1
|
Soliman HK, Coughlan JM. United by conflict: Convergent signatures of parental conflict in angiosperms and placental mammals. J Hered 2024; 115:625-642. [PMID: 38366852 PMCID: PMC11498613 DOI: 10.1093/jhered/esae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Endosperm in angiosperms and placenta in eutherians are convergent innovations for efficient embryonic nutrient transfer. Despite advantages, this reproductive strategy incurs metabolic costs that maternal parents disproportionately shoulder, leading to potential inter-parental conflict over optimal offspring investment. Genomic imprinting-parent-of-origin-biased gene expression-is fundamental for endosperm and placenta development and has convergently evolved in angiosperms and mammals, in part, to resolve parental conflict. Here, we review the mechanisms of genomic imprinting in these taxa. Despite differences in the timing and spatial extent of imprinting, these taxa exhibit remarkable convergence in the molecular machinery and genes governing imprinting. We then assess the role of parental conflict in shaping evolution within angiosperms and eutherians using four criteria: 1) Do differences in the extent of sibling relatedness cause differences in the inferred strength of parental conflict? 2) Do reciprocal crosses between taxa with different inferred histories of parental conflict exhibit parent-of-origin growth effects? 3) Are these parent-of-origin growth effects caused by dosage-sensitive mechanisms and do these loci exhibit signals of positive selection? 4) Can normal development be restored by genomic perturbations that restore stoichiometric balance in the endosperm/placenta? Although we find evidence for all criteria in angiosperms and eutherians, suggesting that parental conflict may help shape their evolution, many questions remain. Additionally, myriad differences between the two taxa suggest that their respective biologies may shape how/when/where/to what extent parental conflict manifests. Lastly, we discuss outstanding questions, highlighting the power of comparative work in quantifying the role of parental conflict in evolution.
Collapse
Affiliation(s)
- Hagar K Soliman
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, United States
- Department of Biotechnology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Jenn M Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, United States
| |
Collapse
|
2
|
Zhou Y, Yu H, Zhang D, Wang Z, Li Q, An X, Zhang S, Li Z. Imprinted lncRNA KCNQ1OT1 regulates CDKN1C expression through promoter binding and chromatin folding in pigs. Gene 2024; 923:148590. [PMID: 38772516 DOI: 10.1016/j.gene.2024.148590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
Long noncoding RNAs (lncRNAs) are implicated in a number of regulatory functions in eukaryotic genomes. In humans, KCNQ1OT1 is a 91 kb imprinted lncRNA that inhibits multiple surrounding genes in cis. Among them, CDKN1C is closely related to KCNQ1OT1 and is involved in multiple epigenetic disorders. Here, we found that pigs also had a relatively conserved paternal allele expressing KCNQ1OT1 and had a shorter 5' end (∼27 kb) compared to human KCNQ1OT1. Knockdown of KCNQ1OT1 using antisense oligonucleotides (ASO) showed that upregulation of CDKN1C expression in pigs. However, porcine KCNQ1OT1 did not affect the DNA methylation status of the CpG islands in the promoters of KCNQ1OT1 and CDKN1C. Inhibition of DNA methyltransferase using Decitabine treatment resulted in a significant increase in both KCNQ1OT1 and CDKN1C expression, suggesting that the regulation between KCNQ1OT1 and CDKN1C may not be dependent on RNA interference. Further use of chromosome conformation capture and reverse transcription-associated trap detection in the region where CDKN1C was located revealed that KCNQ1OT1 bound to the CDKN1C promoter and affected chromosome folding. Phenotypically, inhibition of KCNQ1OT1 at the cumulus-oocyte complex promoted cumulus cell transformation, and to upregulated the expression of ALPL at the early stage of osteogenic differentiation of porcine bone marrow mesenchymal stem cells. Our results confirm that the expression of KCNQ1OT1 imprinting in pigs as well as porcine KCNQ1OT1 regulates the expression of CDKN1C through direct promoter binding and chromatin folding alteration. And this regulatory mechanism played an important role in cell differentiation.
Collapse
Affiliation(s)
- Yongfeng Zhou
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Hao Yu
- College of Animal Science, Jilin University, Changchun, China
| | - Daoyu Zhang
- Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Zhengzhu Wang
- Shenzhen University Affiliated South China Hospital, Shenzhen, China
| | - Qi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Xinglan An
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Sheng Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun, China.
| |
Collapse
|
3
|
McSwiggin H, Magalhães R, Nilsson EE, Yan W, Skinner MK. Epigenetic transgenerational inheritance of toxicant exposure-specific non-coding RNA in sperm. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae014. [PMID: 39494159 PMCID: PMC11529619 DOI: 10.1093/eep/dvae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 11/05/2024]
Abstract
Environmentally induced epigenetic transgenerational inheritance of phenotypic variation and disease susceptibility requires the germ cell (sperm or egg) transmission of integrated epigenetic mechanisms involving DNA methylation, histone modifications, and non-coding RNA (ncRNA) actions. Previous studies have demonstrated that transgenerational exposure and disease-specific differential DNA methylation regions (DMRs) in sperm are observed and that ncRNA-mediated DNA methylation occurs. The current study was designed to determine if transgenerational exposure-specific ncRNAs exist in sperm. Specifically, toxicants with distinct mechanisms of action including the fungicide vinclozolin (anti-androgenic), pesticide dichlorodiphenyltrichloroethane (estrogenic), herbicide atrazine (endocrine disruptor at cyclic adenosine monophosphate level), and hydrocarbon mixture jet fuel (JP8) (aryl hydrocarbon receptor disruptor) were used to promote transgenerational disease phenotypes in F3 generation outbred rats. New aliquots of sperm, previously collected and used for DNA methylation analyses, were used in the current study for ncRNA sequencing analyses of nuclear RNA. Significant changes in transgenerational sperm ncRNA were observed for each transgenerational exposure lineage. The majority of ncRNA was small noncoding RNAs including piwi-interacting RNA, tRNA-derived small RNAs, microRNAs, rRNA-derived small RNA, as well as long ncRNAs. Although there was some overlap among the different classes of ncRNA across the different exposures, the majority of differentially expressed ncRNAs were exposure-specific with no overlapping ncRNA between the four different exposure lineages in the transgenerational F3 generation sperm nuclear ncRNAs. The ncRNA chromosomal locations and gene associations were identified for a small number of differential expressed ncRNA. Interestingly, an overlap analysis between the transgenerational sperm DMRs and ncRNA chromosomal locations demonstrated small populations of overlapping ncRNA, but a large population of non-overlapping ncRNAs. Observations suggest that transgenerational sperm ncRNAs have both exposure-specific populations within the different classes of ncRNA, as well as some common populations of ncRNAs among the different exposures. The lack of co-localization of many of the ncRNAs with previously identified transgenerational DMRs suggests a distal integration of the different epigenetic mechanisms. The potential use of ncRNA analyses for transgenerational toxicant exposure assessment appears feasible.
Collapse
Affiliation(s)
- Hayden McSwiggin
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, United States
| | - Rubens Magalhães
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, United States
| | - Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, United States
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, United States
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, United States
| |
Collapse
|
4
|
Newman T, Ishihara T, Shaw G, Renfree MB. The structure of the TH/INS locus and the parental allele expressed are not conserved between mammals. Heredity (Edinb) 2024; 133:21-32. [PMID: 38834866 PMCID: PMC11222543 DOI: 10.1038/s41437-024-00689-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Parent-of-origin-specific expression of imprinted genes is critical for successful mammalian growth and development. Insulin, coded by the INS gene, is an important growth factor expressed from the paternal allele in the yolk sac placenta of therian mammals. The tyrosine hydroxylase gene TH encodes an enzyme involved in dopamine synthesis. TH and INS are closely associated in most vertebrates, but the mouse orthologues, Th and Ins2, are separated by repeated DNA. In mice, Th is expressed from the maternal allele, but the parental origin of expression is not known for any other mammal so it is unclear whether the maternal expression observed in the mouse represents an evolutionary divergence or an ancestral condition. We compared the length of the DNA segment between TH and INS across species and show that separation of these genes occurred in the rodent lineage with an accumulation of repeated DNA. We found that the region containing TH and INS in the tammar wallaby produces at least five distinct RNA transcripts: TH, TH-INS1, TH-INS2, lncINS and INS. Using allele-specific expression analysis, we show that the TH/INS locus is expressed from the paternal allele in pre- and postnatal tammar wallaby tissues. Determining the imprinting pattern of TH/INS in other mammals might clarify if paternal expression is the ancestral condition which has been flipped to maternal expression in rodents by the accumulation of repeat sequences.
Collapse
Affiliation(s)
- Trent Newman
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Teruhito Ishihara
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Geoff Shaw
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
5
|
Circulating Long Non-Coding RNAs Could Be the Potential Prognostic Biomarker for Liquid Biopsy for the Clinical Management of Oral Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14225590. [PMID: 36428681 PMCID: PMC9688117 DOI: 10.3390/cancers14225590] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNA (lncRNA) have little or no coding potential. These transcripts are longer than 200 nucleotides. Since lncRNAs are master regulators of almost all biological processes, recent evidence proves that aberrantly expressed lncRNAs are pathogenic for oral squamous cell carcinoma (OSCC) and other diseases. LncRNAs influence chromatin modifications, transcriptional modifications, post-transcriptional modifications, genomic imprinting, cell proliferation, invasion, metastasis, and apoptosis. Consequently, they have an impact on the disease transformation, progression, and morbidity in OSCC. Therefore, circulating lncRNAs could be the potential cancer biomarker for the better clinical management (diagnosis, prognosis, and monitoring) of OSCC to provide advanced treatment strategies and clinical decisions. In this review, we report and discuss the recent understandings and perceptions of dysregulated lncRNAs with a focus on their clinical significance in OSCC-disease monitoring and treatment. Evidence clearly indicates that a specific lncRNA expression signature could act as an indicator for the early prediction of diagnosis and prognosis for the initiation, progression, recurrence, metastasis and other clinical prognostic-factors (overall survival, disease-free survival, etc.) in OSCC. The present review demonstrates the current knowledge that all potential lncRNA expression signatures are molecular biomarkers for the early prediction of prognosis in OSCC. Finally, the review provides information about the clinical significance, challenges and limitations of the clinical usage of circulating lncRNAs in a liquid biopsy method in early, pre-symptomatic, sub-clinical, accurate OSCC prognostication. More studies on lncRNA are required to unveil the biology of the inherent mechanisms involved in the process of the development of differential prognostic outcomes in OSCC.
Collapse
|
6
|
Abstract
Peg3 (Paternally expressed gene 3) is an imprinted gene encoding a DNA-binding protein that is a well-known transcriptional repressor. Previous studies have shown that the mutant phenotypes of Peg3 are associated with the over-expression of genes involved in lipid metabolism. In the current study, we investigated four potential downstream genes of Peg3, which were identified through ChIP-seq data: Acly, Fasn, Idh1, and Hmgcr. In vivo binding of PEG3 to the promoter region of these key genes involved in lipogenesis was subsequently confirmed through individual ChIP experiments. We observed the opposite response of Acly expression levels against the variable gene dosages of Peg3, involving 0x, 1x, and 2x Peg3. This suggests the transcriptional repressor role of Peg3 in the expression levels of Acly. Another set of analyses showed a sex-biased response in the expression levels of Acly, Fasn, and Idh1 against 0x Peg3 with higher levels in female and lower levels in male mammary glands. These results overall highlight that Peg3 may be involved in regulating the expression levels of several key genes in adipogenesis.
Collapse
Affiliation(s)
- Subash Ghimire
- Department of Biological Science, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Joomyeong Kim
- Department of Biological Science, Louisiana State University, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
7
|
Scagliotti V, Esse R, Willis TL, Howard M, Carrus I, Lodge E, Andoniadou CL, Charalambous M. Dynamic Expression of Imprinted Genes in the Developing and Postnatal Pituitary Gland. Genes (Basel) 2021; 12:genes12040509. [PMID: 33808370 PMCID: PMC8066104 DOI: 10.3390/genes12040509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
In mammals, imprinted genes regulate many critical endocrine processes such as growth, the onset of puberty and maternal reproductive behaviour. Human imprinting disorders (IDs) are caused by genetic and epigenetic mechanisms that alter the expression dosage of imprinted genes. Due to improvements in diagnosis, increasing numbers of patients with IDs are now identified and monitored across their lifetimes. Seminal work has revealed that IDs have a strong endocrine component, yet the contribution of imprinted gene products in the development and function of the hypothalamo-pituitary axis are not well defined. Postnatal endocrine processes are dependent upon the production of hormones from the pituitary gland. While the actions of a few imprinted genes in pituitary development and function have been described, to date there has been no attempt to link the expression of these genes as a class to the formation and function of this essential organ. This is important because IDs show considerable overlap, and imprinted genes are known to define a transcriptional network related to organ growth. This knowledge deficit is partly due to technical difficulties in obtaining useful transcriptomic data from the pituitary gland, namely, its small size during development and cellular complexity in maturity. Here we utilise high-sensitivity RNA sequencing at the embryonic stages, and single-cell RNA sequencing data to describe the imprinted transcriptome of the pituitary gland. In concert, we provide a comprehensive literature review of the current knowledge of the role of imprinted genes in pituitary hormonal pathways and how these relate to IDs. We present new data that implicate imprinted gene networks in the development of the gland and in the stem cell compartment. Furthermore, we suggest novel roles for individual imprinted genes in the aetiology of IDs. Finally, we describe the dynamic regulation of imprinted genes in the pituitary gland of the pregnant mother, with implications for the regulation of maternal metabolic adaptations to pregnancy.
Collapse
Affiliation(s)
- Valeria Scagliotti
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
| | - Ruben Esse
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
| | - Thea L. Willis
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE19RT, UK; (T.L.W.); (E.L.); (C.L.A.)
| | - Mark Howard
- MRC Centre for Transplantation, Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London SE19RT, UK;
| | - Isabella Carrus
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
| | - Emily Lodge
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE19RT, UK; (T.L.W.); (E.L.); (C.L.A.)
| | - Cynthia L. Andoniadou
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London SE19RT, UK; (T.L.W.); (E.L.); (C.L.A.)
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Marika Charalambous
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King’s College London, London SE19RT, UK; (V.S.); (R.C.F.E.); (I.C.)
- Correspondence:
| |
Collapse
|
8
|
Wang Y, Xiao S, Zhou S, Zhang R, Liu H, Lin Y, Yu P. High Glucose Aggravates Cholesterol Accumulation in Glomerular Endothelial Cells Through the LXRs/LncRNAOR13C9/ABCA1 Regulatory Network. Front Physiol 2020; 11:552483. [PMID: 33192550 PMCID: PMC7604427 DOI: 10.3389/fphys.2020.552483] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/17/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The underlying mechanisms by which diabetes and dyslipidemia contribute to diabetic nephropathy (DN) are not fully understood. In this study, we aimed to investigate the role of high glucose (HG) on intracellular cholesterol accumulation in glomerular endothelial cells (GEnCs) and its potential mechanism. METHODS Oil red O staining, RT-qPCR, Western blotting, and immunocytofluorescence analyses were used to determine cholesterol accumulation and the expressions of LXRs and ABCA1 in GEnCs under high cholesterol (HC) and/or HG conditions, and the effect of these treatments was compared to that of low glucose without adding cholesterol. LncRNA microarrays were used to identify a long non-coding RNA (LncRNA OR13C9), of which levels increased in cells treated with the LXR agonist, GW3965. Fluorescence in situ hybridization (FISH) was conducted to confirm subcellular localization of LncOR13C9 and a bioinformatics analysis was used to identify competing endogenous RNA (ceRNA) regulatory networks between LncOR13C9 and microRNA-23a-5p (miR-23a-5p). Gain and loss of function, rescue assay approaches, and dual-luciferase reporter assay were conducted to study interactions between LncOR13C9, miR-23a-5p, and ABCA1. RESULTS We showed that HG could decrease the response ability of GEnCs to cholesterol load, specifically that HG could downregulate LXRs expression in GEnCs under cholesterol load and that the decrease in LXRs expression suppressed ABCA1 expression and increased cholesterol accumulation. We focused on the targets of LXRs and identified a long non-coding RNA (LncOR13C9) that was downregulated in GEnCs grown in HG and HC conditions, compared with that grown in HC conditions. We speculated that LncRNAOR13C9 was important for LXRs to increase cholesterol efflux via ABCA1 under HC. Furthermore, using gain of function, loss of function, and rescue assay approaches, we showed that LncOR13C9 could regulate ABCA1 by inhibiting the action of miR-23a-5p in the LXR pathway. Furthermore, dual-luciferase reporter assay was conducted to study the interaction of LncOR13C9 with miR-23a-5p. CONCLUSION Overall, our study identified the LXRs/LncOR13C9/miR23A-5p/ABCA1 regulatory network in GEnCs, which may be helpful to better understand the effect of HG on cholesterol accumulation in GEnCs under cholesterol load and to explore new therapeutic tools for the management of DN patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pei Yu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
9
|
Lalonde E, Rentas S, Lin F, Dulik MC, Skraban CM, Spinner NB. Genomic Diagnosis for Pediatric Disorders: Revolution and Evolution. Front Pediatr 2020; 8:373. [PMID: 32733828 PMCID: PMC7360789 DOI: 10.3389/fped.2020.00373] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Powerful, recent advances in technologies to analyze the genome have had a profound impact on the practice of medical genetics, both in the laboratory and in the clinic. Increasing utilization of genome-wide testing such as chromosomal microarray analysis and exome sequencing have lead a shift toward a "genotype-first" approach. Numerous techniques are now available to diagnose a particular syndrome or phenotype, and while traditional techniques remain efficient tools in certain situations, higher-throughput technologies have become the de facto laboratory tool for diagnosis of most conditions. However, selecting the right assay or technology is challenging, and the wrong choice may lead to prolonged time to diagnosis, or even a missed diagnosis. In this review, we will discuss current core technologies for the diagnosis of classic genetic disorders to shed light on the benefits and disadvantages of these strategies, including diagnostic efficiency, variant interpretation, and secondary findings. Finally, we review upcoming technologies posed to impart further changes in the field of genetic diagnostics as we move toward "genome-first" practice.
Collapse
Affiliation(s)
- Emilie Lalonde
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Stefan Rentas
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Fumin Lin
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Matthew C. Dulik
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Cara M. Skraban
- Division of Human Genetics, Department of Pediatrics, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Nancy B. Spinner
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, School of Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
10
|
Jiang Z, Lin J, Dong H, Zheng X, Marjani SL, Duan J, Ouyang Z, Chen J, Tian XC. DNA methylomes of bovine gametes and in vivo produced preimplantation embryos. Biol Reprod 2019; 99:949-959. [PMID: 29912291 DOI: 10.1093/biolre/ioy138] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
DNA methylation is an important epigenetic modification that undergoes dynamic changes in mammalian embryogenesis, during which both parental genomes are reprogrammed. Despite the many immunostaining studies that have assessed global methylation, the gene-specific DNA methylation patterns in bovine preimplantation embryos are unknown. Using reduced representation bisulfite sequencing, we determined genome-scale DNA methylation of bovine sperm and individual in vivo developed oocytes and preimplantation embryos. We show that (1) the major wave of genome-wide demethylation was completed by the 8-cell stage; (2) promoter methylation was significantly and inversely correlated with gene expression at the 8-cell and blastocyst stages; (3) sperm and oocytes have numerous differentially methylated regions (DMRs)-DMRs specific for sperm were strongly enriched in long terminal repeats and rapidly lost methylation in embryos; while the oocyte-specific DMRs were more frequently localized in exons and CpG islands (CGIs) and demethylated gradually across cleavage stages; (4) DMRs were also found between in vivo and in vitro matured oocytes; and (5) differential methylation between bovine gametes was confirmed in some but not all known imprinted genes. Our data provide insights into the complex epigenetic reprogramming of bovine early embryos, which serve as an important model for human preimplantation development.
Collapse
Affiliation(s)
- Zongliang Jiang
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - Jianan Lin
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA.,Department of Genetics and Genome Sciences and Institute for System Genomics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Hong Dong
- Xinjiang Academy of Animal Science, Urumqi, Xinjiang, PR China
| | - Xinbao Zheng
- Xinjiang Academy of Animal Science, Urumqi, Xinjiang, PR China
| | - Sadie L Marjani
- Department of Biology, Central Connecticut State University, New Britain, Connecticut, USA
| | - Jingyue Duan
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| | - Zhengqing Ouyang
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA.,Department of Genetics and Genome Sciences and Institute for System Genomics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Jingbo Chen
- Xinjiang Academy of Animal Science, Urumqi, Xinjiang, PR China
| | - Xiuchun Cindy Tian
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
11
|
Yuan T, Zhao W, Niu Y, Fu Y, Lu L, Niu D. Exploration of the temporal-spatial expression pattern and DNA methylation-related regulation of the duck telomerase reverse transcriptase gene. Poult Sci 2019; 98:3257-3267. [PMID: 31064004 DOI: 10.3382/ps/pez240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 04/09/2019] [Indexed: 12/14/2022] Open
Abstract
Telomerase reverse transcriptase (TERT) is a catalytic subunit of telomerase that adds TTAGGG repeats to the 3'-overhang of telomeres. In the present study, we detected that the duck TERT (dTERT) gene was highly expressed in small intestine and kidney, followed by heart, leg muscle, spleen, pancreas, gonad, and liver at neonatal stage. From embryonic to neonatal stage, the highest dTERT mRNA in liver appeared at stage E19 (19 days at embryonic stage), while for the leg muscle the maximum expression occurred at E26. We also measured the relative telomerase activity (RTA) and relative telomere length (RTL) in the examined tissues and found that the changed tendency of RTA and RTL was not very consistent with that of TERT. In silico analysis revealed that there were three CpG islands (S1, S2, and S3) within the 5' regulatory region of the dTERT gene. Bisulfite sequencing PCR (BSP) assay showed that liver (D7, 7 days after birth) which expressed significantly lower dTERT mRNA had an obviously higher methylation level of S1 compared with small intestine (D7) or liver (E19). Quantitative real-time PCR analysis revealed that the expression of DNA methyltransferase DNMT1 in liver (D7) was significantly higher than that in small intestine (D7) or in liver (E19). In vitro, dTERT expression was upregulated and the methylation status of S1 decreased in both duck embryonic fibroblasts and small intestinal epithelial cells following treatment with the demethylation reagent, 5-aza-2'-deoxycytidine (5-aza-dC), further suggesting that dTERT is epigenetically regulated by DNA methylation. This work lays a solid foundation for further study of TERT function and regulation in avian species.
Collapse
Affiliation(s)
- Taoyan Yuan
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.,Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China
| | - Wanqiu Zhao
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.,Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China
| | - Yifan Niu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yan Fu
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, 145 Shiqiao Road, Hangzhou 310021, China.,Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture of China, Hangzhou 310021, Zhejiang, China
| | - Dong Niu
- College of Animal Science and Technology, Zhejiang A&F University
| |
Collapse
|
12
|
Zeng Y, Amador C, Xia C, Marioni R, Sproul D, Walker RM, Morris SW, Bretherick A, Canela-Xandri O, Boutin TS, Clark DW, Campbell A, Rawlik K, Hayward C, Nagy R, Tenesa A, Porteous DJ, Wilson JF, Deary IJ, Evans KL, McIntosh AM, Navarro P, Haley CS. Parent of origin genetic effects on methylation in humans are common and influence complex trait variation. Nat Commun 2019; 10:1383. [PMID: 30918249 PMCID: PMC6437195 DOI: 10.1038/s41467-019-09301-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 02/28/2019] [Indexed: 01/11/2023] Open
Abstract
Parent-of-origin effects (POE) exist when there is differential expression of alleles inherited from the two parents. A genome-wide scan for POE on DNA methylation at 639,238 CpGs in 5,101 individuals identifies 733 independent methylation CpGs potentially influenced by POE at a false discovery rate ≤ 0.05 of which 331 had not previously been identified. Cis and trans methylation quantitative trait loci (mQTL) regulate methylation variation through POE at 54% (399/733) of the identified POE-influenced CpGs. The combined results provide strong evidence for previously unidentified POE-influenced CpGs at 171 independent loci. Methylation variation at 14 of the POE-influenced CpGs is associated with multiple metabolic traits. A phenome-wide association analysis using the POE mQTL SNPs identifies a previously unidentified imprinted locus associated with waist circumference. These results provide a high resolution population-level map for POE on DNA methylation sites, their local and distant regulators and potential consequences for complex traits.
Collapse
Affiliation(s)
- Yanni Zeng
- MRC Human Genetic Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Carmen Amador
- MRC Human Genetic Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Charley Xia
- MRC Human Genetic Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Riccardo Marioni
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Centre for Genomic and Experimental Medicine, IGMM, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Duncan Sproul
- MRC Human Genetic Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Rosie M Walker
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Centre for Genomic and Experimental Medicine, IGMM, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Stewart W Morris
- Centre for Genomic and Experimental Medicine, IGMM, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Andrew Bretherick
- MRC Human Genetic Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Oriol Canela-Xandri
- MRC Human Genetic Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Thibaud S Boutin
- MRC Human Genetic Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - David W Clark
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH8 9AG, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, IGMM, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Konrad Rawlik
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - Caroline Hayward
- MRC Human Genetic Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Reka Nagy
- MRC Human Genetic Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Albert Tenesa
- MRC Human Genetic Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, EH25 9RG, UK
| | - David J Porteous
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Centre for Genomic and Experimental Medicine, IGMM, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - James F Wilson
- MRC Human Genetic Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH8 9AG, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Kathryn L Evans
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Centre for Genomic and Experimental Medicine, IGMM, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Andrew M McIntosh
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Division of Psychiatry, University of Edinburgh, Edinburgh, EH10 5HF, UK
| | - Pau Navarro
- MRC Human Genetic Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Chris S Haley
- MRC Human Genetic Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK.
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, EH25 9RG, UK.
| |
Collapse
|
13
|
Dhanoa JK, Sethi RS, Verma R, Arora JS, Mukhopadhyay CS. Long non-coding RNA: its evolutionary relics and biological implications in mammals: a review. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2018; 60:25. [PMID: 30386629 PMCID: PMC6201556 DOI: 10.1186/s40781-018-0183-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/05/2018] [Indexed: 02/08/2023]
Abstract
The central dogma of gene expression propounds that DNA is transcribed to mRNA and finally gets translated into protein. Only 2–3% of the genomic DNA is transcribed to protein-coding mRNA. Interestingly, only a further minuscule part of genomic DNA encodes for long non-coding RNAs (lncRNAs) which are characteristically more than 200 nucleotides long and can be transcribed from both protein-coding (e.g. H19 and TUG1) as well as non-coding DNA by RNA polymerase II. The lncRNAs do not have open reading frames (with some exceptions), 3`-untranslated regions (3’-UTRs) and necessarily these RNAs lack any translation-termination regions, however, these can be spliced, capped and polyadenylated as mRNA molecules. The flexibility of lncRNAs confers them specific 3D-conformations that eventually enable the lncRNAs to interact with proteins, DNA or other RNA molecules via base pairing or by forming networks. The lncRNAs play a major role in gene regulation, cell differentiation, cancer cell invasion and metastasis and chromatin remodeling. Deregulation of lncRNA is also responsible for numerous diseases in mammals. Various studies have revealed their significance as biomarkers for prognosis and diagnosis of cancer. The aim of this review is to overview the salient features, evolution, biogenesis and biological importance of these molecules in the mammalian system.
Collapse
Affiliation(s)
- Jasdeep Kaur Dhanoa
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab India
| | - Ram Saran Sethi
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab India
| | - Ramneek Verma
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab India
| | - Jaspreet Singh Arora
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab India
| | - Chandra Sekhar Mukhopadhyay
- School of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab India
| |
Collapse
|
14
|
Corrà F, Agnoletto C, Minotti L, Baldassari F, Volinia S. The Network of Non-coding RNAs in Cancer Drug Resistance. Front Oncol 2018; 8:327. [PMID: 30211115 PMCID: PMC6123370 DOI: 10.3389/fonc.2018.00327] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Non-coding RNAs (ncRNAs) have been implicated in most cellular functions. The disruption of their function through somatic mutations, genomic imprinting, transcriptional and post-transcriptional regulation, plays an ever-increasing role in cancer development. ncRNAs, including notorious microRNAs, have been thus proposed to function as tumor suppressors or oncogenes, often in a context-dependent fashion. In parallel, ncRNAs with altered expression in cancer have been reported to exert a key role in determining drug sensitivity or restoring drug responsiveness in resistant cells. Acquisition of resistance to anti-cancer drugs is a major hindrance to effective chemotherapy and is one of the most important causes of relapse and mortality in cancer patients. For these reasons, non-coding RNAs have become recent focuses as prognostic agents and modifiers of chemo-sensitivity. This review starts with a brief outline of the role of most studied non-coding RNAs in cancer and then highlights the modulation of cancer drug resistance via known ncRNAs based mechanisms. We identified from literature 388 ncRNA-drugs interactions and analyzed them using an unsupervised approach. Essentially, we performed a network analysis of the non-coding RNAs with direct relations with cancer drugs. Within such a machine-learning framework we detected the most representative ncRNAs-drug associations and groups. We finally discussed the higher integration of the drug-ncRNA clusters with the goal of disentangling effectors from downstream effects and further clarify the involvement of ncRNAs in the cellular mechanisms underlying resistance to cancer treatments.
Collapse
Affiliation(s)
- Fabio Corrà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Agnoletto
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Linda Minotti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Federica Baldassari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
15
|
Skinner MK, Ben Maamar M, Sadler-Riggleman I, Beck D, Nilsson E, McBirney M, Klukovich R, Xie Y, Tang C, Yan W. Alterations in sperm DNA methylation, non-coding RNA and histone retention associate with DDT-induced epigenetic transgenerational inheritance of disease. Epigenetics Chromatin 2018; 11:8. [PMID: 29482626 PMCID: PMC5827984 DOI: 10.1186/s13072-018-0178-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/16/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Environmental toxicants such as DDT have been shown to induce the epigenetic transgenerational inheritance of disease (e.g., obesity) through the germline. The current study was designed to investigate the DDT-induced concurrent alterations of a number of different epigenetic processes including DNA methylation, non-coding RNA (ncRNA) and histone retention in sperm. METHODS Gestating females were exposed transiently to DDT during fetal gonadal development, and then, the directly exposed F1 generation, the directly exposed germline F2 generation and the transgenerational F3 generation sperm were investigated. RESULTS DNA methylation and ncRNA were altered in each generation sperm with the direct exposure F1 and F2 generations being predominantly distinct from the F3 generation epimutations. The piRNA and small tRNA were the most predominant classes of ncRNA altered. A highly conserved set of histone retention sites were found in the control lineage generations which was not significantly altered between generations, but a large number of new histone retention sites were found only in the transgenerational generation DDT lineage sperm. CONCLUSIONS Therefore, all three different epigenetic processes were concurrently altered as DDT induced the epigenetic transgenerational inheritance of sperm epimutations. The direct exposure generations sperm epigenetic alterations were distinct from the transgenerational sperm epimutations. The genomic features and gene associations with the epimutations were investigated to help elucidate the integration of these different epigenetic processes. Observations demonstrate all three epigenetic processes are involved in transgenerational inheritance. The different epigenetic processes appear to be integrated in mediating the epigenetic transgenerational inheritance phenomenon.
Collapse
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| | - Millissia Ben Maamar
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Margaux McBirney
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Rachel Klukovich
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Chong Tang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| |
Collapse
|
16
|
Saha P, Verma S, Pathak RU, Mishra RK. Long Noncoding RNAs in Mammalian Development and Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1008:155-198. [PMID: 28815540 DOI: 10.1007/978-981-10-5203-3_6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Following analysis of sequenced genomes and transcriptome of many eukaryotes, it is evident that virtually all protein-coding genes have already been discovered. These advances have highlighted an intriguing paradox whereby the relative amount of protein-coding sequences remain constant but nonprotein-coding sequences increase consistently in parallel to increasing evolutionary complexity. It is established that differences between species map to nonprotein-coding regions of the genome that surprisingly is transcribed extensively. These transcripts regulate epigenetic processes and constitute an important layer of regulatory information essential for organismal development and play a causative role in diseases. The noncoding RNA-directed regulatory circuit controls complex characteristics. Sequence variations in noncoding RNAs influence evolution, quantitative traits, and disease susceptibility. This chapter presents an account on a class of such noncoding transcripts that are longer than 200 nucleotides (long noncoding RNA-lncRNA) in mammalian development and diseases.
Collapse
Affiliation(s)
- Parna Saha
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Shreekant Verma
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Rashmi U Pathak
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.
| | - Rakesh K Mishra
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
17
|
Wasson JA, Birol O, Katz DJ. A Resource for the Allele-Specific Analysis of DNA Methylation at Multiple Genomically Imprinted Loci in Mice. G3 (BETHESDA, MD.) 2018; 8:91-103. [PMID: 29138238 PMCID: PMC5765370 DOI: 10.1534/g3.117.300417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/30/2017] [Indexed: 01/15/2023]
Abstract
Genomically imprinted loci are expressed mono-allelically, dependent upon the parent of origin. Their regulation not only illuminates how chromatin regulates gene expression but also how chromatin can be reprogrammed every generation. Because of their distinct parent-of-origin regulation, analysis of imprinted loci can be difficult. Single nucleotide polymorphisms (SNPs) are required to accurately assess these elements allele specifically. However, publicly available SNP databases lack robust verification, making analysis of imprinting difficult. In addition, the allele-specific imprinting assays that have been developed employ different mouse strains, making it difficult to systemically analyze these loci. Here, we have generated a resource that will allow the allele-specific analysis of many significant imprinted loci in a single hybrid strain of Mus musculus This resource includes verification of SNPs present within 10 of the most widely used imprinting control regions and allele-specific DNA methylation assays for each gene in a C57BL/6J and CAST/EiJ hybrid strain background.
Collapse
Affiliation(s)
- Jadiel A Wasson
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Onur Birol
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - David J Katz
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
18
|
Identification and association of novel lncRNA pouMU1 gene mutations with chicken performance traits. J Genet 2017; 96:941-950. [DOI: 10.1007/s12041-017-0858-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Patiño-Parrado I, Gómez-Jiménez Á, López-Sánchez N, Frade JM. Strand-specific CpG hemimethylation, a novel epigenetic modification functional for genomic imprinting. Nucleic Acids Res 2017; 45:8822-8834. [PMID: 28605464 PMCID: PMC5587773 DOI: 10.1093/nar/gkx518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 06/01/2017] [Indexed: 12/13/2022] Open
Abstract
Imprinted genes are regulated by allele-specific differentially DNA-methylated regions (DMRs). Epigenetic methylation of the CpGs constituting these DMRs is established in the germline, resulting in a 5-methylcytosine-specific pattern that is tightly maintained in somatic tissues. Here, we show a novel epigenetic mark, characterized by strand-specific hemimethylation of contiguous CpG sites affecting the germline DMR of the murine Peg3, but not Snrpn, imprinted domain. This modification is enriched in tetraploid cortical neurons, a cell type where evidence for a small proportion of formylmethylated CpG sites within the Peg3-controlling DMR is also provided. Single nucleotide polymorphism (SNP)-based transcriptional analysis indicated that these epigenetic modifications participate in the maintainance of the monoallelic expression pattern of the Peg3 imprinted gene. Our results unexpectedly demonstrate that the methylation pattern observed in DMRs controlling defined imprinting regions can be modified in somatic cells, resulting in a novel epigenetic modification that gives rise to strand-specific hemimethylated domains functional for genomic imprinting. We anticipate the existence of a novel molecular mechanism regulating the transition from fully methylated CpGs to strand-specific hemimethylated CpGs.
Collapse
Affiliation(s)
- Iris Patiño-Parrado
- Department of Molecular, Cellular, and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas (IC-CSIC), Madrid E-28002, Spain
| | - Álvaro Gómez-Jiménez
- Department of Molecular, Cellular, and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas (IC-CSIC), Madrid E-28002, Spain
| | - Noelia López-Sánchez
- Department of Molecular, Cellular, and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas (IC-CSIC), Madrid E-28002, Spain
| | - José M Frade
- Department of Molecular, Cellular, and Developmental Neurobiology, Cajal Institute, Consejo Superior de Investigaciones Científicas (IC-CSIC), Madrid E-28002, Spain
| |
Collapse
|
20
|
Pértille F, Brantsæter M, Nordgreen J, Coutinho LL, Janczak AM, Jensen P, Guerrero-Bosagna C. DNA methylation profiles in red blood cells of adult hens correlate with their rearing conditions. ACTA ACUST UNITED AC 2017; 220:3579-3587. [PMID: 28784681 DOI: 10.1242/jeb.157891] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 08/01/2017] [Indexed: 12/30/2022]
Abstract
Stressful conditions are common in the environment where production animals are reared. Stress in animals is usually determined by the levels of stress-related hormones. A big challenge, however, is in determining the history of exposure of an organism to stress, because the release of stress hormones can show an acute (and recent) but not a sustained exposure to stress. Epigenetic tools provide an alternative option to evaluate past exposure to long-term stress. Chickens provide a unique model to study stress effects in the epigenome of red blood cells (RBCs), a cell type of easy access and nucleated in birds. The present study investigated whether two different rearing conditions in chickens can be identified by looking at DNA methylation patterns in their RBCs later in life. These conditions were rearing in open aviaries versus in cages, which are likely to differ regarding the amount of stress they generate. Our comparison revealed 115 genomic windows with significant changes in RBC DNA methylation between experimental groups, which were located around 53 genes and within 22 intronic regions. Our results set the ground for future detection of long-term stress in live production animals by measuring DNA methylation in a cell type of easy accessibility.
Collapse
Affiliation(s)
- Fábio Pértille
- Avian Behavioral Genomics and Physiology Group, IFM Biology, Linköping University, SE-58 183 Linköping, Sweden.,Animal Biotechnology Laboratory, Animal Science and Pastures Department, University of São Paulo (USP)/ Luiz de Queiroz College of Agriculture (ESALQ), 13418-900 Piracicaba, São Paulo, Brazil
| | - Margrethe Brantsæter
- Animal Welfare Research Group, Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, N-0033 Oslo, Norway
| | - Janicke Nordgreen
- Animal Welfare Research Group, Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, N-0033 Oslo, Norway
| | - Luiz Lehmann Coutinho
- Animal Biotechnology Laboratory, Animal Science and Pastures Department, University of São Paulo (USP)/ Luiz de Queiroz College of Agriculture (ESALQ), 13418-900 Piracicaba, São Paulo, Brazil
| | - Andrew M Janczak
- Animal Welfare Research Group, Department of Production Animal Clinical Science, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, N-0033 Oslo, Norway
| | - Per Jensen
- Avian Behavioral Genomics and Physiology Group, IFM Biology, Linköping University, SE-58 183 Linköping, Sweden
| | - Carlos Guerrero-Bosagna
- Avian Behavioral Genomics and Physiology Group, IFM Biology, Linköping University, SE-58 183 Linköping, Sweden
| |
Collapse
|
21
|
Singh VB, Sribenja S, Wilson KE, Attwood KM, Hillman JC, Pathak S, Higgins MJ. Blocked transcription through KvDMR1 results in absence of methylation and gene silencing resembling Beckwith-Wiedemann syndrome. Development 2017; 144:1820-1830. [PMID: 28428215 PMCID: PMC5450836 DOI: 10.1242/dev.145136] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/23/2017] [Indexed: 12/30/2022]
Abstract
The maternally methylated KvDMR1 ICR regulates imprinted expression of a cluster of maternally expressed genes on human chromosome 11p15.5. Disruption of imprinting leads to Beckwith-Wiedemann syndrome (BWS), an overgrowth and cancer predisposition condition. In the majority of individuals with BWS, maternal-specific methylation at KvDMR1 is absent and genes under its control are repressed. We analyzed a mouse model carrying a poly(A) truncation cassette inserted to prevent RNA transcripts from elongation through KvDMR1. Maternal inheritance of this mutation resulted in absence of DNA methylation at KvDMR1, which led to biallelic expression of Kcnq1ot1 and suppression of maternally expressed genes. This study provides further evidence that transcription is required for establishment of methylation at maternal gametic DMRs. More importantly, this mouse model recapitulates the molecular phenotypic characteristics of the most common form of BWS, including loss of methylation at KvDMR1 and biallelic repression of Cdkn1c, suggesting that deficiency of maternal transcription through KvDMR1 may be an underlying cause of some BWS cases.
Collapse
Affiliation(s)
- Vir B Singh
- Departments of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Sirinapa Sribenja
- Departments of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Kayla E Wilson
- Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Kristopher M Attwood
- Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Joanna C Hillman
- Departments of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Shilpa Pathak
- Departments of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Michael J Higgins
- Departments of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
22
|
Bina M. Imprinted control regions include composite DNA elements consisting of the ZFP57 binding site overlapping MLL1 morphemes. Genomics 2017; 109:265-273. [PMID: 28476430 DOI: 10.1016/j.ygeno.2017.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/25/2017] [Accepted: 04/30/2017] [Indexed: 12/16/2022]
Abstract
Mammalian genomes include DNA segments that are imprinted (CpG-methylated) only on one of the two parental chromosomes, leading to parent-of-origin-specific gene expression. The process is regulated by Imprinting Control Regions (ICRs) and germline Differentially Methylated Regions (gDMRs). Previously, ZFP57 was shown to recognize a methylated hexanucleotide in ICRs to maintain allele-specific gene repression. In Bioinformatics analyses, I found that the hexamer occurred frequently in mouse chromosomal DNA, suggesting that beside the ZFP57 binding site (ZFBS), ICRs contained sequence features with unknown characteristics. To identify such features, I examined chromosomal abundance of motifs in which the length of the hexamer was extended by one or several nucleotides. Results led to the discovery of a group of functionally significant composite DNA elements (ZFBS-Morph overlaps) that may play dual roles in the regulation of allele-specific gene expression. Importantly, results of genome-wide evaluations revealed that nearly 90% of the gDMRs included closely-spaced ZFBS-Morph overlaps.
Collapse
Affiliation(s)
- Minou Bina
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
23
|
Chen G, Peng L, Zhu Z, Du C, Shen Z, Zang R, Su Y, Xia Y, Tang W. LncRNA AFAP1-AS Functions as a Competing Endogenous RNA to Regulate RAP1B Expression by sponging miR-181a in the HSCR. Int J Med Sci 2017; 14:1022-1030. [PMID: 28924375 PMCID: PMC5599927 DOI: 10.7150/ijms.18392] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/14/2017] [Indexed: 12/12/2022] Open
Abstract
Background: Long noncoding RNAs (lncRNAs) have recently emerged as important regulators in a broad spectrum of cellular processes including development and disease. Despite the known engagement of the AFAP1-AS in several human diseases, its biological function in Hirschsprung disease (HSCR) remains elusive. Methods: We used qRT-PCR to detect the relative expression of AFAP1-AS in 64 HSCR bowel tissues and matched normal intestinal tissues. The effects of AFAP1-AS on cell proliferation, migration, cell cycle, apoptosis and cytoskeletal organization were evaluated using CCK-8, transwell assay, flow cytometer analysis and immunofluorescence, in 293T and SH-SY5Y cell lines, respectively. Moreover, the competing endogenous RNA (ceRNA) activity of AFAP1-AS on miR-181a was investigated via luciferase reporter assay and immunoblot analysis. Results: Aberrant inhibition of AFAP1-AS was observed in HSCR tissues. Knockdown of AFAP1-AS in 293T and SH-SY5Y cells suppressed cell proliferation, migration, and induced the loss of cell stress filament integrity, possibly due to AFAP1-AS sequestering miR-181a in HSCR cells. Furthermore, AFAP1-AS could down-regulate RAP1B via its competing endogenous RNA (ceRNA) activity on miR-181a. Conclusions: These findings suggest that aberrant expression of lncRNA AFAP1-AS, a ceRNA of miR-181a, may involve in the onset and progression of HSCR by augmenting the miR-181a target gene, RAP1B.
Collapse
Affiliation(s)
- Guanglin Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University
| | - Lei Peng
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University
| | - Zhongxian Zhu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University
| | - Chunxia Du
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University
| | - Ziyang Shen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University
| | - Rujin Zang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University
| | - Yang Su
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Key Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of Education, China
| | - Weibing Tang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University
| |
Collapse
|
24
|
Long non-coding RNAs: Mechanism of action and functional utility. Noncoding RNA Res 2016; 1:43-50. [PMID: 30159410 PMCID: PMC6096411 DOI: 10.1016/j.ncrna.2016.11.002] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 12/22/2022] Open
Abstract
Recent RNA sequencing studies have revealed that most of the human genome is transcribed, but very little of the total transcriptomes has the ability to encode proteins. Long non-coding RNAs (lncRNAs) are non-coding transcripts longer than 200 nucleotides. Members of the non-coding genome include microRNA (miRNA), small regulatory RNAs and other short RNAs. Most of long non-coding RNA (lncRNAs) are poorly annotated. Recent recognition about lncRNAs highlights their effects in many biological and pathological processes. LncRNAs are dysfunctional in a variety of human diseases varying from cancerous to non-cancerous diseases. Characterization of these lncRNA genes and their modes of action may allow their use for diagnosis, monitoring of progression and targeted therapies in various diseases. In this review, we summarize the functional perspectives as well as the mechanism of action of lncRNAs.
Collapse
|
25
|
Abstract
Paternally expressed gene 3 (Peg3) encodes a DNA-binding protein with 12 C2H2 zinc finger motifs. In the current study, we performed ChIP-seq using mouse embryonic fibroblast (MEF) cells. This experiment identified a set of 16 PEG3 genomic targets, the majority of which overlapped with the promoter regions of genes with oocyte expression. These potential downstream genes were upregulated in MEF cells lacking PEG3 protein, suggesting a potential repressor role for PEG3. Our study also identified the imprinting control region (ICR) of H19 as a genomic target. According to the results, PEG3 binds to a specific sequence motif located between the 3rd and 4th CTCF binding sites of the H19-ICR. PEG3 also binds to the active maternal allele of the H19-ICR. The expression levels of H19 were upregulated in MEF cells lacking PEG3, and this upregulation was mainly derived from the maternal allele. This suggests that PEG3 may function as a transcriptional repressor for the maternal allele of H19. Overall, the current study uncovers a potential functional relationship between Peg3 and H19, and also confirms PEG3 as a transcriptional repressor for the identified downstream genes.
Collapse
Affiliation(s)
- An Ye
- a Department of Biological Sciences , Louisiana State University , Baton Rouge , LA , USA
| | - Hongzhi He
- a Department of Biological Sciences , Louisiana State University , Baton Rouge , LA , USA
| | - Joomyeong Kim
- a Department of Biological Sciences , Louisiana State University , Baton Rouge , LA , USA
| |
Collapse
|
26
|
Lan X, Yan J, Ren J, Zhong B, Li J, Li Y, Liu L, Yi J, Sun Q, Yang X, Sun J, Meng L, Zhu W, Holmdahl R, Li D, Lu S. A novel long noncoding RNA Lnc-HC binds hnRNPA2B1 to regulate expressions of Cyp7a1 and Abca1 in hepatocytic cholesterol metabolism. Hepatology 2016; 64:58-72. [PMID: 26663205 DOI: 10.1002/hep.28391] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 12/06/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Cholesterol metabolism disorder in hepatocytes predicts a higher risk of metabolic syndrome (MetS). Long noncoding RNAs (lncRNAs) have emerged as critical players in cellular cholesterol metabolism, but their functions are not systematically clarified. Here, we have identified a novel lncRNA named lnc-HC negatively regulating cholesterol metabolism within hepatocytes through physical interaction with hnRNPA2B1. By further binding to the target messenger RNA of Cyp7a1 or Abca1, the lnc-HC-hnRNPA2B1 complex decreases expressions of the two genes that are implicated in cellular cholesterol excretion. lnc-HC knockdown can strongly recover the cholesterol disorder in vivo. In the upstream pathway, lnc-HC is up-regulated by high cholesterol by the transcription activator, CCAAT/enhancer-binding protein beta. CONCLUSION These findings suggest a subtle feed-forward regulation of lnc-HC in cholesterol metabolism and define a novel line of evidence by which lncRNAs modulate the metabolic system at the post-transcriptional level. (Hepatology 2016;64:58-72).
Collapse
Affiliation(s)
- Xi Lan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Jidong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Juan Ren
- Department of Reproductive Medicine, the Fourth Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Zhong
- Department of Pediatrics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Yue Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Li Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Jing Yi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Qingzhu Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Xudong Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Jian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Liesu Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Wenhua Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Beijing, China
| |
Collapse
|
27
|
Haque MM, Nilsson EE, Holder LB, Skinner MK. Genomic Clustering of differential DNA methylated regions (epimutations) associated with the epigenetic transgenerational inheritance of disease and phenotypic variation. BMC Genomics 2016; 17:418. [PMID: 27245821 PMCID: PMC4888261 DOI: 10.1186/s12864-016-2748-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/17/2016] [Indexed: 11/24/2022] Open
Abstract
Background A variety of environmental factors have been shown to promote the epigenetic transgenerational inheritance of disease and phenotypic variation in numerous species. Exposure to environmental factors such as toxicants can promote epigenetic changes (epimutations) involving alterations in DNA methylation to produce specific differential DNA methylation regions (DMRs). The germline (e.g. sperm) transmission of epimutations is associated with epigenetic transgenerational inheritance phenomena. The current study was designed to determine the genomic locations of environmentally induced transgenerational DMRs and assess their potential clustering. Results The exposure specific DMRs (epimutations) from a number of different studies were used. The clustering approach identified areas of the genome that have statistically significant over represented numbers of epimutations. The location of DMR clusters was compared to the gene clusters of differentially expressed genes found in tissues and cells associated with the transgenerational inheritance of disease. Such gene clusters, termed epigenetic control regions (ECRs), have been previously suggested to regulate gene expression in regions spanning up to 2-5 million bases. DMR clusters were often found to associate with inherent gene clusters within the genome. Conclusion The current study used a number of epigenetic datasets from previous studies to identify novel DMR clusters across the genome. Observations suggest these clustered DMR within an ECR may be susceptible to epigenetic reprogramming and dramatically influence genome activity. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2748-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M Muksitul Haque
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.,School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, 99164, USA
| | - Eric E Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Lawrence B Holder
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, 99164, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA.
| |
Collapse
|
28
|
Chen Z, Hagen DE, Wang J, Elsik CG, Ji T, Siqueira LG, Hansen PJ, Rivera RM. Global assessment of imprinted gene expression in the bovine conceptus by next generation sequencing. Epigenetics 2016; 11:501-16. [PMID: 27245094 PMCID: PMC4939914 DOI: 10.1080/15592294.2016.1184805] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Genomic imprinting is an epigenetic mechanism that leads to parental-allele-specific gene expression. Approximately 150 imprinted genes have been identified in humans and mice but less than 30 have been described as imprinted in cattle. For the purpose of de novo identification of imprinted genes in bovine, we determined global monoallelic gene expression in brain, skeletal muscle, liver, kidney and placenta of day ∼105 Bos taurus indicus × Bos taurus taurus F1 conceptuses using RNA sequencing. To accomplish this, we developed a bioinformatics pipeline to identify parent-specific single nucleotide polymorphism alleles after filtering adenosine to inosine (A-to-I) RNA editing sites. We identified 53 genes subject to monoallelic expression. Twenty three are genes known to be imprinted in the cow and an additional 7 have previously been characterized as imprinted in human and/or mouse that have not been reported as imprinted in cattle. Of the remaining 23 genes, we found that 10 are uncharacterized or unannotated transcripts located in known imprinted clusters, whereas the other 13 genes are distributed throughout the bovine genome and are not close to any known imprinted clusters. To exclude potential cis-eQTL effects on allele expression, we corroborated the parental specificity of monoallelic expression in day 86 Bos taurus taurus × Bos taurus taurus conceptuses and identified 8 novel bovine imprinted genes. Further, we identified 671 candidate A-to-I RNA editing sites and describe random X-inactivation in day 15 bovine extraembryonic membranes. Our results expand the imprinted gene list in bovine and demonstrate that monoallelic gene expression can be the result of cis-eQTL effects.
Collapse
Affiliation(s)
- Zhiyuan Chen
- a Division of Animal Sciences , University of Missouri , Columbia , MO , USA
| | - Darren E Hagen
- a Division of Animal Sciences , University of Missouri , Columbia , MO , USA
| | - Juanbin Wang
- b Department of Statistics , University of Missouri , Columbia , MO , USA
| | - Christine G Elsik
- a Division of Animal Sciences , University of Missouri , Columbia , MO , USA
| | - Tieming Ji
- b Department of Statistics , University of Missouri , Columbia , MO , USA
| | - Luiz G Siqueira
- c Department of Animal Sciences , University of Florida , Gainesville , FL , USA
| | - Peter J Hansen
- c Department of Animal Sciences , University of Florida , Gainesville , FL , USA
| | - Rocío M Rivera
- a Division of Animal Sciences , University of Missouri , Columbia , MO , USA
| |
Collapse
|
29
|
Lewis KA, Tollefsbol TO. Regulation of the Telomerase Reverse Transcriptase Subunit through Epigenetic Mechanisms. Front Genet 2016; 7:83. [PMID: 27242892 PMCID: PMC4860561 DOI: 10.3389/fgene.2016.00083] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 04/22/2016] [Indexed: 12/21/2022] Open
Abstract
Chromosome-shortening is characteristic of normal cells, and is known as the end replication problem. Telomerase is the enzyme responsible for extending the ends of the chromosomes in de novo synthesis, and occurs in germ cells as well as most malignant cancers. There are three subunits of telomerase: human telomerase RNA (hTERC), human telomerase associated protein (hTEP1), or dyskerin, and human telomerase reverse transcriptase (hTERT). hTERC and hTEP1 are constitutively expressed, so the enzymatic activity of telomerase is dependent on the transcription of hTERT. DNA methylation, histone methylation, and histone acetylation are basic epigenetic regulations involved in the expression of hTERT. Non-coding RNA can also serve as a form of epigenetic control of hTERT. This epigenetic-based regulation of hTERT is important in providing a mechanism for reversibility of hTERT control in various biological states. These include embryonic down-regulation of hTERT contributing to aging and the upregulation of hTERT playing a critical role in over 90% of cancers. Normal human somatic cells have a non-methylated/hypomethylated CpG island within the hTERT promoter region, while telomerase-positive cells paradoxically have at least a partially methylated promoter region that is opposite to the normal roles of DNA methylation. Histone acetylation of H3K9 within the promoter region is associated with an open chromatin state such that transcription machinery has the space to form. Histone methylation of hTERT has varied control of the gene, however. Mono- and dimethylation of H3K9 within the promoter region indicate silent euchromatin, while a trimethylated H3K9 enhances gene transcription. Non-coding RNAs can target epigenetic-modifying enzymes, as well as transcription factors involved in the control of hTERT. An epigenetics diet that can affect the epigenome of cancer cells is a recent fascination that has received much attention. By combining portions of this diet with epigenome-altering treatments, it is possible to selectively regulate the epigenetic control of hTERT and its expression.
Collapse
Affiliation(s)
- Kayla A Lewis
- Department of Biology, University of Alabama at Birmingham, Birmingham AL, USA
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, BirminghamAL, USA; Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, BirminghamAL, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, BirminghamAL, USA; Nutrition Obesity Research Center, University of Alabama at Birmingham, BirminghamAL, USA; Comprehensive Diabetes Center, University of Alabama at Birmingham, BirminghamAL, USA
| |
Collapse
|
30
|
Yuan B, Gu H, Xu B, Tang Q, Wu W, Ji X, Xia Y, Hu L, Chen D, Wang X. Effects of Gold Nanorods on Imprinted Genes Expression in TM-4 Sertoli Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13030271. [PMID: 26938548 PMCID: PMC4808934 DOI: 10.3390/ijerph13030271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 12/31/2022]
Abstract
Gold nanorods (GNRs) are among the most commonly used nanomaterials. However, thus far, little is known about their harmful effects on male reproduction. Studies from our laboratory have demonstrated that GNRs could decrease glycine synthesis, membrane permeability, mitochondrial membrane potential and disrupt blood-testis barrier factors in TM-4 Sertoli cells. Imprinted genes play important roles in male reproduction and have been identified as susceptible loci to environmental insults by chemicals because they are functionally haploid. In this original study, we investigated the extent to which imprinted genes become deregulated in TM-4 Sertoli cells when treated with low dose of GNRs. The expression levels of 44 imprinted genes were analyzed by quantitative real-time PCR in TM-4 Sertoli cells after a low dose of (10 nM) GNRs treatment for 24 h. We found significantly diminished expression of Kcnq1, Ntm, Peg10, Slc22a2, Pwcr1, Gtl2, Nap1l5, Peg3 and Slc22a2, while Plagl1 was significantly overexpressed. Additionally, four (Kcnq1, Slc22a18, Pwcr1 and Peg3) of 10 abnormally expressed imprinted genes were found to be located on chromosome 7. However, no significant difference of imprinted miRNA genes was observed between the GNRs treated group and controls. Our study suggested that aberrant expression of imprinted genes might be an underlying mechanism for the GNRs-induced reproductive toxicity in TM-4 Sertoli cells.
Collapse
Affiliation(s)
- Beilei Yuan
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Hao Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Bo Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Qiuqin Tang
- State Key Laboratory of Reproductive Medicine, Department of Obstetrics, Nanjing Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Nanjing 210004, China.
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
- State Key Laboratory of Reproductive Medicine, Wuxi Maternal and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China.
| | - Xiaoli Ji
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Lingqing Hu
- State Key Laboratory of Reproductive Medicine, Wuxi Maternal and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China.
| | - Daozhen Chen
- State Key Laboratory of Reproductive Medicine, Wuxi Maternal and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi 214002, China.
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China.
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
31
|
Haque MM, Holder LB, Skinner MK. Genome-Wide Locations of Potential Epimutations Associated with Environmentally Induced Epigenetic Transgenerational Inheritance of Disease Using a Sequential Machine Learning Prediction Approach. PLoS One 2015; 10:e0142274. [PMID: 26571271 PMCID: PMC4646459 DOI: 10.1371/journal.pone.0142274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/20/2015] [Indexed: 11/18/2022] Open
Abstract
Environmentally induced epigenetic transgenerational inheritance of disease and phenotypic variation involves germline transmitted epimutations. The primary epimutations identified involve altered differential DNA methylation regions (DMRs). Different environmental toxicants have been shown to promote exposure (i.e., toxicant) specific signatures of germline epimutations. Analysis of genomic features associated with these epimutations identified low-density CpG regions (<3 CpG / 100bp) termed CpG deserts and a number of unique DNA sequence motifs. The rat genome was annotated for these and additional relevant features. The objective of the current study was to use a machine learning computational approach to predict all potential epimutations in the genome. A number of previously identified sperm epimutations were used as training sets. A novel machine learning approach using a sequential combination of Active Learning and Imbalance Class Learner analysis was developed. The transgenerational sperm epimutation analysis identified approximately 50K individual sites with a 1 kb mean size and 3,233 regions that had a minimum of three adjacent sites with a mean size of 3.5 kb. A select number of the most relevant genomic features were identified with the low density CpG deserts being a critical genomic feature of the features selected. A similar independent analysis with transgenerational somatic cell epimutation training sets identified a smaller number of 1,503 regions of genome-wide predicted sites and differences in genomic feature contributions. The predicted genome-wide germline (sperm) epimutations were found to be distinct from the predicted somatic cell epimutations. Validation of the genome-wide germline predicted sites used two recently identified transgenerational sperm epimutation signature sets from the pesticides dichlorodiphenyltrichloroethane (DDT) and methoxychlor (MXC) exposure lineage F3 generation. Analysis of this positive validation data set showed a 100% prediction accuracy for all the DDT-MXC sperm epimutations. Observations further elucidate the genomic features associated with transgenerational germline epimutations and identify a genome-wide set of potential epimutations that can be used to facilitate identification of epigenetic diagnostics for ancestral environmental exposures and disease susceptibility.
Collapse
Affiliation(s)
- M. Muksitul Haque
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, 99164–4236, United States of America
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, Washington, 99164, United States of America
| | - Lawrence B. Holder
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, Washington, 99164, United States of America
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, Washington, 99164–4236, United States of America
- * E-mail:
| |
Collapse
|
32
|
Alexander KA, Wang X, Shibata M, Clark AG, García-García MJ. TRIM28 Controls Genomic Imprinting through Distinct Mechanisms during and after Early Genome-wide Reprogramming. Cell Rep 2015; 13:1194-1205. [PMID: 26527006 DOI: 10.1016/j.celrep.2015.09.078] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/08/2015] [Accepted: 09/25/2015] [Indexed: 01/08/2023] Open
Abstract
Genomic imprinting depends on the establishment and maintenance of DNA methylation at imprinting control regions. However, the mechanisms by which these heritable marks influence allele-specific expression are not fully understood. By analyzing maternal, zygotic, maternal-zygotic, and conditional Trim28 mutants, we found that the transcription factor TRIM28 controls genomic imprinting through distinct mechanisms at different developmental stages. During early genome-wide reprogramming, both maternal and zygotic TRIM28 are required for the maintenance of methylation at germline imprints. However, in conditional Trim28 mutants, Gtl2-imprinted gene expression was lost despite normal methylation levels at the germline IG-DMR. These results provide evidence that TRIM28 controls imprinting after early embryonic reprogramming through a mechanism other than the maintenance of germline imprints. Additionally, our finding that secondary imprints were hypomethylated in TRIM28 mutants uncovers a requirement of TRIM28 after genome-wide reprogramming for interpreting germline imprints and regulating DNA methylation at imprinted gene promoters.
Collapse
Affiliation(s)
- Katherine A Alexander
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Xu Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Maho Shibata
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - María J García-García
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
33
|
Lourenco GF, Janitz M, Huang Y, Halliday GM. Long noncoding RNAs in TDP-43 and FUS/TLS-related frontotemporal lobar degeneration (FTLD). Neurobiol Dis 2015. [DOI: 10.1016/j.nbd.2015.07.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
34
|
Fatima R, Akhade VS, Pal D, Rao SMR. Long noncoding RNAs in development and cancer: potential biomarkers and therapeutic targets. MOLECULAR AND CELLULAR THERAPIES 2015; 3:5. [PMID: 26082843 PMCID: PMC4469312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/19/2015] [Indexed: 11/21/2023]
Abstract
Long noncoding RNAs are emerging as key players in various fundamental biological processes. We highlight the varied molecular mechanisms by which lncRNAs modulate gene expression in diverse cellular contexts and their role in early mammalian development in this review. Furthermore, it is being increasingly recognized that altered expression of lncRNAs is specifically associated with tumorigenesis, tumor progression and metastasis. We discuss various lncRNAs implicated in different cancer types with a focus on their clinical applications as potential biomarkers and therapeutic targets in the pathology of diverse cancers.
Collapse
Affiliation(s)
- Roshan Fatima
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Vijay Suresh Akhade
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Debosree Pal
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Satyanarayana MR Rao
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| |
Collapse
|
35
|
Fatima R, Akhade VS, Pal D, Rao SM. Long noncoding RNAs in development and cancer: potential biomarkers and therapeutic targets. MOLECULAR AND CELLULAR THERAPIES 2015; 3:5. [PMID: 26082843 PMCID: PMC4469312 DOI: 10.1186/s40591-015-0042-6] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/19/2015] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs are emerging as key players in various fundamental biological processes. We highlight the varied molecular mechanisms by which lncRNAs modulate gene expression in diverse cellular contexts and their role in early mammalian development in this review. Furthermore, it is being increasingly recognized that altered expression of lncRNAs is specifically associated with tumorigenesis, tumor progression and metastasis. We discuss various lncRNAs implicated in different cancer types with a focus on their clinical applications as potential biomarkers and therapeutic targets in the pathology of diverse cancers.
Collapse
Affiliation(s)
- Roshan Fatima
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Vijay Suresh Akhade
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Debosree Pal
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| | - Satyanarayana Mr Rao
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore 560064 India
| |
Collapse
|
36
|
Brečević L, Rinčić M, Krsnik Ž, Sedmak G, Hamid AB, Kosyakova N, Galić I, Liehr T, Borovečki F. Association of new deletion/duplication region at chromosome 1p21 with intellectual disability, severe speech deficit and autism spectrum disorder-like behavior: an all-in approach to solving the DPYD enigma. Transl Neurosci 2015; 6:59-86. [PMID: 28123791 PMCID: PMC4936614 DOI: 10.1515/tnsci-2015-0007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/29/2014] [Indexed: 12/14/2022] Open
Abstract
We describe an as yet unreported neocentric small supernumerary marker chromosome (sSMC) derived from chromosome 1p21.3p21.2. It was present in 80% of the lymphocytes in a male patient with intellectual disability, severe speech deficit, mild dysmorphic features, and hyperactivity with elements of autism spectrum disorder (ASD). Several important neurodevelopmental genes are affected by the 3.56 Mb copy number gain of 1p21.3p21.2, which may be considered reciprocal in gene content to the recently recognized 1p21.3 microdeletion syndrome. Both 1p21.3 deletions and the presented duplication display overlapping symptoms, fitting the same disorder category. Contribution of coding and non-coding genes to the phenotype is discussed in the light of cellular and intercellular homeostasis disequilibrium. In line with this the presented 1p21.3p21.2 copy number gain correlated to 1p21.3 microdeletion syndrome verifies the hypothesis of a cumulative effect of the number of deregulated genes - homeostasis disequilibrium leading to overlapping phenotypes between microdeletion and microduplication syndromes. Although miR-137 appears to be the major player in the 1p21.3p21.2 region, deregulation of the DPYD (dihydropyrimidine dehydrogenase) gene may potentially affect neighboring genes underlying the overlapping symptoms present in both the copy number loss and copy number gain of 1p21. Namely, the all-in approach revealed that DPYD is a complex gene whose expression is epigenetically regulated by long non-coding RNAs (lncRNAs) within the locus. Furthermore, the long interspersed nuclear element-1 (LINE-1) L1MC1 transposon inserted in DPYD intronic transcript 1 (DPYD-IT1) lncRNA with its parasites, TcMAR-Tigger5b and pair of Alu repeats appears to be the “weakest link” within the DPYD gene liable to break. Identification of the precise mechanism through which DPYD is epigenetically regulated, and underlying reasons why exactly the break (FRA1E) happens, will consequently pave the way toward preventing severe toxicity to the antineoplastic drug 5-fluorouracil (5-FU) and development of the causative therapy for the dihydropyrimidine dehydrogenase deficiency.
Collapse
Affiliation(s)
- Lukrecija Brečević
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
- E-mail: ;
| | - Martina Rinčić
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Željka Krsnik
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
| | - Goran Sedmak
- Croatian Institute for Brain Research, University of Zagreb Medical School, Šalata 12, 10000 Zagreb, Croatia
| | - Ahmed B. Hamid
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Nadezda Kosyakova
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Ivan Galić
- Center for Rehabilitation Stančić, Stančić bb, 10370 Stančić, Croatia
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Kollegiengasse 10, 07743 Jena, Germany
| | - Fran Borovečki
- Department for Functional Genomics, Center for Translational and Clinical Research, University of Zagreb Medical School, University Hospital Center Zagreb, Šalata 2, 10000 Zagreb, Croatia
| |
Collapse
|
37
|
Chen X, Yang J, Qian L, Cao T. Aberrantly expressed mRNAs and long non-coding RNAs in patients with invasive ductal breast carcinoma: a pilot study. Mol Med Rep 2014; 11:2185-90. [PMID: 25411894 PMCID: PMC4440223 DOI: 10.3892/mmr.2014.2989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 10/21/2014] [Indexed: 12/28/2022] Open
Abstract
Invasive ductal breast carcinoma (IDBC) is the most prevalent type of invasive breast cancer in females; however, the pathogenesis of IDBC remains to be elucidated. Therefore, the identification of novel markers may enhance current understanding of the initiation and development of IDBC as well as elucidate potential therapeutic targets for effective treatment of IDBC. In the present study, a pilot study was conducted to screen for potential mRNAs and long non-coding (lnc)RNAs that exhibit aberrantly altered expression in patients with IDBC. Fresh breast cancer specimens and normal breast tissues were obtained from three female patients with IDBC aged ≥60 years following a modified radical mastectomy without chemotherapy. Expression levels of 44,244 probes were detected and included in the analysis, of which 22,078 (49.9%) were mRNAs and 22,166 (50.1%) were lncRNAs. Potential marker screening was performed using paired t-tests (criterion 1), false discovery rates (FDR; criterion 2) and sure independence screening procedures based on distance correlations (DC-SIS; criterion 3). The results showed that in IDBC tissues 3,510 probes had a ≥2-fold statistically significant change in expression levels compared to those in the corresponding normal breast tissue (P<0.05); in addition, following FDR analysis, 353 probes were found to have significantly altered expression levels. Furthermore, DC-SIS analysis identified 18 probes (12 mRNA and 6 lncRNAs) with significantly altered expression levels in IDBC tissue; these 18 probes therefore demonstrated significant results in all three criteria. Several of the mRNAs identified have been previously reported to be involved in signal transduction, protein binding, and cancer pathways, and the present study revealed that the majority of their gene products were located in the cytoplasm. Two of the six identified lncRNAs demonstrated a >10-fold decrease in expression levels in IDBC tissues compared to that in the normal breast tissue. However, further studies are required in order to elucidate the biological functions of the identified probes.
Collapse
Affiliation(s)
- Xuedong Chen
- Department of Breast and Thyroid Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jingyun Yang
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Liyuan Qian
- Department of Breast and Thyroid Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Tianzhu Cao
- Department of Breast and Thyroid Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
38
|
Insulin and insulin-like growth factor 1 receptors are required for normal expression of imprinted genes. Proc Natl Acad Sci U S A 2014; 111:14512-7. [PMID: 25246545 DOI: 10.1073/pnas.1415475111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In addition to signaling through the classical tyrosine kinase pathway, recent studies indicate that insulin receptors (IRs) and insulin-like growth factor 1 (IGF1) receptors (IGF1Rs) can emit signals in the unoccupied state through some yet-to-be-defined noncanonical pathways. Here we show that cells lacking both IRs and IGF1Rs exhibit a major decrease in expression of multiple imprinted genes and microRNAs, which is partially mimicked by inactivation of IR alone in mouse embryonic fibroblasts or in vivo in brown fat in mice. This down-regulation is accompanied by changes in DNA methylation of differentially methylated regions related to these loci. Different from a loss of imprinting pattern, loss of IR and IGF1R causes down-regulated expression of both maternally and paternally expressed imprinted genes and microRNAs, including neighboring reciprocally imprinted genes. Thus, the unoccupied IR and IGF1R generate previously unidentified signals that control expression of imprinted genes and miRNAs through transcriptional mechanisms that are distinct from classical imprinting control.
Collapse
|
39
|
Tang YT, Xu XH, Yang XD, Hao J, Cao H, Zhu W, Zhang SY, Cao JP. Role of non-coding RNAs in pancreatic cancer: The bane of the microworld. World J Gastroenterol 2014; 20:9405-9417. [PMID: 25071335 PMCID: PMC4110572 DOI: 10.3748/wjg.v20.i28.9405] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/11/2014] [Accepted: 04/09/2014] [Indexed: 02/06/2023] Open
Abstract
Our understanding of the mechanisms underlying the development of pancreatic cancer has been greatly advanced. However, the molecular events involved in the initiation and development of pancreatic cancer remain inscrutable. None of the present medical technologies have been proven to be effective in significantly improving early detection or reducing the mortality/morbidity of this disease. Thus, a better understanding of the molecular basis of pancreatic cancer is required for the identification of more effective diagnostic markers and therapeutic targets. Non-coding RNAs (ncRNAs), generally including microRNAs and long non-coding RNAs, have recently been found to be deregulated in many human cancers, which provides new opportunities for identifying both functional drivers and specific biomarkers of pancreatic cancer. In this article, we review the existing literature in the field documenting the significance of aberrantly expressed and functional ncRNAs in human pancreatic cancer, and discuss how oncogenic ncRNAs may be involved in the genetic and epigenetic networks regulating functional pathways that are deregulated in this malignancy, particularly of the ncRNAs’ role in drug resistance and epithelial-mesenchymal transition biological phenotype, with the aim of analyzing the feasibility of clinical application of ncRNAs in the diagnosis and treatment of pancreatic cancer.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/therapy
- Epigenesis, Genetic
- Gene Expression Regulation, Neoplastic
- Genetic Testing
- Genetic Therapy
- Humans
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/therapy
- Predictive Value of Tests
- Prognosis
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- Tumor Microenvironment
Collapse
|
40
|
Magee DA, Spillane C, Berkowicz EW, Sikora KM, MacHugh DE. Imprinted loci in domestic livestock species as epigenomic targets for artificial selection of complex traits. Anim Genet 2014; 45 Suppl 1:25-39. [PMID: 24990393 DOI: 10.1111/age.12168] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2014] [Indexed: 12/30/2022]
Abstract
The phenomenon of genomic imprinting, whereby a subset of mammalian genes display parent-of-origin-specific monoallelic expression, is one of the most active areas of epigenetics research. Over the past two decades, more than 100 imprinted mammalian genes have been identified, while considerable advances have been made in elucidating the molecular mechanisms governing imprinting. These studies have helped to unravel the epigenome--a separate layer of regulatory information contained in eukaryotic chromosomes that influences gene expression and phenotypes without involving changes to the underlying DNA sequence. Although most studies of genomic imprinting in mammals have focussed on mouse models or human biomedical disorders, there is burgeoning interest in the phenotypic effects of imprinted genes in domestic livestock species. In particular, research has focused on imprinted genes influencing foetal growth and development, which are associated with economically important production traits in cattle, sheep and pigs. These findings, when coupled with the data emerging from the various different livestock genome projects, have major implications for the future of animal breeding, health and management. Here, we review current scientific knowledge regarding genomic imprinting in livestock species and evaluate how this information can be used in modern livestock improvement programmes.
Collapse
Affiliation(s)
- D A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, 4, Ireland
| | | | | | | | | |
Collapse
|
41
|
The specification of imprints in mammals. Heredity (Edinb) 2014; 113:176-83. [PMID: 24939713 PMCID: PMC4105455 DOI: 10.1038/hdy.2014.54] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 02/01/2023] Open
Abstract
At the heart of genomic imprinting in mammals are imprinting control regions (ICRs), which are the discrete genetic elements that confer imprinted monoallelic expression to several genes in imprinted gene clusters. A characteristic of the known ICRs is that they acquire different epigenetic states, exemplified by differences in DNA methylation, in the sperm and egg, and these imprint marks remain on the sperm- and oocyte-derived alleles into the next generation as a lifelong memory of parental origin. Although there has been much focus on gametic marking of ICRs as the point of imprint specification, recent mechanistic studies and genome-wide DNA methylation profiling do not support the existence of a specific imprinting machinery in germ cells. Rather, ICRs are part of more widespread methylation events that occur during gametogenesis. Instead, a decisive component in the specification of imprints is the choice of which sites of gamete-derived methylation to maintain in the zygote and preimplantation embryo at a time when much of the remainder of the genome is being demethylated. Among the factors involved in this selection, the zinc-finger protein Zfp57 can be regarded as an imprint-specific, sequence-specific DNA binding factor responsible for maintaining methylation at most ICRs. The recent insights into the balance of gametic and zygotic contributions to imprint specification should help understand mechanistic opportunities and constraints on the evolution of imprinting in mammals.
Collapse
|
42
|
Clark BS, Blackshaw S. Long non-coding RNA-dependent transcriptional regulation in neuronal development and disease. Front Genet 2014; 5:164. [PMID: 24936207 PMCID: PMC4047558 DOI: 10.3389/fgene.2014.00164] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/18/2014] [Indexed: 01/17/2023] Open
Abstract
Comprehensive analysis of the mammalian transcriptome has revealed that long non-coding RNAs (lncRNAs) may make up a large fraction of cellular transcripts. Recent years have seen a surge of studies aimed at functionally characterizing the role of lncRNAs in development and disease. In this review, we discuss new findings implicating lncRNAs in controlling development of the central nervous system (CNS). The evolution of the higher vertebrate brain has been accompanied by an increase in the levels and complexities of lncRNAs expressed within the developing nervous system. Although a limited number of CNS-expressed lncRNAs are now known to modulate the activity of proteins important for neuronal differentiation, the function of the vast majority of neuronal-expressed lncRNAs is still unknown. Topics of intense current interest include the mechanism by which CNS-expressed lncRNAs might function in epigenetic and transcriptional regulation during neuronal development, and how gain and loss of function of individual lncRNAs contribute to neurological diseases.
Collapse
Affiliation(s)
- Brian S Clark
- Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Seth Blackshaw
- Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Ophthalmology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Neurology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Center for High-Throughput Biology, Johns Hopkins University School of Medicine Baltimore, MD, USA ; Institute for Cell Engineering, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
43
|
Abstract
Genomic imprinting affects a subset of genes in mammals and results in a monoallelic, parental-specific expression pattern. Most of these genes are located in clusters that are regulated through the use of insulators or long noncoding RNAs (lncRNAs). To distinguish the parental alleles, imprinted genes are epigenetically marked in gametes at imprinting control elements through the use of DNA methylation at the very least. Imprinted gene expression is subsequently conferred through lncRNAs, histone modifications, insulators, and higher-order chromatin structure. Such imprints are maintained after fertilization through these mechanisms despite extensive reprogramming of the mammalian genome. Genomic imprinting is an excellent model for understanding mammalian epigenetic regulation.
Collapse
Affiliation(s)
- Denise P Barlow
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, CeMM, 1090 Vienna, Austria
| | | |
Collapse
|
44
|
Ionita-Laza I, Xu B, Makarov V, Buxbaum JD, Roos JL, Gogos JA, Karayiorgou M. Scan statistic-based analysis of exome sequencing data identifies FAN1 at 15q13.3 as a susceptibility gene for schizophrenia and autism. Proc Natl Acad Sci U S A 2014; 111:343-8. [PMID: 24344280 PMCID: PMC3890869 DOI: 10.1073/pnas.1309475110] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We used a family-based cluster detection approach designed to localize significant rare disease-risk variants clusters within a region of interest to systematically search for schizophrenia (SCZ) susceptibility genes within 49 genomic loci previously implicated by de novo copy number variants. Using two independent whole-exome sequencing family datasets and a follow-up autism spectrum disorder (ASD) case/control whole-exome sequencing dataset, we identified variants in one gene, Fanconi-associated nuclease 1 (FAN1), as being associated with both SCZ and ASD. FAN1 is located in a region on chromosome 15q13.3 implicated by a recurrent copy number variant, which predisposes to an array of psychiatric and neurodevelopmental phenotypes. In both SCZ and ASD datasets, rare nonsynonymous risk variants cluster significantly in affected individuals within a 20-kb window that spans several key functional domains of the gene. Our finding suggests that FAN1 is a key driver in the 15q13.3 locus for the associated psychiatric and neurodevelopmental phenotypes. FAN1 encodes a DNA repair enzyme, thus implicating abnormalities in DNA repair in the susceptibility to SCZ or ASD.
Collapse
Affiliation(s)
| | | | | | - Joseph D. Buxbaum
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029; and
| | - J. Louw Roos
- Weskoppies Hospital, Pretoria 0001, Republic of South Africa
| | - Joseph A. Gogos
- Neuroscience
- Physiology, and
- Cellular Biophysics, Columbia University, New York, NY 10032
| | | |
Collapse
|
45
|
Jiménez-Chillarón JC, Díaz R, Ramón-Krauel M. Omics Tools for the Genome-Wide Analysis of Methylation and Histone Modifications. FUNDAMENTALS OF ADVANCED OMICS TECHNOLOGIES: FROM GENES TO METABOLITES 2014. [DOI: 10.1016/b978-0-444-62651-6.00004-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
46
|
He S, Gu W, Li Y, Zhu H. ANRIL/CDKN2B-AS shows two-stage clade-specific evolution and becomes conserved after transposon insertions in simians. BMC Evol Biol 2013; 13:247. [PMID: 24225082 PMCID: PMC3831594 DOI: 10.1186/1471-2148-13-247] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/08/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Many long non-coding RNA (lncRNA) genes identified in mammals have multiple exons and functional domains, allowing them to bind to polycomb proteins, DNA methyltransferases, and specific DNA sequences to regulate genome methylation. Little is known about the origin and evolution of lncRNAs. ANRIL/CDKN2B-AS consists of 19 exons on human chromosome 9p21 and regulates the expression of three cyclin-dependent kinase inhibitors (CDKN2A/ARF/CDKN2B). RESULTS ANRIL/CDKN2B-AS originated in placental mammals, obtained additional exons during mammalian evolution but gradually lost them during rodent evolution, and reached 19 exons only in simians. ANRIL lacks splicing signals in mammals. In simians, multiple transposons were inserted and transformed into exons of the ANRIL gene, after which ANRIL became highly conserved. A further survey reveals that multiple transposons exist in many lncRNAs. CONCLUSIONS ANRIL shows a two-stage, clade-specific evolutionary process and is fully developed only in simians. The domestication of multiple transposons indicates an impressive pattern of "evolutionary tinkering" and is likely to be important for ANRIL's structure and function. The evolution of lncRNAs and that of transposons may be highly co-opted in primates. Many lncRNAs may be functional only in simians.
Collapse
Affiliation(s)
| | | | | | - Hao Zhu
- Bioinformatics Section, School of Basic Medical Sciences, Southern Medical University, Shatai Road, Guangzhou 510515, China.
| |
Collapse
|
47
|
Abstract
This review highlights recent discoveries that have shaped the emerging viewpoints in the field of epigenetic influences in the central nervous system (CNS), focusing on the following questions: (i) How is the CNS shaped during development when precursor cells transition into morphologically and molecularly distinct cell types, and is this event driven by epigenetic alterations?; ii) How do epigenetic pathways control CNS function?; (iii) What happens to "epigenetic memory" during aging processes, and do these alterations cause CNS dysfunction?; (iv) Can one restore normal CNS function by manipulating the epigenome using pharmacologic agents, and will this ameliorate aging-related neurodegeneration? These and other still unanswered questions remain critical to understanding the impact of multifaceted epigenetic machinery on the age-related dysfunction of CNS.
Collapse
Affiliation(s)
- Yue-Qiang Zhao
- />Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400 USA
- />Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - I. King Jordan
- />School of Biology, Georgia Institute of Technology, Atlanta, GA USA
- />PanAmerican Bioinformatics Institute, Santa Marta, Magdalena Colombia
| | - Victoria V. Lunyak
- />Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400 USA
| |
Collapse
|
48
|
Eun B, Sampley ML, Van Winkle MT, Good AL, Kachman MM, Pfeifer K. The Igf2/H19 muscle enhancer is an active transcriptional complex. Nucleic Acids Res 2013; 41:8126-34. [PMID: 23842673 PMCID: PMC3783178 DOI: 10.1093/nar/gkt597] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/13/2013] [Accepted: 06/15/2013] [Indexed: 02/06/2023] Open
Abstract
In eukaryotic cells, gene expression is mediated by enhancer activation of RNA polymerase at distant promoters. Recently, distinctions between enhancers and promoters have been blurred by the discovery that enhancers are associated with RNA polymerase and are sites of RNA synthesis. Here, we present an analysis of the insulin-like growth factor 2/H19 muscle enhancer. This enhancer includes a short conserved core element that is organized into chromatin typical of mammalian enhancers, binds tissue-specific transcription factors and functions on its own in vitro to activate promoter transcription. However, in a chromosomal context, this element is not sufficient to activate distant promoters. Instead, enhancer function also requires transcription in cis of a long non-coding RNA, Nctc1. Thus, the insulin-like growth factor 2/H19 enhancer is an active transcriptional complex whose own transcription is essential to its function.
Collapse
Affiliation(s)
- Bokkee Eun
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA and Core-Laboratory, College of Medicine, Korea University, Seoul 136-701, Republic of Korea
| | - Megan L. Sampley
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA and Core-Laboratory, College of Medicine, Korea University, Seoul 136-701, Republic of Korea
| | - Matthew T. Van Winkle
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA and Core-Laboratory, College of Medicine, Korea University, Seoul 136-701, Republic of Korea
| | - Austin L. Good
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA and Core-Laboratory, College of Medicine, Korea University, Seoul 136-701, Republic of Korea
| | - Marika M. Kachman
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA and Core-Laboratory, College of Medicine, Korea University, Seoul 136-701, Republic of Korea
| | - Karl Pfeifer
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA and Core-Laboratory, College of Medicine, Korea University, Seoul 136-701, Republic of Korea
| |
Collapse
|
49
|
Lopez MF, Tollervey J, Krastins B, Garces A, Sarracino D, Prakash A, Vogelsang M, Geesman G, Valderrama A, Jordan IK, Lunyak VV. Depletion of nuclear histone H2A variants is associated with chronic DNA damage signaling upon drug-evoked senescence of human somatic cells. Aging (Albany NY) 2013; 4:823-42. [PMID: 23235539 PMCID: PMC3560435 DOI: 10.18632/aging.100507] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cellular senescence is associated with global chromatin changes, altered gene expression, and activation of chronic DNA damage signaling. These events ultimately lead to morphological and physiological transformations in primary cells. In this study, we show that chronic DNA damage signals caused by genotoxic stress impact the expression of histones H2A family members and lead to their depletion in the nuclei of senescent human fibroblasts. Our data reinforce the hypothesis that progressive chromatin destabilization may lead to the loss of epigenetic information and impaired cellular function associated with chronic DNA damage upon drug-evoked senescence. We propose that changes in the histone biosynthesis and chromatin assembly may directly contribute to cellular aging. In addition, we also outline the method that allows for quantitative and unbiased measurement of these changes.
Collapse
Affiliation(s)
- Mary F Lopez
- BRIMS, Thermo Fisher Scientific, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kelsey G, Feil R. New insights into establishment and maintenance of DNA methylation imprints in mammals. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110336. [PMID: 23166397 DOI: 10.1098/rstb.2011.0336] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fundamental to genomic imprinting in mammals is the acquisition of epigenetic marks that differ in male and female gametes at 'imprinting control regions' (ICRs). These marks mediate the allelic expression of imprinted genes in the offspring. Much has been learnt about the nature of imprint marks, the times during gametogenesis at which they are laid down and some of the factors responsible especially for DNA methylation. Recent work has revealed that transcription and histone modifications are critically involved in DNA methylation acquisition, and these findings allow us to propose rational models for methylation establishment. A completely novel perspective on gametic DNA methylation has emerged from epigenomic profiling. Far more differentially methylated loci have been identified in gametes than known imprinted genes, which leads us to revise the notion that methylation of ICRs is a specifically targeted process. Instead, it seems to obey default processes in germ cells, giving rise to distinct patterns of DNA methylation in sperm and oocytes. This new insight, together with the identification of proteins that preserve DNA methylation after fertilization, emphasizes the key role played by mechanisms that selectively retain differential methylation at imprinted loci during early development. Addressing these mechanisms will be essential to understanding the specificity and evolution of genomic imprinting.
Collapse
Affiliation(s)
- Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, UK.
| | | |
Collapse
|