1
|
Soman A, Liew CW, Teo HL, Berezhnoy NV, Olieric V, Korolev N, Rhodes D, Nordenskiöld L. The human telomeric nucleosome displays distinct structural and dynamic properties. Nucleic Acids Res 2020; 48:5383-5396. [PMID: 32374876 PMCID: PMC7261157 DOI: 10.1093/nar/gkaa289] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/01/2020] [Accepted: 05/05/2020] [Indexed: 12/21/2022] Open
Abstract
Telomeres protect the ends of our chromosomes and are key to maintaining genomic integrity during cell division and differentiation. However, our knowledge of telomeric chromatin and nucleosome structure at the molecular level is limited. Here, we aimed to define the structure, dynamics as well as properties in solution of the human telomeric nucleosome. We first determined the 2.2 Å crystal structure of a human telomeric nucleosome core particle (NCP) containing 145 bp DNA, which revealed the same helical path for the DNA as well as symmetric stretching in both halves of the NCP as that of the 145 bp ‘601’ NCP. In solution, the telomeric nucleosome exhibited a less stable and a markedly more dynamic structure compared to NCPs containing DNA positioning sequences. These observations provide molecular insights into how telomeric DNA forms nucleosomes and chromatin and advance our understanding of the unique biological role of telomeres.
Collapse
Affiliation(s)
- Aghil Soman
- School of Biological Sciences, Nanyang Technology University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Chong Wai Liew
- NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Hsiang Ling Teo
- NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Nikolay V Berezhnoy
- School of Biological Sciences, Nanyang Technology University, 60 Nanyang Drive, Singapore 637551, Singapore.,Singapore Centre for Environmental Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Vincent Olieric
- Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Nikolay Korolev
- School of Biological Sciences, Nanyang Technology University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Daniela Rhodes
- School of Biological Sciences, Nanyang Technology University, 60 Nanyang Drive, Singapore 637551, Singapore.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore.,School of Chemical and Biomolecular Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technology University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
2
|
Rocha LC, Bustamante FDO, Silveira RAD, Torres GA, Mittelmann A, Techio VH. Functional repetitive sequences and fragile sites in chromosomes of Lolium perenne L. PROTOPLASMA 2015; 252:451-60. [PMID: 25141824 DOI: 10.1007/s00709-014-0690-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/13/2014] [Indexed: 05/26/2023]
Abstract
Lolium perenne is considered a high-quality forage widely used in temperate regions to meet the shortage of forage during the winter. In this species, some peculiarities related to cytogenetic aspects have already been described, as the variability in number and position of 45S ribosomal DNA (rDNA) sites and the expression of fragile sites, which require further studies to support the understanding of their causes and consequences. In this way, this study aimed to evaluate the relationship between the expression of fragile sites and functional repetitive sequences (rDNA and telomeric) in chromosomes of diploid and polyploid cultivars of L. perenne. The techniques of FISH, Ag-NOR and fluorescence banding were used to assess the distribution of sites of 45S rDNA, 5S, telomeric sequences, and the transcriptional activity of the 45S ribosomal genes and the distribution of AT- and/or GC-rich sequences in L. perenne, respectively. There was variability in the number and location of 45S rDNA sites, which was not observed for 5S rDNA sites. One of the genotypes showed two 45S rDNA sites on the same chromosome, located in different chromosome arms. Breaks and gaps were found in 45S rDNA sites in most metaphases evaluated for both cultivars. Telomeric sequences were not detected at the end of the chromosomal fragments corresponding to the location of breaks at 45S sites. Apparently, the transcriptional activity was modified in fragile sites. Variation in the number and size of nucleoli, nucleolar fusions and dissociations were observed. All CMA(+) bands were colocalized with the 45S sites.
Collapse
Affiliation(s)
- Laiane Corsini Rocha
- Department of Biology, Federal University of Lavras, P.O. Box 3037, 37200-000, Lavras, Minas Gerais State, Brazil
| | | | | | | | | | | |
Collapse
|
3
|
Sousa A, Cusimano N, Renner SS. Combining FISH and model-based predictions to understand chromosome evolution in Typhonium (Araceae). ANNALS OF BOTANY 2014; 113:669-80. [PMID: 24500949 PMCID: PMC3936593 DOI: 10.1093/aob/mct302] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/29/2013] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Since the advent of molecular phylogenetics, numerous attempts have been made to infer the evolutionary trajectories of chromosome numbers on DNA phylogenies. Ideally, such inferences should be evaluated against cytogenetic data. Towards this goal, we carried out phylogenetic modelling of chromosome number change and fluorescence in situ hybridization (FISH) in a medium sized genus of Araceae to elucidate if data from chromosomal markers would support maximum likelihood-inferred changes in chromosome numbers among close relatives. Typhonium, the focal genus, includes species with 2n = 65 and 2n = 8, the lowest known count in the family. METHODS A phylogeny from nuclear and plastid sequences (96 taxa, 4252 nucleotides) and counts for all included species (15 of them first reported here) were used to model chromosome number evolution, assuming discrete events, such as polyploidization and descending or ascending dysploidy, occurring at different rates. FISH with three probes (5S rDNA, 45S rDNA and Arabidopsis-like telomeres) was performed on ten species with 2n = 8 to 2n = 24. KEY RESULTS The best-fitting models assume numerous past chromosome number reductions. Of the species analysed with FISH, the two with the lowest chromosome numbers contained interstitial telomeric signals (Its), which together with the phylogeny and modelling indicates decreasing dysploidy as an explanation for the low numbers. A model-inferred polyploidization in another species is matched by an increase in rDNA sites. CONCLUSIONS The combination of a densely sampled phylogeny, ancestral state modelling and FISH revealed that the species with n = 4 is highly derived, with the FISH data pointing to a Robertsonian fusion-like chromosome rearrangement in the ancestor of this species.
Collapse
|
4
|
Bogunić F, Siljak-Yakovlev S, Muratović E, Ballian D. Different karyotype patterns among allopatric Pinus nigra (Pinaceae) populations revealed by molecular cytogenetics. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:194-200. [PMID: 21143741 DOI: 10.1111/j.1438-8677.2010.00326.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
To examine variation and taxonomic recognition of Pinus nigra (European black pine) at the intraspecific level, chromosomal distribution of 5S and 18S-5.8S-26S rDNA loci revealed by fluorescent in situ hybridisation (FISH) and fluorochrome banding with chromomycin A(3) and DAPI were analysed among allopatric populations belonging to different subspecies. Despite prevalent opinion on predominantly conserved and homogenous conifer karyotypes, several patterns were observed. Surprisingly, interstitial 18S rDNA loci and DAPI heterochromatin staining after FISH showed variations in distribution and localisation. Three subspecies shared a pattern with nine 18S rDNA loci (ssp. nigra, pallasiana and laricio) while ssp. dalmatica and salzmannii had eight rDNA loci. DAPI banding displayed two patterns, one with a high number of signals (ssp. nigra, pallasiana and dalmatica) and the other with a lower number of signals (ssp. salzmannii and laricio). We conclude that our results cannot provide proof for either classification scheme for the P. nigra complex, but rather demonstrate the variability of different heterochromatin fractions at the intraspecific level.
Collapse
Affiliation(s)
- F Bogunić
- Faculty of Forestry, University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | | | | | | |
Collapse
|
5
|
Bailey SM. Telomeres and Double-Strand Breaks – All's Well that “Ends” Well. …. Radiat Res 2008; 169:1-7. [DOI: 10.1667/rr1197.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 09/24/2007] [Indexed: 11/03/2022]
|
6
|
Souza RF, Lunsford T, Ramirez RD, Zhang X, Lee EL, Shen Y, Owen C, Shay JW, Morales C, Spechler SJ. GERD is associated with shortened telomeres in the squamous epithelium of the distal esophagus. Am J Physiol Gastrointest Liver Physiol 2007; 293:G19-24. [PMID: 17395902 DOI: 10.1152/ajpgi.00055.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Telomeres are repetitive DNA sequences located at the ends of chromosomes. Telomeres are shortened by repeated cell divisions and by oxidative DNA damage, and cells with critically shortened telomeres cannot divide. We hypothesized that chronic gastroesophageal reflux disease (GERD)-induced injury of the esophageal squamous epithelium results in progressive telomeric shortening that eventually might interfere with mucosal healing. To address our hypothesis, we compared telomere length and telomerase activity in biopsy specimens of esophageal squamous epithelium from GERD patients and control patients. Endoscopic biopsies were taken from the esophageal squamous epithelium of 38 patients with GERD [10 long-segment Barrett's esophagus (LSBE), 15 short-segment (SSBE), 13 GERD without Barrett's esophagus] and 16 control patients without GERD. Telomere length was assessed using the terminal restriction fragment assay, and telomerase activity was studied by the PCR-based telomeric repeat amplification protocol assay. Patients with GERD had significantly shorter telomeres in the distal esophagus than controls [8.3 +/- 0.5 vs. 10.9 +/- 1.5 (SE) Kbp, P = 0.043]. Among the patients with GERD, telomere length in the distal esophagus did not differ significantly in those with and without Barrett's esophagus (LSBE 7.9 +/- 0.8, SSBE 8.6 +/- 0.9, GERD without BE 8.7 +/- 1.0 Kbp). No significant differences in telomerase activity in the distal esophagus were noted between patients with GERD and controls (4.0 +/- 0.39 vs. 5.2 +/- 0.53 RIUs). Telomeres in the squamous epithelium of the distal esophagus of patients who have GERD, with and without Barrett's esophagus, are significantly shorter than those of patients without GERD despite similar levels of telomerase activity.
Collapse
Affiliation(s)
- Rhonda F Souza
- Department of Medicine, University of Texas Southwestern Medical Center at Dallas, and the Veterans Affairs North Texas Health Center, 4500 South Lancaster Road, Dallas, TX 75216, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Alverca E, Cuadrado A, Jouve N, Franca S, Moreno Díaz de la Espina S. Telomeric DNA localization on dinoflagellate chromosomes: structural and evolutionary implications. Cytogenet Genome Res 2007; 116:224-31. [PMID: 17317964 DOI: 10.1159/000098191] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 11/21/2006] [Indexed: 12/25/2022] Open
Abstract
Dinoflagellates are eukaryotic microalgae with distinct chromosomes throughout the cell cycle which lack histones and nucleosomes. The molecular organization of these chromosomes is still poorly understood. We have analysed the presence of telomeres in two evolutionarily distant and heterogeneous dinoflagellate species (Prorocentrum micans and Amphidinium carterae) by FISH with a probe containing the Arabidopsis consensus telomeric sequence. Telomere structures were identified at the chromosome ends of both species during interphase and mitosis and were frequently associated with the nuclear envelope. These results identify for the first time telomere structures in dinoflagellate chromosomes, which are formed in the absence of histones. The presence of telomeres supports the linear nature of dinoflagellate chromosomes.
Collapse
Affiliation(s)
- E Alverca
- Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal
| | | | | | | | | |
Collapse
|
8
|
Vorob’eva NV, Biltueva LS, Orlov YL, Grafodatskii AS, Kolchanov NA. Interstitial telomeric repeats as markers of evolutionary changes in the mammalian karyotype: Human chromosome 2. Biophysics (Nagoya-shi) 2006. [DOI: 10.1134/s000635090604004x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Berloco M, Fanti L, Sheen F, Levis RW, Pimpinelli S. Heterochromatic distribution of HeT-A- and TART-like sequences in several Drosophila species. Cytogenet Genome Res 2005; 110:124-33. [PMID: 16093664 DOI: 10.1159/000084944] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Accepted: 05/18/2004] [Indexed: 11/19/2022] Open
Abstract
Drosophila melanogaster telomeres contain arrays of two non-LTR retrotransposons called HeT-A and TART. Previous studies have shown that HeT-A- and TART-like sequences are also located at non-telomeric sites in the Y chromosome heterochromatin. By in situ hybridization experiments, we mapped TART sequences in the h16 region of the long arm close to the centromere of the Y chromosome of D. melanogaster. HeT-A sequences were localized in two different regions on the Y chromosome, one very close to the centromere in the short arm (h18-h19) and the other in the long arm (h13-h14). To assess a possible heterochromatic location of TART and HeT-A elements in other Drosophila species, we performed in situ hybridization experiments, using both TART and HeT-A probes, on mitotic and polytene chromosomes of D. simulans, D. sechellia, D. mauritiana, D. yakuba and D. teissieri. We found that TART and HeT-A probes hybridize at specific heterochromatic regions of the Y chromosome in all Drosophila species that we analyzed.
Collapse
Affiliation(s)
- M Berloco
- Dipartimento di Anatomia Patologica e di Genetica (DAPEG), Università degli Studi di Bari, Bari, Italy
| | | | | | | | | |
Collapse
|
10
|
Abstract
The structures of specific chromosome regions, centromeres and telomeres, present a number of puzzles. As functions performed by these regions are ubiquitous and essential, their DNA, proteins and chromatin structure are expected to be conserved. Recent studies of centromeric DNA from human, Drosophila and plant species have demonstrated that a hidden universal centromere-specific sequence is highly unlikely. The DNA of telomeres is more conserved consisting of a tandemly repeated 6-8 bp Arabidopsis-like sequence in a majority of organisms as diverse as protozoan, fungi, mammals and plants. However, there are alternatives to short DNA repeats at the ends of chromosomes and for telomere elongation by telomerase. Here we focus on the similarities and diversity that exist among the structural elements, DNA sequences and proteins, that make up terminal domains (telomeres and subtelomeres), and how organisms use these in different ways to fulfil the functions of end-replication and end-protection.
Collapse
Affiliation(s)
- Edward J Louis
- Department of Genetics, University of Leicester, Leicester UK.
| | | |
Collapse
|
11
|
Malerba I, Gribaldo L, Diodovich C, Carloni M, Meschini R, Bowe G, Collotta A. Induction of apoptosis and inhibition of telomerase activity in human bone marrow and HL-60 p53 null cells treated with anti-cancer drugs. Toxicol In Vitro 2005; 19:523-32. [PMID: 15826810 DOI: 10.1016/j.tiv.2004.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 12/10/2004] [Accepted: 12/17/2004] [Indexed: 10/25/2022]
Abstract
Telomerase plays a key role in the maintenance of chromosomal stability in tumours, and the ability of anti-cancer agents to inhibit telomerase activity is under investigation. In this study, we evaluated the effect of etoposide and taxol, on the telomerase activity and telomere length in human leukaemia p53 null cells and human bone marrow cells, as well as apoptosis and cell cycle modulation. Results showed that after exposure to the drugs, HL-60 cells as well as the human progenitors underwent a block in G2 and subsequently apoptosis, whereas stromal cells from bone marrow did not undergo a block in G2 or enter apoptosis after etoposide exposure. Telomere length increased in stromal cells after treatment with both etoposide and taxol whereas in HL-60 cells only after etoposide treatment with. Bax, bcl-2 and bcl-x change their expression in stromal cells, whereas bcl-x was induced after drug treatment and bcl-2 down regulated in progenitor cells. Our data suggest that telomerase activity and apoptosis are correlated and they seem to be modulated by a common gene, bcl-2.
Collapse
Affiliation(s)
- I Malerba
- Laboratory of Hematotoxicology-ECVAM, Institute for Health and Consumer Protection, Joint Research Centre-JRC, Ispra 21020 (VA), Italy
| | | | | | | | | | | | | |
Collapse
|
12
|
de la Seña C, Chowdhary BP, Gustavsson I. Localization of the telomeric (TTAGGG)n sequences in chromosomes of some domestic animals by fluorescence in situ hybridization. Hereditas 2004; 123:269-74. [PMID: 8675441 DOI: 10.1111/j.1601-5223.1995.t01-1-00269.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Fluorescence in situ hybridization analysis was carried out on metaphase preparations of a variety of domestic animal species, viz. pigs, cattle, sheep, river buffaloes, swamp buffaloes, horses, and reindeers, using a PCR generated human telomere repeat probe (TTAGGG)n. Three protocols with different hybridization/washing stringencies were applied. Distinct double spots representing the telomeric sites were observed on either ends of the chromosomes in all the species studied, confirming that one-armed chromosomes are not completely telocentric. In pigs, an interstitial telomeric signal was observed on the 6q22 band of all the individuals examined. Although a random variation in the intensity of signals was observed, it was interesting to note that in one of the five cattle studied, very strong hybridization signals were seen on at least three pairs of chromosomes. In sheep, river buffaloes, and swamp buffaloes, where the biarmed chromosomes are considered to be the result of the fusion of 2-3 one-armed chromosomes of the cattle karyotype, no interstitial telomeric signals were observed.
Collapse
Affiliation(s)
- C de la Seña
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | |
Collapse
|
13
|
Raudsepp T, Christensen K, Chowdhar BP. Cytogenetics of donkey chromosomes: nomenclature proposal based on GTG-banded chromosomes and depiction of NORs and telomeric sites. Chromosome Res 2001; 8:659-70. [PMID: 11196129 DOI: 10.1023/a:1026707002538] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
With the expansion of comparative genome analysis across different mammals, there is an increasing need to have well-defined banded karyotypes for the species chosen for investigation. In this context, the steadily growing gene mapping data in the donkey urgently require a framework whereby alignment/comparison of genetic information can be readily made with equids and other mammalian species. Hence a GTG-banded karyotype of the donkey (Equus asinus; EAS) is presented, along with schematic drawings and nomenclature of the banded chromosomes. In addition, the most characteristic features of individual chromosomes are described and their relative size estimated. Using the FISH approach, the location of nucleolous organizer regions (NORs) and telomeric repeat sequences (TTAGGG) were detected. Where possible, information on asine chromosomes is supplemented with known/likely equine and human homologues. The study thus primarily aims to provide an appropriate cytogenetic basis for the donkey chromosomes, so that research focused on gene mapping and comparative genomics in this species can be reported under a common format.
Collapse
Affiliation(s)
- T Raudsepp
- Division of Animal Genetics, The Royal Veterinary and Agricultural University, Frederiksberg, Denmark
| | | | | |
Collapse
|
14
|
Abstract
Telomeres, the eukaryotic chromosome termini, are deoxyribonucleoprotein structures that distinguish natural chromosome ends from broken DNA. In most organisms, telomeres are extended by a reverse transcriptase (RT) with an integrated RNA template, telomerase; in Drosophila melanogaster, however, telomere-specific retrotransposons, HeT-A and TART, transpose specifically to chromosome ends. Whether telomeres are extended by a telomerase or by retrotransposons, an RT is a key component. RT has been studied extensively, both for its important role in converting RNA genomes to DNA, which has great evolutionary impact, and as a therapeutic target in human retroviral diseases. Here we discuss a few important aspects of RT usage during retrotransposition and telomere elongation.Key words: telomeres, telomerase, retrotransposons, reverse transcriptase.
Collapse
|
15
|
Bishop R, Gobright E, Nene V, Morzaria S, Musoke A, Sohanpal B. Polymorphic open reading frames encoding secretory proteins are located less than 3 kilobases from Theileria parva telomeres. Mol Biochem Parasitol 2000; 110:359-71. [PMID: 11071289 DOI: 10.1016/s0166-6851(00)00291-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Polymorphic, multicopy gene families are frequently located in subtelomeric regions of the genomes of parasitic protozoa. Theileria parva telomere-associated (TA) DNA from two chromosomes contained long open reading frames (ORFs) 54% identical at the N-termini, whose 3' ends were 2670 and 2680 bp from the telomeric repeats. Probes derived from these ORFs revealed related sequences close to additional telomeres. The 3' end of an unrelated ORF was approximately 2720 bp from a third telomere. These are among the closest ORFs to telomeres in any organism. Reverse transcription PCR detected transcripts originating within the telomeric multicopy gene family. Additional ORFs, with complex sequence similarities, were located centromeric to the telomere-adjacent ORFs. Transcripts from the schizont stage of T. parva, containing domains with significant amino acid similarity to a 3529 codon ORF located 6900 bp upstream of the telomeric repeats, were mapped to a subtelomeric locus at a fourth telomere. Five telomeric ORFs contained predicted N-terminal signal peptides and one of these signal peptides was functional in a heterologous system. Hybridisation data suggested extensive strain polymorphism between ORFs. Two of the telomere-adjacent ORFs were absent from the genome of a cloned T. parva parasite which can, nonetheless, be passaged through ticks and cattle. T. parva is unusual, among organisms so far studied, in the high density of potential coding sequences located directly adjacent to telomeres and the apparent absence of extensive tracts of repeated sequences within the TA DNA.
Collapse
Affiliation(s)
- R Bishop
- International Livestock Research Institute (ILRI), Nairobi, Kenya.
| | | | | | | | | | | |
Collapse
|
16
|
Sohanpal B, Wasawo D, Bishop R. Cloning of telomere-associated DNA using single-specific-primer polymerase chain reaction provides evidence for a conserved sequence directly adjacent to Theileria parva telomeric repeats. Gene 2000; 255:401-9. [PMID: 11024301 DOI: 10.1016/s0378-1119(00)00284-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Telomere-associated (TA) DNA sequences of the intracellular protozoan parasite Theileria parva were isolated by a novel strategy using a modified version of single-specific-primer polymerase chain reaction (SSP-PCR). Nucleotide sequences of non-coding TA DNA from three telomeres (6017bp, 2435bp and 4859bp) contained no extensive tracts of repetitive DNA. Long open reading frames (ORFs) were present at the centromeric ends of two of the TA sequences, the 3' ends of the closest ORFs being only 2670bp and 2719bp from the telomeric repeats. There were regions of significant similarity between the nucleotide sequences of the non-coding regions of different telomeres. The longest region of similarity was a virtually identical 1650bp domain, located directly adjacent to the telomeric repeats of two separate telomeres. Comparison of the telomere proximal sequences defined in this study and two additional T. parva telomeres, whose sequences were determined previously, resulted in identification of a single copy 141bp conserved sequence directly adjacent to the telomeric repeats. The conserved sequence is present at all five T. parva telomeres that have been characterised. The only organism currently known to have a single copy conserved sequence located adjacent to the telomeric repeats is another intracellular protozoan, Leishmania braziliensis.
Collapse
Affiliation(s)
- B Sohanpal
- International Livestock Research Institute (ILRI), PO Box 30709, Nairobi, Kenya
| | | | | |
Collapse
|
17
|
Dioh W, Tharreau D, Notteghem JL, Orbach M, Lebrun MH. Mapping of avirulence genes in the rice blast fungus, Magnaporthe grisea, with RFLP and RAPD markers. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2000; 13:217-227. [PMID: 10659712 DOI: 10.1094/mpmi.2000.13.2.217] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Three genetically independent avirulence genes, AVR1-Irat7, AVRI-MedNoi; and AVR1-Ku86, were identified in a cross involving isolates Guy11 and 2/0/3 of the rice blast fungus, Magnaporthe grisea. Using 76 random progeny, we constructed a partial genetic map with restriction fragment length polymorphism (RFLP) markers revealed by probes such as the repeated sequences MGL/MGR583 and Pot3/MGR586, cosmids from the M. grisea genetic map, and a telomere sequence oligonucleotide. Avirulence genes AVR1-MedNoi and AVR1-Ku86 were closely linked to telomere RFLPs such as marker TelG (6 cM from AVR1-MedNoi) and TelF (4.5 cM from AVR1-Ku86). Avirulence gene AVR1-Irat7 was linked to a cosmid RFLP located on chromosome 1 and mapped at 20 cM from the avirulence gene AVR1-CO39. Using bulked segregant analysis, we identified 11 random amplified polymorphic DNA (RAPD) markers closely linked (0 to 10 cM) to the avirulence genes segregating in this cross. Most of these RAPD markers corresponded to junction fragments between known or new transposons and a single-copy sequence. Such junctions or the whole sequences of single-copy RAPD markers were frequently absent in one parental isolate. Single-copy sequences from RAPD markers tightly linked to avirulence genes will be used for positional cloning.
Collapse
Affiliation(s)
- W Dioh
- Génétique Moléculaire des Champignons Phytopathogènes, Institut de Génétique et Microbiologie, CNRS-URA 2255, Université Paris-Sud, Orsay, France
| | | | | | | | | |
Collapse
|
18
|
Bailey SM, Meyne J, Chen DJ, Kurimasa A, Li GC, Lehnert BE, Goodwin EH. DNA double-strand break repair proteins are required to cap the ends of mammalian chromosomes. Proc Natl Acad Sci U S A 1999; 96:14899-904. [PMID: 10611310 PMCID: PMC24745 DOI: 10.1073/pnas.96.26.14899] [Citation(s) in RCA: 295] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/1999] [Indexed: 11/18/2022] Open
Abstract
Recent findings intriguingly place DNA double-strand break repair proteins at chromosome ends in yeast, where they help maintain normal telomere length and structure. In the present study, an essential telomere function, the ability to cap and thereby protect chromosomes from end-to-end fusions, was assessed in repair-deficient mouse cell lines. By using fluorescence in situ hybridization with a probe to telomeric DNA, spontaneously occurring chromosome aberrations were examined for telomere signal at the points of fusion, a clear indication of impaired end-capping. Telomeric fusions were not observed in any of the repair-proficient controls and occurred only rarely in a p53 null mutant. In striking contrast, chromosomal end fusions that retained telomeric sequence were observed in nontransformed DNA-PK(cs)-deficient cells, where they were a major source of chromosomal instability. Metacentric chromosomes created by telomeric fusion became even more abundant in these cells after spontaneous immortalization. Restoration of repair proficiency through transfection with a functional cDNA copy of the human DNA-PK(cs) gene reduced the number of fusions compared with a negative transfection control. Virally transformed cells derived from Ku70 and Ku80 knockout mice also displayed end-to-end fusions. These studies demonstrate that DNA double-strand break repair genes play a dual role in maintaining chromosomal stability in mammalian cells, the known role in repairing incidental DNA damage, as well as a new protective role in telomeric end-capping.
Collapse
Affiliation(s)
- S M Bailey
- Life Sciences Division, Los Alamos National Laboratory, MS M888, Los Alamos, NM 87545, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Liu WS, Fredga K. Telomeric (TTAGGG)n sequences are associated with nucleolus organizer regions (NORs) in the wood lemming. Chromosome Res 1999; 7:235-40. [PMID: 10421383 DOI: 10.1023/a:1009255517764] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The distribution of the (TTAGGG)n telomeric sequence was studied in chromosomes of the wood lemming, Myopus schisticolor, by fluorescence in-situ hybridization. As expected, the hybridization signals were observed at telomeres of all chromosomes. However, quite a number of interstitial telomeric sites were present in the pericentric heterochromatic regions. Consistent strong hybridization signals were also seen at one terminus of chromosomes 5, 7 and 12--15. By post-hybridization G-banding and silver-staining, the large blocks of the telomeric sequences on chromosomes 5 and 12 were localized to nucleolus organizer regions (NORs).
Collapse
Affiliation(s)
- W S Liu
- Department of Conservation Biology and Genetics, Uppsala University, Uppsala Genetic Centre, Sweden.
| | | |
Collapse
|
20
|
Fanti L, Giovinazzo G, Berloco M, Pimpinelli S. The heterochromatin protein 1 prevents telomere fusions in Drosophila. Mol Cell 1998; 2:527-38. [PMID: 9844626 DOI: 10.1016/s1097-2765(00)80152-5] [Citation(s) in RCA: 228] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
HP1 (Heterochromatin protein 1) is a conserved, non-histone chromosomal protein that is best known for its preferential binding to pericentric heterochromatin and its role in position effect variegation in Drosophila. Using immunolocalization, we show that HP1 is a constant feature of the telomeres of interphase polytene and mitotic chromosomes. This localization does not require the presence of telomeric retrotransposons, since HP1 is also detected at the ends of terminally deleted chromosomes that lack these elements. Importantly, larvae expressing reduced or mutant versions of HP1 exhibit aberrant chromosome associations and multiple telomeric fusions in neuroblast cells, imaginal disks, and male meiotic cells. Taken together, these results provide evidence that HP1 plays a functional role in mediating normal telomere behavior in Drosophila.
Collapse
Affiliation(s)
- L Fanti
- Istituto di Genetica, Università di Bari, Italy
| | | | | | | |
Collapse
|
21
|
Wen J, Cong YS, Bacchetti S. Reconstitution of wild-type or mutant telomerase activity in telomerase-negative immortal human cells. Hum Mol Genet 1998; 7:1137-41. [PMID: 9618172 DOI: 10.1093/hmg/7.7.1137] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Telomere shortening in human somatic cells and telomere maintenance in most human immortal cell lines and tumours correlate respectively with the absence and presence of telomerase, the enzyme that synthesizes telomeric DNA de novo . However, approximately 30% of in vitro immortalized human cell lines do not express this enzyme and maintain telomeres by an alternative pathway (ALT) that may also operate in some tumours. Human telomerase is a reverse transcriptase comprising minimally an RNA subunit (hTER) and a catalytic protein moiety (hTERT). Normal somatic cells retain expression of hTER but not of hTERT, and can be converted to a telomerase-positive phenotype by ectopic expression of the catalytic protein. We similarly have restored enzymatic activity to those ALT cell lines that retain hTER expression. We also report that in those ALT cells that are hTER negative, reintroduction of both hTER and hTERT is necessary and sufficient for conversion to telomerase positivity. Moreover, transfection of these cells with hTERT in conjunction with hTERs with a mutated template results in the expression of an enzyme with altered specificity. Reconstitution of telomerase activity in ALT cells, particularly an activity capable of synthesizing mutant telomeric DNA, may be exploited for the study of the ALT mechanism and its interaction with the telomerase-dependent pathway, and for assessing the effects of mutant telomeres on cell viability.
Collapse
Affiliation(s)
- J Wen
- Cancer Research Group, Department of Pathology, McMaster University Medical Center, 1200 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | | | | |
Collapse
|
22
|
Nosek J, Tomáska L, Fukuhara H, Suyama Y, Kovác L. Linear mitochondrial genomes: 30 years down the line. Trends Genet 1998; 14:184-8. [PMID: 9613202 DOI: 10.1016/s0168-9525(98)01443-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
At variance with the earlier belief that mitochondrial genomes are represented by circular DNA molecules, a large number of organisms have been found to carry linear mitochondrial DNA. Studies of linear mitochondrial genomes might provide a novel view on the evolutionary history of organelle genomes and contribute to delineating mechanisms of maintenance and functioning of telomeres. Because linear mitochondrial DNA is present in a number of human pathogens, its replication mechanisms might become a target for drugs that would not interfere with replication of human circular mitochondrial DNA.
Collapse
Affiliation(s)
- J Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | | | | | | | | |
Collapse
|
23
|
Demoulin JB, Renauld JC. Interleukin 9 and its receptor: an overview of structure and function. Int Rev Immunol 1998; 16:345-64. [PMID: 9505195 DOI: 10.3109/08830189809043001] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interleukin-9 (IL-9) is a multifunctional cytokine produced by activated TH2 clones in vitro and during TH2-like T cell responses in vivo. Although IL-9 was initially described as a T cell growth factor, its role in T cell responses is still unclear. While freshly isolated normal T cells do not respond to IL-9, this cytokine induces the proliferation of murine T cell lymphomas in vitro, and in vivo overexpression of IL-9 results in the development of thymic lymphomas. In the human, the existence of an IL-9 mediated autocrine loop has been suggested for some malignancies such as Hodgkin's disease. Various observations indicate that IL-9 is actively involved in mast cells responses by inducing the proliferation and differentiation of these cells. Other potential biological targets for IL-9 include B lymphocytes, and hematopoietic progenitors, for which higher responses were observed with foetal or transformed cells as compared to normal adult progenitors. The IL-9 receptor is a member of the hemopoietin receptor superfamily and interacts with the gamma chain of the IL-2 receptor for signaling. Signal transduction studies have stressed the role of the Jak-STAT pathway in various IL-9 bioactivities, whereas the 4PS/IRS2 adaptor protein might also play a significant role in IL-9 signaling.
Collapse
Affiliation(s)
- J B Demoulin
- Ludwig Institute for Cancer Research and Experimental Medicine Unit, Catholic University of Louvain, Brussels, Belgium
| | | |
Collapse
|
24
|
Abstract
Telomeres of most investigated species terminate with short repeats and are elongated by telomerase. Short repeats have never been detected in dipteran species which have found other solutions to end a chromosome. Whereas in Drosophila melanogaster retroelements are added onto the termini, chironomids have long complex repeats at their chromosome ends. We review evidence that these units are terminal and probably have evolved from short telomeric repeats. In Chironomus pallidivittatus the units have been shown to belong to different subfamilies which have specific inter- and intrachromosomal distribution, the most terminal subfamily of repeats being characterized by pronounced secondary structures for the single strand. The complex repeats are efficiently homogenized both within and between different chromosome ends. Gene conversion is probably an important component in the coordinate evolution of the repeats but it is not known whether it is used for net synthesis of DNA. RNA is used as an intermediate in telomere elongation both by organisms having chromosomes terminating with short repeats and by D. melanogaster. It is therefore interesting that the terminal repeats in chironomids are transcribed.
Collapse
Affiliation(s)
- I Kamnert
- Department of Genetics, University of Lund, Sweden
| | | | | | | |
Collapse
|
25
|
Levis C, Giraud T, Dutertre M, Fortini D, Brygoo Y. Telomeric DNA of Botrytis cinerea: a useful tool for strain identification. FEMS Microbiol Lett 1997; 157:267-72. [PMID: 9435107 DOI: 10.1111/j.1574-6968.1997.tb12783.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Telomeric DNA was isolated from the phytopathogenic fungus Botrytis cinerea by PCR using only the oligonucleotide primer (CCCTAA)4. As with other filamentous fungi, B. cinerea has a short TTAGGG telomeric repeat. Telomere-linked restriction fragment length polymorphism (RFLP) was found in strains of B. cinerea isolated from different host plants collected from different regions at different periods. Almost every strain had a specific RFLP pattern, including those collected from the same plant one month apart. Thus, this marker appears to be an excellent tool to show the great polymorphism of B. cinerea strains by fingerprinting. The Southern blots of some strains of B. cinerea showed one band which was much more intense than the others, suggesting that the majority of telomere-associated sequences have the same sequence.
Collapse
Affiliation(s)
- C Levis
- Station de Pathologie Végétale, INRA, Versailles, France.
| | | | | | | | | |
Collapse
|
26
|
Zhimulev IF. Polytene chromosomes, heterochromatin, and position effect variegation. ADVANCES IN GENETICS 1997; 37:1-566. [PMID: 9352629 DOI: 10.1016/s0065-2660(08)60341-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- I F Zhimulev
- Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
27
|
Marusíc L, Anton M, Tidy A, Wang P, Villeponteau B, Bacchetti S. Reprogramming of telomerase by expression of mutant telomerase RNA template in human cells leads to altered telomeres that correlate with reduced cell viability. Mol Cell Biol 1997; 17:6394-401. [PMID: 9343401 PMCID: PMC232491 DOI: 10.1128/mcb.17.11.6394] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Telomerase synthesizes telomeric DNA by copying the template sequence of its own RNA component. In Tetrahymena thermophila and yeast (G. Yu, J. D. Bradley, L. D. Attardi, and E. H. Blackburn, Nature 344:126-131, 1990; M. McEachern and E. H. Blackburn, Nature 376:403-409, 1995), mutations in the template domain of this RNA result in synthesis of mutant telomeres and in impaired cell growth and survival. We have investigated whether mutant telomerase affects the proliferative potential and viability of immortal human cells. Plasmids encoding mutant or wild-type template RNAs (hTRs) of human telomerase and the neomycin resistance gene were transfected into human cells to generate stable transformants. Expression of mutant hTR resulted in the appearance of mutant telomerase activity and in the synthesis of mutant telomeres. Transformed cells were not visibly affected in their growth and viability when grown as mass populations. However, a reduction in plating efficiency and growth rate and an increase in the number of senescent cells were detected in populations with mutant telomeres by colony-forming assays. These results suggest that the presence of mutant telomerase, even if coexpressed with the wild-type enzyme, can be deleterious to cells, likely as a result of the impaired function of hybrid telomeres.
Collapse
Affiliation(s)
- L Marusíc
- Department of Pathology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
28
|
Roth CW, Kobeski F, Walter MF, Biessmann H. Chromosome end elongation by recombination in the mosquito Anopheles gambiae. Mol Cell Biol 1997; 17:5176-83. [PMID: 9271395 PMCID: PMC232368 DOI: 10.1128/mcb.17.9.5176] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
One of the functions of telomeres is to counteract the terminal nucleotide loss associated with DNA replication. While the vast majority of eukaryotic organisms maintain their chromosome ends via telomerase, an enzyme system that generates short, tandem repeats on the ends of chromosomes, other mechanisms such as the transposition of retrotransposons or recombination can also be used in some species. Chromosome end regression and extension were studied in a medically important mosquito, the malaria vector Anopheles gambiae, to determine how this dipteran insect maintains its chromosome ends. The insertion of a transgenic pUChsneo plasmid at the left end of chromosome 2 provided a unique marker for measuring the dynamics of the 2L telomere over a period of about 3 years. The terminal length was relatively uniform in the 1993 population with the chromosomes ending within the white gene sequence of the inserted transgene. Cloned terminal chromosome fragments did not end in short repeat sequences that could have been synthesized by telomerase. By late 1995, the chromosome ends had become heterogeneous: some had further shortened while other chromosomes had been elongated by regenerating part of the integrated pUChsneo plasmid. A model is presented for extension of the 2L chromosome by recombination between homologous 2L chromosome ends by using the partial plasmid duplication generated during its original integration. It is postulated that this mechanism is also important in wild-type telomere elongation.
Collapse
Affiliation(s)
- C W Roth
- Developmental Biology Center, University of California, Irvine 92697, USA
| | | | | | | |
Collapse
|
29
|
Zijlmans JM, Martens UM, Poon SS, Raap AK, Tanke HJ, Ward RK, Lansdorp PM. Telomeres in the mouse have large inter-chromosomal variations in the number of T2AG3 repeats. Proc Natl Acad Sci U S A 1997; 94:7423-8. [PMID: 9207107 PMCID: PMC23837 DOI: 10.1073/pnas.94.14.7423] [Citation(s) in RCA: 380] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The ultra-long telomeres that have been observed in mice are not in accordance with the concept that critical telomere shortening is related to aging and immortalization. Here, we have used quantitative fluorescence in situ hybridization to estimate (T2AG3)n lengths of individual telomeres in various mouse strains. Telomere lengths were very heterogeneous, but specific chromosomes of bone marrow cells and skin fibroblasts from individual mice had similar telomere lengths. We estimate that the shortest telomeres are around 10 kb in length, indicating that each mouse cell has a few telomeres with (T2AG3)n lengths within the range of human telomeres. These short telomeres may be critical in limiting the replicative potential of murine cells.
Collapse
Affiliation(s)
- J M Zijlmans
- Terry Fox Laboratory for Hematology/Oncology, BC Cancer Research Centre, 601 West 10th Avenue, Vancouver, BC Canada V5Z 1L3
| | | | | | | | | | | | | |
Collapse
|
30
|
Higashiyama T, Noutoshi Y, Fujie M, Yamada T. Zepp, a LINE-like retrotransposon accumulated in the Chlorella telomeric region. EMBO J 1997; 16:3715-23. [PMID: 9218812 PMCID: PMC1169995 DOI: 10.1093/emboj/16.12.3715] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Six copies of insertion elements accumulate in the subtelomeric region immediately proximal to the telomeric repeats on Chlorella chromosome I. The elements, designated Zepps, bear the characteristic features of non-viral (LINE-like) retrotransposons, including a poly(A) tail, 5'-truncations, a retroviral reverse transcriptase-like ORF and flanking target duplications. Detailed sequence analysis of the Chlorella subtelomeric region revealed a novel mechanism of Zepp transposition; successive insertions of each Zepp element into another Zepp as a target, leaving a tandem array of their 3'-regions with poly(A) tracts facing toward the centromere. Only the most distal Zepp copy was inverted to connect its poly(A) tail with the telomeric repeats. A similar Zepp cluster but without the telomeric repeats was also found at the terminus of another Chlorella chromosome. These structures contrast with that proposed for the addition of HeT-A and TART elements to Drosophila telomeres. Expression of Zepp elements is induced by heat shock treatment. Possible roles of the subtelomeric retrotransposons in formation and maintenance of telomeres are discussed.
Collapse
Affiliation(s)
- T Higashiyama
- Faculty of Engineering, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | | |
Collapse
|
31
|
Primmer CR, Raudsepp T, Chowdhary BP, Møller AP, Ellegren H. Low frequency of microsatellites in the avian genome. Genome Res 1997; 7:471-82. [PMID: 9149943 DOI: 10.1101/gr.7.5.471] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A better insight into the occurrence of microsatellites in a range of taxa may help to understand the evolution of simple repeats. Previous studies have found the relative abundance of several repeat motifs to differ among mammals, invertebrates, and plants. Absolute numbers of microsatellites also tend to correlate positively with genome size. We analyzed the occurrence, frequency, and distribution of microsatellites in birds, a taxon with one of the smallest known genome sizes among vertebrates. Dot-blot hybridization revealed that about half of 22 different di-, tri-, and tetranucleotide repeat motifs were clearly more common in human than in three species of birds: chicken, woodpecker, and swallow. For the remaining motifs no clear difference was found. From searching avian database sequences we estimated there to be 30,000-70,000 microsatellites longer than 20 bp in the avian genome. The number of (CA) > or = 10 would be around 7000-9000 and the number of (CA) > or = 14 about 3000. The calculated density of avian microsatellites (total, one every 20-39 kb; (CA) > or = 10, one every 136-150 kb) is much lower than that estimated for the human genome (one every 6 and 30 kb, respectively). This may be explained by the fact that the avian genome contains relatively less noncoding DNA than most mammals and that avian SINE/LINE elements do not terminate in poly(A) tails, which are known to provide a resource for the evolution of simple repeats in mammals. We found no association between microsatellites and SINEs in birds. Primed in situ labeling suggested fairly even distribution of (CA)n repeats over chicken macrochromosomes and intermediate chromosomes, whereas the microchromosomes, a large part of the Z and W chromosomes, and most telomeres and centromeres had very low concentrations of (CA)n microsatellites. The scarcity of microsatellites on the microchromosomes is compatible to these regions likely being unusually rich in coding sequences. The low microsatellite density in the genome in general and on the microchromosomes in particular imposes an obstacle for the development of marker-rich genetic maps of chicken and other birds, and for the localization of quantitative trait genes.
Collapse
Affiliation(s)
- C R Primmer
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
32
|
Abstract
Abstract
We review the present knowledge of telomeres and telomerase with special attention to their role in cell proliferation, cellular senescence, and human aging. We summarize the functional aspects of telomerase in cancer, as well as its role as a useful diagnostic and prognostic tumor marker, and discuss possible approaches to telomerase inhibition as a target for cancer therapy.
Collapse
|
33
|
Abstract
The sequence organisation of the telomeric regions is extremely similar for all eukaryotes examined to date. Subtelomeric areas may contain large sequence arrays of middle repetitive, complex elements that sometimes have similarities to retrotransposons. In between and within these complex sequences are short, satellite-like repeats. These areas contain very few genes and are thought to be organised into a heterochromatin-like domain. The terminal regions almost invariably consist of short, direct repeats. These repeats usually contain clusters of 2-4 G residues and the strand that contains these clusters (the G strand) always forms the extreme 3'-end of the chromosome. Thus, most telomeric repeats are clearly related to each other which in turn suggests a common evolutionary origin. A number of different structures can be formed by single-stranded telomeric G strand repeats and, as has been suggested recently, by the G strand. Since the main mechanism for the maintenance of telomeric repeats predicts the occurrence of single-stranded extensions of the G strand, the propensity of G-rich DNA to fold into alternative DNA structures may have implications for telomere biology.
Collapse
Affiliation(s)
- R J Wellinger
- Faculté de Médecine, Department de Microbiologie et Infectiologie, Université de Sherbrooke, QC, Canada
| | | |
Collapse
|
34
|
Tomáska L, Nosek J, Fukuhara H. Identification of a putative mitochondrial telomere-binding protein of the yeast Candida parapsilosis. J Biol Chem 1997; 272:3049-56. [PMID: 9006955 DOI: 10.1074/jbc.272.5.3049] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Terminal segments (telomeres) of linear mitochondrial DNA (mtDNA) molecules of the yeast Candida parapsilosis consist of large sequence units repeated in tandem. The extreme ends of mtDNA terminate with a 5' single-stranded overhang of about 110 nucleotides. We identified and purified a mitochondrial telomere-binding protein (mtTBP) that specifically recognizes a synthetic oligonucleotide derived from the extreme end of this linear mtDNA. MtTBP is highly resistant to protease and heat treatments, and it protects the telomeric probe from degradation by various DNA-modifying enzymes. Resistance of the complex to bacterial alkaline phosphatase suggests that mtTBP binds the very end of the molecule. We purified mtTBP to near homogeneity using DNA affinity chromatography based on the telomeric oligonucleotide covalently bound to Sepharose. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analysis of the purified fractions revealed the presence of a protein with an apparent molecular mass of approximately 15 kDa. UV cross-linking and gel filtration chromatography experiments suggested that native mtTBP is probably a homo-oligomer. MtTBP of C. parapsilosis is the first identified protein that specifically binds to telomeres of linear mitochondrial DNA.
Collapse
Affiliation(s)
- L Tomáska
- Department of Genetics, Faculty of Natural Sciences, Comenius University, 842 15 Bratislava, Slovakia
| | | | | |
Collapse
|
35
|
Fitzgerald MS, McKnight TD, Shippen DE. Characterization and developmental patterns of telomerase expression in plants. Proc Natl Acad Sci U S A 1996; 93:14422-7. [PMID: 8962067 PMCID: PMC26148 DOI: 10.1073/pnas.93.25.14422] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/1996] [Accepted: 10/14/1996] [Indexed: 02/03/2023] Open
Abstract
Telomerase activity is developmentally regulated in mammals. Here we examine telomerase activity in plants, whose development differs in fundamental ways from that of animals. Using a modified version of the telomere repeat amplification protocol (TRAP) assay, we detected an activity in extracts from carrots, cauliflower, soybean, Arabidopsis, and rice with all the characteristics expected for a telomerase synthesizing the plant telomere repeat sequence TTTAGGG. The activity was dependent on RNA and protein components, required dGTP, dATP, and dTTP, but not dCTP, and generated products with a seven nucleotide periodicity. Telomerase activity was abundant in cauliflower meristematic tissue and undifferentiated cells from Arabidopsis, soybean, and carrot suspension cultures, but was low or not detectable in a sampling of differentiated tissues from mature plants. Telomerase from cauliflower meristematic tissues exhibited relaxed DNA sequence requirements, which might reflect the capacity to form telomeres on broken chromosomes in vivo. The dramatic differences in telomerase expression and their correlation with cellular proliferation capacity mirror changes in human telomerase levels during differentiation and immortalization. Hence, telomerase activation appears to be a conserved mechanism involved in conferring long-term proliferation capacity.
Collapse
Affiliation(s)
- M S Fitzgerald
- Department of Biochemistry and Biophysics, Texas A&M University, College Station 77843, USA
| | | | | |
Collapse
|
36
|
Abstract
Telomeres cap and protect the ends of chromosomes from degradation and illegitimate recombination. The termini of a linear template cannot, however, be completely replicated by conventional DNA-dependent DNA polymerases, and thus in the absence of a mechanisms to counter this effect, telomeres of eukaryotic cells shorten every round of DNA replication. In humans and possibly other higher eukaryotes, telomere shortening may have been adopted to limit the life span of somatic cells. Human somatic cells have a finite proliferative capacity and enter a viable growth arrested state called senescence. Life span appears to be governed by cell division, not time. The regular loss of telomeric DNA could therefore serve as a mitotic clock in the senescence programme, counting cell divisions. In most eukaryotic organisms, however, telomere shortening can be countered by the de novo addition of telomeric repeats by the enzyme telomerase. Cells which are "immortal' such as the human germ line or tumour cell lines, established mouse cells, yeast and ciliates, all maintain a stable telomere length through the action of telomerase. Abolition of telomerase activity in such cells nevertheless results in telomere shortening, a process that eventually destabilizes the ends of chromosomes, leading to genomic instability and cell growth arrest or death. Therefore, loss of terminal DNA sequences may limit cell life span by two mechanisms: by acting as a mitotic clock and by denuding chromosomes of protective telomeric DNA necessary for cell viability.
Collapse
Affiliation(s)
- C M Counter
- Whitehead Institute for Biomedical Research (Weinberg Lab), Nine Cambridge Center, MA 02142-1479, USA.
| |
Collapse
|
37
|
Wicky C, Villeneuve AM, Lauper N, Codourey L, Tobler H, Müller F. Telomeric repeats (TTAGGC)n are sufficient for chromosome capping function in Caenorhabditis elegans. Proc Natl Acad Sci U S A 1996; 93:8983-8. [PMID: 8799140 PMCID: PMC38581 DOI: 10.1073/pnas.93.17.8983] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Telomeres are specialized structures located at the ends of linear eukaryotic chromosomes that ensure their complete replication and protect them from fusion and degradation. We report here the characterization of the telomeres of the nematode Caenorhabditis elegans. We show that the chromosomes terminate in 4-9 kb of tandem repeats of the sequence TTAGGC. Furthermore, we have isolated clones corresponding to 11 of the 12 C. elegans telomeres. Their subtelomeric sequences are all different from each other, demonstrating that the terminal TTAGGC repeats are sufficient for general chromosomal capping functions. Finally, we demonstrate that the me8 meiotic mutant, which is defective in X chromosome crossing over and segregation, bears a terminal deficiency, that was healed by the addition of telomeric repeats, presumably by the activity of a telomerase enzyme. The 11 cloned telomeres represent an important advance for the completion of the physical map and for the determination of the entire sequence of the C. elegans genome.
Collapse
Affiliation(s)
- C Wicky
- Institute of Zoology, University of Fribourg, Switzerland
| | | | | | | | | | | |
Collapse
|
38
|
Pearce SR, Pich U, Harrison G, Flavell AJ, Heslop-Harrison JS, Schubert I, Kumar A. The Ty1-copia group retrotransposons of Allium cepa are distributed throughout the chromosomes but are enriched in the terminal heterochromatin. Chromosome Res 1996; 4:357-64. [PMID: 8871824 DOI: 10.1007/bf02257271] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The genomic organization and diversity of the Ty1-copia group retrotransposons has been investigated in a monocotyledonous plant, Allium cepa. We used the polymerase chain reaction (PCR) to generate sequences corresponding to a conserved domain of the reverse transcriptase gene of Ty1-copia retrotransposons in this plant. Sequence analysis of 27 of these PCR products shows that they are a highly heterogeneous population, a feature which is common in plants but not in yeast and Drosophila. Slot-blot analysis shows there are 100,000-200,000 copies of Ty1-copia group retrotransposons within the A. cepa genome (2C = 31.7 pg), indicating that they are a significant component of the genome of this plant. In situ hybridization to metaphase chromosomes reveals that Ty1-copia retrotransposons are distributed throughout the euchromatin of all chromosomes of A. cepa but are enriched in the terminal heterochromatic regions, which contain tandem arrays of satellite sequences. This is the first clear evidence for the presence of Ty1-copia retrotransposons in the terminal heterochromatin of plants and contrasts with the distribution of these elements in other plant species.
Collapse
Affiliation(s)
- S R Pearce
- Cell and Molecular Genetics Department, Scottish Crop Research Institute, Invergowrie, Dundee, UK
| | | | | | | | | | | | | |
Collapse
|
39
|
Skopp R, Wang W, Price C. rTP: a candidate telomere protein that is associated with DNA replication. Chromosoma 1996; 105:82-91. [PMID: 8753697 DOI: 10.1007/bf02509517] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this paper we describe the isolation and characterization of rTP, the replication Telomere Protein, formerly known as the telomere protein homolog. The rTP was initially identified because of its homology to the gene for the Oxytricha telomere-binding protein alpha-subunit. The protein encoded by the rTP gene has extensive amino acid sequence identity to the DNA-binding domain of the telomere-binding proteins from both Euplotes crassus and Oxytricha nova. We have now identified the protein encoded by the rTP gene and have shown that it differs from the telomere-binding protein in its abundance, solubility and intracellular location. To learn more about the function of rTP, we determined when during the Euplotes life cycle the gene is transcribed. The transcript was detectable only in nonstarved vegetative cells and during the final stages of macronuclear development. Since the peak transcript level coincided with the rounds of replication that take place toward the end of macronuclear development, it appeared that rTP might be involved in DNA replication. Immunolocalization experiments provided support for this hypothesis as antibodies to rTP specifically stain the replication bands. Replication bands are the sites of DNA replication in Euplotes macronuclei. Our results suggest that rTP may be a new telomere replication factor.
Collapse
Affiliation(s)
- R Skopp
- Department of Chemistry, University of Nebraska, Lincoln, NE 68588, USA
| | | | | |
Collapse
|
40
|
Steiner BR, Hidaka K, Futcher B. Association of the Est1 protein with telomerase activity in yeast. Proc Natl Acad Sci U S A 1996; 93:2817-21. [PMID: 8610124 PMCID: PMC39716 DOI: 10.1073/pnas.93.7.2817] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The est1 mutant was previously identified because it is defective in telomere maintenance and displays a senescent phenotype. To see if Est1 might be a component of yeast telomerase, we examined immunoprecipitated Est1. The yeast telomerase RNA Tlc1 specifically coprecipitated with Est1. Furthermore, the Est1 immunoprecipitates contained a telomerase-like activity. As expected for yeast telomerase, the activity elongated telomeric primers, it required dGTP and dTTP but not dATP or dCTP, and it was sensitive to RNase A. Further evidence suggesting that the activity was telomerase was obtained from experiments using a TLC1-1 mutant strain, which has a mutant telomerase template containing dG residues. The activity immunoprecipitated from TLC1-1 mutant strains incorporated 32P-labeled dCTP, while activity from TLC1 strains did not. Use of different telomeric primer substrates revealed two distinguishable telomerase-like activities: one was dependent on TLC1, and one was not. The TLC1-independent activity may be due to a second yeast telomerase RNA, or it may be some other kind of activity.
Collapse
Affiliation(s)
- B R Steiner
- Cold Spring Harbor Labortory, New York 11724, USA
| | | | | |
Collapse
|
41
|
Pich U, Fuchs J, Schubert I. How do Alliaceae stabilize their chromosome ends in the absence of TTTAGGG sequences? Chromosome Res 1996; 4:207-13. [PMID: 8793205 DOI: 10.1007/bf02254961] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Arabidopsis-type telomeric repeats (5'-TTTAGGG-3) are highly conserved. In most families of different plant phyla they represent the basic sequence of telomeres that stabilize and protect the chromosome termini. The results presented here show that Alliaceae and some related liliaceous species have no tandemly repeated TTTAGGG sequences. Instead, their chromosomes reveal highly repetitive satellite and/or rDNA sequences at the very ends. These apparently substitute the original plant telomeric sequences in Alliaceae. Both sequence types are very active in homologous recombination and may contribute to the stabilization of chromosome termini via compensation of replication-mediated shortening.
Collapse
Affiliation(s)
- U Pich
- Institut für Pflanzengenetik und Kulturpflanzenforschung, Gatersleben
| | | | | |
Collapse
|
42
|
Melek M, Shippen DE. Chromosome healing: spontaneous and programmed de novo telomere formation by telomerase. Bioessays 1996; 18:301-8. [PMID: 8967898 DOI: 10.1002/bies.950180408] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Telomeres are protective caps for chromosome ends that are essential for genome stability. Broken chromosomes missing a telomere will not be maintained unless the chromosome is 'healed' with the formation of a new telomere. Chromosome healing can be a programmed event following developmentally regulated chromosome fragmentation, or it may occur spontaneously when a chromosome is accidentally broken. In this article we discuss the consequences of telomere loss and the possible mechanisms that the enzyme telomerase employs to form telomeres de novo on broken chromosome ends.
Collapse
Affiliation(s)
- M Melek
- Department of Biochemistry and Biophysics, Texas A&M University, College Station 77843-2128, USA
| | | |
Collapse
|
43
|
McCormick-Graham M, Romero DP. A single telomerase RNA is sufficient for the synthesis of variable telomeric DNA repeats in ciliates of the genus Paramecium. Mol Cell Biol 1996; 16:1871-9. [PMID: 8657163 PMCID: PMC231174 DOI: 10.1128/mcb.16.4.1871] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Paramecium telomeric DNA consists largely of a random distribution of TTGGGG and TTTGGG repeats. Given the precise nature of other ciliate telomerases, it has been postulated that there are two distinct types of the Paramecium enzyme, each synthesizing perfect telomeric repeats: one with a template RNA that specifies the addition of TTTGGG and the second dictating the synthesis of TTGGGG repeats. We have cloned and sequenced telomerase RNA genes from Paramecium tetraurelia, P. primaurelia, P. multimicronucleatum, and P. caudatum. Surprisingly, a single gene encodes telomerase RNA in all four species, although an apparently nontranscribed pseudogene is also present in the genome of P. primaurelia. The overall lengths of the telomerase RNAs range between 202 and 209 nucleotides, and they can be folded into a conserved secondary structure similar to that derived for other ciliate RNAs. All Paramecium telomerase RNAs examined include a template specific for the synthesis of TTGGGG telomeric repeats, which has not been posttranscriptionally edited to account for the conventional synthesis of TTTGGG repeats. On the basis of these results, possible mechanisms for the synthesis of variable telomeric repeats by Paramecium telomerase are discussed.
Collapse
Affiliation(s)
- M McCormick-Graham
- Department of Pharmacology, School of Medicine, University of Minnesota, Minneapolis, 55455, USA
| | | |
Collapse
|
44
|
Biessmann H, Donath J, Walter MF. Molecular characterization of the Anopheles gambiae 2L telomeric region via an integrated transgene. INSECT MOLECULAR BIOLOGY 1996; 5:11-20. [PMID: 8630530 DOI: 10.1111/j.1365-2583.1996.tb00035.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A Drosophila P-element derivative (pUChsneo) integrated into the telomeric region of the left arm of the second chromosome of Anopheles gambiae was used to clone the proximally flanking An. gambiae sequences. Molecular analyses revealed that the pUChsneo construct was partially duplicated and had integrated into a subterminal minisatellite. This satellite has a repeat unit of 820 bp and is located exclusively at the tip of 2L. No sequence similarity to subterminal minisatellites from other dipterans was detected, but some structural features such as tandem subrepeats are shared. The end of the chromosome was mapped with respect to restriction sites in pUChsneo at approximately generation 100 after the integration event. Considering inevitable terminal nucleotide loss due to incomplete DNA replication, we conclude that the chromosome end must have undergone a dramatic elongation process since it was mapped in generation 23.
Collapse
Affiliation(s)
- H Biessmann
- Developmental Biology Center, University of California, Irvine, 92717, USA
| | | | | |
Collapse
|
45
|
|
46
|
Abstract
Yeast chromosome ends are similar in structure and function to chromosome ends in most, if not all, eukaryotic organisms. There is a G-rich terminal repeat at the ends which is maintained by telomerase. In addition to the classical functions of protecting the end from degradation and end-to-end fusions, and completing replication, yeast telomeres have several interesting properties including: non-nucleosomal chromatin structure; transcriptional position effect variegation for genes with adjacent telomeres; nuclear peripheral localization; apparent physical clustering; non-random recombinational interactions. A number of genes have been identified that are involved in modifying one or more of these properties. These include genes involved in general DNA metabolism, chromatin structure and telomere maintenance. Adjacent to the terminal repeat is a mosaic of middle repetitive elements that exhibit a great deal of polymorphism both between individual strains and among different chromosome ends. Much of the sequence redundancy in the yeast genome is found in the sub-telomeric regions (within the last 25 kb of each end). The sub-telomeric regions are generally low in gene density, low in transcription, low in recombination, and they are late replicating. The only element which appears to be shared by all chromosome ends is part of the previously defined X element containing an ARS consensus. Most of the 'core' X elements also contain an Abf1p binding site and a URS1-like element, which may have consequences for the chromatin structure, nuclear architecture and transcription of native telomeres. Possible functions of sub-telomeric repeats include: fillers for increasing chromosome size to some minimum threshold level necessary for chromosome stability; barrier against transcriptional silencing; a suitable region for adaptive amplification of genes; secondary mechanism of telomere maintenance via recombination when telomerase activity is absent.
Collapse
Affiliation(s)
- E J Louis
- Yeast Genetics, Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK.
| |
Collapse
|
47
|
Walter MF, Jang C, Kasravi B, Donath J, Mechler BM, Mason JM, Biessmann H. DNA organization and polymorphism of a wild-type Drosophila telomere region. Chromosoma 1995; 104:229-41. [PMID: 8565699 DOI: 10.1007/bf00352254] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Telomeres at the ends of linear chromosomes of eukaryotes protect the chromosome termini from degradation and fusion. While telomeric replication/elongation mechanisms have been studied extensively, the functions of subterminal sequences are less well understood. In general, subterminal regions can be quite polymorphic, varying in size from organism to organism, and differing among chromosomes within an organism. The subterminal regions of Drosophila melanogaster are not well characterized today, and it is not known which and how many different components they contain. Here we present the molecular characterization of DNA components and their organization in the subterminal region of the left arm of chromosome 2 of the Oregon RC wild-type strain of D. melanogaster, including a minisatellite with a 457bp repeat length. Two distinct polymorphic arrangements at 2L were found and analyzed, supporting the Drosophila telomere elongation model by retrotransposition. The high incidence of terminal chromosome deficiencies occurring in natural Drosophila populations is discussed in view of the telomere structure at 2L.
Collapse
Affiliation(s)
- M F Walter
- Developmental Biology Center, University of California, Irvine, CA 92717, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Kilian A, Stiff C, Kleinhofs A. Barley telomeres shorten during differentiation but grow in callus culture. Proc Natl Acad Sci U S A 1995; 92:9555-9. [PMID: 11607583 PMCID: PMC40840 DOI: 10.1073/pnas.92.21.9555] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic chromosomes terminate with long stretches of short, guanine-rich repeats. These repeats are added de novo by a specialized enzyme, telomerase. In humans telomeres shorten during differentiation, presumably due to the absence of telomerase activity in somatic cells. This phenomenon forms the basis for several models of telomere role in cellular senescence. Barley (Hordeum vulgare L.) telomeres consist of thousands of TTTAGGG repeats, closely resembling other higher eukaryotes. In vivo differentiation and aging resulted in reduction of terminal restriction fragment length paralleled by a decrease of telomere repeat number. Dedifferentiation in callus culture resulted in an increase of the terminal restriction fragment length and in the number of telomere repeats. Long-term callus cultures had very long telomeres. Absolute telomere lengths were genotype dependent, but the relative changes due to differentiation, dedifferentiation, and long-term callus culture were consistent among genotypes. A model is presented to describe the potential role of the telomere length in regulation of a cell's mitotic activity and senescence.
Collapse
Affiliation(s)
- A Kilian
- Department of Crop & Soil Sciences, Washington State University, Pullman WA 99164-6420, USA
| | | | | |
Collapse
|
49
|
Autexier C, Greider CW. Boundary elements of the Tetrahymena telomerase RNA template and alignment domains. Genes Dev 1995; 9:2227-39. [PMID: 7557377 DOI: 10.1101/gad.9.18.2227] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Telomerase is a DNA polymerase fundamental to the replication and maintenance of telomere sequences at chromosome ends. The RNA component of telomerase is essential for the synthesis of telomere repeats. In vitro, the template domain (5'-CAACCCCAA-3') of the Tetrahymena telomerase RNA dictates the addition of Tetrahymena-specific telomere repeats d(TTGGGG)n, onto the 3' end of G-rich or telomeric substrates that are base-paired with the template and alignment regions of the RNA. Using a reconstituted in vitro system, we determined that altering the sequence of the alignment and template domains affects processivity of telomerase without abolishing telomerase activity. These results suggest that alternative template/alignment regions may be functional. In the ciliate telomerase RNAs, there is a conserved sequence 5'-(CU)GUCA-3', located two residues upstream of the template domain. The location and sequence of this conserved domain defined the 5' boundary of the template region. These data provide insights into the regulation of telomere synthesis by telomerase.
Collapse
Affiliation(s)
- C Autexier
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | |
Collapse
|
50
|
Kilian A, Kudrna DA, Kleinhofs A, Yano M, Kurata N, Steffenson B, Sasaki T. Rice-barley synteny and its application to saturation mapping of the barley Rpg1 region. Nucleic Acids Res 1995; 23:2729-33. [PMID: 7651834 PMCID: PMC307098 DOI: 10.1093/nar/23.14.2729] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In order to facilitate the map-based cloning of the barley stem rust resistance gene Rpg1, we have demonstrated a high degree of synteny at a micro level between the telomeric region of barley chromosome 1P and rice chromosome 6. We have also developed and applied a simple and efficient method for selecting useful probes from large insert genomic YAC and cosmid clones. The gene order within the most terminal 6.5 cM of barley chromosome 1P was compared with the most terminal 2.7 cM of rice chromosome 6. Nine rice probes, previously mapped in rice or isolated from YAC or cosmid clones from this region, were mapped in barley. All, except one, were in synteny with the rice gene order. The exception, probe Y617R, was duplicated in barley. One copy was located on a different chromosome and the other in a non-syntenic position on barley chromosome 1P. The barley probes from this region could not be mapped to rice, but two of them were inferred to be in a syntenic location based on their position on a rice YAC. This work demonstrates the utility of applying the results of genetic and physical mapping of the small genome cereal rice to map-based cloning of interesting genes from large genome relatives.
Collapse
Affiliation(s)
- A Kilian
- Department of Corp and Soil Sciences, Washington State University, Pullman 99164-6420, USA
| | | | | | | | | | | | | |
Collapse
|