1
|
Moise AC, Kay JE, Engelward BP. Transgenic mice harboring direct repeat substrates reveal key underlying causes of homologous recombination in vivo. DNA Repair (Amst) 2022; 120:103419. [DOI: 10.1016/j.dnarep.2022.103419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022]
|
2
|
Kay JE, Mirabal S, Briley WE, Kimoto T, Poutahidis T, Ragan T, So PT, Wadduwage DN, Erdman SE, Engelward BP. Analysis of mutations in tumor and normal adjacent tissue via fluorescence detection. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:108-123. [PMID: 33314311 PMCID: PMC7880898 DOI: 10.1002/em.22419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Inflammation is a major risk factor for many types of cancer, including colorectal. There are two fundamentally different mechanisms by which inflammation can contribute to carcinogenesis. First, reactive oxygen and nitrogen species (RONS) can damage DNA to cause mutations that initiate cancer. Second, inflammatory cytokines and chemokines promote proliferation, migration, and invasion. Although it is known that inflammation-associated RONS can be mutagenic, the extent to which they induce mutations in intestinal stem cells has been little explored. Furthermore, it is now widely accepted that cancer is caused by successive rounds of clonal expansion with associated de novo mutations that further promote tumor development. As such, we aimed to understand the extent to which inflammation promotes clonal expansion in normal and tumor tissue. Using an engineered mouse model that is prone to cancer and within which mutant cells fluoresce, here we have explored the impact of inflammation on de novo mutagenesis and clonal expansion in normal and tumor tissue. While inflammation is strongly associated with susceptibility to cancer and a concomitant increase in the overall proportion of mutant cells in the tissue, we did not observe an increase in mutations in normal adjacent tissue. These results are consistent with opportunities for de novo mutations and clonal expansion during tumor growth, and they suggest protective mechanisms that suppress the risk of inflammation-induced accumulation of mutant cells in normal tissue.
Collapse
Affiliation(s)
- Jennifer E. Kay
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Sheyla Mirabal
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
| | | | - Takafumi Kimoto
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Theofilos Poutahidis
- Laboratory of Pathology, Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Greece
| | | | - Peter T. So
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Dushan N. Wadduwage
- The John Harvard Distinguished Science Fellows Program, Harvard University, Cambridge, MA
- Center for Advanced Imaging, Harvard University, Cambridge, MA, USA
| | - Susan E. Erdman
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
| | - Bevin P. Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
3
|
DNA Repair and Ovarian Carcinogenesis: Impact on Risk, Prognosis and Therapy Outcome. Cancers (Basel) 2020; 12:cancers12071713. [PMID: 32605254 PMCID: PMC7408288 DOI: 10.3390/cancers12071713] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
There is ample evidence for the essential involvement of DNA repair and DNA damage response in the onset of solid malignancies, including ovarian cancer. Indeed, high-penetrance germline mutations in DNA repair genes are important players in familial cancers: BRCA1, BRCA2 mutations or mismatch repair, and polymerase deficiency in colorectal, breast, and ovarian cancers. Recently, some molecular hallmarks (e.g., TP53, KRAS, BRAF, RAD51C/D or PTEN mutations) of ovarian carcinomas were identified. The manuscript overviews the role of DNA repair machinery in ovarian cancer, its risk, prognosis, and therapy outcome. We have attempted to expose molecular hallmarks of ovarian cancer with a focus on DNA repair system and scrutinized genetic, epigenetic, functional, and protein alterations in individual DNA repair pathways (homologous recombination, non-homologous end-joining, DNA mismatch repair, base- and nucleotide-excision repair, and direct repair). We suggest that lack of knowledge particularly in non-homologous end joining repair pathway and the interplay between DNA repair pathways needs to be confronted. The most important genes of the DNA repair system are emphasized and their targeting in ovarian cancer will deserve further attention. The function of those genes, as well as the functional status of the entire DNA repair pathways, should be investigated in detail in the near future.
Collapse
|
4
|
Feng L, Du J, Yao C, Jiang Z, Li T, Zhang Q, Guo X, Yu M, Xia H, Shi L, Jia J, Tong Y, Ju L, Liu J, Lou J, Lemos B. Ribosomal DNA copy number is associated with P53 status and levels of heavy metals in gastrectomy specimens from gastric cancer patients. ENVIRONMENT INTERNATIONAL 2020; 138:105593. [PMID: 32120062 DOI: 10.1016/j.envint.2020.105593] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
The ribosomal DNA (rDNA) can act as a sensor and responder of cancer-associated stress. Here we investigated rDNA copy number in gastric cancers and its association with existing biomarkers and metals exposure. This study was performed on paired tumor and adjacent normal tissues obtained from 65 gastric cancer patients who underwent gastrectomy. Immunohistochemistry was used to assess HER-2, E-cadherin, EGFR, CK (pan), CK20, CK7, TopoⅡ, CAM5.2, P53, and Ki-67 expression. Inductively coupled plasma mass spectrometry (ICP-MS) was used to detect the concentrations of 17 metals in gastric tissues. rDNA copy number was detected by qPCR in genomic DNA isolated from tissue samples. Associations between the expression of existing markers, metal concentrations, and rDNA copy number were evaluated. Within patients with gastric cancer, the copy number of the 45S rDNA components (18S, 5.8S, 28S) and the 5S rDNA in tumor tissues were significantly higher than those in adjacent normal tissues, whereas mitochondrial DNA (mtDNA) copy number was significantly lower in tumor tissues than that in adjacent normal tissues. Further analysis revealed that the increase in 18S, 5.8S, and 28S rDNA copy number in tumor tissues was diminished in the context of EGFR and P53 loss. Moreover, analysis of metals revealed particularly high concentrations of As, Cd, Cr, Cu and Fe in the gastric tissues of these patients. Intriguingly, rDNA copy number variation across individuals was correlated with the concentrations of some metals. The rDNA was amplified in tumor tissues of gastric cancer patients, and its amplification may be associated with metals exposure. The expression of EGFR and P53 may influence rDNA copy number, with diminished amplification of the rDNA in cancers that were negative for these biomarkers. Our observation further our understanding of rDNA copy number in gastric cancer and its potential as a simple and useful marker in gastric cancer monitoring.
Collapse
Affiliation(s)
- Lingfang Feng
- Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, China; Hangzhou Medical College, Hangzhou, China
| | - Jing Du
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, China; People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Chunji Yao
- Institute of Hygiene, Zhejiang Academy of Medical Sciences, Hangzhou, China; Hangzhou Medical College, Hangzhou, China
| | - Zhaoqiang Jiang
- Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, China; Hangzhou Medical College, Hangzhou, China
| | - Tao Li
- Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, China; Hangzhou Medical College, Hangzhou, China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xinnian Guo
- Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, China; Hangzhou Medical College, Hangzhou, China
| | - Min Yu
- Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, China; Hangzhou Medical College, Hangzhou, China
| | - Hailing Xia
- Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, China; Hangzhou Medical College, Hangzhou, China
| | - Li Shi
- Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, China; Hangzhou Medical College, Hangzhou, China
| | - Junlin Jia
- Center for Biostatistics, Bioinformatics and Big Data, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Tong
- Affiliated Hangzhou First People's Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Li Ju
- Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, China; Hangzhou Medical College, Hangzhou, China
| | - Jiaqi Liu
- Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, China; Hangzhou Medical College, Hangzhou, China
| | - Jianlin Lou
- Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, China; Hangzhou Medical College, Hangzhou, China.
| | - Bernardo Lemos
- Department of Environmental Health, Harvard University T.H. Chan School of Public Health, Boston, USA
| |
Collapse
|
5
|
Ji Y, Yu C, Zhang H. contamDE-lm: linear model-based differential gene expression analysis using next-generation RNA-seq data from contaminated tumor samples. Bioinformatics 2020; 36:2492-2499. [PMID: 31917401 DOI: 10.1093/bioinformatics/btaa006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/30/2019] [Accepted: 01/03/2020] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Tumor and adjacent normal RNA samples are commonly used to screen differentially expressed genes between normal and tumor samples or among tumor subtypes. Such paired-sample design could avoid numerous confounders in differential expression (DE) analysis, but the cellular contamination of tumor samples can be an important noise and confounding factor, which can both inflate false-positive rate and deflate true-positive rate. The existing DE tools that use next-generation RNA-seq data either do not account for cellular contamination or are computationally extensive with increasingly large sample size. RESULTS A novel linear model was proposed to avoid the problem that could arise from tumor-normal correlation for paired samples. A statistically robust and computationally very fast DE analysis procedure, contamDE-lm, was developed based on the novel model to account for cellular contamination, boosting DE analysis power through the reduction in individual residual variances using gene-wise information. The desired advantages of contamDE-lm over some state-of-the-art methods (limma and DESeq2) were evaluated through the applications to simulated data, TCGA database and Gene Expression Omnibus (GEO) database. AVAILABILITY AND IMPLEMENTATION The proposed method contamDE-lm was implemented in an updated R package contamDE (version 2.0), which is freely available at https://github.com/zhanghfd/contamDE. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yifan Ji
- Institute of Biostatistics, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Chang Yu
- Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hong Zhang
- Department of Statistics and Finance, School of Management, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
6
|
Furukawa S, Nagamatsu A, Nenoi M, Fujimori A, Kakinuma S, Katsube T, Wang B, Tsuruoka C, Shirai T, Nakamura AJ, Sakaue-Sawano A, Miyawaki A, Harada H, Kobayashi M, Kobayashi J, Kunieda T, Funayama T, Suzuki M, Miyamoto T, Hidema J, Yoshida Y, Takahashi A. Space Radiation Biology for "Living in Space". BIOMED RESEARCH INTERNATIONAL 2020; 2020:4703286. [PMID: 32337251 PMCID: PMC7168699 DOI: 10.1155/2020/4703286] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/13/2020] [Indexed: 12/16/2022]
Abstract
Space travel has advanced significantly over the last six decades with astronauts spending up to 6 months at the International Space Station. Nonetheless, the living environment while in outer space is extremely challenging to astronauts. In particular, exposure to space radiation represents a serious potential long-term threat to the health of astronauts because the amount of radiation exposure accumulates during their time in space. Therefore, health risks associated with exposure to space radiation are an important topic in space travel, and characterizing space radiation in detail is essential for improving the safety of space missions. In the first part of this review, we provide an overview of the space radiation environment and briefly present current and future endeavors that monitor different space radiation environments. We then present research evaluating adverse biological effects caused by exposure to various space radiation environments and how these can be reduced. We especially consider the deleterious effects on cellular DNA and how cells activate DNA repair mechanisms. The latest technologies being developed, e.g., a fluorescent ubiquitination-based cell cycle indicator, to measure real-time cell cycle progression and DNA damage caused by exposure to ultraviolet radiation are presented. Progress in examining the combined effects of microgravity and radiation to animals and plants are summarized, and our current understanding of the relationship between psychological stress and radiation is presented. Finally, we provide details about protective agents and the study of organisms that are highly resistant to radiation and how their biological mechanisms may aid developing novel technologies that alleviate biological damage caused by radiation. Future research that furthers our understanding of the effects of space radiation on human health will facilitate risk-mitigating strategies to enable long-term space and planetary exploration.
Collapse
Affiliation(s)
- Satoshi Furukawa
- Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Aiko Nagamatsu
- Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505, Japan
| | - Mitsuru Nenoi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Akira Fujimori
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Takanori Katsube
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Bing Wang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Chizuru Tsuruoka
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Toshiyuki Shirai
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Asako J. Nakamura
- Department of Biological Sciences, College of Science, Ibaraki University, 2-1-1, Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Asako Sakaue-Sawano
- Lab for Cell Function and Dynamics, CBS, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Atsushi Miyawaki
- Lab for Cell Function and Dynamics, CBS, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroshi Harada
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Minoru Kobayashi
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Junya Kobayashi
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoo Funayama
- Takasaki Advanced Radiation Research Institute, QST, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Michiyo Suzuki
- Takasaki Advanced Radiation Research Institute, QST, 1233 Watanuki-machi, Takasaki, Gunma 370-1292, Japan
| | - Tatsuo Miyamoto
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
| | - Jun Hidema
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
- Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yukari Yoshida
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Akihisa Takahashi
- Gunma University Heavy Ion Medical Center, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
7
|
Stults DM, Killen MW, Marco-Casanova P, Pierce AJ. The Sister Chromatid Exchange (SCE) Assay. Methods Mol Biol 2020; 2102:441-457. [PMID: 31989571 DOI: 10.1007/978-1-0716-0223-2_25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
A fully optimized staining method for detecting sister chromatid exchanges in cultured cells is presented. The method gives reproducibly robust quantitative results. Sister chromatid exchange is a classic toxicology assay for genotoxicity and for detecting alterations to the biochemistry underlying cellular homologous recombination. Growth of cells in the presence of 5'-bromo-deoxyuridine for two rounds of DNA replication followed by collecting metaphase spreads on glass slides, treatment with the UV-sensitive dye Hoechst 33258, long-wave UV light exposure, and Giemsa staining gives a permanent record of the exchanges.
Collapse
Affiliation(s)
- Dawn M Stults
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY, USA.,Clovis Oncology, Boulder, CO, USA
| | - Michael W Killen
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA.,Western Kentucky University, Bowling Green, KY, USA
| | | | - Andrew J Pierce
- Translational Medicine, Oncology R&D, AstraZeneca, Cambridge, United Kingdom. .,Department of Microbiology, Immunology and Molecular Genetics, Markey Cancer Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
8
|
Tuna M, Liu W, Amos CI, Mills GB. Genome-Wide Profiling of Acquired Uniparental Disomy Reveals Prognostic Factors in Head and Neck Squamous Cell Carcinoma. Neoplasia 2019; 21:1102-1109. [PMID: 31734631 PMCID: PMC6889229 DOI: 10.1016/j.neo.2019.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 01/04/2023] Open
Abstract
Acquired uniparental disomy (aUPD) leads to homozygosity facilitating identification of monoallelically expressed genes. We analyzed single-nucleotide polymorphism array-based genotyping data of 448 head and neck squamous cell carcinoma (HNSCC) samples from The Cancer Genome Atlas to determine the frequency and distribution of aUPD regions and their association with survival, as well as to gain a better understanding of their influence on the tumor genome. We used expression data from the same dataset to identify differentially expressed genes between groups with and without aUPD. Univariate and multivariable Cox proportional hazards models were performed for survival analysis. We found that 82.14% of HNSCC samples carried aUPD; the most common regions were in chromosome 17p (31.25%), 9p (30.13%), and 9q (27.46%). In univariate analysis, five independent aUPD regions at chromosome 9p, two regions at chromosome 9q, and the CDKN2A region were associated with poor overall survival in all groups, including training and test sets and human papillomavirus (HPV)-negative samples. Forty-three genes in areas of aUPD including PD-L1 and CDKN2A were differentially expressed in samples with aUPD compared to samples without aUPD. In multivariable analysis, aUPD at the CDKN2A region was a significant predictor of overall survival in the whole cohort and in patients with HPV-negative HNSCC. aUPD at specific regions in the genome influences clinical outcomes of HNSCC and may be beneficial for selection of personalized therapy to prolong survival in patients with this disease.
Collapse
Affiliation(s)
- Musaffe Tuna
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Medicine, Baylor College of Medicine, Houston, TX.
| | - Wenbin Liu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX; Department of Cell, Developmental & Cancer Biology, School of Medicine, Oregon Health Science University, Portland, OR; Precision Oncology, Knight Cancer Institute, Portland, OR
| |
Collapse
|
9
|
Genome-Wide Analysis of Head and Neck Squamous Cell Carcinomas Reveals HPV, TP53, Smoking and Alcohol-Related Allele-Based Acquired Uniparental Disomy Genomic Alterations. Neoplasia 2019; 21:197-205. [PMID: 30616092 PMCID: PMC6321975 DOI: 10.1016/j.neo.2018.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023] Open
Abstract
Smoking and alcohol intake are major risk factors in head and neck squamous cell carcinomas (HNSCCs). Although the link between TP53 mutation and smoking has been well established, very little is known about the link between acquired uniparental disomy (aUPD) and smoking and/or alcohol consumption or other clinical characteristics. We used TCGA genomic data to investigate whether smoking, alcohol intake, clinical and demographic variables, HPV status and TP53 mutation are associated with aUPD at specific chromosomal regions. In multivariate analysis, we found association between aUPD regions and risk factors and clinical variables of disease. aUPD regions on chromosome 4q, 5q, 9p, 9q, 13q, 17p and CDKN2A occurred significantly more often in patients with TP53-mutated HNSCC than in those with wild-type HNSCC, while aUPD regions on chromosome 9p and at CDKN2A were significantly more frequent in females than in males. Besides, aUPD occurred more frequent in HPV-positive than in HPV-negative samples with all HNSCC and larynx cancers on chromosome 9q 15q and 17p. Moreover, aUPD on CDKN2A region occurred more often in alcohol drinkers than nondrinkers in patients with all HNSCC and oral cavity cancers, while aUPD region on chromosome 5q occurred less in alcohol drinkers than nondrinkers in patients with all HNSCC and oral cavity cancers. Similarly, aUPD region on chromosome 5q occurred less in smokers than nonsmokers in patients with all HNSCC and oral cavity cancers. In conclusion, aUPD regions are not random, and certain regions are associated with risk factors for disease, and with TP53 mutation status.
Collapse
|
10
|
Sarıkaya R, Koçak Memmi B, Sümer S, Erkoç F. Mutagenic and recombinogenic assessment of widely used pesticides on Drosophila melanogaster. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2019. [DOI: 10.15547/bjvm.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mutagenic potential of selected widely used pesticides: p,p'-dichlorodiphenyltrichloroethane (DDT); fenitrothion; propoxur; deltamethrin, bifenthrin; imidacloprid and thiametoxam was assessed using the wing spot test. Third-instar larvae of standard Drosophila melanogaster cross (ST), trans-heterozygous for the third chromosome recessive markers, multiple wing hairs (mwh) and flare (flr3) were chronically exposed to test compounds. Feeding ended with pupation of the surviving larvae. Genetic changes induced in somatic cells of the wing’s imaginal discs, mutant spots observed in marker-heterozygous (MH) and balancer-heterozygous (BH) flies were compared using the wing spot test, to estimate the genotoxic effects of these pesticides. In conclusion, exposure to 30 mg/mL deltamethrin, 40 mg/mL imidacloprid, 100 µg/mL DDT showed mutagenic and recombinagenic effects in the Drosophila wing spot test. In addition the results of chronic treatments performed at high doses showed mutagenic and recombinagenic effects in both genotypes
Collapse
|
11
|
Sun J, Shi L, Kinomura A, Fukuto A, Horikoshi Y, Oma Y, Harata M, Ikura M, Ikura T, Kanaar R, Tashiro S. Distinct roles of ATM and ATR in the regulation of ARP8 phosphorylation to prevent chromosome translocations. eLife 2018; 7:e32222. [PMID: 29759113 PMCID: PMC5953535 DOI: 10.7554/elife.32222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 04/25/2018] [Indexed: 12/26/2022] Open
Abstract
Chromosomal translocations are hallmarks of various types of cancers and leukemias. However, the molecular mechanisms of chromosome translocations remain largely unknown. The ataxia-telangiectasia mutated (ATM) protein, a DNA damage signaling regulator, facilitates DNA repair to prevent chromosome abnormalities. Previously, we showed that ATM deficiency led to the 11q23 chromosome translocation, the most frequent chromosome abnormalities in secondary leukemia. Here, we show that ARP8, a subunit of the INO80 chromatin remodeling complex, is phosphorylated after etoposide treatment. The etoposide-induced phosphorylation of ARP8 is regulated by ATM and ATR, and attenuates its interaction with INO80. The ATM-regulated phosphorylation of ARP8 reduces the excessive loading of INO80 and RAD51 onto the breakpoint cluster region. These findings suggest that the phosphorylation of ARP8, regulated by ATM, plays an important role in maintaining the fidelity of DNA repair to prevent the etoposide-induced 11q23 abnormalities.
Collapse
Affiliation(s)
- Jiying Sun
- Department of Cellular Biology, Research Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| | - Lin Shi
- Department of Cellular Biology, Research Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| | - Aiko Kinomura
- Department of Cellular Biology, Research Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| | - Atsuhiko Fukuto
- Department of Cellular Biology, Research Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical SciencesHiroshima UniversityHiroshimaJapan
| | - Yasunori Horikoshi
- Department of Cellular Biology, Research Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| | - Yukako Oma
- Laboratory of Molecular Biology, Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Masahiko Harata
- Laboratory of Molecular Biology, Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
| | - Masae Ikura
- Laboratory of Chromatin Regulatory Network, Department of MutagenesisRadiation Biology Center, Kyoto UniversityKyotoJapan
| | - Tsuyoshi Ikura
- Laboratory of Chromatin Regulatory Network, Department of MutagenesisRadiation Biology Center, Kyoto UniversityKyotoJapan
| | - Roland Kanaar
- Department of Molecular GeneticsOncode InstituteRotterdamNetherlands
| | - Satoshi Tashiro
- Department of Cellular Biology, Research Institute for Radiation Biology and MedicineHiroshima UniversityHiroshimaJapan
| |
Collapse
|
12
|
Fernandes JB, Duhamel M, Seguéla-Arnaud M, Froger N, Girard C, Choinard S, Solier V, De Winne N, De Jaeger G, Gevaert K, Andrey P, Grelon M, Guerois R, Kumar R, Mercier R. FIGL1 and its novel partner FLIP form a conserved complex that regulates homologous recombination. PLoS Genet 2018; 14:e1007317. [PMID: 29608566 PMCID: PMC5897033 DOI: 10.1371/journal.pgen.1007317] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 04/12/2018] [Accepted: 03/19/2018] [Indexed: 02/07/2023] Open
Abstract
Homologous recombination is central to repair DNA double-strand breaks, either accidently arising in mitotic cells or in a programed manner at meiosis. Crossovers resulting from the repair of meiotic breaks are essential for proper chromosome segregation and increase genetic diversity of the progeny. However, mechanisms regulating crossover formation remain elusive. Here, we identified through genetic and protein-protein interaction screens FIDGETIN-LIKE-1 INTERACTING PROTEIN (FLIP) as a new partner of the previously characterized anti-crossover factor FIDGETIN-LIKE-1 (FIGL1) in Arabidopsis thaliana. We showed that FLIP limits meiotic crossover together with FIGL1. Further, FLIP and FIGL1 form a protein complex conserved from Arabidopsis to human. FIGL1 interacts with the recombinases RAD51 and DMC1, the enzymes that catalyze the DNA strand exchange step of homologous recombination. Arabidopsis flip mutants recapitulate the figl1 phenotype, with enhanced meiotic recombination associated with change in counts of DMC1 and RAD51 foci. Our data thus suggests that FLIP and FIGL1 form a conserved complex that regulates the crucial step of strand invasion in homologous recombination. Homologous recombination is a DNA repair mechanism that is essential to preserve the integrity of genetic information and thus to prevent cancer formation. Homologous recombination is also used during sexual reproduction to generate genetic diversity in the offspring by shuffling parental chromosomes. Here, we identified a novel protein complex (FLIP-FIGL1) that regulates homologous recombination and is conserved from plants to mammals. This suggests the existence of a novel mode of regulation at a central step of homologous recombination.
Collapse
Affiliation(s)
- Joiselle Blanche Fernandes
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, RD10,Versailles, France
- Université Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Marine Duhamel
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, RD10,Versailles, France
| | - Mathilde Seguéla-Arnaud
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, RD10,Versailles, France
| | - Nicole Froger
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, RD10,Versailles, France
| | - Chloé Girard
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, RD10,Versailles, France
| | - Sandrine Choinard
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, RD10,Versailles, France
| | - Victor Solier
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, RD10,Versailles, France
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Kris Gevaert
- Department of Biochemistry, Ghent University, Ghent, Belgium
- VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Philippe Andrey
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, RD10,Versailles, France
| | - Mathilde Grelon
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, RD10,Versailles, France
| | - Raphael Guerois
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, CEA-Saclay, Gif-sur-Yvette, France
| | - Rajeev Kumar
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, RD10,Versailles, France
- * E-mail: (RK); (RM)
| | - Raphaël Mercier
- Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Université Paris-Saclay, RD10,Versailles, France
- * E-mail: (RK); (RM)
| |
Collapse
|
13
|
Dall GV, Britt KL. Estrogen Effects on the Mammary Gland in Early and Late Life and Breast Cancer Risk. Front Oncol 2017; 7:110. [PMID: 28603694 PMCID: PMC5445118 DOI: 10.3389/fonc.2017.00110] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 05/10/2017] [Indexed: 12/16/2022] Open
Abstract
A woman has an increased risk of breast cancer if her lifelong estrogen exposure is increased due to an early menarche, a late menopause, and/or an absence of childbearing. For decades, it was presumed that the number of years of exposure drove the increased risk, however, recent epidemiological data have shown that early life exposure (young menarche) has a more significant effect on cancer risk than late menopause. Thus, rather than the overall exposure it seems that the timing of hormone exposure plays a major role in defining breast cancer risk. In support of this, it is also known that aberrant hormonal exposure prior to puberty can also increase breast cancer risk, yet the elevated estrogen levels during pregnancy decrease breast cancer risk. This suggests that the effects of estrogen on the mammary gland/breast are age-dependent. In this review article, we will discuss the existing epidemiological data linking hormone exposure and estrogen receptor-positive breast cancer risk including menarche, menopause, parity, and aberrant environmental hormone exposure. We will discuss the predominantly rodent generated experimental data that confirm the association with hormone exposure and breast cancer risk, confirming its use as a model system. We will review the work that has been done attempting to define the direct effects of estrogen on the breast, which are beginning to reveal the mechanism of increased cancer risk. We will then conclude with our views on the most pertinent questions to be addressed experimentally in order to explore the relationship between age, estrogen exposure, and breast cancer risk.
Collapse
Affiliation(s)
| | - Kara Louise Britt
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Nallanthighal S, Shirode AB, Judd JA, Reliene R. Pomegranate Intake Protects Against Genomic Instability Induced by Medical X-rays In Vivo in Mice. Nutr Cancer 2016; 68:1349-1356. [PMID: 27673354 DOI: 10.1080/01635581.2016.1225104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ionizing radiation (IR) is a well-documented human carcinogen. The increased use of IR in medical procedures has doubled the annual radiation dose and may increase cancer risk. Genomic instability is an intermediate lesion in IR-induced cancer. We examined whether pomegranate extract (PE) suppresses genomic instability induced by x-rays. Mice were treated orally with PE and exposed to an x-ray dose of 2 Gy. PE intake suppressed x-ray-induced DNA double-strand breaks (DSBs) in peripheral blood and chromosomal damage in bone marrow. We hypothesized that PE-mediated protection against x-ray-induced damage may be due to the upregulation of DSB repair and antioxidant enzymes and/or increase in glutathione (GSH) levels. We found that expression of DSB repair genes was not altered (Nbs1 and Rad50) or was reduced (Mre11, DNA-PKcs, Ku80, Rad51, Rad52 and Brca2) in the liver of PE-treated mice. Likewise, mRNA levels of antioxidant enzymes were reduced (Gpx1, Cat, and Sod2) or were not altered (HO-1 and Sod1) as a function of PE treatment. In contrast, PE-treated mice with and without IR exposure displayed higher hepatic GSH concentrations than controls. Thus, ingestion of pomegranate polyphenols is associated with inhibition of x-ray-induced genomic instability and elevated GSH, which may reduce cancer risk.
Collapse
Affiliation(s)
- Sameera Nallanthighal
- a Cancer Research Center , University at Albany , Rensselaer , New York , USA.,b Department of Biomedical Sciences , University at Albany, State University of New York , Albany , New York , USA
| | - Amit B Shirode
- a Cancer Research Center , University at Albany , Rensselaer , New York , USA.,c Department of Environmental Health Sciences , University at Albany, State University of New York , Albany , New York , USA
| | - Julius A Judd
- a Cancer Research Center , University at Albany , Rensselaer , New York , USA.,c Department of Environmental Health Sciences , University at Albany, State University of New York , Albany , New York , USA
| | - Ramune Reliene
- a Cancer Research Center , University at Albany , Rensselaer , New York , USA.,c Department of Environmental Health Sciences , University at Albany, State University of New York , Albany , New York , USA
| |
Collapse
|
15
|
Oza J, Ganguly B, Kulkarni A, Ginjala V, Yao M, Ganesan S. A Novel Role of Chromodomain Protein CBX8 in DNA Damage Response. J Biol Chem 2016; 291:22881-22893. [PMID: 27555324 DOI: 10.1074/jbc.m116.725879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Indexed: 12/18/2022] Open
Abstract
Induction of DNA damage induces a dynamic repair process involving DNA repair factors and epigenetic regulators. Chromatin alterations must occur for DNA repair factors to gain access to DNA lesions and restore original chromatin configuration to preserve the gene expression profile. We characterize the novel role of CBX8, a chromodomain-containing protein with established roles in epigenetic regulation in DNA damage response. CBX8 protein rapidly accumulates at the sites of DNA damage within 30 s and progresses to accumulate until 4 min before gradually dispersing back to its predamage distribution by 15 min. CBX8 recruitment to the sites of DNA damage is dependent upon PARP1 activation and not dependent on ATM activation. CBX8 biochemically interacts with TRIM33, and its recruitment to DNA damage is also dependent on the presence of TRIM33. Knockdown of CBX8 using siRNA significantly reduces the efficiency of both homologous and the other non-homologous recombination, as well as increases sensitivity of cells to ionizing radiation. These findings demonstrate that CBX8 functions in the PARP-dependent DNA damage response partly through interaction with TRIM33 and is required for efficient DNA repair.
Collapse
Affiliation(s)
- Jay Oza
- From the MD-PhD Program, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903.,the Department of Cellular and Molecular Pharmacology, Rutgers-Graduate School of Biomedical Sciences, Piscataway, New Jersey 08854.,the Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, and.,the Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire 03766
| | - Bratati Ganguly
- the Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, and
| | - Atul Kulkarni
- the Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, and
| | - Vasudeva Ginjala
- the Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, and
| | - Ming Yao
- the Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, and
| | - Shridar Ganesan
- the Department of Cellular and Molecular Pharmacology, Rutgers-Graduate School of Biomedical Sciences, Piscataway, New Jersey 08854, .,the Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, and
| |
Collapse
|
16
|
Canonical DNA Repair Pathways Influence R-Loop-Driven Genome Instability. J Mol Biol 2016; 429:3132-3138. [PMID: 27452366 DOI: 10.1016/j.jmb.2016.07.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/05/2016] [Accepted: 07/12/2016] [Indexed: 12/22/2022]
Abstract
DNA repair defects create cancer predisposition in humans by fostering a higher rate of mutations. While DNA repair is quite well characterized, recent studies have identified previously unrecognized relationships between DNA repair and R-loop-mediated genome instability. R-loops are three-stranded nucleic acid structures in which RNA binds to genomic DNA to displace a loop of single-stranded DNA. Mutations in homologous recombination, nucleotide excision repair, crosslink repair, and DNA damage checkpoints have all now been linked to formation and function of transcription-coupled R-loops. This perspective will summarize recent literature linking DNA repair to R-loop-mediated genomic instability and discuss how R-loops may contribute to mutagenesis in DNA-repair-deficient cancers.
Collapse
|
17
|
Conover HN, Argueso JL. Contrasting mechanisms of de novo copy number mutagenesis suggest the existence of different classes of environmental copy number mutagens. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:3-9. [PMID: 26247157 DOI: 10.1002/em.21967] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/05/2015] [Accepted: 07/07/2015] [Indexed: 05/23/2023]
Abstract
While gene copy number variations (CNVs) are abundant in the human genome, and often are associated with disease consequences, the mutagenic pathways and environmental exposures that cause these large structural mutations are understudied relative to conventional nucleotide substitutions in DNA. The members of the environmental mutagenesis community are currently seeking to remedy this deficiency, and there is a renewed interest in the development of mutagenicity assays to identify and characterize compounds that may induce de novo CNVs in humans. To achieve this goal, it is critically important to acknowledge that CNVs exist in two very distinct classes: nonrecurrent and recurrent CNVs. The goal of this commentary is to emphasize the deep contrasts that exist between the proposed pathways that lead to these two mutation classes. Nonrecurrent de novo CNVs originate primarily in mitotic cells through replication-dependent DNA repair pathways that involve microhomologies (<10 bp), and are detected at higher frequency in children of older fathers. In contrast, recurrent de novo CNVs are most often formed in meiotic cells through homologous recombination between nonallelic large low-copy repeats (>10,000 bp), without an associated paternal age effect. Given the biological differences between the two CNV classes, it is our belief that nonrecurrent and recurrent CN mutagens will probably differ substantially in their modes of action. Therefore, each CNV class may require their own uniquely designed assays, so that we as a field may succeed in uncovering the broadest possible spectrum of environmental CN mutagens.
Collapse
Affiliation(s)
- Hailey N Conover
- Department of Environmental and Radiological Health Sciences, Cell and Molecular Biology Graduate Program, Institute for Genome Architecture and Function, Colorado State University, Fort Collins, Colorado
| | - Juan Lucas Argueso
- Department of Environmental and Radiological Health Sciences, Cell and Molecular Biology Graduate Program, Institute for Genome Architecture and Function, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
18
|
Rosa26-GFP direct repeat (RaDR-GFP) mice reveal tissue- and age-dependence of homologous recombination in mammals in vivo. PLoS Genet 2014; 10:e1004299. [PMID: 24901438 PMCID: PMC4046920 DOI: 10.1371/journal.pgen.1004299] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 02/24/2014] [Indexed: 01/15/2023] Open
Abstract
Homologous recombination (HR) is critical for the repair of double strand breaks and broken replication forks. Although HR is mostly error free, inherent or environmental conditions that either suppress or induce HR cause genomic instability. Despite its importance in carcinogenesis, due to limitations in our ability to detect HR in vivo, little is known about HR in mammalian tissues. Here, we describe a mouse model in which a direct repeat HR substrate is targeted to the ubiquitously expressed Rosa26 locus. In the Rosa26Direct Repeat-GFP (RaDR-GFP) mice, HR between two truncated EGFP expression cassettes can yield a fluorescent signal. In-house image analysis software provides a rapid method for quantifying recombination events within intact tissues, and the frequency of recombinant cells can be evaluated by flow cytometry. A comparison among 11 tissues shows that the frequency of recombinant cells varies by more than two orders of magnitude among tissues, wherein HR in the brain is the lowest. Additionally, de novo recombination events accumulate with age in the colon, showing that this mouse model can be used to study the impact of chronic exposures on genomic stability. Exposure to N-methyl-N-nitrosourea, an alkylating agent similar to the cancer chemotherapeutic temozolomide, shows that the colon, liver and pancreas are susceptible to DNA damage-induced HR. Finally, histological analysis of the underlying cell types reveals that pancreatic acinar cells and liver hepatocytes undergo HR and also that HR can be specifically detected in colonic somatic stem cells. Taken together, the RaDR-GFP mouse model provides new understanding of how tissue and age impact susceptibility to HR, and enables future studies of genetic, environmental and physiological factors that modulate HR in mammals. Cancer is a disease of the genome, caused by accumulated genetic changes, such as point mutations and large-scale sequence rearrangements. Homologous recombination (HR) is a critical DNA repair pathway. While generally accurate, HR between misaligned sequences or between homologous chromosomes can lead to insertions, deletions, and loss of heterozygosity, all of which are known to promote cancer. Indeed, most cancers harbor sequence changes caused by HR, and genetic and environmental conditions that induce or suppress HR are often carcinogenic. To enable studies of HR in vivo, we created the Rosa26 Direct Repeat-Green Fluorescent Protein (RaDR-GFP) mice that carry an integrated transgenic recombination reporter targeted to the ubiquitously expressed Rosa26 locus. Being able to detect recombinant cells by fluorescence reveals that the frequency of recombination is highly variable among tissues. Furthermore, new recombination events accumulate over time, which contributes to our understanding of why our risk for cancer increases with age. This mouse model provides new understanding of this important DNA repair pathway in vivo, and also enables future studies of genetic, environmental and physiological factors that impact the risk of HR-induced sequence rearrangements in vivo.
Collapse
|
19
|
Sasaki MS, Tachibana A, Takeda S. Cancer risk at low doses of ionizing radiation: artificial neural networks inference from atomic bomb survivors. JOURNAL OF RADIATION RESEARCH 2014; 55:391-406. [PMID: 24366315 PMCID: PMC4014156 DOI: 10.1093/jrr/rrt133] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/20/2013] [Accepted: 10/22/2013] [Indexed: 06/03/2023]
Abstract
Cancer risk at low doses of ionizing radiation remains poorly defined because of ambiguity in the quantitative link to doses below 0.2 Sv in atomic bomb survivors in Hiroshima and Nagasaki arising from limitations in the statistical power and information available on overall radiation dose. To deal with these difficulties, a novel nonparametric statistics based on the 'integrate-and-fire' algorithm of artificial neural networks was developed and tested in cancer databases established by the Radiation Effects Research Foundation. The analysis revealed unique features at low doses that could not be accounted for by nominal exposure dose, including (i) the presence of a threshold that varied with organ, gender and age at exposure, and (ii) a small but significant bumping increase in cancer risk at low doses in Nagasaki that probably reflects internal exposure to (239)Pu. The threshold was distinct from the canonical definition of zero effect in that it was manifested as negative excess relative risk, or suppression of background cancer rates. Such a unique tissue response at low doses of radiation exposure has been implicated in the context of the molecular basis of radiation-environment interplay in favor of recently emerging experimental evidence on DNA double-strand break repair pathway choice and its epigenetic memory by histone marking.
Collapse
Affiliation(s)
- Masao S. Sasaki
- Kyoto University, 17-12 Shironosato, Nagaokakyo-shi, Kyoto 617-0835, Japan
| | - Akira Tachibana
- Department of Biology, Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-konoecho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
20
|
Tung EW, Philbrook NA, Belanger CL, Ansari S, Winn LM. Benzo[a]pyrene increases DNA double strand break repair in vitro and in vivo: A possible mechanism for benzo[a]pyrene-induced toxicity. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 760:64-9. [DOI: 10.1016/j.mrgentox.2013.12.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/23/2013] [Accepted: 12/24/2013] [Indexed: 01/08/2023]
|
21
|
Abstract
A fully optimized staining method for detecting sister chromatid exchanges in cultured cells is presented. The method gives reproducibly robust quantitative results. Sister chromatid exchange is a classic toxicology assay for genotoxicity and for detecting alterations to the biochemistry underlying cellular homologous recombination. Growth of cells in the presence of 5'-bromo-deoxyuridine for two rounds of DNA replication followed by collecting metaphase spreads on glass slides, treatment with the UV-sensitive dye Hoechst 33258, long-wave UV light exposure, and Giemsa staining gives a permanent record of the exchanges.
Collapse
Affiliation(s)
- Dawn M Stults
- Markey Cancer Center, University of Kentucky, 222 Combs Research Building, 800 Rose Street, Lexington, KY, 40536-0096, USA
| | | | | |
Collapse
|
22
|
The ATM-mediated DNA-damage response. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
23
|
Verma S, Rao BJ. p53 suppresses BRCA2-stimulated ATPase and strand exchange functions of human RAD51. J Biochem 2013; 154:237-48. [PMID: 23678008 DOI: 10.1093/jb/mvt040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although homologous recombination (HR) is an important pathway for DNA repair, it can also be a cause for deleterious genomic rearrangements leading to carcinogenesis. Therefore, cells have evolved elaborate mechanisms to regulate HR, positively as well as negatively. Among many molecular components that regulate HR are tumour suppressors p53, a negative regulator and breast cancer early-onset (BRCA)2, a positive regulator. Both the players not only interact with each other but also directly interact with human RAD51 (hRAD51), the key recombinase in HR. Here, for the first time we studied HR regulation by the combined action of p53 and BRCA2, in vitro. While BRC4 peptide inhibits ATP hydrolysis by hRAD51, BRCA2(BRC1-8) stimulates DNA-independent and double-stranded DNA-dependent ATPase several fold and only marginally single-stranded DNA-dependent ATPase. Pull down assays demonstrated the occurrence of complex comprising of all three proteins and DNA, where p53 tends to compete out hRAD51 and BRCA2(BRC1-8), leading to not only the decline in ATP hydrolysis but also the strand exchange function of hRAD51 that was stimulated by BRCA2(BRC1-8). Our findings suggest a rigorous p53-mediated regulation on hRAD51 functions in HR even in the presence of BRCA2.
Collapse
Affiliation(s)
- Shalini Verma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, Maharashtra, India
| | | |
Collapse
|
24
|
Zhang L, Mitani Y, Caulin C, Rao PH, Kies MS, Saintigny P, Zhang N, Weber RS, Lippman SM, El-Naggar AK. Detailed genome-wide SNP analysis of major salivary carcinomas localizes subtype-specific chromosome sites and oncogenes of potential clinical significance. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:2048-57. [PMID: 23583282 DOI: 10.1016/j.ajpath.2013.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/04/2013] [Accepted: 02/11/2013] [Indexed: 01/31/2023]
Abstract
The molecular genetic alterations underlying the development and diversity of salivary gland carcinomas are largely unknown. To characterize these events, comparative genomic hybridization analysis was performed, using a single-nucleotide polymorphism microarray platform, of 60 fresh-frozen specimens that represent the main salivary carcinoma types: mucoepidermoid carcinoma (MEC), adenoid cystic carcinoma (ACC), and salivary duct carcinoma (SDC). The results were correlated with the clinicopathologic features and translocation statuses to characterize the genetic alterations. The most commonly shared copy number abnormalities (CNAs) in all types were losses at chromosomes 6q23-26 and the 9p21 region. Subtype-specific CNAs included a loss at 12q11-12 in ACC and a gain at 17q11-12 in SDC. Focal copy number losses included 1p36.33-p36-22 in ACC, 9p13.2 in MEC, and 3p12.3-q11-2, 6q21-22.1, 12q14.1, and 12q15 in SDC. Tumor-specific amplicons were identified at 11q23.3 (PVRL1) in ACC, 11q13.3 (NUMA1) in MEC, and 6p21.1 (CCND3), 9p13.2 (PAX5), 12q15 (CNOT2/RAB3IP), 12q21.1 (GLIPR1L1), and 17q12 (ERBB2/CCL4) in SDC. A comparative CNA analysis of fusion-positive and fusion-negative ACCs and MECs revealed relatively lower CNAs in fusion-positive tumors than in fusion-negative tumors in both tumor types. An association between CNAs and high grade and advanced stage was observed in MECs only. These findings support the pathogenetic segregation of these entities and define novel chromosomal sites for future identification of biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Li Zhang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Shirode AB, Kovvuru P, Chittur SV, Henning SM, Heber D, Reliene R. Antiproliferative effects of pomegranate extract in MCF-7 breast cancer cells are associated with reduced DNA repair gene expression and induction of double strand breaks. Mol Carcinog 2013; 53:458-70. [DOI: 10.1002/mc.21995] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/06/2012] [Accepted: 12/08/2012] [Indexed: 01/10/2023]
Affiliation(s)
- Amit B. Shirode
- Department of Environmental Health Sciences; University at Albany; State University of New York; Albany New York
- Cancer Research Center; University at Albany; Rensselaer New York
| | - Prasad Kovvuru
- Department of Environmental Health Sciences; University at Albany; State University of New York; Albany New York
- Cancer Research Center; University at Albany; Rensselaer New York
| | - Sridar V. Chittur
- Cancer Research Center; University at Albany; Rensselaer New York
- Department of Biomedical Sciences; University at Albany; State University of New York; Albany New York
| | - Susanne M. Henning
- Center for Human Nutrition; David Geffen School of Medicine; University of California; Los Angeles California
| | - David Heber
- Center for Human Nutrition; David Geffen School of Medicine; University of California; Los Angeles California
| | - Ramune Reliene
- Department of Environmental Health Sciences; University at Albany; State University of New York; Albany New York
- Cancer Research Center; University at Albany; Rensselaer New York
| |
Collapse
|
26
|
Kolesar P, Sarangi P, Altmannova V, Zhao X, Krejci L. Dual roles of the SUMO-interacting motif in the regulation of Srs2 sumoylation. Nucleic Acids Res 2012; 40:7831-43. [PMID: 22705796 PMCID: PMC3439891 DOI: 10.1093/nar/gks484] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Srs2 DNA helicase of Saccharomyces cerevisiae affects recombination in multiple ways. Srs2 not only inhibits recombination at stalled replication forks but also promotes the synthesis-dependent strand annealing (SDSA) pathway of recombination. Both functions of Srs2 are regulated by sumoylation--sumoylated PCNA recruits Srs2 to the replication fork to disfavor recombination, and sumoylation of Srs2 can be inhibitory to SDSA in certain backgrounds. To understand Srs2 function, we characterize the mechanism of its sumoylation in vitro and in vivo. Our data show that Srs2 is sumoylated at three lysines, and its sumoylation is facilitated by the Siz SUMO ligases. We also show that Srs2 binds to SUMO via a C-terminal SUMO-interacting motif (SIM). The SIM region is required for Srs2 sumoylation, likely by binding to SUMO-charged Ubc9. Srs2's SIM also cooperates with an adjacent PCNA-specific interaction site in binding to sumoylated PCNA to ensure the specificity of the interaction. These two functions of Srs2's SIM exhibit a competitive relationship: sumoylation of Srs2 decreases the interaction between the SIM and SUMO-PCNA, and the SUMO-PCNA-SIM interaction disfavors Srs2 sumoylation. Our findings suggest a potential mechanism for the equilibrium of sumoylated and PCNA-bound pools of Srs2 in cells.
Collapse
Affiliation(s)
- Peter Kolesar
- Department of Biology, National Centre for Biomolecular Research, Masaryk University, 62500 Brno, Czech Republic
| | | | | | | | | |
Collapse
|
27
|
Sobol Z, Schiestl RH. Intracellular and extracellular factors influencing Cr(VI) and Cr(III) genotoxicity. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:94-100. [PMID: 22020802 DOI: 10.1002/em.20679] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 07/26/2011] [Indexed: 05/31/2023]
Abstract
Cr(VI) is a human and animal carcinogen. Cr(VI) does not interact directly with DNA and thus its genotoxicity is attributed to its intracellular reduction to Cr(III) via reactive intermediates. The resulting types of DNA damage can be grouped into two categories: (1) oxidative DNA damage and (2) Cr(III)-DNA interactions. This study examines the molecular mechanism of Cr(VI) and Cr(III) genotoxicity in an intact cell. A system screening for DNA deletions (DEL assay) was used to compare induction of chromosomal rearrangements in the yeast Saccharomyces cerevisiae following Cr(VI) and Cr(III) exposure. Both forms of chromium induced DNA deletions albeit with different dose-response curves. N-acetylcysteine had a protective effect against Cr(VI) genotoxicity at high exposure doses but had no protective effect at lower doses or against Cr(III). An oxidative DNA damage repair mutant was hypersensitive to Cr(VI) only at high exposure and the mutant was not hypersensitive to Cr(III) exposure. These data imply that oxidative stress is involved in Cr(VI) genotoxicity at high exposure concentrations and not so in Cr(III). The Cr(III)-DNA interaction appears to be an important genotoxic lesion following Cr(VI) exposure at low-exposure concentrations. The CAN forward mutation assay revealed that within the concentration ranges used for this study, Cr(III) does not cause point mutations and Cr(VI) causes a mild but statistically significant increase in point mutation only at the highest concentration tested. This study reveals that DNA deletions occurring as a result of intrachromosomal homologous recombination are a useful endpoint for studying chromium genotoxicity.
Collapse
Affiliation(s)
- Zhanna Sobol
- Department of Pathology, Geffen School of Medicine and School of Public Health, UCLA, Los Angeles, California 90095, USA
| | | |
Collapse
|
28
|
The consequences of uniparental disomy and copy number neutral loss-of-heterozygosity during human development and cancer. Biol Cell 2011; 103:303-17. [PMID: 21651501 DOI: 10.1042/bc20110013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UPD (uniparental disomy) describes the inheritance of a pair of chromosomes from only one parent. Mechanisms that lead to UPD include trisomy rescue, gamete complementation, monosomy rescue and somatic recombination. Most of these mechanisms can involve aberrant chromosomes, particularly isochromosomes and Robertsonian translocations. In the last decade, the number of UPD cases reported in the literature has increased exponentially. This is partly due to the advances in genomic technologies that have allowed for high-resolution SNP (single nucleotide polymorphism) studies, which have complemented traditional methods relying on polymorphic microsatellite markers. In this review, we discuss aberrant cellular mechanisms leading to UPD and their impact on gene expression. Special emphasis is placed on the unmasking of mutant recessive alleles and the disruption of imprinted gene dosage, which give rise to specific and recurrent imprinting phenotypes. Finally, we discuss how copy number maps determined from SNP array datasets have helped identify not only deletions and duplications but also recurrent copy number neutral regions of loss-of-heterozygosity, which have been reported in many cancer types and that may constitute an important driving force in cancer. These tiny regions of UPD also alter imprinted gene dosage, which may have cumulative tumourgenic effects in addition to that of unmasking homozygous cancer-associated mutations.
Collapse
|
29
|
Westermark UK, Lindberg N, Roswall P, Bråsäter D, Helgadottir HR, Hede SM, Zetterberg A, Jasin M, Nistér M, Uhrbom L. RAD51 can inhibit PDGF-B-induced gliomagenesis and genomic instability. Neuro Oncol 2011; 13:1277-87. [PMID: 21926087 DOI: 10.1093/neuonc/nor131] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Faithful replication and DNA repair are vital for maintenance of genome integrity. RAD51 is a central protein in homologous recombination repair and during replication, when it protects and restarts stalled replication forks. Aberrant RAD51 expression occurs in glioma, and high expression has been shown to correlate with prolonged survival. Furthermore, genes involved in DNA damage response (DDR) are mutated or deleted in human glioblastomas, corroborating the importance of proper DNA repair to suppress gliomagenesis. We have analyzed DDR and genomic instability in PDGF-B-induced gliomas and investigated the role of RAD51 in glioma development. We show that PDGF-B-induced gliomas display genomic instability and that co-expression of RAD51 can suppress PDGF-B-induced tumorigenesis and prolong survival. Expression of RAD51 inhibited proliferation and genomic instability of tumor cells independent of Arf status. Our results demonstrate that the RAD51 pathway can prevent glioma initiation and maintain genome integrity of induced tumors, suggesting reactivation of the RAD51 pathway as a potential therapeutic avenue.
Collapse
|
30
|
ATR-p53 restricts homologous recombination in response to replicative stress but does not limit DNA interstrand crosslink repair in lung cancer cells. PLoS One 2011; 6:e23053. [PMID: 21857991 PMCID: PMC3155521 DOI: 10.1371/journal.pone.0023053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 07/05/2011] [Indexed: 01/10/2023] Open
Abstract
Homologous recombination (HR) is required for the restart of collapsed DNA replication forks and error-free repair of DNA double-strand breaks (DSB). However, unscheduled or hyperactive HR may lead to genomic instability and promote cancer development. The cellular factors that restrict HR processes in mammalian cells are only beginning to be elucidated. The tumor suppressor p53 has been implicated in the suppression of HR though it has remained unclear why p53, as the guardian of the genome, would impair an error-free repair process. Here, we show for the first time that p53 downregulates foci formation of the RAD51 recombinase in response to replicative stress in H1299 lung cancer cells in a manner that is independent of its role as a transcription factor. We find that this downregulation of HR is not only completely dependent on the binding site of p53 with replication protein A but also the ATR/ATM serine 15 phosphorylation site. Genetic analysis suggests that ATR but not ATM kinase modulates p53's function in HR. The suppression of HR by p53 can be bypassed under experimental conditions that cause DSB either directly or indirectly, in line with p53's role as a guardian of the genome. As a result, transactivation-inactive p53 does not compromise the resistance of H1299 cells to the interstrand crosslinking agent mitomycin C. Altogether, our data support a model in which p53 plays an anti-recombinogenic role in the ATR-dependent mammalian replication checkpoint but does not impair a cell's ability to use HR for the removal of DSB induced by cytotoxic agents.
Collapse
|
31
|
Stults DM, Killen MW, Shelton BJ, Pierce AJ. Recombination phenotypes of the NCI-60 collection of human cancer cells. BMC Mol Biol 2011; 12:23. [PMID: 21586152 PMCID: PMC3112106 DOI: 10.1186/1471-2199-12-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Accepted: 05/17/2011] [Indexed: 11/10/2022] Open
Abstract
Background The NCI-60 is a collection of tumor cell lines derived from a variety of human adult cancer tissue types and is commonly used for genetic analysis and screening of potential chemotherapeutic agents. We wanted to understand the contributions of specific mechanisms of genomic instability to the etiology of cancers represented by the NCI-60. Results We screened the NCI-60 for dysregulated homologous recombination by using the gene cluster instability (GCI) assay we pioneered, and for defects in base excision repair by sensitivity to 5-hydroxymethyl-2'-deoxyuridine (hmdUrd). We identified subsets of the NCI-60 lines that either displayed the characteristic molecular signature of GCI or were sensitive to hmdUrd. With the exception of the NCI-H23 lung cancer line, these phenotypes were not found to overlap. None of the lines examined in either subset exhibited significant changes in the frequency of sister chromatid exchanges (SCE), neither did any of the lines in either subset exhibit microsatellite instability (MSI) indicative of defects in DNA mismatch repair. Conclusions Gene cluster instability, sensitivity to hmdUrd and sister chromatid exchange are mechanistically distinct phenomena. Genomic instability in the NCI-60 appears to involve only one mechanism of instability for each individual cell line.
Collapse
Affiliation(s)
- Dawn M Stults
- Department of Toxicology, University of Kentucky, Lexington, KY, USA
| | | | | | | |
Collapse
|
32
|
Hu Y, Scully R, Sobhian B, Xie A, Shestakova E, Livingston DM. RAP80-directed tuning of BRCA1 homologous recombination function at ionizing radiation-induced nuclear foci. Genes Dev 2011; 25:685-700. [PMID: 21406551 PMCID: PMC3070932 DOI: 10.1101/gad.2011011] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 02/07/2011] [Indexed: 01/12/2023]
Abstract
In response to DNA double-strand breaks (DSBs), BRCA1 forms biochemically distinct complexes with certain other DNA damage response proteins. These structures, some of which are required for homologous recombination (HR)-type DSB repair, concentrate at distinct nuclear foci that demarcate sites of genome breakage. Polyubiquitin binding by one of these structures, the RAP80/BRCA1 complex, is required for efficient BRCA1 focal recruitment, but the relationship of this process to the execution of HR has been unclear. We found that this complex actively suppresses otherwise exaggerated, BRCA1-driven HR. By controlling the kinetics by which other BRCA1-interacting proteins that promote HR concentrate together with BRCA1 in nuclear foci, RAP80/BRCA1 complexes suppress excessive DSB end processing, HR-type DSB repair, and overt chromosomal instability. Since chromosomal instability emerges when BRCA1 HR function is either unbridled or absent, active tuning of BRCA1 activity, executed in nuclear foci, is important to genome integrity maintenance.
Collapse
Affiliation(s)
- Yiduo Hu
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Ralph Scully
- Department of Medicine, Harvard Medical School, Boston Massachusetts 02215, USA
- Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Bijan Sobhian
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Anyong Xie
- Department of Medicine, Harvard Medical School, Boston Massachusetts 02215, USA
- Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA
| | - Elena Shestakova
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - David M. Livingston
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
33
|
Abstract
Cohesin is a conserved multisubunit protein complex with diverse cellular roles, making key contributions to the coordination of chromosome segregation, the DNA damage response and chromatin regulation by epigenetic mechanisms. Much has been learned in recent years about the roles of cohesin in a physiological context, whereas its potential and emerging role in tumour initiation and/or progression has received relatively little attention. In this Opinion article we examine how cohesin deregulation could contribute to cancer development on the basis of its physiological roles.
Collapse
Affiliation(s)
- Huiling Xu
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria 8006, Australia
| | | | | |
Collapse
|
34
|
Comparison of proliferation and genomic instability responses to WRN silencing in hematopoietic HL60 and TK6 cells. PLoS One 2011; 6:e14546. [PMID: 21267443 PMCID: PMC3022623 DOI: 10.1371/journal.pone.0014546] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 12/11/2010] [Indexed: 02/05/2023] Open
Abstract
Background Werner syndrome (WS) results from defects in the RecQ helicase (WRN) and is characterized by premature aging and accelerated tumorigenesis. Contradictorily, WRN deficient human fibroblasts derived from WS patients show a characteristically slower cell proliferation rate, as do primary fibroblasts and human cancer cell lines with WRN depletion. Previous studies reported that WRN silencing in combination with deficiency in other genes led to significantly accelerated cellular proliferation and tumorigenesis. The aim of the present study was to examine the effects of silencing WRN in p53 deficient HL60 and p53 wild-type TK6 hematopoietic cells, in order to further the understanding of WRN-associated tumorigenesis. Methodology/Principal Findings We found that silencing WRN accelerated the proliferation of HL60 cells and decreased the cell growth rate of TK6 cells. Loss of WRN increased DNA damage in both cell types as measured by COMET assay, but elicited different responses in each cell line. In HL60 cells, but not in TK6 cells, the loss of WRN led to significant increases in levels of phosphorylated RB and numbers of cells progressing from G1 phase to S phase as shown by cell cycle analysis. Moreover, WRN depletion in HL60 cells led to the hyper-activation of homologous recombination repair via up-regulation of RAD51 and BLM protein levels. This resulted in DNA damage disrepair, apparent by the increased frequencies of both spontaneous and chemically induced structural chromosomal aberrations and sister chromatid exchanges. Conclusions/Significance Together, our data suggest that the effects of WRN silencing on cell proliferation and genomic instability are modulated probably by other genetic factors, including p53, which might play a role in the carcinogenesis induced by WRN deficiency.
Collapse
|
35
|
Two functional variations in 5'-UTR of hoGG1 gene associated with the risk of breast cancer in Chinese. Breast Cancer Res Treat 2010; 127:795-803. [PMID: 21153698 DOI: 10.1007/s10549-010-1284-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 11/29/2010] [Indexed: 12/30/2022]
Abstract
8-Hydroxy-2'-deoxyguanine (8-OHdG) is produced by the oxidative stress-induced damage in DNA, which could pair with adenine (A) during DNA replication, leading to G-T transversion mutations. Glycosylase hOGG1 can recognize and excise oxidized guanines from duplex DNA. This work aims to investigate the relationship between the functional variations in 5-untranslated region (5'-UTR) of hOGG1 gene and the risk of breast cancer. Genotypes were analyzed in 518 sporadic breast cancer patients and 777 health controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by logistic regression. Risk-stratified subgroup analysis was performed to reveal the associations between the detected variations and the risk of characteristic breast cancer. In addition, immunohistochemistry was carried out to assess the functional effect of these variations on hOGG1gene expression. Five variations in 5'-UTR of hOGG1 gene are found in this study. Three of them, c.-18G>T, c.-23A>G, and c.-53G>C, are known single nucleotide polymorphisms, the other two, c.-45G>A and c.-63G>C, are rare variations. The frequency of c.-18G/T and c.-53G/C was significantly higher in breast cancer patients than those in healthy controls (P = 0.03, OR 2.01, 95% CI 1.04-3.90; and P = 0.01, OR 2.43, 95% CI 1.17-5.04, respectively). Both variations were especially prevalent in premenopausal status, and in the triple (estrogen receptor, progesterone receptor, and human epidermal growth factor Receptor 2) negative subgroups, respectively. Moreover, the variation of c.-18G>T could cause a reduced expression of hOGG1 gene.
Collapse
|
36
|
Reliene R, Yamamoto ML, Rao PN, Schiestl RH. Genomic instability in mice is greater in Fanconi anemia caused by deficiency of Fancd2 than Fancg. Cancer Res 2010; 70:9703-10. [PMID: 21118969 DOI: 10.1158/0008-5472.can-09-1022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fanconi anemia (FA) results from mutations in the FANC genes and is characterized by bone marrow failure, birth defects, and a high incidence of cancer. FANCG is a part of the FA core complex that is responsible for monoubiquitination of FANCD2 and FANCI. The precise role of the FA pathway is not well understood, although it may be involved in homologous recombination (HR), nonhomologous end joining, and translesion synthesis (TLS). Fancd2(-/-) mice have a more severe phenotype than Fancg(-/-), and other FA core complex-deficient mice, although both Fancg and Fancd2 belong to the same FA pathway. We hypothesized that Fancd2 deficiency results in a more severe phenotype because Fancd2 also has a FA pathway-independent function in the maintenance of genomic integrity. To test this hypothesis, we determined the level of DNA damage and genomic instability in Fancd2(-/-), Fancg(-/-), and wild-type controls. Fancd2(-/-) mice displayed a higher magnitude of chromosomal breakage and micronucleus formation than the wild-type or Fancg(-/-) mice. Also, DNA strand breaks were increased in Fancd2(-/-) but not in Fancg(-/-) mice. In addition, Fancd2(-/-) mice displayed an elevated frequency of DNA deletions, resulting from HR at the endogenous p(un) locus. In contrast, in Fancg(-/-) mice, the frequency of DNA deletions was decreased. Thus, Fancd2 but not Fancg deficiency results in elevated chromosomal/DNA breakage and permanent genome rearrangements. This provides evidence that Fancd2 plays an additional role in the maintenance of genomic stability than Fancg, which might explain the higher predisposition to cancer seen in the Fancd2(-/-) mice.
Collapse
Affiliation(s)
- Ramune Reliene
- Cancer Research Center, Department of Environmental Health Sciences, University at Albany, State University of New York, Albany, New York, USA
| | | | | | | |
Collapse
|
37
|
Tichý A, Vávrová J, Pejchal J, Rezácová M. Ataxia-telangiectasia mutated kinase (ATM) as a central regulator of radiation-induced DNA damage response. ACTA MEDICA (HRADEC KRÁLOVÉ) 2010; 53:13-7. [PMID: 20608227 DOI: 10.14712/18059694.2016.57] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Ataxia-telangiectasia mutated kinase (ATM) is a DNA damage-inducible protein kinase, which phosphorylates plethora of substrates participating in DNA damage response. ATM significance for the cell faith is undeniable, since it regulates DNA repair, cell-cycle progress, and apoptosis. Here we describe its main signalling targets and discuss its importance in DNA repair as well as novel findings linked to this key regulatory enzyme in the terms of ionizing radiation-induced DNA damage.
Collapse
Affiliation(s)
- Ales Tichý
- University of Defence in Brno, Faculty of Military Health Sciences, Department of Radiobiology, Hradec Králové, Czech Republic.
| | | | | | | |
Collapse
|
38
|
Sha K, Winn LM. Characterization of valproic acid-initiated homologous recombination. ACTA ACUST UNITED AC 2010; 89:124-32. [PMID: 20437471 DOI: 10.1002/bdrb.20236] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Valproic acid (VPA) is a frequently used antiepileptic agent and known teratogen. Previous research suggests that inhibition of histone deacetylases (HDACs) may play a role in VPA-induced teratogenicity. We have also shown that VPA exposure leads to both an increase in reactive oxygen species (ROS) production and increased frequency of homologous recombination (HR). METHODS In the present study, we evaluated the role of HDAC inhibition in VPA-initiated HR to determine if HDAC inhibition could alter repair activity and/or cause DNA double-strand breaks (DSBs), which would then initiate repair. Histone acetylation status was assessed to determine if VPA exposure led to HDAC inhibition in CHO 33 cells. RESULTS Our results demonstrate that VPA (5 mM) exposure leads to increased acetylated histone H3 and H4 protein levels after 10 to 24 hr. Secondly, in our recombination assay where an artificial DNA DSB was induced in CHO 33 cells to assess repair activity, VPA exposure did not affect the repair activity of VPA-initiated HR. Subsequently, to determine if VPA could increase susceptibility to DNA DSBs, the number of gamma-H2AX foci was assessed using immunocytochemistry and results revealed an increase in gamma-H2AX foci after 10- to 24-hr exposure to VPA. CONCLUSIONS Although we demonstrated the protective effect of polyethylene glycol-catalase against VPA-induced HR and the generation of intracellular ROS within 24 hr, we did not observed an increase in DNA oxidation. These studies suggest that HDAC inhibition and ROS signaling may play roles in DNA maintenance and cell-cycle arrest in initiating DNA damage and repair.
Collapse
Affiliation(s)
- Kevin Sha
- Department of Pharmacology and Toxicology, Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
39
|
Association of the DSS1 c.143G>A Polymorphism with Skin Squamous Cell Carcinoma. J Invest Dermatol 2010; 130:1719-25. [DOI: 10.1038/jid.2010.21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Heerma van Voss MR, van der Groep P, Bart J, van der Wall E, van Diest PJ. Lympho-vascular invasion in BRCA related breast cancer compared to sporadic controls. BMC Cancer 2010; 10:145. [PMID: 20398395 PMCID: PMC2862041 DOI: 10.1186/1471-2407-10-145] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 04/16/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Germline mutations in the BRCA1 gene predispose to the development of breast cancer, exhibiting a specific histological phenotype. Identification of possible hallmarks of these tumors is important for selecting patients for genetic screening and provides inside in carcinogenetic pathways.Since BRCA1-associated breast cancers have pushing borders that prevent them from easily reaching vessels and are often of the medullary (like) type that is known to have a low rate of lympho-vascular invasion (LVI), we hypothesized that absence of LVI could characterize BRCA1 related breast cancer. METHODS A population of 68 BRCA1 related invasive breast cancers was evaluated for LVI by an experienced breast pathologist blinded to mutation status, and compared to a control group matched for age, grade and tumor type. RESULTS LVI was present in 25.0% of BRCA1 related cases, compared to 20.6% of controls (P = 0.54, OR = 1.29, CI 0.58-2.78). CONCLUSION LVI is frequent in BRCA1 germline mutation related breast cancers, but seems to occur as often in sporadic controls matched for age, grade and tumor type. Apparently, these hereditary cancers find their way to the blood and lymph vessels despite their well demarcation and often medullary differentiation.
Collapse
|
41
|
Evaluation of the frequency of TP53 gene codon 72 polymorphisms in Iranian patients with endometrial cancer. ACTA ACUST UNITED AC 2010; 196:167-70. [PMID: 20082853 DOI: 10.1016/j.cancergencyto.2009.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 09/14/2009] [Accepted: 09/20/2009] [Indexed: 11/23/2022]
Abstract
Polymorphisms of the TP53 gene codon 72 exhibit less effective function in tumor suppression and usually are associated with human cancer. To investigate the frequency of proline and arginine alleles of TP53 codon 72, the present study analyzed the DNA from blood samples of 30 Iranian women with endometrial cancer, in comparison with 32 healthy women. A Pro/Pro genotype was associated with increased endometrial cancer risk (odds ratio OR = 3.7, 95% confidence interval CI = 0.539-25.59). In patients, Pro allele frequency (68%) was higher than Arg frequency (32%), and higher also than Pro frequency in healthy control subjects (55%) (OR = 1.9, 95% CI = 0.903-3.893). It could be that the Pro allele is less apoptotic than the Arg allele, and that the Arg allele most probably activates transcription factors more efficiently than the Pro variant. These novel findings on the frequency of TP53 gene codon 72 polymorphism in endometrial cancer in Iranian women indicate that in this population the Pro allele might be associated with increased risk of endometrial cancer.
Collapse
|
42
|
Jacociunas LV, Dihl RR, Lehmann M, Reguly ML, de Andrade HHR. Recombinagenic activity of water and sediment from Sinos River and Araçá and Garças Streams (Canoas, Brazil), in the Drosophila wing spot test. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:571-577. [PMID: 19892387 DOI: 10.1016/j.scitotenv.2009.10.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 10/09/2009] [Accepted: 10/13/2009] [Indexed: 05/28/2023]
Abstract
This study characterizes the likely interaction of surface water and sediment samples with DNA to quantitatively and qualitatively establish their mutagenic and/or recombinagenic activity. Samples were collected at 5 different sites within the area of Araçá Stream and 2 different sites within the Sinos River mouth and Garças Stream in the municipality of Canoas, RS, Brazil. The area is impacted by untreated urban discharges (sites 1-7), agricultural pesticides (sites 5 and 7), hospital waste (site 3), animal dejects (site 5), small industries (sites 4, 5 and 6) and vehicular discharges (sites 2, 4, 5 and 6). The wing Somatic Mutation and Recombination Test (SMART) in Drosophila melanogaster was used. The test detects simultaneously mutations and recombination induced by the activity of genotoxins of direct and indirect action. All the samples displayed a massive recombinagenic response, but no mutagenic activity was detected in any of the evaluated samples. This study was done in D. melanogaster with unprocessed water and sediment samples attributing a massive and exclusive recombinagenic action associated to the induction of homologous recombination--a genetic phenomenon involved in the loss of heterozygosity.
Collapse
Affiliation(s)
- Laura Vicedo Jacociunas
- Laboratório da Toxicidade Genética (TOXIGEN), Programa de Pós-Graduação em Genética e Toxicologia Aplicada, Universidade Luterana do Brasil, Canoas, RS, Brazil
| | | | | | | | | |
Collapse
|
43
|
Stults DM, Killen MW, Williamson EP, Hourigan JS, Vargas HD, Arnold SM, Moscow JA, Pierce AJ. Human rRNA gene clusters are recombinational hotspots in cancer. Cancer Res 2009; 69:9096-104. [PMID: 19920195 DOI: 10.1158/0008-5472.can-09-2680] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The gene that produces the precursor RNA transcript to the three largest structural rRNA molecules (rDNA) is present in multiple copies and organized into gene clusters. The 10 human rDNA clusters represent <0.5% of the diploid human genome but are critically important for cellular viability. Individual genes within rDNA clusters possess very high levels of sequence identity with respect to each other and are present in high local concentration, making them ideal substrates for genomic rearrangement driven by dysregulated homologous recombination. We recently developed a sensitive physical assay capable of detecting recombination-mediated genomic restructuring in the rDNA by monitoring changes in lengths of the individual clusters. To prove that this dysregulated recombination is a potential driving force of genomic instability in human cancer, we assayed the rDNA for structural rearrangements in prospectively recruited adult patients with either lung or colorectal cancer, and pediatric patients with leukemia. We find that over half of the adult solid tumors show detectable rDNA rearrangements relative to either surrounding nontumor tissue or normal peripheral blood. In contrast, we find a greatly reduced frequency of rDNA alterations in pediatric leukemia. This finding makes rDNA restructuring one of the most common chromosomal alterations in adult solid tumors, illustrates the dynamic plasticity of the human genome, and may prove to have either prognostic or predictive value in disease progression.
Collapse
Affiliation(s)
- Dawn M Stults
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536-0096, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
DNA repair by homologous recombination, but not by nonhomologous end joining, is elevated in breast cancer cells. Neoplasia 2009; 11:683-91. [PMID: 19568413 DOI: 10.1593/neo.09312] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 04/12/2009] [Accepted: 04/13/2009] [Indexed: 11/18/2022]
Abstract
Aberrant double-stranded break (DSB) repair leads to genomic instability, which is a hallmark of malignant cells. Double-stranded breaks are repaired by two pathways: homologous recombination (HR) and nonhomologous DNA end joining (NHEJ). It is not known whether these repair pathways are affected in sporadic breast tumors. Here, we examined the efficiency of HR and NHEJ repair in a panel of sporadic breast cancer cell lines and tested whether the efficiency of HR or NHEJ correlates with radioresistance. Homologous recombination and NHEJ in breast cancer cells were analyzed using in vivo fluorescent assays. Unexpectedly, our analysis revealed that the efficiency of HR is significantly elevated in breast cancer cells compared with normal mammary epithelial cells. In contrast, the efficiency of NHEJ in breast cancer cells is not different from normal cells. Overall, breast cancer cells were more sensitive to radiation than normal cells, but the levels of resistance did not correlate with either HR or NHEJ efficiency. Thus, we demonstrate that sporadic breast cancers are not associated with a deficiency in DSB repair, but rather with upregulation of the HR pathway. Our finding of elevated HR in sporadic breast cancer cell lines suggests that therapies directed against the components of HR will be highly tumor-specific.
Collapse
|
45
|
Burgess RC, Lisby M, Altmannova V, Krejci L, Sung P, Rothstein R. Localization of recombination proteins and Srs2 reveals anti-recombinase function in vivo. ACTA ACUST UNITED AC 2009; 185:969-81. [PMID: 19506039 PMCID: PMC2711611 DOI: 10.1083/jcb.200810055] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Homologous recombination (HR), although an important DNA repair mechanism, is dangerous to the cell if improperly regulated. The Srs2 “anti-recombinase” restricts HR by disassembling the Rad51 nucleoprotein filament, an intermediate preceding the exchange of homologous DNA strands. Here, we cytologically characterize Srs2 function in vivo and describe a novel mechanism for regulating the initiation of HR. We find that Srs2 is recruited separately to replication and repair centers and identify the genetic requirements for recruitment. In the absence of Srs2 activity, Rad51 foci accumulate, and surprisingly, can form in the absence of Rad52 mediation. However, these Rad51 foci do not represent repair-proficient filaments, as determined by recombination assays. Antagonistic roles for Rad52 and Srs2 in Rad51 filament formation are also observed in vitro. Furthermore, we provide evidence that Srs2 removes Rad51 indiscriminately from DNA, while the Rad52 protein coordinates appropriate filament reformation. This constant breakdown and rebuilding of filaments may act as a stringent quality control mechanism during HR.
Collapse
Affiliation(s)
- Rebecca C Burgess
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | |
Collapse
|
46
|
Reliene R, Pollard JM, Sobol Z, Trouiller B, Gatti RA, Schiestl RH. N-acetyl cysteine protects against ionizing radiation-induced DNA damage but not against cell killing in yeast and mammals. Mutat Res 2009; 665:37-43. [PMID: 19427509 DOI: 10.1016/j.mrfmmm.2009.02.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 02/14/2009] [Accepted: 02/28/2009] [Indexed: 05/27/2023]
Abstract
Ionizing radiation (IR) induces DNA strand breaks leading to cell death or deleterious genome rearrangements. In the present study, we examined the role of N-acetyl-L-cysteine (NAC), a clinically proven safe agent, for it's ability to protect against gamma-ray-induced DNA strand breaks and/or DNA deletions in yeast and mammals. In the yeast Saccharomyces cerevisiae, DNA deletions were scored by reversion to histidine prototrophy. Human lymphoblastoid cells were examined for the frequency of gamma-H2AX foci formation, indicative of DNA double strand break formation. DNA strand breaks were also measured in mouse peripheral blood by the alkaline comet assay. In yeast, NAC reduced the frequency of IR-induced DNA deletions. However, NAC did not protect against cell death. NAC also reduced gamma-H2AX foci formation in human lymphoblastoid cells but had no protective effect in the colony survival assay. NAC administration via drinking water fully protected against DNA strand breaks in mice whole-body irradiated with 1Gy but not with 4Gy. NAC treatment in the absence of irradiation was not genotoxic. These data suggest that, given the safety and efficacy of NAC in humans, NAC may be useful in radiation therapy to prevent radiation-mediated genotoxicity, but does not interfere with efficient cancer cell killing.
Collapse
Affiliation(s)
- Ramune Reliene
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
47
|
Popova M, Shimizu H, Yamamoto KI, Lebechec M, Takahashi M, Fleury F. Detection of c-Abl kinase-promoted phosphorylation of Rad51 by specific antibodies reveals that Y54 phosphorylation is dependent on that of Y315. FEBS Lett 2009; 583:1867-72. [PMID: 19427856 DOI: 10.1016/j.febslet.2009.04.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/28/2009] [Accepted: 04/29/2009] [Indexed: 11/30/2022]
Abstract
Rad51 plays a crucial role in homologous recombination and recombinational DNA repair. Its activity is regulated by phosphorylation by the c-Abl kinase. Either Tyr54 or Tyr315 have been reported as the target of phosphorylation but the interconnection between their phosphorylation is not known. We prepared two specific antibodies that selectively detected the Tyr54 or Tyr315 phosphorylation site of Rad51. By co-transfection of HeLa cells with c-Abl and Rad51, we clearly showed that both Tyr54 and Tyr315 of Rad51 are phosphorylated by c-Abl. Furthermore, we showed that the phosphorylation of Tyr315 stimulates that of Tyr54, which indicates that the phosphorylation of Rad51 by the c-Abl kinase is a sequential process.
Collapse
Affiliation(s)
- Milena Popova
- Unité U3B, UMR 6204 CNRS, Université de Nantes, Nantes, France
| | | | | | | | | | | |
Collapse
|
48
|
Tuna M, Knuutila S, Mills GB. Uniparental disomy in cancer. Trends Mol Med 2009; 15:120-8. [PMID: 19246245 DOI: 10.1016/j.molmed.2009.01.005] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 01/06/2009] [Accepted: 01/06/2009] [Indexed: 02/03/2023]
Abstract
Uniparental disomy (UPD) results when both copies of a chromosome pair originate from one parent. In humans, this might result in developmental disease or cancer due to either the production of homozygosity (caused by mutated or methylated genes or by microRNA sequences) or an aberrant pattern of imprinting. Constitutional UPD is associated with meiotic errors, resulting in developmental diseases, whereas acquired UPD probably occurs as a result of a mitotic error in somatic cells, which can be an important step in cancer development and progression. This review summarizes the mechanisms underlying UPD and their emerging association with cancer.
Collapse
Affiliation(s)
- Musaffe Tuna
- Department of Cancer Genetics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | | | | |
Collapse
|
49
|
Vernole P, Muzi A, Volpi A, Dorio AS, Terrinoni A, Shah GM, Graziani G. Inhibition of homologous recombination by treatment with BVDU (brivudin) or by RAD51 silencing increases chromosomal damage induced by bleomycin in mismatch repair-deficient tumour cells. Mutat Res 2009; 664:39-47. [PMID: 19428379 DOI: 10.1016/j.mrfmmm.2009.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 01/22/2009] [Accepted: 02/06/2009] [Indexed: 11/28/2022]
Abstract
Mismatch repair (MMR) has been shown to control homologous recombination (HR) by aborting strand exchange between divergent sequences. We previously demonstrated that MMR-deficient tumour cells are more resistant to chromosomal damage induced by bleomycin (BLM) during the G(2) phase, likely due to the lack of the MMR inhibitory effect on HR. Aim of this study was to investigate whether inhibition of HR by the nucleoside analogue BVDU [(E)-5(2-bromovinyl)-2'-deoxyuridine, brivudin], or silencing of genes involved in HR function, might affect sensitivity of MMR-deficient tumour cells to DNA damage induced by BLM in G(2). The results indicated that BVDU increased chromatid damage and DNA double strand breaks induced by BLM only in MMR-deficient MT-1, HL-60R, HCT116 cells, which are more resistant to BLM with respect to MMR-proficient TK-6, HL-60S and HCT116/3-6 lines. Silencing of RAD51, a key component of HR, increased sensitivity of MMR-deficient HCT-15 cells to BLM clastogenicity; in this case combined treatment with BVDU had no additional effect. Similarly, treatment with BVDU did not affect BLM clastogenicity in CAPAN-1 cells, characterized by a defective HR due to BRCA2 mutations. Conversely, BVDU increased chromatid breaks induced by BLM in HCT-15 cells transiently silenced for DNA-PK catalytic subunit, which plays a key role in non-homologous end joining. The BVDU-mediated increase of chromatid breaks in MMR-deficient cells did not depend on its previously reported inhibitory effect on poly(ADP-ribose) polymerase (PARP). In fact, it was observed also in cells stably silenced for PARP-1, which is responsible for most of cellular PARP activity. These data support the suggestion that the higher sensitivity of MMR-proficient versus MMR-deficient cells to BLM-induced chromatid breaks in the G(2) phase is a consequence of the inhibition of HR by MMR. In MMR-deficient cells, BVDU attenuates the repair of BLM-induced DSBs and this is likely to occur via inhibition of HR.
Collapse
Affiliation(s)
- Patrizia Vernole
- Department of Public Health and Cellular Biology, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
50
|
Arossi GA, Dihl RR, Lehmann M, Cunha KS, Reguly ML, de Andrade HHR. In vivo genotoxicity of dental bonding agents. Mutagenesis 2008; 24:169-72. [DOI: 10.1093/mutage/gen066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|