [PMID: 35819358 PMCID: PMC9280193 DOI: 10.1084/jem.20220201] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/11/2022] [Accepted: 06/13/2022] [Indexed: 01/14/2023] Open
Abstract
CD38 is a multifunctional protein expressed on the surface of B cells in healthy individuals but also in B cell malignancies. Previous studies have suggested a connection between CD38 and components of the IgM class B cell antigen receptor (IgM-BCR) and its coreceptor complex. Here, we provide evidence that CD38 is closely associated with CD19 in resting B cells and with the IgM-BCR upon engagement. We show that targeting CD38 with an antibody, or removing this molecule with CRISPR/Cas9, inhibits the association of CD19 with the IgM-BCR, impairing BCR signaling in normal and malignant B cells. Together, our data suggest that CD38 is a new member of the BCR coreceptor complex, where it exerts a modulatory effect on B cell activation upon antigen recognition by regulating CD19. Our study also reveals a new mechanism where α-CD38 antibodies could be a valuable option in therapeutic approaches to B cell malignancies driven by aberrant BCR signaling.
Collapse
Affiliation(s)
- Alessandro Camponeschi
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kathrin Kläsener
- Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany,Signalling Research Centres Biological Signalling Studies and Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Timothy Sundell
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christina Lundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Paul T. Manna
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Negar Ayoubzadeh
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martina Sundqvist
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Katrin Thorarinsdottir
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mariele Gatto
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Unit of Rheumatology, Department of Medicine, University of Padova, Padua, Italy
| | - Marcella Visentini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Karin Önnheim
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alaitz Aranburu
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Olov Ekwall
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Linda Fogelstrand
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden,Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Inger Gjertsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Michael Reth
- Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany,Signalling Research Centres Biological Signalling Studies and Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Inga-Lill Mårtensson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Ahsanuddin S, Cadwell JB, Sangal NR, Grube JG, Fang CH, Baredes S, Eloy JA. Survival Predictors of Head and Neck Burkitt's Lymphoma: An Analysis of the SEER Database. Otolaryngol Head Neck Surg 2021; 167:79-88. [PMID: 34491862 DOI: 10.1177/01945998211041533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To analyze population-level data for Burkitt's lymphoma of the head and neck. STUDY DESIGN Retrospective study of a national cancer database. SETTING Academic medical center. METHODS The SEER database (Surveillance, Epidemiology, and End Results) identified all patients with primary Burkitt's lymphoma of the head and neck from 1975 to 2015. Demographic, clinicopathologic, and treatment characteristics were analyzed. Multivariable Cox regressions analyzed factors associated with survival while controlling for baseline differences. RESULTS A total of 920 patients with a mean (SD) age of 37.6 years (25.0) were identified. A majority of patients were White (82.8%) and male (72.3%). The most primary common sites included the lymph nodes (61.3%), pharynx (17.7%), and nasal cavity/paranasal sinuses (5.2%). The majority of patients received chemotherapy (90.5%), while fewer underwent surgery (42.1%) or radiotherapy (12.8%). Choice of treatment differed significantly among patients of different ages, year of diagnosis, primary site, nodal status, and Ann Arbor stage. Overall 10-year survival was 67.8%. On multivariable Cox regression, patients with older age (hazard ratio [HR], 1.05 per year; P < .001) and higher stage at presentation had increased risk of mortality (P < .001). Furthermore, cases diagnosed between 2006 and 2015 (HR, 0.35; P < .001) and 1996 and 2005 (HR, 0.53; P = .001) had lower mortality when compared with those diagnosed between 1975 and 1995. Treatment including surgery and chemotherapy tended to have the best survival (P < .001). CONCLUSION Burkitt's lymphoma of the head and neck diagnosed in more recent years has had improved survival. Factors significantly associated with survival include age, Ann Arbor stage, and treatment regimen. Treatment including surgery and chemotherapy was associated with the highest survival.
Collapse
Affiliation(s)
- Salma Ahsanuddin
- Department of Otolaryngology-Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Joshua B Cadwell
- Department of Otolaryngology-Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Neel R Sangal
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jordon G Grube
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, Albany Medical Center, Albany, New York, USA
| | - Christina H Fang
- Department of Otolaryngology-Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Soly Baredes
- Department of Otolaryngology-Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Center for Skull Base and Pituitary Surgery, Neurological Institute of New Jersey, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jean Anderson Eloy
- Department of Otolaryngology-Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Center for Skull Base and Pituitary Surgery, Neurological Institute of New Jersey, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Department of Ophthalmology and Visual Science, Rutgers New Jersey Medical School, Newark, New Jersey, USA
- Department of Otolaryngology and Facial Plastic Surgery, Saint Barnabas Medical Center-RWJBarnabas Health, Livingston, New Jersey, USA
| |
Collapse
|
10
|
Ahmadi SE, Rahimi S, Zarandi B, Chegeni R, Safa M. MYC: a multipurpose oncogene with prognostic and therapeutic implications in blood malignancies. J Hematol Oncol 2021; 14:121. [PMID: 34372899 PMCID: PMC8351444 DOI: 10.1186/s13045-021-01111-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/12/2021] [Indexed: 12/17/2022] Open
Abstract
MYC oncogene is a transcription factor with a wide array of functions affecting cellular activities such as cell cycle, apoptosis, DNA damage response, and hematopoiesis. Due to the multi-functionality of MYC, its expression is regulated at multiple levels. Deregulation of this oncogene can give rise to a variety of cancers. In this review, MYC regulation and the mechanisms by which MYC adjusts cellular functions and its implication in hematologic malignancies are summarized. Further, we also discuss potential inhibitors of MYC that could be beneficial for treating hematologic malignancies.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rouzbeh Chegeni
- Medical Laboratory Sciences Program, College of Health and Human Sciences, Northern Illinois University, DeKalb, IL, USA.
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Harne PS, Macklin J, Muniraj T. Disseminated Burkitt lymphoma presenting as massive gastrointestinal bleed. Proc (Bayl Univ Med Cent) 2020; 33:433-435. [DOI: 10.1080/08998280.2020.1747835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/15/2020] [Accepted: 03/23/2020] [Indexed: 10/24/2022] Open
Affiliation(s)
- Prateek Suresh Harne
- Department of Internal Medicine, State University of New York Upstate Medical University, Syracuse, New York
| | - Jared Macklin
- Connecticut Gastroenterology Consultants, Guilford, Connecticut
| | - Thiruvengadam Muniraj
- Division of Digestive Diseases, Yale School of Medicine and Yale Center for Pancreatitis, New Haven, Connecticut
| |
Collapse
|
12
|
Fitzsimmons L, Cartlidge R, Chang C, Sejic N, Galbraith LCA, Suraweera CD, Croom-Carter D, Dewson G, Tierney RJ, Bell AI, Shannon-Lowe C, Herold MJ, Rickinson AB, Colman PM, Huang DCS, Strasser A, Kvansakul M, Rowe M, Kelly GL. EBV BCL-2 homologue BHRF1 drives chemoresistance and lymphomagenesis by inhibiting multiple cellular pro-apoptotic proteins. Cell Death Differ 2020; 27:1554-1568. [PMID: 31645677 PMCID: PMC7206097 DOI: 10.1038/s41418-019-0435-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 12/30/2022] Open
Abstract
Epstein-Barr virus (EBV), which is ubiquitous in the adult population, is causally associated with human malignancies. Like many infectious agents, EBV has evolved strategies to block host cell death, including through expression of viral homologues of cellular BCL-2 pro-survival proteins (vBCL-2s), such as BHRF1. Small molecule inhibitors of the cellular pro-survival BCL-2 family proteins, termed 'BH3-mimetics', have entered clinical trials for blood cancers with the BCL-2 inhibitor venetoclax already approved for treatment of therapy refractory chronic lymphocytic leukaemia and acute myeloid leukaemia in the elderly. The generation of BH3-mimetics that could specifically target vBCL-2 proteins may be an attractive therapeutic option for virus-associated cancers, since these drugs would be expected to only kill virally infected cells with only minimal side effects on normal healthy tissues. To achieve this, a better understanding of the contribution of vBCL-2 proteins to tumorigenesis and insights into their biochemical functions is needed. In the context of Burkitt lymphoma (BL), BHRF1 expression conferred strong resistance to diverse apoptotic stimuli. Furthermore, BHRF1 expression in mouse haematopoietic stem and progenitor cells accelerated MYC-induced lymphoma development in a model of BL. BHRF1 interacts with the cellular pro-apoptotic BCL-2 proteins, BIM, BID, PUMA and BAK, but its capability to inhibit apoptosis could not be mapped solely to one of these interactions, suggesting plasticity is a key feature of BHRF1. Site-directed mutagenesis revealed a site in BHRF1 that was critical for its interaction with PUMA and blocking DNA-damage-induced apoptosis, identifying a potentially therapeutically targetable vulnerability in BHRF1.
Collapse
Affiliation(s)
- Leah Fitzsimmons
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | - Rachel Cartlidge
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Catherine Chang
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
| | - Nenad Sejic
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Laura C A Galbraith
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Chathura D Suraweera
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Deborah Croom-Carter
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Grant Dewson
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Rosemary J Tierney
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew I Bell
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Clare Shannon-Lowe
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Marco J Herold
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Alan B Rickinson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Peter M Colman
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - David C S Huang
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia
| | - Marc Kvansakul
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Martin Rowe
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute for Medical Research, Parkville, Melbourne, VIC, 3052, Australia.
- Department of Medical Biology, The University of Melbourne, Parkville, Melbourne, VIC, 3052, Australia.
| |
Collapse
|
13
|
Henriksen JR, Ramberg I, Mikkelsen LH, Heegaard S. The role of infectious agents in cancer of the ocular region. APMIS 2020; 128:136-149. [PMID: 32003084 DOI: 10.1111/apm.13017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
Abstract
The purpose of the study was to investigate the association between infectious agents and the development of cancer in the ocular adnexa. A comprehensive literary study was carried out, reviewing and summarizing previous reports on the topic. A broad range of malignancies of the ocular adnexa are associated with infectious agents. A strong association and possible causal relationship between the infectious agent and the development of ocular adnexal cancer are seen in Merkel cell carcinoma (Merkel cell polyomavirus), Burkitt lymphoma (Epstein-Barr virus) and Kaposi sarcoma (human herpesvirus 8). Infection with Chlamydia psittaci has been associated with the development of extranodal marginal zone B-cell lymphoma in Italy. Human papillomavirus infection has been associated with the development of squamous cell carcinomas of the ocular adnexa, although with a highly variable reported prevalence. By exploring the role of infectious agents in the ocular adnexa and the mechanism by which they contribute to oncogenesis, the diagnostics, management and prevention of these malignancies may also improve. Antibiotic treatment and vaccines against infectious agents may be valuable in future treatment. Additionally, the presence of infectious agents within the tumours may have a prognostic or predictive value.
Collapse
Affiliation(s)
- Josephine Raun Henriksen
- Eye Pathology Section, Department of Pathology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Ingvild Ramberg
- Eye Pathology Section, Department of Pathology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Ophthalmology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Lauge Hjorth Mikkelsen
- Eye Pathology Section, Department of Pathology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Ophthalmology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Steffen Heegaard
- Eye Pathology Section, Department of Pathology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Ophthalmology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
14
|
Lu J, Tan H, Li B, Chen S, Xu L, Zou Y. Status and prognostic nomogram of patients with Burkitt lymphoma. Oncol Lett 2019; 19:972-984. [PMID: 31897210 PMCID: PMC6924199 DOI: 10.3892/ol.2019.11155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 10/23/2019] [Indexed: 12/26/2022] Open
Abstract
The purpose of the present study was to evaluate the newest status of patients diagnosed Burkitt lymphoma (BL), an aggressive lymphoma subset with a high cure rate. Furthermore, the study aimed to create prognostic nomograms to consider various prognostic factors and estimate patient survival, paving the way for clinical decision-making. A total of 4,600 patients diagnosed with BL between 1983 and 2015 were investigated, via data collected from the SEER database. The overall status of the patients was analyzed through several aspects, including incidence and survival analysis of the previous three decades using the log-rank test and the Kaplan-Meier method. In order to construct and validate the nomograms, the patient diagnosed during 2005-2015 were randomly assigned to the training cohort and validation cohort. Univariate and multivariate analyses were applied to identify independent factors that were further included in the nomograms, predicting 3- and 5-year overall survival (OS) and cancer-specific survival (CSS). The data of the training cohort were used for internal validation and validation cohort used to external validation. C-index and calibration plots were used to validate the nomograms, comparing predicted values with actual outcomes. The incidence of BL was gradually increased from 1984 and reached its peak in 2009, at a rate of 0.491 per 100,000 [95% confidence interval (CI), 0.412-0.581]. From 2009, the incidence slowly declined year by year and dropped to 0.280 per 100,000 (95% CI, 0.224-0.346). The OS and CSS rates of patients diagnosed between 2005 and 2015 were increased, in contrast with those of patients diagnosed from 1983-1993 and 1994-2004. A total of five variables, including age, race, chemotherapy, primary site and stage, proved to be the prognostic factors of BL and were used to construct the nomograms predicting 3- and 5-year OS and CSS. The internal and external calibration plots for the probability of 3- and 5-year OS and CSS were consistent between nomogram prediction and observed outcomes. The slow decline in incidence and the significantly improved cure rate make BL a disease that is no longer an urgent problem. Effective nomograms were developed to predict the OS and CSS of patients with BL.
Collapse
Affiliation(s)
- Jielun Lu
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Huo Tan
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Bo Li
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Shuyi Chen
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Lihua Xu
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| | - Yawei Zou
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
15
|
Singh A, Prabhakar G. Traumatic Rupture of Jejunal Burkitt's Lymphoma with Intestinal Transection. J Indian Assoc Pediatr Surg 2019; 24:61-62. [PMID: 30686889 PMCID: PMC6322174 DOI: 10.4103/jiaps.jiaps_67_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Burkitt's lymphoma (BL) is an aggressive non-Hodgkin lymphoma.[1] BL of the small intestine, presenting as a surgical emergency needing emergency laparotomy, is an uncommon presentation of this tumor. We present a case of BL presenting as perforation peritonitis after blunt trauma abdomen.
Collapse
Affiliation(s)
- Anoop Singh
- Department of Pediatric Surgery, Sardar Patel Medical College and Associated Group of Hospitals, Bikaner, Rajasthan, India
| | - Girish Prabhakar
- Department of Pediatric Surgery, Sardar Patel Medical College and Associated Group of Hospitals, Bikaner, Rajasthan, India
| |
Collapse
|
16
|
Guidry JT, Birdwell CE, Scott RS. Epstein-Barr virus in the pathogenesis of oral cancers. Oral Dis 2018; 24:497-508. [PMID: 28190296 PMCID: PMC5554094 DOI: 10.1111/odi.12656] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 12/28/2022]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous gamma-herpesvirus that establishes a lifelong persistent infection in the oral cavity and is intermittently shed in the saliva. EBV exhibits a biphasic life cycle, supported by its dual tropism for B lymphocytes and epithelial cells, which allows the virus to be transmitted within oral lymphoid tissues. While infection is often benign, EBV is associated with a number of lymphomas and carcinomas that arise in the oral cavity and at other anatomical sites. Incomplete association of EBV in cancer has questioned if EBV is merely a passenger or a driver of the tumorigenic process. However, the ability of EBV to immortalize B cells and its prevalence in a subset of cancers has implicated EBV as a carcinogenic cofactor in cellular contexts where the viral life cycle is altered. In many cases, EBV likely acts as an agent of tumor progression rather than tumor initiation, conferring malignant phenotypes observed in EBV-positive cancers. Given that the oral cavity serves as the main site of EBV residence and transmission, here we review the prevalence of EBV in oral malignancies and the mechanisms by which EBV acts as an agent of tumor progression.
Collapse
Affiliation(s)
- Joseph T. Guidry
- Department of Microbiology and Immunology, Center for Tumor and Molecular Virology, and Feist-Weiller Cancer Center. Louisiana State University Health Sciences Center-Shreveport. Shreveport, LA 71103
| | - Christine E. Birdwell
- Department of Microbiology and Immunology, Center for Tumor and Molecular Virology, and Feist-Weiller Cancer Center. Louisiana State University Health Sciences Center-Shreveport. Shreveport, LA 71103
| | - Rona S. Scott
- Department of Microbiology and Immunology, Center for Tumor and Molecular Virology, and Feist-Weiller Cancer Center. Louisiana State University Health Sciences Center-Shreveport. Shreveport, LA 71103
| |
Collapse
|
17
|
Totonchy J, Osborn JM, Chadburn A, Nabiee R, Argueta L, Mikita G, Cesarman E. KSHV induces immunoglobulin rearrangements in mature B lymphocytes. PLoS Pathog 2018; 14:e1006967. [PMID: 29659614 PMCID: PMC5919685 DOI: 10.1371/journal.ppat.1006967] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 04/26/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
Kaposi sarcoma herpesvirus (KSHV/HHV-8) is a B cell tropic human pathogen, which is present in vivo in monotypic immunoglobulin λ (Igλ) light chain but polyclonal B cells. In the current study, we use cell sorting to infect specific B cell lineages from human tonsil specimens in order to examine the immunophenotypic alterations associated with KSHV infection. We describe IL-6 dependent maturation of naïve B lymphocytes in response to KSHV infection and determine that the Igλ monotypic bias of KSHV infection in vivo is due to viral induction of BCR revision. Infection of immunoglobulin κ (Igκ) naïve B cells induces expression of Igλ and isotypic inclusion, with eventual loss of Igκ. We show that this phenotypic shift occurs via re-induction of Rag-mediated V(D)J recombination. These data explain the selective presence of KSHV in Igλ B cells in vivo and provide the first evidence that a human pathogen can manipulate the molecular mechanisms responsible for immunoglobulin diversity. Kaposi sarcoma herpesvirus (KSHV) infection of human B cells is poorly understood. KSHV infection in humans is heavily biased towards B cells with a specific subtype of antibody molecule (lambda light chain rather than kappa light chain). This has been a conundrum in the field for years because there is no known physiological distinction between B cells with different light chains that might provide a mechanism for this bias. Here, we develop a novel system for infecting B cells from human tonsil with KSHV and tracking how the virus alters the cells over time. Using this system, we demonstrate a number of KSHV-driven alterations in B cells, including the fact that KSHV infection of kappa light chain positive B cells drives them to become lambda light chain positive by re-inducing recombination events that are normally restricted to B cell development in the bone marrow. We believe that this study is the first demonstration that a virus can alter immunoglobulin specificity via direct infection of B cells.
Collapse
Affiliation(s)
- Jennifer Totonchy
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States of Amercia
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States of Amercia
| | - Jessica M. Osborn
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States of Amercia
| | - Amy Chadburn
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States of Amercia
| | - Ramina Nabiee
- Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States of Amercia
| | - Lissenya Argueta
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States of Amercia
| | - Geoffrey Mikita
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States of Amercia
| | - Ethel Cesarman
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States of Amercia
- * E-mail:
| |
Collapse
|
18
|
Aguilar R, Casabonne D, O’Callaghan-Gordo C, Vidal M, Campo JJ, Mutalima N, Angov E, Dutta S, Gaur D, Chitnis CE, Chauhan V, Michel A, de Sanjosé S, Waterboer T, Kogevinas M, Newton R, Dobaño C. Assessment of the Combined Effect of Epstein-Barr Virus and Plasmodium falciparum Infections on Endemic Burkitt Lymphoma Using a Multiplex Serological Approach. Front Immunol 2017; 8:1284. [PMID: 29123514 PMCID: PMC5662586 DOI: 10.3389/fimmu.2017.01284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/25/2017] [Indexed: 12/30/2022] Open
Abstract
Epstein-Barr virus (EBV) is a necessary cause of endemic Burkitt lymphoma (eBL), while the role of Plasmodium falciparum in eBL remains uncertain. This study aimed to generate new hypotheses on the interplay between both infections in the development of eBL by investigating the IgG and IgM profiles against several EBV and P. falciparum antigens. Serum samples collected in a childhood study in Malawi (2005-2006) from 442 HIV-seronegative children (271 eBL cases and 171 controls) between 1.4 and 15 years old were tested by quantitative suspension array technology against a newly developed multiplex panel combining 4 EBV antigens [Z Epstein-Barr replication activator protein (ZEBRA), early antigen-diffuse component (EA-D), EBV nuclear antigen 1, and viral capsid antigen p18 subunit (VCA-p18)] and 15 P. falciparum antigens selected for their immunogenicity, role in malaria pathogenesis, and presence in different parasite stages. Principal component analyses, multivariate logistic models, and elastic-net regressions were used. As expected, elevated levels of EBV IgG (especially against the lytic antigens ZEBRA, EA-D, and VCA-p18) were strongly associated with eBL [high vs low tertile odds ratio (OR) = 8.67, 95% confidence interval (CI) = 4.81-15.64]. Higher IgG responses to the merozoite surface protein 3 were observed in children with eBL compared with controls (OR = 1.29, 95% CI = 1.02-1.64), showing an additive interaction with EBV IgGs (OR = 10.6, 95% CI = 5.1-22.2, P = 0.05). Using elastic-net regression models, eBL serological profile was further characterized by lower IgM levels against P. falciparum preerythrocytic-stage antigen CelTOS and EBV lytic antigen VCA-p18 compared with controls. In a secondary analysis, abdominal Burkitt lymphoma had lower IgM to EBV and higher IgG to EA-D levels than cases with head involvement. Overall, this exploratory study confirmed the strong role of EBV in eBL and identified differential IgG and IgM patterns to erythrocytic vs preerythrocytic P. falciparum antigens that suggest a more persistent/chronic malaria exposure and a weaker IgM immune response in children with eBL compared with controls. Future studies should continue exploring how the malaria infection status and the immune response to P. falciparum interact with EBV infection in the development of eBL.
Collapse
Affiliation(s)
- Ruth Aguilar
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Delphine Casabonne
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Unit of Infections and Cancer, Cancer Epidemiology Research Programme, IDIBELL, Institut Català d’Oncologia, L’Hospitalet de Llobregat, Spain
| | - Cristina O’Callaghan-Gordo
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marta Vidal
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Joseph J. Campo
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Nora Mutalima
- Department of Orthopaedic Surgery, Monash Health, Melbourne, VIC, Australia
- Department of Surgery, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
| | | | | | - Deepak Gaur
- ICGEB, Delhi, India
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | - Silvia de Sanjosé
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Unit of Infections and Cancer, Cancer Epidemiology Research Programme, IDIBELL, Institut Català d’Oncologia, L’Hospitalet de Llobregat, Spain
| | - Tim Waterboer
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manolis Kogevinas
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- ISGlobal, Center for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Rob Newton
- Epidemiology and Cancer Statistics Group, University of York, York, United Kingdom
- MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda
| | - Carlota Dobaño
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
19
|
Mawson AR, Majumdar S. Malaria, Epstein-Barr virus infection and the pathogenesis of Burkitt's lymphoma. Int J Cancer 2017; 141:1849-1855. [PMID: 28707393 DOI: 10.1002/ijc.30885] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 06/10/2017] [Accepted: 07/07/2017] [Indexed: 02/06/2023]
Abstract
A geographical and causal connection has long been recognized between malaria, Epstein-Barr virus (EBV) infection and Burkitt's lymphoma (BL), but the underlying mechanisms remain obscure. Potential clues are that the malaria parasite Plasmodium falciparum selectively absorbs vitamin A from the host and depends on it for its biological activities; secondly, alterations in vitamin A (retinoid) metabolism have been implicated in many forms of cancer, including BL. The first author has proposed that the merozoite-stage malaria parasite, emerging from the liver, uses its absorbed vitamin A as a cell membrane destabilizer to invade the red blood cells, causing anemia and other signs and symptoms of the disease as manifestations of an endogenous form of hypervitaminosis A (Mawson AR, Path Global Health 2013;107(3):122-9). Repeated episodes of malaria would therefore be expected to expose the tissues of affected individuals to potentially toxic doses of vitamin A. It is proposed that such episodes activate latent EBV infection, which in turn activates retinoid-responsive genes. Expression of these genes enhances viral replication and induces germinal center (GC) B cell expansion, activation-induced cytidine deaminase (AID) expression, and c-myc translocation, which in turn predisposes to BL. Thus, an endogenous form of retinoid toxicity related to malaria infection may be the common factor linking frequent malaria, EBV infection and BL, whereby prolonged exposure of lymphatic tissues to high concentrations of retinoids may combine to induce B-cell translocation and increase the risk of Burkitt's lymphoma.
Collapse
Affiliation(s)
- Anthony R Mawson
- Professor, Department of Epidemiology and Biostatistics, School of Public Health, Jackson State University, Jackson, MS
| | - Suvankar Majumdar
- Chief, Division of Hematology, Center for Cancer and Blood Disorders, Children's National Medical Center, Associate Professor of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC
| |
Collapse
|
20
|
Nguyen L, Papenhausen P, Shao H. The Role of c-MYC in B-Cell Lymphomas: Diagnostic and Molecular Aspects. Genes (Basel) 2017; 8:genes8040116. [PMID: 28379189 PMCID: PMC5406863 DOI: 10.3390/genes8040116] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 12/25/2022] Open
Abstract
c-MYC is one of the most essential transcriptional factors, regulating a diverse array of cellular functions, including proliferation, growth, and apoptosis. Dysregulation of c-MYC is essential in the pathogenesis of a number of B-cell lymphomas, but is rarely reported in T-cell lymphomas. c-MYC dysregulation induces lymphomagenesis by loss of the tight control of c-MYC expression, leading to overexpression of intact c-MYC protein, in contrast to the somatic mutations or fusion proteins seen in many other oncogenes. Dysregulation of c-MYC in B-cell lymphomas occurs either as a primary event in Burkitt lymphoma, or secondarily in aggressive lymphomas such as diffuse large B-cell lymphoma, plasmablastic lymphoma, mantle cell lymphoma, or double-hit lymphoma. Secondary c-MYC changes include gene translocation and gene amplification, occurring against a background of complex karyotype, and most often confer aggressive clinical behavior, as evidenced in the double-hit lymphomas. In low-grade B-cell lymphomas, acquisition of c-MYC rearrangement usually results in transformation into highly aggressive lymphomas, with some exceptions. In this review, we discuss the role that c-MYC plays in the pathogenesis of B-cell lymphomas, the molecular alterations that lead to c-MYC dysregulation, and their effect on prognosis and diagnosis in specific types of B-cell lymphoma.
Collapse
Affiliation(s)
- Lynh Nguyen
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| | - Peter Papenhausen
- Cytogenetics Laboratory, Laboratory Corporation of America, Research Triangle Park, NC 27709, USA.
| | - Haipeng Shao
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
21
|
Qu Y, Liu L, Niu Y, Qu Y, Li N, Sun W, Lv C, Wang P, Zhang G, Liu S. Viral proliferation and expression of tumor-related gene in different chicken embryo fibroblasts infected with different tumorigenic phenotypes of avian leukosis virus subgroup J. Poult Sci 2016; 95:2383-90. [DOI: 10.3382/ps/pew180] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/21/2016] [Indexed: 12/24/2022] Open
|
22
|
Wang A, Zhang W, Jin M, Zhang J, Li S, Tong F, Zhou Y. Differential expression of EBV proteins LMP1 and BHFR1 in EBV‑associated gastric and nasopharyngeal cancer tissues. Mol Med Rep 2016; 13:4151-8. [PMID: 27052804 PMCID: PMC4838144 DOI: 10.3892/mmr.2016.5087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 01/29/2016] [Indexed: 01/27/2023] Open
Abstract
Epstein-Barr virus (EBV) infection is associated with the development of T cell lymphoma, nasopharyngeal cancer (NPC), and EBV-associated gastric cancer (EBVaGC). This study assessed the expression of the EBV-associated proteins latent membrane protein 1 (LMP1) and BamHI-A rightward frame 1 (BARF1) in NPC and EBVaGC tissue specimens and determined their association with clinicopathological data, microvessel density (MVD) and micro-lymphatic vessel density (MLVD). This study collected 600 gastric cancer and 75 NPC tissue samples. EBV infection was assessed using in situ hybridization, and LMP1 and BARF1 expression was assessed using immunohistochemistry. The levels of MVD and MLVD were assessed using immunostaining of vascular endothelial growth factor (VEGF)-C, CD34, and lymphatic vessel endothelial receptor 1 (LYVE-1). Among the 600 gastric cancer cases, 30 were positive for EBV infection, which was shown to be associated with the age of patients (P=0.073), tumor differentiation (P<0.0001), tumor location (P<0.0001) and lymph node metastasis (P<0.0001). In these 30 EBVaGC cases, only one case was weakly positive for LMP1, but 17 cases were BARF1 positive. BARF1 expression was associated with lymph node metastasis of EBVaGC and the level of MLVD. Furthermore, 61 (81%) of 75 NPC patients were EBV positive, among which 38 cases were LMP-1 positive (62.3%) and LMP1 expression was associated with tumor-node-metastasis stage (P=0.011) and lymph node metastasis (P=0.041). MLVD was significantly higher in LMP1-positive cases than LMP1-negative cases. There were only 8 (13.3%) cases positive for BARF1 expression. In conclusion, EBV infection exhibits a role in gastric cancer and NPC development; however, expression of EBV-associated proteins LMP1 and BARF1 have differential functions during tumorigenesis of these two types of cancer.
Collapse
Affiliation(s)
- Ailiang Wang
- Department of General Surgery, The Affiliated Hospital of Medical College of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Wei Zhang
- Department of General Surgery, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Meng Jin
- Department of General Surgery, The Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Jianbo Zhang
- Department of General Surgery, Shandong Tumor Hospital, Jinan, Shandong 250117, P.R. China
| | - Sheng Li
- Department of General Surgery, Shandong Tumor Hospital, Jinan, Shandong 250117, P.R. China
| | - Feng Tong
- Department of General Surgery, Shandong Tumor Hospital, Jinan, Shandong 250117, P.R. China
| | - Yanbing Zhou
- Department of General Surgery, The Affiliated Hospital of Medical College of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
23
|
Plasmodium falciparum infection is associated with Epstein-Barr virus reactivation in pregnant women living in malaria holoendemic area of Western Kenya. Matern Child Health J 2016; 19:606-14. [PMID: 24951129 DOI: 10.1007/s10995-014-1546-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The role of Plasmodium falciparum malaria in Epstein-Barr virus (EBV) transmission among infants early in life remain elusive. We hypothesized that infection with malaria during pregnancy could cause EBV reactivation leading to high EBV load in circulation, which could subsequently enhance early age of EBV infection. Pregnant women in Kisumu, where P. falciparum malaria is holoendemic, were actively followed monthly through antenatal visits (up to 4 per mother) and delivery. Using real-time quantitative (Q)-PCR, we quantified and compared EBV and P. falciparum DNA levels in the blood of pregnant women with and without P. falciparum malaria. Pregnant women that had malaria detected during pregnancy were more likely to have detectable EBV DNA than pregnant women who had no evidence of malaria infection during pregnancy (64 vs. 36 %, p = 0.01). EBV load as analyzed by quantifying area under the longitudinal observation curve (AUC) was significantly higher in pregnant women with P. falciparum malaria than in women without evidence of malaria infection (p = 0.01) regardless of gestational age of pregnancy. Increase in malaria load correlated with increase in EBV load (p < 0.0001). EBV load was higher in third trimester (p = 0.04) than first and second trimester of pregnancy independent of known infections. Significantly higher frequency and elevated EBV loads were found in pregnant women with malaria than in women without evidence of P. falciparum infection during pregnancy. The loss of control of EBV latency following P. falciparum infection during pregnancy and subsequent increase in EBV load in circulation could contribute to enhanced shedding of EBV in maternal saliva and breast milk postpartum, but further studies are needed.
Collapse
|
24
|
Thorley-Lawson D, Deitsch KW, Duca KA, Torgbor C. The Link between Plasmodium falciparum Malaria and Endemic Burkitt's Lymphoma-New Insight into a 50-Year-Old Enigma. PLoS Pathog 2016; 12:e1005331. [PMID: 26794909 PMCID: PMC4721646 DOI: 10.1371/journal.ppat.1005331] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- David Thorley-Lawson
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| | - Kirk W. Deitsch
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Karen A. Duca
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST) and Kumasi Centre for Collaborative Research, Kumasi, Ghana
| | - Charles Torgbor
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST) and Kumasi Centre for Collaborative Research, Kumasi, Ghana
| |
Collapse
|
25
|
Rochford R. Epstein-Barr virus infection of infants: implications of early age of infection on viral control and risk for Burkitt lymphoma. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2016; 73:41-46. [PMID: 29421232 DOI: 10.1016/j.bmhimx.2015.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/03/2015] [Indexed: 11/17/2022] Open
Abstract
Since its first description by Denis Burkitt, endemic Burkitt's lymphoma (BL), the most common childhood cancer in sub-Saharan Africa, has led scientists to search for clues to the origins of this malignancy. The discovery of Epstein-Barr virus (EBV) in BL cells over 50 years ago led to extensive sero-epidemiology studies and revealed that rather than being a virus restricted to areas where BL is endemic, EBV is ubiquitous in the world's population with an estimated greater than 90% of adults worldwide infected. A second pathogen, Plasmodium falciparum (P. falciparum) malaria is also linked to BL. In this review, we will discuss recent studies that indicate a role for P. falciparum malaria in dysregulating EBV infection, and increasing the risk for BL in children living where P. falciparum malaria transmission is high.
Collapse
Affiliation(s)
- Rosemary Rochford
- Department of Immunology and Microbiology University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
26
|
Ernberg I, Niller HH, Minarovits J. Epigenetic Alterations of Viral and Cellular Genomes in EBV-Infected Cells. EPIGENETICS AND HUMAN HEALTH 2016:91-122. [DOI: 10.1007/978-3-319-27186-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
27
|
Park S. Polyphenol Compound as a Transcription Factor Inhibitor. Nutrients 2015; 7:8987-9004. [PMID: 26529010 PMCID: PMC4663573 DOI: 10.3390/nu7115445] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/12/2015] [Accepted: 10/23/2015] [Indexed: 02/06/2023] Open
Abstract
A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor–DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein–protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1), c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and β-catenin/T cell factor (Tcf)).
Collapse
Affiliation(s)
- Seyeon Park
- Department of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Korea.
| |
Collapse
|
28
|
Robbiani DF, Deroubaix S, Feldhahn N, Oliveira TY, Callen E, Wang Q, Jankovic M, Silva IT, Rommel PC, Bosque D, Eisenreich T, Nussenzweig A, Nussenzweig MC. Plasmodium Infection Promotes Genomic Instability and AID-Dependent B Cell Lymphoma. Cell 2015; 162:727-37. [PMID: 26276629 PMCID: PMC4538708 DOI: 10.1016/j.cell.2015.07.019] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/20/2015] [Accepted: 06/02/2015] [Indexed: 02/06/2023]
Abstract
Chronic infection with Plasmodium falciparum was epidemiologically associated with endemic Burkitt's lymphoma, a mature B cell cancer characterized by chromosome translocation between the c-myc oncogene and Igh, over 50 years ago. Whether infection promotes B cell lymphoma, and if so by which mechanism, remains unknown. To investigate the relationship between parasitic disease and lymphomagenesis, we used Plasmodium chabaudi (Pc) to produce chronic malaria infection in mice. Pc induces prolonged expansion of germinal centers (GCs), unique compartments in which B cells undergo rapid clonal expansion and express activation-induced cytidine deaminase (AID), a DNA mutator. GC B cells elicited during Pc infection suffer widespread DNA damage, leading to chromosome translocations. Although infection does not change the overall rate, it modifies lymphomagenesis to favor mature B cell lymphomas that are AID dependent and show chromosome translocations. Thus, malaria infection favors mature B cell cancers by eliciting protracted AID expression in GC B cells. PAPERCLIP.
Collapse
Affiliation(s)
- Davide F Robbiani
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.
| | - Stephanie Deroubaix
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Niklas Feldhahn
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qiao Wang
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Israel T Silva
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Philipp C Rommel
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - David Bosque
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Tom Eisenreich
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
29
|
Futagbi G, Gyan B, Nunoo H, Tetteh JKA, Welbeck JE, Renner LA, Ofori M, Dodoo D, Edoh DA, Akanmori BD. High Levels of IL-10 and CD4+CD25hi+ Treg Cells in Endemic Burkitt's Lymphoma Patients. Biomedicines 2015; 3:224-236. [PMID: 28536409 PMCID: PMC5344238 DOI: 10.3390/biomedicines3030224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/17/2015] [Accepted: 07/28/2015] [Indexed: 01/17/2023] Open
Abstract
Background: The interplay between Epstein-Barr virus infection, malaria, and endemic Burkitt’s Lymphoma is not well understood. Reports show diminished EBV-specific Th1 responses in children living in malaria endemic areas and deficiency of EBNA1-specific IFN-γ T cell responses in children with endemic Burkitt’s Lymphoma (eBL). This study, therefore, examined some factors involved in the loss of EBNA-1-specific T cell responses in eBL. Methods: T-cell subset frequencies, activation, and IFN-γ- or IL-4-specific responses were analyzed by flow-cytometry. Plasma cytokine levels were measured by ELISA. Results: CD4+ and CD8+ cells in age- and sex-matched healthy controls (n = 3) expressed more IFN-γ in response to all immunostimulants than in pediatric endemic BL (eBL) patients (n = 4). In healthy controls, IFN-γ expression was higher than IL-4 expression, whereas in eBL patients the expression of IL-4 by CD4+ cells to EBNA-1 was slightly higher than IFN-γ. Moreover, the blood levels of TNF-α was significantly lower (p = 0.004) while IL-10 was significantly higher (p = 0.038), in eBL patients (n = 21) compared to controls (n = 16). Additionally, the frequency of CD4+CD25hi+ T cells was higher in both age-matched acute uncomplicated malaria (n = 26) and eBL (n = 14) patients compared to healthy controls (n = 19; p = 0.000 and p = 0.027, respectively). Conclusion: The data suggest that reduced Th1 response in eBL might be due to increased levels of IL-10 and T reg cells.
Collapse
Affiliation(s)
- Godfred Futagbi
- Department of Animal Biology and Conservation Science, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Ben Gyan
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Harriet Nunoo
- Department of Animal Biology and Conservation Science, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana.
| | - John K A Tetteh
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Jennifer E Welbeck
- Department of Child Health, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, Accra, Ghana.
| | - Lorna Awo Renner
- Department of Child Health, School of Medicine and Dentistry, College of Health Sciences, University of Ghana, Accra, Ghana.
| | - Michael Ofori
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Daniel Dodoo
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Dominic A Edoh
- Department of Animal Biology and Conservation Science, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Bartholomew D Akanmori
- Division of Immunization, Vaccines & Emergencies (IVE), WHO Regional Office for Africa, Cité Djoué, PO Box 06 Brazzaville, Congo Republic.
| |
Collapse
|
30
|
Regulation of Latent Membrane Protein 1 Signaling through Interaction with Cytoskeletal Proteins. J Virol 2015; 89:7277-90. [PMID: 25948738 DOI: 10.1128/jvi.00321-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/28/2015] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED Latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) induces constitutive signaling in EBV-infected cells to ensure the survival of the latently infected cells. LMP1 is localized to lipid raft domains to induce signaling. In the present study, a genome-wide screen based on bimolecular fluorescence complementation (BiFC) was performed to identify LMP1-binding proteins. Several actin cytoskeleton-associated proteins were identified in the screen. Overexpression of these proteins affected LMP1-induced signaling. BiFC between the identified proteins and LMP1 was localized to lipid raft domains and was dependent on LMP1-induced signaling. Proximity biotinylation assays with LMP1 induced biotinylation of the actin-associated proteins, which were shifted in molecular mass. Together, the findings of this study suggest that the association of LMP1 with lipid rafts is mediated at least in part through interactions with the actin cytoskeleton. IMPORTANCE LMP1 signaling requires oligomerization, lipid raft partitioning, and binding to cellular adaptors. The current study utilized a genome-wide screen to identify several actin-associated proteins as candidate LMP1-binding proteins. The interaction between LMP1 and these proteins was localized to lipid rafts and dependent on LMP1 signaling. This suggests that the association of LMP1 with lipid rafts is mediated through interactions with actin-associated proteins.
Collapse
|
31
|
Rowe M, Fitzsimmons L, Bell AI. Epstein-Barr virus and Burkitt lymphoma. CHINESE JOURNAL OF CANCER 2014; 33:609-19. [PMID: 25418195 PMCID: PMC4308657 DOI: 10.5732/cjc.014.10190] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/06/2014] [Indexed: 12/12/2022]
Abstract
In 1964, a new herpesvirus, Epstein-Barr virus (EBV), was discovered in cultured tumor cells derived from a Burkitt lymphoma (BL) biopsy taken from an African patient. This was a momentous event that reinvigorated research into viruses as a possible cause of human cancers. Subsequent studies demonstrated that EBV was a potent growth-transforming agent for primary B cells, and that all cases of BL carried characteristic chromosomal translocations resulting in constitutive activation of the c-MYC oncogene. These results hinted at simple oncogenic mechanisms that would make Burkitt lymphoma paradigmatic for cancers with viral etiology. In reality, the pathogenesis of this tumor is rather complicated with regard to both the contribution of the virus and the involvement of cellular oncogenes. Here, we review the current understanding of the roles of EBV and c-MYC in the pathogenesis of BL and the implications for new therapeutic strategies to treat this lymphoma.
Collapse
Affiliation(s)
- Martin Rowe
- School of Cancer Sciences, University of Bir-mingham CMDS, Vincent Drive, Edgbaston, Birmingham, B15 2TT, UK.
| | | | | |
Collapse
|
32
|
Hong J, Kim SJ, Ahn JS, Song MK, Kim YR, Lee HS, Yhim HY, Yoon DH, Kim MK, Oh SY, Park Y, Mun YC, Do YR, Ryoo HM, Lee JJ, Lee JH, Kim WS, Suh C. Treatment Outcomes of Rituximab Plus Hyper-CVAD in Korean Patients with Sporadic Burkitt or Burkitt-like Lymphoma: Results of a Multicenter Analysis. Cancer Res Treat 2014; 47:173-81. [PMID: 25544581 PMCID: PMC4398112 DOI: 10.4143/crt.2014.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/25/2014] [Indexed: 02/02/2023] Open
Abstract
PURPOSE This study was conducted to evaluate outcomes in adult patients with Burkitt lymphoma (BL) or Burkitt-like lymphoma treated with an rituximab plus hyper-CVAD (R-hyper-CVAD) regimen by focusing on tolerability and actual delivered relative dose intensity (RDI). MATERIALS AND METHODS Patients ≥ 20 years of age and pathologically diagnosed with BL or Burkitt-like lymphoma were treated with at least one cycle of R-hyper-CVAD as the first-line treatment in this study. Eligible patients' case report forms were requested from their physicians to obtain clinical and laboratory data for this retrospective study. RESULTS Forty-three patients (median age, 51 years) from 14 medical centers in Korea were analyzed, none of which were infected with human immunodeficiency virus. The majority of patients had advanced diseases, and 24 patients achieved a complete response (75.0%). After a median follow-up period of 20.0 months, 2-year event-free and overall survival rates were 70.9% and 81.4%, respectively. Eleven patients (25.6%) were unable to complete the R-hyper-CVAD regimen, including six patients due to early death. The RDIs of adriamycin, vincristine, methotrexate, and cytarabine were between 60% and 65%, which means less than 25% of patients received greater than 80% of the planned dose of each drug. Poor performance status was related to the lower RDIs of doxorubicin and methotrexate. CONCLUSION R-hyper-CVAD showed excellent treatment outcomes in patients who were suitable for dose-intense chemotherapy. However, management of patients who are intolerant to a dose-intense regimen remains problematic due to the frequent occurrence of treatmentrelated complications.
Collapse
Affiliation(s)
- Junshik Hong
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Seok Jin Kim
- Department of Medicine, Samsung Medical Center, Sunkyunkwan University School of Medicine, Seoul, Korea
| | - Jae-Sook Ahn
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Moo Kon Song
- Department of Hematology-Oncology, Pusan National University Hospital, Busan, Korea
| | - Yu Ri Kim
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ho Sup Lee
- Department of Internal Medicine, Kosin University Gospel Hospital, Busan, Korea
| | - Ho-Young Yhim
- Department of Internal Medicine, Chonbuk National University Hospital, Jeonju, Korea
| | - Dok Hyun Yoon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min Kyoung Kim
- Department of Internal Medicine, Yeungnam University Medical Center, Daegu, Korea
| | - Sung Yong Oh
- Department of Internal Medicine, Dong-A University Hospital, Busan, Korea
| | - Yong Park
- Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Yeung-Chul Mun
- Department of Internal Medicine, Ewha Womans University Mokdong Hospital, Seoul, Korea
| | - Young Rok Do
- Department of Hematology-Oncology, Keimyung University Dongsan Medical Center, Keimyung University School of Medicine, Daegu, Korea
| | - Hun-Mo Ryoo
- Department of Internal Medicine, Daegu Catholic University Medical Center, Daegu, Korea
| | - Je-Jung Lee
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Jae Hoon Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| | - Won Seog Kim
- Department of Medicine, Samsung Medical Center, Sunkyunkwan University School of Medicine, Seoul, Korea
| | - Cheolwon Suh
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
33
|
Tursiella ML, Bowman ER, Wanzeck KC, Throm RE, Liao J, Zhu J, Sample CE. Epstein-Barr virus nuclear antigen 3A promotes cellular proliferation by repression of the cyclin-dependent kinase inhibitor p21WAF1/CIP1. PLoS Pathog 2014; 10:e1004415. [PMID: 25275486 PMCID: PMC4183747 DOI: 10.1371/journal.ppat.1004415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 08/21/2014] [Indexed: 11/20/2022] Open
Abstract
Latent infection by Epstein-Barr virus (EBV) is highly associated with the endemic form of Burkitt lymphoma (eBL), which typically limits expression of EBV proteins to EBNA-1 (Latency I). Interestingly, a subset of eBLs maintain a variant program of EBV latency - Wp-restricted latency (Wp-R) - that includes expression of the EBNA-3 proteins (3A, 3B and 3C), in addition to EBNA-1. In xenograft assays, Wp-R BL cell lines were notably more tumorigenic than their counterparts that maintain Latency I, suggesting that the additional latency-associated proteins expressed in Wp-R influence cell proliferation and/or survival. Here, we evaluated the contribution of EBNA-3A. Consistent with the enhanced tumorigenic potential of Wp-R BLs, knockdown of EBNA-3A expression resulted in abrupt cell-cycle arrest in G0/G1 that was concomitant with conversion of retinoblastoma protein (Rb) to its hypophosphorylated state, followed by a loss of Rb protein. Comparable results were seen in EBV-immortalized B lymphoblastoid cell lines (LCLs), consistent with the previous observation that EBNA-3A is essential for sustained growth of these cells. In agreement with the known ability of EBNA-3A and EBNA-3C to cooperatively repress p14ARF and p16INK4a expression, knockdown of EBNA-3A in LCLs resulted in rapid elevation of p14ARF and p16INK4a. By contrast, p16INK4a was not detectably expressed in Wp-R BL and the low-level expression of p14ARF was unchanged by EBNA-3A knockdown. Amongst other G1/S regulatory proteins, only p21WAF1/CIP1, a potent inducer of G1 arrest, was upregulated following knockdown of EBNA-3A in Wp-R BL Sal cells and LCLs, coincident with hypophosphorylation and destabilization of Rb and growth arrest. Furthermore, knockdown of p21WAF1/CIP1 expression in Wp-R BL correlated with an increase in cellular proliferation. This novel function of EBNA-3A is distinct from the functions previously described that are shared with EBNA-3C, and likely contributes to the proliferation of Wp-R BL cells and LCLs. Epstein-Barr virus (EBV) infects over 98% of the population worldwide and is associated with a variety of human cancers. In the healthy host, the virus represses expression of its proteins to avoid detection by the immune system to enable it to remain in the body for the lifetime of its host, a situation known as latency. This downregulation was first observed in EBV-associated Burkitt lymphoma (BL), which classically express only one viral protein, EBNA-1. A subset of BL named Wp-restricted (Wp-R) BL express additional latency-associated viral proteins. Because Wp-R BL also express wild-type p53 (which normally prevents cellular proliferation), we wanted to explore the possibility that these viral proteins play a role in tumorigenesis. Indeed, we have demonstrated that Wp-R BL cells are more tumorigenic in immunocompromised mice than other BL. Here, we have investigated the role of one of these viral proteins, EBNA-3A. If we inhibit the expression of EBNA-3A, Wp-R BL cells fail to proliferate and express increased p21WAF1/CIP1, a cellular protein that inhibits cell proliferation. These results suggest that this previously undescribed function of EBNA-3A plays a role in the proliferation and likely contributes to tumorigenesis in Wp-R BL.
Collapse
Affiliation(s)
- Melissa L. Tursiella
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, and the Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Emily R. Bowman
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, and the Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Keith C. Wanzeck
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Robert E. Throm
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Jason Liao
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, and the Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Junjia Zhu
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, and the Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States of America
| | - Clare E. Sample
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, and the Penn State Hershey Cancer Institute, Hershey, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
34
|
Rapid Generation of Epstein-Barr Virus–Specific T Cells for Cellular Therapy. Transplant Proc 2014; 46:21-5. [DOI: 10.1016/j.transproceed.2013.04.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/15/2013] [Accepted: 04/23/2013] [Indexed: 11/21/2022]
|
35
|
Song A, Ye J, Zhang K, Sun L, Zhao Y, Yu H. Lentiviral vector-mediated siRNA knockdown of c-MYC: cell growth inhibition and cell cycle arrest at G2/M phase in Jijoye cells. Biochem Genet 2013; 51:603-17. [PMID: 23657834 DOI: 10.1007/s10528-013-9590-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 10/16/2012] [Indexed: 12/25/2022]
Abstract
Inhibition of c-MYC has been considered as a potential therapy for lymphoma treatment. We explored a lentiviral vector-mediated small interfering RNA (siRNA) expression vector to stably reduce c-MYC expression in B cell line Jijoye cells and investigated the effects of c-MYC downregulation on cell growth, cell cycle, and apoptosis in vitro. The expression of c-MYC mRNA and protein levels were inhibited significantly by c-MYC siRNA. The c-MYC downregulation resulted in the inhibition of cell proliferation and cell cycle arrest at G2/M phase, which was associated with decreased expression of cyclin B and cyclin-dependent kinase 1 (CDK1) and increased expression of CDK inhibitor p21 proteins. In addition, downregulation of c-MYC induced cell apoptosis characterized by DNA fragmentation and caspase-3 activation. Taken together, these results suggest that lentiviral vector-mediated siRNA for c-MYC may be a promising approach for targeting c-MYC in the treatment of Burkitt lymphoma.
Collapse
Affiliation(s)
- Aiqin Song
- Department of Pediatric Hematology, Affiliated Hospital of Qingdao University Medical College, 16 Jiangsu Road, Qingdao, 266001 Shandong, China.
| | | | | | | | | | | |
Collapse
|
36
|
Kelly GL, Stylianou J, Rasaiyaah J, Wei W, Thomas W, Croom-Carter D, Kohler C, Spang R, Woodman C, Kellam P, Rickinson AB, Bell AI. Different patterns of Epstein-Barr virus latency in endemic Burkitt lymphoma (BL) lead to distinct variants within the BL-associated gene expression signature. J Virol 2013; 87:2882-94. [PMID: 23269792 PMCID: PMC3571367 DOI: 10.1128/jvi.03003-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/17/2012] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) is present in all cases of endemic Burkitt lymphoma (BL) but in few European/North American sporadic BLs. Gene expression arrays of sporadic tumors have defined a consensus BL profile within which tumors are classifiable as "molecular BL" (mBL). Where endemic BLs fall relative to this profile remains unclear, since they not only carry EBV but also display one of two different forms of virus latency. Here, we use early-passage BL cell lines from different tumors, and BL subclones from a single tumor, to compare EBV-negative cells with EBV-positive cells displaying either classical latency I EBV infection (where EBNA1 is the only EBV antigen expressed from the wild-type EBV genome) or Wp-restricted latency (where an EBNA2 gene-deleted virus genome broadens antigen expression to include the EBNA3A, -3B, and -3C proteins and BHRF1). Expression arrays show that both types of endemic BL fall within the mBL classification. However, while EBV-negative and latency I BLs show overlapping profiles, Wp-restricted BLs form a distinct subgroup, characterized by a detectable downregulation of the germinal center (GC)-associated marker Bcl6 and upregulation of genes marking early plasmacytoid differentiation, notably IRF4 and BLIMP1. Importantly, these same changes can be induced in EBV-negative or latency I BL cells by infection with an EBNA2-knockout virus. Thus, we infer that the distinct gene profile of Wp-restricted BLs does not reflect differences in the identity of the tumor progenitor cell per se but differences imposed on a common progenitor by broadened EBV gene expression.
Collapse
Affiliation(s)
- Gemma L. Kelly
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Julianna Stylianou
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Jane Rasaiyaah
- School of Life and Medical Sciences, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Wenbin Wei
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Wendy Thomas
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Deborah Croom-Carter
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Christian Kohler
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Rainer Spang
- Institute of Functional Genomics, University of Regensburg, Regensburg, Germany
| | - Ciaran Woodman
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Paul Kellam
- School of Life and Medical Sciences, Division of Infection and Immunity, University College London, London, United Kingdom
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Alan B. Rickinson
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Andrew I. Bell
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
37
|
Fiorino S, Lorenzini S, Masetti M, Deleonardi G, Grondona AG, Silvestri T, Chili E, Del Prete P, Bacchi-Reggiani L, Cuppini A, Jovine E. Hepatitis B and C virus infections as possible risk factor for pancreatic adenocarcinoma. Med Hypotheses 2012; 79:678-97. [PMID: 22959312 DOI: 10.1016/j.mehy.2012.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 07/20/2012] [Accepted: 08/09/2012] [Indexed: 12/14/2022]
Abstract
Pancreatic adenocarcinoma (PAC) is a very aggressive and lethal cancer, with a very poor prognosis, because of absence of early symptoms, advanced stage at presentation, early metastatic dissemination and lack of both specific tests to detect its growth in the initial phases and effective systemic therapies. To date, the causes of PAC still remain largely unknown, but multiple lines of evidence from epidemiological and laboratory researches suggest that about 15-20% of all cancers are linked in some way to chronic infection, in particular it has been shown that several viruses have a role in human carcinogenesis. The purpose of this report is to discuss the hypothesis that two well-known oncogenic viruses, Human B hepatitis (HBV) and Human C hepatitis (HCV) are a possible risk factor for this cancer. Therefore, with the aim to examine the potential link between these viruses and PAC, we performed a selection of observational studies evaluating this association and we hypothesized that some pathogenetic mechanisms involved in liver carcinogenesis might be in common with pancreatic cancer development in patients with serum markers of present or past HBV and HCV infections. To date the available observational studies performed are few, heterogeneous in design as well as in end-points and with not univocal results, nevertheless they might represent the starting-point for future larger and better designed clinical trials to define this hypothesized relationship. Should these further studies confirm an association between HBV/HCV infection and PAC, screening programs might be justified in patients with active or previous hepatitis B and C viral infection.
Collapse
Affiliation(s)
- S Fiorino
- Unità Operativa di Medicina Interna, Ospedale di Budrio, Budrio, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Identification of transmembrane protein 134 as a novel LMP1-binding protein by using bimolecular fluorescence complementation and an enhanced retroviral mutagen. J Virol 2012; 86:11345-55. [PMID: 22855487 DOI: 10.1128/jvi.00523-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Latent membrane protein 1 (LMP1) of Epstein-Barr virus induces constitutive signaling in infected cells. LMP1 signaling requires oligomerization of LMP1 via its transmembrane domain, localization to lipid rafts in the membrane, and association of the LMP1 cytoplasmic domain to adaptor proteins, such as the tumor necrosis factor receptor-associated factors (TRAFs). Protein complementation is a novel technique to examine protein-protein interaction through the assembly of functional fluorescent proteins or enzymes from inactive fragments. A previous study in our lab demonstrated the use of bimolecular fluorescence complementation (BiFC) to study the assembly of the LMP1 signaling complexes within the plasma membrane of mammalian cells. In the present study, LMP1 was used as bait in a genome-wide BiFC screen with an enhanced retroviral mutagen to identify new LMP1-binding proteins. Our screen identified a novel LMP1-binding protein, transmembrane protein 134 (Tmem134). Tmem134 is a candidate oncogene that is amplified in breast cancer cell lines. Binding, colocalization, and cofractionation between LMP1 and Tmem134 were confirmed. Finally, Tmem134 affected LMP1-induced NF-κB induction. Together, these data suggest that BiFC is a unique and novel platform to identify proteins recruited to the LMP1-signaling complex.
Collapse
|
39
|
Bi CF, Tang Y, Zhang WY, Zhao S, Wang XQ, Yang QP, Li GD, Liu WP. Sporadic Burkitt lymphomas of children and adolescents in Chinese: a clinicopathological study of 43 cases. Diagn Pathol 2012; 7:72. [PMID: 22726497 PMCID: PMC3414834 DOI: 10.1186/1746-1596-7-72] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 06/22/2012] [Indexed: 02/05/2023] Open
Abstract
Background To investigate the clinical and pathologic features as well as the MYC translocations of childhood Burkitt lymphoma (BL) from China. Methods Fourty-three cases of childhood BL were retrospectively investigated in morphology, immunophenotype, genotype, treatments and survival analysis. Results Clinically, there was a marked male predominance in sex distribution (M: F = 9.75:1); abdomen was the most frequent extranodal sites of involvement (46.5 %), followed by jaws and facial bones (16.3 %). Two third of the patients were in stageI ~ II. Morphologically, 69.76 % of the cases showed classical histologic features, while 30.24 % of them showed greater nuclear pleomorphism in size and shape. Five cases (11.6 %) were positive for EBER1/2. Thirty-one of the 40 cases (77.5 %) had the aberration of IGH/MYC translocation while 7 (17.5 %) had non-IGH/MYC translocation. Thirty patients (69.7 %) received operation and/or chemotherapy while 13 patients (30.3 %) received no treatment. Twenty-seven patients (62.8 %) died of the tumor, 16 alive, with the average survival time 4.9 and 48.7 months respectively. High IPI, advanced clinical stage, increased serum level of LDH and no chemotherapy received as well as tumor size ≥10 cm were related to the lower survival rates of the tumor. Conclusions Several differences were showed in this group of BL, including a much higher ratio of male patients, more cases in stageII, clinically inconsistent treatment and a very poor outcome. Virtual slides The virtual slide(s) for this article can be found here http://www.diagnosticpathology.diagnomx.eu/vs/1552295877710135
Collapse
Affiliation(s)
- Cheng-Feng Bi
- Department of Pathology, West China Hospital of Sichuan University, Guoxue street 37, Chengdu, Sichuan, 610041, China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Mouse model of endemic Burkitt translocations reveals the long-range boundaries of Ig-mediated oncogene deregulation. Proc Natl Acad Sci U S A 2012; 109:10972-7. [PMID: 22711821 DOI: 10.1073/pnas.1200106109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human Burkitt lymphomas are divided into two main clinical variants: the endemic form, affecting African children infected with malaria and the Epstein-Barr virus, and the sporadic form, distributed across the rest of the world. However, whereas sporadic translocations decapitate Myc from 5' proximal regulatory elements, most endemic events occur hundreds of kilobases away from Myc. The origin of these rearrangements and how they deregulate oncogenes at such distances remain unclear. We here recapitulate endemic Burkitt lymphoma-like translocations in plasmacytomas from uracil N-glycosylase and activation-induced cytidine deaminase-deficient mice. Mapping of translocation breakpoints using an acetylated histone H3 lysine 9 chromatin immunoprecipitation sequencing approach reveals Igh fusions up to ∼350 kb upstream of Myc or the related oncogene Mycn. A comprehensive analysis of epigenetic marks, PolII recruitment, and transcription in tumor cells demonstrates that the 3' Igh enhancer (Eα) vastly remodels ∼450 kb of chromatin into translocated sequences, leading to significant polymerase occupancy and constitutive oncogene expression. We show that this long-range epigenetic reprogramming is directly proportional to the physical interaction of Eα with translocated sites. Our studies thus uncover the extent of epigenetic remodeling by Ig 3' enhancers and provide a rationale for the long-range deregulation of translocated oncogenes in endemic Burkitt lymphomas. The data also shed light on the origin of endemic-like chromosomal rearrangements.
Collapse
|
41
|
Arthur FKN, Owusu L, Yeboah FA, Rettig T, Osei-Akoto A. Prognostic significance of biochemical markers in African Burkitt's lymphoma. Clin Transl Oncol 2012; 13:731-6. [PMID: 21975335 DOI: 10.1007/s12094-011-0724-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
BACKGROUND AND PURPOSE Endemic Burkitt's lymphoma (eBL) remains the prevalent form of paediatric cancer in tropical Africa with subtle pathological differences. This calls for intensified efforts to validate the global prognostic markers within local settings for improved cancer treatment and survival. This study proposes prognostic markers for enhanced eBL treatment and management. PATIENTS AND METHOD One hundred and eighty histologically and/or clinically diagnosed BL patients at Komfo Anokye Teaching Hospital, Kumasi, Ghana were eligible for this cross-sectional eight-year retrospective study. Biochemical, clinical and demographic data, before chemotherapy administration, were documented and examined for their progression-free (PFS) and overall survival (OS) significance. RESULTS A mean age of 6 (SD=2.7, range: 1-16) years was observed with general male dominance (M:F=1.69:1). Total serum lactate dehydrogenase (HR=2.04; 95% CI, 1.25-3.32; log rank=8.3; p=0.004), serum creatinine (HR=3.59; 95% CI, 1.62-7.98; log rank=15.4; p=0.002) and St. Jude stage (HR=1.74; 95% CI, 1.11-2.73; log rank=8.0; p=0.015) were important independent prognostic biochemical markers for both PFS and OS. Age, serum calcium, uric acid, potassium, sodium and phosphorus were non-prognostic. CONCLUSION The better monitoring of these prognostic indices coupled with risk-stratification treatment may improve patients' survival, especially in resource-limited settings.
Collapse
Affiliation(s)
- F K N Arthur
- Department of Biochemistry and Biotechnology, College of Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | | | | | | | | |
Collapse
|
42
|
Everly D, Sharma-Walia N, Sadagopan S, Chandran B. Herpesviruses and Cancer. CANCER ASSOCIATED VIRUSES 2012:133-167. [DOI: 10.1007/978-1-4614-0016-5_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
43
|
van den Bosch C. A Role for RNA Viruses in the Pathogenesis of Burkitt's Lymphoma: The Need for Reappraisal. Adv Hematol 2011; 2012:494758. [PMID: 22550493 PMCID: PMC3328886 DOI: 10.1155/2012/494758] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 11/11/2011] [Indexed: 12/14/2022] Open
Abstract
Certain infectious agents are associated with lymphomas, but the strength of the association varies geographically, suggesting that local environmental factors make important contributions to lymphomagenesis. Endemic Burkitt's Lymphoma has well-defined environmental requirements making it particularly suitable for research into local environmental factors. The Epstein-Barr virus and holoendemic Malaria are recognized as important cofactors in endemic Burkitt's Lymphoma and their contributions are discussed. Additionally, infection with Chikungunya Fever, a potentially oncogenic arbovirus, was associated with the onset of endemic Burkitt's Lymphoma in one study and also with space-time case clusters of the lymphoma. Chikungunya Virus has several characteristics typical of oncogenic viruses. The Flavivirus, Hepatitis C, a Class 1 Human Carcinogen, closely related to the arboviruses, Yellow Fever, and Dengue, is also more distantly related to Chikungunya Virus. The mechanisms of oncogenesis believed to operate in Hepatitis C lymphomagenesis are discussed, as is their potential applicability to Chikungunya Virus.
Collapse
Affiliation(s)
- Corry van den Bosch
- Research Facilitation Forum, Pilgrims Hospices, Canterbury, Kent CT2 8JA, UK
| |
Collapse
|
44
|
Abstract
Hematopoiesis is a process capable of generating millions of cells every second, as distributed in many cell types. The process is regulated by a number of transcription factors that regulate the differentiation along the distinct lineages and dictate the genetic program that defines each mature phenotype. Myc was first discovered as the oncogene of avian leukemogenic retroviruses; it was later found translocated in human lymphoma. From then on, evidence accumulated showing that c-Myc is one of the transcription factors playing a major role in hematopoiesis. The study of genetically modified mice with overexpression or deletion of Myc has shown that c-Myc is required for the correct balance between self-renewal and differentiation of hematopoietic stem cells (HSCs). Enforced Myc expression in mice leads to reduced HSC pools owing to loss of self-renewal activity at the expense of increased proliferation of progenitor cells and differentiation. c-Myc deficiency consistently results in the accumulation of HSCs. Other models with conditional Myc deletion have demonstrated that different lineages of hematopoietic cells differ in their requirement for c-Myc to regulate their proliferation and differentiation. When transgenic mice overexpress c-Myc or N-Myc in mature cells from the lymphoid or myeloid lineages, the result is lymphoma or leukemia. In agreement, enforced expression of c-Myc blocks the differentiation in several leukemia-derived cell lines capable of differentiating in culture. Not surprising, MYC deregulation is recurrently found in many types of human lymphoma and leukemia. Whereas MYC is deregulated by translocation in Burkitt lymphoma and, less frequently, other types of lymphoma, MYC is frequently overexpressed in acute lymphoblastic and myeloid leukemia, through mechanisms unrelated to chromosomal translocation, and is often associated with disease progression.
Collapse
Affiliation(s)
- M Dolores Delgado
- Departamento de Biología Molecular, Facultad de Medicina and Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria-CSIC, Santander, Spain
| | | |
Collapse
|
45
|
Schrader A, Bentink S, Spang R, Lenze D, Hummel M, Kuo M, Arrand JR, Murray PG, Trümper L, Kube D, Vockerodt M. High Myc activity is an independent negative prognostic factor for diffuse large B cell lymphomas. Int J Cancer 2011; 131:E348-61. [PMID: 21913186 DOI: 10.1002/ijc.26423] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 08/02/2011] [Indexed: 12/11/2022]
Abstract
Gene expression profiling has recently enabled the reclassification of aggressive non-Hodgkin lymphomas (aNHL) into distinct subgroups. In Burkitt lymphoma (BL) aberrant c-Myc activity results from IG-MYC translocations. However, MYC aberrations are not limited to BLs and then have a negative prognostic impact. In this study, we investigated to which extent aberrant c-Myc activity plays a functional role in other aNHL and whether it is independent from MYC translocations. Based on a combined microarray analysis of human germinal center (GC) B cells transfected with c-Myc and 220 aNHLs cases, we developed a "c-Myc index." This index measures the extent to which lymphomas express c-Myc responsive genes. It comprises genes that are affected in a variety of tumors compared to normal tissue. This supports the view that aberrant c-Myc expression in GC B cells triggers a tumor-like expression pattern. As expected, the "c-Myc index" is very high in molecular Burkitt lymphoma (mBL), but more importantly also high within other aNHL. It constitutes a negative prognostic marker independent of established risk factors and of the presence of a MYC translocation. Our data provide new insights into the role of c-Myc activity in different lymphomas and raises the question of treatment changes for those patients under risk.
Collapse
Affiliation(s)
- Alexandra Schrader
- Department of Haematology and Oncology, University Medical Centre of the Georg-August University Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mathad RI, Hatzakis E, Dai J, Yang D. c-MYC promoter G-quadruplex formed at the 5'-end of NHE III1 element: insights into biological relevance and parallel-stranded G-quadruplex stability. Nucleic Acids Res 2011; 39:9023-33. [PMID: 21795379 PMCID: PMC3203601 DOI: 10.1093/nar/gkr612] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We studied the structures and stabilities of G-quadruplexes formed in Myc1234, the region containing the four consecutive 5′ runs of guanines of c-MYC promoter NHE III1, which have recently been shown to form in a supercoiled plasmid system in aqueous solution. We determined the NMR solution structure of the 1:2:1 parallel-stranded loop isomer, one of the two major loop isomers formed in Myc1234 in K+ solution. This major loop isomer, although sharing the same folding structure, appears to be markedly less stable than the major loop isomer formed in the single-stranded c-MYC NHE III1 oligonucleotide, the Myc2345 G-quadruplex. Our NMR structures indicated that the different thermostabilities of the two 1:2:1 parallel c-MYC G-quadruplexes are likely caused by the different base conformations of the single nucleotide loops. The observation of the formation of the Myc1234 G-quadruplex in the supercoiled plasmid thus points to the potential role of supercoiling in the G-quadruplex formation in promoter sequences. We also performed a systematic thermodynamic analysis of modified c-MYC NHE III1 sequences, which provided quantitative measure of the contributions of various loop sequences to the thermostabilities of parallel-stranded G-quadruplexes. This information is important for understanding the equilibrium of promoter G-quadruplex loop isomers and for their drug targeting.
Collapse
|
47
|
Mahmud I, Abdel-Mannan OA, Wotton CJ, Goldacre MJ. Maternal and perinatal factors associated with hospitalised infectious mononucleosis in children, adolescents and young adults: record linkage study. BMC Infect Dis 2011; 11:51. [PMID: 21356092 PMCID: PMC3056792 DOI: 10.1186/1471-2334-11-51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 02/28/2011] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND There is current interest in the role of perinatal factors in the aetiology of diseases that occur later in life. Infectious mononucleosis (IM) can follow late primary infection with Epstein-Barr virus (EBV), and has been shown to increase the risk of multiple sclerosis and Hodgkin's disease. Little is known about maternal or perinatal factors associated with IM or its sequelae. METHODS We investigated perinatal risk factors for hospitalised IM using a prospective record-linkage study in a population in the south of England. The dataset used, the Oxford record linkage study (ORLS), includes abstracts of birth registrations, maternities and in-patient hospital records, including day case care, for all subjects in a defined geographical area. From these sources, we identified cases of hospitalised IM up to the age of 30 years in people for whom the ORLS had a maternity record; and we compared perinatal factors in their pregnancy with those in the pregnancy of children who had no hospital record of IM. RESULTS Our data showed a significant association between hospitalised IM and lower social class (p = 0.02), a higher risk of hospitalised IM in children of married rather than single mothers (p < 0.001), and, of marginal statistical significance, an association with singleton birth (p = 0.06). The ratio of observed to expected cases of hospitalised IM in each season was 0.95 in winter, 1.02 in spring, 1.02 in summer and 1.00 in autumn. The chi-square test for seasonality, with a value of 0.8, was not significant.Other factors studied, including low birth weight, short gestational age, maternal smoking, late age at motherhood, did not increase the risk of subsequent hospitalised IM. CONCLUSIONS Because of the increasing tendency of women to postpone childbearing, it is useful to know that older age at motherhood is not associated with an increased risk of hospitalised IM in their children. We have no explanation for the finding that children of married women had a higher risk of IM than those of single mothers. Though highly significant, it may nonetheless be a chance finding. We found no evidence that such perinatal factors as birth weight and gestational age, or season of birth, were associated with the risk of hospitalised IM.
Collapse
Affiliation(s)
- Imran Mahmud
- Clinical Medicine, Somerville College, University of Oxford, Oxford, OX2 6HD, UK
| | - Omar A Abdel-Mannan
- Clinical Medicine, St John's College, University of Oxford, Oxford, OX1 3JP, UK
| | - Clare J Wotton
- Unit of Health-Care Epidemiology, Department of Public Health, University of Oxford, Old Road Campus, Old Road, Oxford OX3 7LF, UK
| | - Michael J Goldacre
- Unit of Health-Care Epidemiology, Department of Public Health, University of Oxford, Old Road Campus, Old Road, Oxford OX3 7LF, UK
| |
Collapse
|
48
|
Cen O, Longnecker R. Rapamycin reverses splenomegaly and inhibits tumor development in a transgenic model of Epstein-Barr virus-related Burkitt's lymphoma. Mol Cancer Ther 2011; 10:679-86. [PMID: 21282357 DOI: 10.1158/1535-7163.mct-10-0833] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epstein-Barr virus (EBV) infection and latency has been associated with malignancies, including nasopharyngeal carcinoma and Burkitt's lymphoma. EBV encoded latent membrane protein 2A (LMP2A) is expressed in most EBV-associated malignancies and as such provides a therapeutic target. Burkitt's lymphoma is a hematopoietic cancer associated with the translocation of c-MYC to one of the immunoglobulin gene promoters leading to abnormally high expression of MYC and development of lymphoma. Our laboratory has developed a murine model of EBV-associated Burkitt's lymphoma by crossing LMP2A transgenic mice with MYC transgenic mice. Since LMP2A has been shown to activate the PI3K/Akt/mTOR pathway, we tested the therapeutic efficacy of mTOR inhibitor rapamycin on the tumors and splenomegaly in these double transgenic mice (Tg6/λ-MYC). We found that rapamycin reversed splenomegaly in Tg6/λ-MYC mice prior to tumor formation by targeting B cells. In a tumor transfer model, we also found that rapamycin significantly decreased tumor growth, splenomegaly, and metastasis of tumor cells in the bone marrow of tumor recipients. Our data show that rapamycin may be a valuable candidate for the development of a treatment modality for EBV-positive lymphomas, such as Burkitt's lymphoma, and more importantly, provides a basis to develop inhibitors that specifically target viral gene function in tumor cells that depend on LMP2A signaling for survival and/or growth.
Collapse
Affiliation(s)
- Osman Cen
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Ward 6-241, Chicago, IL 60611, USA
| | | |
Collapse
|
49
|
Abstract
The link between evasion of apoptosis and the development of cellular hyperplasia and ultimately cancer is implicitly clear if one considers how many cells are produced each day and, hence, how many cells must die to make room for the new ones (reviewed in Raff, 1996). Furthermore, cells are frequently experiencing noxious stimuli that can cause lesions in their DNA and faults in DNA replication can occur during cellular proliferation. Such DNA damage needs to be repaired efficiently or cells with irreparable damage must be killed to prevent subsequent division of aberrant cells that may fuel tumorigenesis (reviewed in Weinberg, 2007). The detection of genetic lesions in human cancers that activate prosurvival genes or disable proapoptotic genes have provided the first evidence that defects in programmed cell death can cause cancer (Tagawa et al., 2005; Tsujimoto et al., 1984; Vaux, Cory, and Adams, 1988) and this concept was proven by studies with genetically modified mice (Egle et al., 2004b; Strasser et al., 1990a). It is therefore now widely accepted that evasion of apoptosis is a requirement for both neoplastic transformation and sustained growth of cancer cells (reviewed in Cory and Adams, 2002; Hanahan and Weinberg, 2000; Weinberg, 2007). Importantly, apoptosis is also a major contributor to anticancer therapy-induced killing of tumor cells (reviewed in Cory and Adams, 2002; Cragg et al., 2009). Consequently, a detailed understanding of apoptotic cell death will help to better comprehend the complexities of tumorigenesis and should assist with the development of improved targeted therapies for cancer based on the direct activation of the apoptotic machinery (reviewed in Lessene, Czabotar, and Colman, 2008).
Collapse
Affiliation(s)
- Gemma Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
50
|
Structural basis for apoptosis inhibition by Epstein-Barr virus BHRF1. PLoS Pathog 2010; 6:e1001236. [PMID: 21203485 PMCID: PMC3009601 DOI: 10.1371/journal.ppat.1001236] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 11/22/2010] [Indexed: 01/19/2023] Open
Abstract
Epstein-Barr virus (EBV) is associated with human malignancies, especially those affecting the B cell compartment such as Burkitt lymphoma. The virally encoded homolog of the mammalian pro-survival protein Bcl-2, BHRF1 contributes to viral infectivity and lymphomagenesis. In addition to the pro-apoptotic BH3-only protein Bim, its key target in lymphoid cells, BHRF1 also binds a selective sub-set of pro-apoptotic proteins (Bid, Puma, Bak) expressed by host cells. A consequence of BHRF1 expression is marked resistance to a range of cytotoxic agents and in particular, we show that its expression renders a mouse model of Burkitt lymphoma untreatable. As current small organic antagonists of Bcl-2 do not target BHRF1, the structures of it in complex with Bim or Bak shown here will be useful to guide efforts to target BHRF1 in EBV-associated malignancies, which are usually associated with poor clinical outcomes. Altruistic suicide of infected host cells is a key defense mechanism to combat viral infection. To ensure their own survival and proliferation, certain viruses, including Epstein-Barr virus (EBV), have mechanisms to subvert apoptosis, including the expression of homologs of the mammalian pro-survival protein Bcl-2. EBV was first identified in association with Burkitt lymphoma and it is also linked to certain Hodgkin's lymphomas and nasopharyngeal carcinoma. Whereas increased expression of Bcl-2 promotes malignancies such as human follicular lymphoma, the precise role of the EBV encoded Bcl-2 homolog BHRF1 in EBV-associated malignancies is less well defined. BHRF1 is known to bind the pro-apoptotic BH3-only protein Bim, and here we demonstrate that it also binds other pro-apoptotic proteins (Bid, Puma, Bak) expressed by host cells. Crystal structures of BHRF1 with the BH3 regions of Bim and Bak illustrate these interactions in atomic detail. A consequence of BHRF1 expression is marked resistance to a range of cytotoxic agents, and we show that its expression renders a mouse model of Burkitt lymphoma untreatable. As current antagonists of Bcl-2 do not target BHRF1, our crystal structures will be useful to guide efforts to target BHRF1 in EBV-associated malignancies, which are usually associated with poor clinical outcomes.
Collapse
|