1
|
Kalapos MP, de Bari L. Hidden biochemical fossils reveal an evolutionary trajectory for glycolysis in the prebiotic era. FEBS Lett 2022; 596:1955-1968. [DOI: 10.1002/1873-3468.14408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 11/09/2022]
Affiliation(s)
| | - Lidia de Bari
- Institute of Biomembranes Bioenergetics and Molecular Biotechnologies Bari Italy
| |
Collapse
|
2
|
Lewis AM, Recalde A, Bräsen C, Counts JA, Nussbaum P, Bost J, Schocke L, Shen L, Willard DJ, Quax TEF, Peeters E, Siebers B, Albers SV, Kelly RM. The biology of thermoacidophilic archaea from the order Sulfolobales. FEMS Microbiol Rev 2021; 45:fuaa063. [PMID: 33476388 PMCID: PMC8557808 DOI: 10.1093/femsre/fuaa063] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Thermoacidophilic archaea belonging to the order Sulfolobales thrive in extreme biotopes, such as sulfuric hot springs and ore deposits. These microorganisms have been model systems for understanding life in extreme environments, as well as for probing the evolution of both molecular genetic processes and central metabolic pathways. Thermoacidophiles, such as the Sulfolobales, use typical microbial responses to persist in hot acid (e.g. motility, stress response, biofilm formation), albeit with some unusual twists. They also exhibit unique physiological features, including iron and sulfur chemolithoautotrophy, that differentiate them from much of the microbial world. Although first discovered >50 years ago, it was not until recently that genome sequence data and facile genetic tools have been developed for species in the Sulfolobales. These advances have not only opened up ways to further probe novel features of these microbes but also paved the way for their potential biotechnological applications. Discussed here are the nuances of the thermoacidophilic lifestyle of the Sulfolobales, including their evolutionary placement, cell biology, survival strategies, genetic tools, metabolic processes and physiological attributes together with how these characteristics make thermoacidophiles ideal platforms for specialized industrial processes.
Collapse
Affiliation(s)
- April M Lewis
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Alejandra Recalde
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Christopher Bräsen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - James A Counts
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Phillip Nussbaum
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Jan Bost
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Larissa Schocke
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Lu Shen
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Daniel J Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| | - Tessa E F Quax
- Archaeal Virus–Host Interactions, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Bettina Siebers
- Department of Molecular Enzyme Technology and Biochemistry, Environmental Microbiology and Biotechnology, and Centre for Water and Environmental Research, University of Duisburg-Essen, 45117 Essen, Germany
| | - Sonja-Verena Albers
- Institute for Biology, Molecular Biology of Archaea, University of Freiburg, 79104 Freiburg, Germany
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University. Raleigh, NC 27695, USA
| |
Collapse
|
3
|
Patel S, Bagai R, Madamwar D. Stabilization of a Halophilic α-Amylase by Calcium Alginate Immobilization. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.3109/10242429609106882] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Kalapos MP. Methylglyoxal and glucose metabolism: a historical perspective and future avenues for research. ACTA ACUST UNITED AC 2008; 23:69-91. [PMID: 18533365 DOI: 10.1515/dmdi.2008.23.1-2.69] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Methylglyoxal, an alpha-oxoaldehyde discovered in the 1880s, has had a hectic scientific career, at times being considered of fundamental importance and at other times viewed as playing a very subordinate role. Much has been learned about methylglyoxal, but the function of its production in the metabolic machinery is still unknown. This paper gives an overview of the changing role of methylglyoxal from a historical aspect and arrives at the conclusion that methylglyoxal is tightly bound to glycolysis from an evolutionary perspective, its production therefore being inevitable. It is not situated in the main stream of the glycolytic sequence, but a role can be assigned to its production in the phosphate supply of operating glycolysis in some prokaryotes and yeast under conditions of phosphate deficiency. This function is presumed to be performed by the enzyme methylglyoxal synthase, which is specialized for the conversion of dihydroxyacetone-phosphate to methylglyoxal. However, it is still unknown whether this enzyme and this kind of regulation also exist in animals.
Collapse
|
5
|
Lal S, Cheema S, Kalia VC. Phylogeny vs genome reshuffling: horizontal gene transfer. Indian J Microbiol 2008; 48:228-42. [PMID: 23100716 PMCID: PMC3450171 DOI: 10.1007/s12088-008-0034-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 06/06/2008] [Indexed: 10/21/2022] Open
Abstract
The evolutionary events in organisms can be tracked to the transfer of genetic material. The inheritance of genetic material among closely related organisms is a slow evolutionary process. On the other hand, the movement of genes among distantly related species can account for rapid evolution. The later process has been quite evident in the appearance of antibiotic resistance genes among human and animal pathogens. Phylogenetic trees based on such genes and those involved in metabolic activities reflect the incongruencies in comparison to the 16S rDNA gene, generally used for taxonomic relationships. Such discrepancies in gene inheritance have been termed as horizontal gene transfer (HGT) events. In the post-genomic era, the explosion of known sequences through large-scale sequencing projects has unraveled the weakness of traditional 16S rDNA gene tree based evolutionary model. Various methods to scrutinize HGT events include atypical composition, abnormal sequence similarity, anomalous phylogenetic distribution, unusual phyletic patterns, etc. Since HGT generates greater genetic diversity, it is likely to increase resource use and ecosystem resilience.
Collapse
Affiliation(s)
- Sadhana Lal
- Microbial Biotechnology and Genomics; Institute of Genomics and Integrative Biology (CSIR), Delhi University Campus, Mall Road, Delhi, 110 007 India
| | - Simrita Cheema
- Microbial Biotechnology and Genomics; Institute of Genomics and Integrative Biology (CSIR), Delhi University Campus, Mall Road, Delhi, 110 007 India
| | - Vipin C. Kalia
- Microbial Biotechnology and Genomics; Institute of Genomics and Integrative Biology (CSIR), Delhi University Campus, Mall Road, Delhi, 110 007 India
| |
Collapse
|
6
|
Characterization of a Haloferax volcanii member of the enolase superfamily: deletion mutant construction, expression analysis, and transcriptome comparison. Arch Microbiol 2008; 190:341-53. [PMID: 18493744 DOI: 10.1007/s00203-008-0379-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 04/09/2008] [Accepted: 04/25/2008] [Indexed: 10/22/2022]
Abstract
The enolase superfamily (COG4948) contains proteins with very different biological functions including regulators like the Escherichia coli RspA and metabolic enzymes like enolase. To unravel the biological function of an archaeal family member, an in frame deletion mutant of a gene encoding a COG4948 protein of Haloferax volcanii was generated. The mutant had a lag phase of 3 days after transition from a richer to a poorer medium, in contrast to the wild-type, and the gene was therefore named "important for transition" (iftA). After inoculation of fresh casamino acids or complex medium with stationary phase wild-type cells, the transcript level of iftA was transiently induced at the onset of growth. In contrast, in minimal (or "poor") glucose medium, both transcript and protein were present throughout growth, even in late stationary phase. A comparison of the transcriptomes of deletion mutant and wild-type revealed that transcript levels of a very restricted set of genes were differentially regulated, including genes encoding proteins involved in phosphate metabolism, regulators and stress response proteins. Taken together, the results indicate that IftA might have a dual function, i.e., transiently after transition to fresh medium and permanently during growth in glucose medium.
Collapse
|
7
|
Fothergill-Gilmore LA, Watson HC. The phosphoglycerate mutases. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 62:227-313. [PMID: 2543188 DOI: 10.1002/9780470123089.ch6] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The phosphoglycerate mutase family is generally very well documented with respect to structure, evolution, and mode of action. However, a few individuals in the family remain relatively poorly characterized and will clearly require more detailed study. Furthermore, certain aspects of the detailed behavior of these enzymes are, as yet, incompletely understood and require further investigation. Cofactor-dependent monophosphoglycerate mutase and bisphosphoglycerate mutase are undoubtedly very closely related. Their amino acid sequences are strongly similar, they can form active heterodimers, and they catalyze the same three reactions, albeit at substantially different relative rates. Both enzymes catalyze a ping-pong type of reaction with a phosphohistidine intermediate. The presence of an additional phospho ligand at the active site of monophosphoglycerate mutase helps to explain why this enzyme is better at retaining the 2,3-bisphosphoglycerate intermediate and why it is thus more efficient (by a factor of about 10(3)) at catalyzing the interconversion of 3- and 2-phosphoglycerates. The reason why 1,3-bisphosphoglycerate is a better substrate for bisphosphoglycerate mutase than for monophosphoglycerate mutase (by a factor of about 30) is not yet apparent but presumably relates to the relative positioning of the two phospho-binding sites. Both enzymes are equally good as phosphatases when the reaction is activated by 2-phosphoglycollate. Available evidence indicates that these mutases are similar in many respects to the much smaller, cofactor-dependent monophosphoglycerate mutase from Schizosaccharomyces pombe, but further information is required to define the relationship more precisely. Cofactor-independent monophosphoglycerate mutase belongs to a quite distinct branch of the phosphoglycerate mutase family. It is not known at present whether this branch is related divergently or convergently to the cofactor-dependent monophosphoglycerate mutase/bisphosphoglycerate mutase branch. Existing evidence can be argued both ways. For example, the kinetic evidence shows a ping-pong type of reaction and would be consistent with a phosphohistidine intermediate as encountered in the other mutases. Thus the cofactor-independent enzyme may also have arisen by gene duplication--but, in this case, yielding an enzyme of about twice the size, with slightly different residues at the active site and C-terminal tail. An alternative possibility, of course, is that the two branches of the phosphoglycerate mutase family are quite unrelated in a divergent sense and are little more similar structurally than is, for example, the catalytically similar enzyme phosphoglucomutase.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
8
|
Snijders APL, Walther J, Peter S, Kinnman I, de Vos MGJ, van de Werken HJG, Brouns SJJ, van der Oost J, Wright PC. Reconstruction of central carbon metabolism inSulfolobus solfataricus using a two-dimensional gel electrophoresis map, stable isotope labelling and DNA microarray analysis. Proteomics 2006; 6:1518-29. [PMID: 16447154 DOI: 10.1002/pmic.200402070] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the last decade, an increasing number of sequenced archaeal genomes have become available, opening up the possibility for functional genomic analyses. Here, we reconstructed the central carbon metabolism in the hyperthermophilic crenarchaeon Sulfolobus solfataricus (glycolysis, gluconeogenesis and tricarboxylic acid cycle) on the basis of genomic, proteomic, transcriptomic and biochemical data. A 2-DE reference map of S. solfataricus grown on glucose, consisting of 325 unique ORFs in 255 protein spots, was created to facilitate this study. The map was then used for a differential expression study based on (15)N metabolic labelling (yeast extract + tryptone-grown cells (YT) vs. glucose-grown cells (G)). In addition, the expression ratio of the genes involved in carbon metabolism was studied using DNA microarrays. Surprisingly, only 3 and 14% of the genes and proteins, respectively, involved in central carbon metabolism showed a greater than two-fold change in expression level. All results are discussed in the light of the current understanding of central carbon metabolism in S. solfataricus and will help to obtain a system-wide understanding of this organism.
Collapse
Affiliation(s)
- Ambrosius P L Snijders
- Biological and Environmental Systems Group, Department of Chemical and Process Engineering, University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sako Y, Takai K, Nishizaka T, Ishida Y. Biochemical relationship of phosphoenolpyruvate carboxylases (PEPCs) from thermophilic archaea. FEMS Microbiol Lett 2006. [DOI: 10.1111/j.1574-6968.1997.tb10477.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
10
|
Coolbear T, Daniel RM, Morgan HW. The enzymes from extreme thermophiles: bacterial sources, thermostabilities and industrial relevance. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 45:57-98. [PMID: 1605092 DOI: 10.1007/bfb0008756] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review on enzymes from extreme thermophiles (optimum growth temperature greater than 65 degrees C) concentrates on their characteristics, especially thermostabilities, and their commercial applicability. The enzymes are considered in general terms first, with comments on denaturation, stabilization and industrial processes. Discussion of the enzymes subsequently proceeds in order of their E.C. classification: oxidoreductases, transferases, hydrolases, lyases, isomerases and ligases. The ramifications of cloned enzymes from extreme thermophiles are also discussed.
Collapse
Affiliation(s)
- T Coolbear
- University of Waikato, Hamilton, New Zealand
| | | | | |
Collapse
|
11
|
Daniel RM, van Eckert R, Holden JF, Truter J, Crowan DA. The stability of biomolecules and the implications for life at high temperatures. THE SUBSEAFLOOR BIOSPHERE AT MID-OCEAN RIDGES 2004. [DOI: 10.1029/144gm03] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
12
|
Ohshima T, Ito Y, Sakuraba H, Goda S, Kawarabayasi Y. The Sulfolobus tokodaii gene ST1704 codes highly thermostable glucose dehydrogenase. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1381-1177(03)00091-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Abstract
Although mitochondria provide eukaryotic cells with certain metabolic advantages, in other ways they may be disadvantageous. For example, mitochondria produce reactive oxygen species that damage both nucleocytoplasm and mitochondria, resulting in mutations, diseases, and aging. The relationship of mitochondria to the cytoplasm is best understood in the context of evolutionary history. Although it is clear that mitochondria evolved from symbiotic bacteria, the exact nature of the initial symbiosis is a matter of continuing debate. The exchange of nutrients between host and symbiont may have differed from that between the cytoplasm and mitochondria in modern cells. Speculations about the initial relationships include the following. (1) The pre-mitochondrion may have been an invasive, parasitic bacterium. The host did not benefit. (2) The relationship was a nutritional syntrophy based upon transfer of organic acids from host to symbiont. (3) The relationship was a syntrophy based upon H2 transfer from symbiont to host, where the host was a methanogen. (4) There was a syntrophy based upon reciprocal exchange of sulfur compounds. The last conjecture receives support from our detection in eukaryotic cells of substantial H2S-oxidizing activity in mitochondria, and sulfur-reducing activity in the cytoplasm.
Collapse
Affiliation(s)
- Dennis G Searcy
- Biology Department, University of Massachusetts, Amherst, MA 01003-9297, USA.
| |
Collapse
|
14
|
Zaigler A, Schuster SC, Soppa J. Construction and usage of a onefold-coverage shotgun DNA microarray to characterize the metabolism of the archaeon Haloferax volcanii. Mol Microbiol 2003; 48:1089-105. [PMID: 12753198 DOI: 10.1046/j.1365-2958.2003.03497.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Haloferax volcanii is a moderately halophilic archaeon that can grow aerobically and anaerobically with a variety of substrates. We undertook a novel approach for the characterization of metabolic adaptations, i.e. transcriptome analysis with a onefold-coverage shotgun DNA microarray. A genomic library was constructed and converted into a polymerase chain reaction (PCR) product library, which was used to print two DNA microarrays, a 960-spot test array used for optimization of microarray analysis and a 2880-spot onefold-coverage array. H. volcanii cultures were shifted from casamino acid-based metabolism to glucose-based metabolism, and the transcriptome changes were analysed with the onefold-coverage array at five time points covering the transition phase and the onset of exponential growth with the new carbon source. About 10% of all genes were found to be more than 2.5-fold regulated at at least one time point. The genes fall into five clusters of kinetically co-regulated genes. For members of all five clusters, the results were verified by Northern blot analyses. The identity of the regulated genes was determined by sequencing. Many co-regulated genes encode proteins of common functions. Expected as well as a variety of unexpected findings allowed predictions about the central metabolism, the transport capacity and the cellular composition of H. volcanii growing on casamino acids and on glucose. The microarray analyses are in accordance with the growth rates and ribosome contents of H. volcanii growing on the two carbon sources. Analysis of the results revealed that onefold-coverage shotgun DNA microarrays are well suited to characterize the regulation of metabolic pathways as well as protein complexes in response to changes in environmental conditions.
Collapse
Affiliation(s)
- Alexander Zaigler
- J. W. Goethe-Universität, Biozentrum Niederursel, Institut für Mikrobiologie, Marie-Curie-Str 9, D-60439 Frankfurt, Germany
| | | | | |
Collapse
|
15
|
Hügler M, Huber H, Stetter KO, Fuchs G. Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Arch Microbiol 2003; 179:160-73. [PMID: 12610721 DOI: 10.1007/s00203-002-0512-5] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2002] [Revised: 12/02/2002] [Accepted: 12/04/2002] [Indexed: 10/20/2022]
Abstract
Representative autotrophic and thermophilic archaeal species of different families of Crenarchaeota were examined for key enzymes of the known autotrophic CO(2) fixation pathways. Pyrobaculum islandicum ( Thermoproteaceae) contained key enzymes of the reductive citric acid cycle. This finding is consistent with the operation of this pathway in the related Thermoproteus neutrophilus. Pyrodictium abyssi and Pyrodictium occultum ( Pyrodictiaceae) contained ribulose 1,5-bisphosphate carboxylase, which was active in boiling water. Yet, phosphoribulokinase activity was not detectable. Operation of the Calvin cycle remains to be demonstrated. Ignicoccus islandicus and Ignicoccus pacificus ( Desulfurococcaceae) contained pyruvate oxidoreductase as potential carboxylating enzyme, but apparently lacked key enzymes of known pathways; their mode of autotrophic CO(2) fixation is at issue. Metallosphaera sedula, Acidianus ambivalens and Sulfolobus sp. strain VE6 ( Sulfolobaceae) contained key enzymes of a 3-hydroxypropionate cycle. This finding is in line with the demonstration of acetyl-coenzyme A (CoA) and propionyl-CoA carboxylase activities in the related Acidianus brierleyi and Sulfolobus metallicus. Enzymes of central carbon metabolism in Metallosphaera sedula were studied in more detail. Enzyme activities of the 3-hydroxypropionate cycle were strongly up-regulated during autotrophic growth, supporting their role in CO(2) fixation. However, formation of acetyl-CoA from succinyl-CoA could not be demonstrated, suggesting a modified pathway of acetyl-CoA regeneration. We conclude that Crenarchaeota exhibit a mosaic of three or possibly four autotrophic pathways. The distribution of the pathways so far correlates with the 16S-rRNA-based taxa of the Crenarchaeota.
Collapse
Affiliation(s)
- Michael Hügler
- Mikrobiologie, Institut für Biologie II, Universität Freiburg, Schänzlestrasse 1, Germany
| | | | | | | |
Collapse
|
16
|
Smith AW, Roche H, Trombe MC, Briles DE, Håkansson A. Characterization of the dihydrolipoamide dehydrogenase from Streptococcus pneumoniae and its role in pneumococcal infection. Mol Microbiol 2002; 44:431-48. [PMID: 11972781 DOI: 10.1046/j.1365-2958.2002.02883.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study, we have characterized the dihydrolipoamide dehydrogenase (DLDH) of Strepto-coccus pneumoniae and its role during pneumococcal infection. We have also demonstrated that a lack of DLDH results in a deficiency in alpha-galactoside metabolism and galactose transport. DLDH is an enzyme that is classically involved in the three-step conversion of 2-oxo acids to their respective acyl-CoA derivatives, but DLDH has also been shown to have other functions. The dldh gene was virtually identical in three pneumococcal strains examined. Besides the functional domains and motifs associated with this enzyme, analysis of the pneumococcal dldh gene sequence revealed the presence of an N-terminal lipoyl domain. DLDH-negative bacteria totally lacked DLDH activity, indicating that this gene encodes the only DLDH in S. pneumoniae. These DLDH-negative bacteria grew normally in vitro but were avirulent in sepsis and lung infection models in mice, indicating that DLDH activity is necessary for the survival of pneumococci within the host. The lack of virulence was not associated with a loss of 2-oxo acid dehydrogenase activity, as the wild-type pneumococcal strains did not contain activity of any of the known 2-oxo acid enzyme complexes. Instead, studies of carbohydrate utilization demonstrated that the DLDH-negative bacteria were impaired for alpha-galactoside and galactose metabolism. The DLDH mutants lost their ability to oxidize or grow with galactose or melibiose as sole carbon source and showed reduced oxidation and growth on raffinose or stachyose. The bacteria had an 85% reduction in alpha-galactosidase activity and showed virtually no transport of galactose into the cells, which can explain these phenotypic changes. The DLDH-negative bacteria produced only 50% of normal capsular polysaccharide, a phenotype that may be associated with impaired carbohydrate metabolism.
Collapse
Affiliation(s)
- Alexander W Smith
- Department of Microbiology, University of Alabama at Birmingham, BBRB-673 Box 10, 658 Bevill Building, 854 19th Street South, 35294, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
Competitive replication among RNA or DNA molecules at linear and non-linear rates of propagation has been reviewed from the perspective of a recent physicochemical model of molecular evolution and the findings are applied to pre-replication, prebiotic and biological evolution. A system of competitively replicating molecules was seen to follow a path of least action on both its thermodynamic and kinetic branch, in evolving toward steady state kinetics and equilibrium for the nucleotide condensation reaction. Stable and unstable states of coexistence, between competing molecular species, arise at nonlinear rates of propagation, and they derive from an equilibrium between kinetic forces. The de novo formation of self-replicating RNA molecules involves damping of these scalar forces, error tolerance and RNA driven strand separation. Increases in sequence complexity in the transition to self-replication does not exceed the free energy dissipated in RNA synthesis. Retrodiction of metabolic pathways and phylogenetic evidence point to the occurrence of three pre-replication metabolic systems, driven by autocatalytic C-fixation cycles. Thermodynamic and kinetic factors led to the replication take over. Biological evolution was found to involve resource capture, in addition to competition for a shared resource.
Collapse
Affiliation(s)
- B K Davis
- Research Foundation of Southern California Inc., La Jolla 92037, USA
| |
Collapse
|
18
|
Abstract
Since the late 1970s, determining the phylogenetic relationships among the contemporary domains of life, the Archaea (archaebacteria), Bacteria (eubacteria), and Eucarya (eukaryotes), has been central to the study of early cellular evolution. The two salient issues surrounding the universal tree of life are whether all three domains are monophyletic (i.e., all equivalent in taxanomic rank) and where the root of the universal tree lies. Evaluation of the status of the Archaea has become key to answering these questions. This review considers our cumulative knowledge about the Archaea in relationship to the Bacteria and Eucarya. Particular attention is paid to the recent use of molecular phylogenetic approaches to reconstructing the tree of life. In this regard, the phylogenetic analyses of more than 60 proteins are reviewed and presented in the context of their participation in major biochemical pathways. Although many gene trees are incongruent, the majority do suggest a sisterhood between Archaea and Eucarya. Altering this general pattern of gene evolution are two kinds of potential interdomain gene transferrals. One horizontal gene exchange might have involved the gram-positive Bacteria and the Archaea, while the other might have occurred between proteobacteria and eukaryotes and might have been mediated by endosymbiosis.
Collapse
Affiliation(s)
- J R Brown
- Canadian Institute for Advanced Research, Department of Biochemistry, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
19
|
Engels A, Kahmann U, Ruppel HG, Pistorius EK. Isolation, partial characterization and localization of a dihydrolipoamide dehydrogenase from the cyanobacterium Synechocystis PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1340:33-44. [PMID: 9217012 DOI: 10.1016/s0167-4838(97)00025-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A dihydrolipoamide dehydrogenase (LPD; dihydrolipoamide:NAD oxidoreductase, EC 1.8.1.4.) activity has been detected in the cyanobacterium Synechocystis PCC 6803. The enzyme was isolated from the membraneous fraction after detergent solubilization and shown to be homogenous on the basis of SDS-PAGE and N-terminal sequencing. The isolated enzyme had a specific activity of 75 U (mg protein)(-1) and was shown to be a homodimer with an apparent molecular mass of 104 kDa for the dimer and 55 kDa for the subunits. The enzyme contains 1.75 mol noncovalently bound FAD (mol enzyme)(-1) suggesting that each subunit contains 1 mol FAD and that the FAD is fairly tightly associated with the enzyme. N-terminal sequencing gave a contiguous amino acid sequence of 17 residues and showed that the N-terminus of the LPD from Synechocystis PCC 6803 has significant homologies to other LPDs sequenced so far. Immunoblot experiments indicated that the enzyme is mainly present in the membrane fraction, and immunocytochemical investigations gave evidence that the LPD in Synechocystis PCC 6803 is located in the periplasma space between the cytoplasma membrane and the peptidoglycan layer. This is the first report on an extracellular, membrane-bound LPD in a cyanobacterium.
Collapse
Affiliation(s)
- A Engels
- Biologie VIII, Zellphysiologie and Biologie 1, Morphologie der Pflanzen und Feinbau der Zelle, Universität Bielefeld, Germany
| | | | | | | |
Collapse
|
20
|
Selig M, Xavier KB, Santos H, Schönheit P. Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga. Arch Microbiol 1997; 167:217-32. [PMID: 9075622 DOI: 10.1007/bf03356097] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Embden-Meyerhof (EM) or Entner-Doudoroff (ED) pathways of sugar degradation were analyzed in representative species of the hyperthermophilic archaeal genera Thermococcus, Desulfurococcus, Thermoproteus, and Sulfolobus, and in the hyperthermophilic (eu)bacterial genus Thermotoga. The analyses included (1) determination of 13C-labeling patterns by 1H- and 13C-NMR spectroscopy of fermentation products derived from pyruvate after fermentation of specifically 13C-labeled glucose by cell suspensions, (2) identification of intermediates of sugar degradation after conversion of 14C-labeled glucose by cell extracts, and (3) measurements of enzyme activities in cell extracts. Thermococcus celer and Thermococcus litoralis fermented 13C-glucose to acetate and alanine via a modified EM pathway (100%). This modification involves ADP-dependent hexokinase, 6-phosphofructokinase, and glyceraldehyde-3-phosphate:ferredoxin oxidoreductase (GAP:FdOR). Desulfurococcus amylolyticus fermented 13C-glucose to acetate via a modified EM pathway in which GAP:FdOR replaces GAP-DH/phosphoglycerate kinase. Thermoproteus tenax fermented 13C-glucose to low amounts of acetate and alanine via simultaneous operation of the EM pathway (85%) and the ED pathway (15%). Aerobic Sulfolobus acidocaldarius fermented 13C-labeled glucose to low amounts of acetate and alanine exclusively via the ED pathway. The anaerobic (eu)bacterium Thermotoga maritima fermented 13C-glucose to acetate and lactate via the EM pathway (85%) and the ED pathway (15%). Cell extracts contained glucose-6-phosphate dehydrogenase and 2-keto-3-deoxy-6-phosphogluconate aldolase, key enzymes of the conventional phosphorylated ED pathway, and, as reported previously, all enzymes of the conventional EM pathway. In conclusion, glucose was degraded by hyperthermophilic archaea to pyruvate either via modified EM pathways with different types of hexose kinases and GAP-oxidizing enzymes, by the nonphosphorylated ED pathway, or by a combination of both pathways. In contrast, glucose catabolism in the hyperthermophilic (eu)bacterium Thermotoga involves the conventional forms of the EM and ED pathways. The data are in accordance with various previous reports.
Collapse
Affiliation(s)
- M Selig
- Institut für Pflanzenphysiologie und Mikrobiologie, Fachbereich Biologie, Freie Universität Berlin, Königin-Luise-Strasse 12-16a, D-14195 Berlin, Germany
| | | | | | | |
Collapse
|
21
|
Sako Y, Takai K, Uchida A, Ishida Y. Purification and characterization of phosphoenolpyruvate carboxylase from the hyperthermophilic archaeon Methanothermus sociabilis. FEBS Lett 1996; 392:148-52. [PMID: 8772193 DOI: 10.1016/0014-5793(96)00805-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Phosphoenolpyruvate carboxylase (PEPC) was purified for the first time from hyperthermophilic archaeon Methanothermus sociabilis, growing autotrophically with an optimum at 88 degrees C. The optimum temperature for enzyme activity was similar to that for growth and was 85 degrees C. The native enzyme was a homotetramer of 240 kDa molecular mass and the subunit displayed an apparent molecular mass of 60 kDa. The archaeal PEPC was insensitive to various metabolites which are known as allosteric effectors for most bacterial and eucaryal counterparts. The enzyme showed extreme thermostability such that there remained 80% of the enzyme activity after incubation for 2 h at 80 degrees C. These results implied that archaeal PEPC was significantly different from bacterial and eucaryal entities.
Collapse
Affiliation(s)
- Y Sako
- Laboratory of Marine Microbiology, Department of Applied Bioscience, Graduate School of Agriculture, Kyoto University, Japan
| | | | | | | |
Collapse
|
22
|
Abstract
Current studies of hyperthermophilic archaea and bacteria, the phylogenetically deepest-rooted and slowest-evolving extant organisms known, are allowing new insights into the nature of presumably ancient metabolic pathways. The apparent common occurrence of modified non-phosphorylated Entner-Doudoroff (ED) pathways among saccharolytic archaea and the absence of the conventional Embden-Meyerhof-Parnas (EMP) mode of glycolysis indicate that the ED pathway is the older route of carbohydrate dissimilation. However, gluconeogenesis via the "reversed" EMP route has been found in archaea. Thus, the EMP pathway was probably an anabolic pathway to begin with; its catabolic role came later, with the evolution of fructose phosphate kinases, using ATP, ADP or pyrophosphate as phosphate donors. Similarly, the presence of reductive reactions of the citric acid cycle in anaerobic archaea and the most deeply rooted bacteria, including autotrophs, indicates that the citric acid cycle was originally a reductive biosynthetic pathway.
Collapse
Affiliation(s)
- A H Romano
- Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269, USA
| | | |
Collapse
|
23
|
|
24
|
Mitchell CG, Anderson SC, el-Mansi EM. Purification and characterization of citrate synthase isoenzymes from Pseudomonas aeruginosa. Biochem J 1995; 309 ( Pt 2):507-11. [PMID: 7626013 PMCID: PMC1135760 DOI: 10.1042/bj3090507] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two types of citrate synthase (CS) have been purified from Pseudomonas aeruginosa, a 'large' form (CSI) and a 'small' form (CSII). The M(r)s of the CSI and CSII isoenzymes were determined to be 240,000 +/- 16,000 (mean +/- S.E.M.) and 80,300 +/- 3800 respectively. Chemical cross-linking of the native enzymes with either dimethyl suberimidate or glutaraldehyde followed by electrophoretic analysis by SDS/PAGE showed that CSI is a hexamer and CSII is a dimer. SDS/PAGE showed that CSI and CSII each consist of a single subunit type, of M(r) 42,000 +/- 2000 and M(r) 36,500 +/- 2000 respectively. CSI and CSII were also shown to be distinct kinetically, immunologically and in terms of their regulatory properties. It is suggested that the CS isoenzymes are products of different structural genes.
Collapse
Affiliation(s)
- C G Mitchell
- Department of Biological Sciences, Napier University, Edinburgh, U.K
| | | | | |
Collapse
|
25
|
|
26
|
Affiliation(s)
- M Lübben
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, Germany
| |
Collapse
|
27
|
Abstract
D-Lactate is readily used as a substrate for the growth of species of halophilic archaea belonging to the genera Haloferax and Haloarcula. L-Lactate was used by Haloferax species (Haloferax volcanii, Haloferax mediterranei) only when a substantial concentration of the D-isomer was also present in the medium. On the enzymatic level, considerable diversity was found in the lactate metabolism of the different representatives of the Halobacteriaceae. At least three types of lactate dehydrogenases were detected in halophilic archaea. A high level of activity of an NAD-linked enzyme was present constitutively in Haloarcula species, and a low level of activity was also detected in Haloferax mediterranei. NAD-independent lactate dehydrogenases, oxidizing L-lactate and D-lactate with 2,6-dichlorophenol-indophenol as electron acceptor, were detected in all nine species tested, but L-lactate dehydrogenase activity in Halobacterium species was very low, and Haloarcula species, which possess a high level of activity of NAD-linked lactate dehydrogenase, showed very low activities of both NAD-independent D- and L-lactate dehydrogenase. An inducible lactate racemase, displaying an unusually high pH optimum, was found in Haloferax volcanii. Lactate racemase activity was found constitutively in Haloarcula species, but no activity was detected in Halobacterium species and in Haloferax mediterranei.
Collapse
Affiliation(s)
- A Oren
- Division of Microbial and Molecular Ecology, Alexander Silverman Institute of Life Sciences, Jerusalem, Israel
| | | |
Collapse
|
28
|
Horneck G. Exobiology, the study of the origin, evolution and distribution of life within the context of cosmic evolution: a review. PLANETARY AND SPACE SCIENCE 1995; 43:189-217. [PMID: 11538433 DOI: 10.1016/0032-0633(94)00190-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The primary goal of exobiological research is to reach a better understanding of the processes leading to the origin, evolution and distribution of life on Earth or elsewhere in the universe. In this endeavour, scientists from a wide variety of disciplines are involved, such as astronomy, planetary research, organic chemistry, palaeontology and the various subdisciplines of biology including microbial ecology and molecular biology. Space technology plays an important part by offering the opportunity for exploring our solar system, for collecting extraterrestrial samples, and for utilizing the peculiar environment of space as a tool. Exobiological activities include comparison of the overall pattern of chemical evolution of potential precursors of life, in the interstellar medium, and on the planets and small bodies of our solar system; tracing the history of life on Earth back to its roots; deciphering the environments of the planets in our solar system and of their satellites, throughout their history, with regard to their habitability; searching for other planetary systems in our Galaxy and for signals of extraterrestrial civilizations; testing the impact of space environment on survivability of resistant life forms. This evolutionary approach towards understanding the phenomenon of life in the context of cosmic evolution may eventually contribute to a better understanding of the processes regulating the interactions of life with its environment on Earth.
Collapse
Affiliation(s)
- G Horneck
- Deutsche Forschungsanstalt für Luft- und Raumfahrt, Institut für Luft- und Raumfahrtmedizin, Köln, Germany
| |
Collapse
|
29
|
|
30
|
Abstract
Enzymes from hyperthermophilic microorganisms are characteristically thermostable and thermoactive at extremely high temperatures. Information about the basis for the structure and function of these novel proteins is beginning to emerge. However, there are very few generalizations that can be drawn at this point that can be derived from the limited number of studies that have focused on biocatalysis and thermostability at extremely high temperatures.
Collapse
Affiliation(s)
- M W Adams
- Department of Biochemistry, University of Georgia, Athens 30602-7229
| | | |
Collapse
|
31
|
Clues from a halophilic methanogen about aromatic amino acid biosynthesis in archaebacteria. Arch Microbiol 1993. [DOI: 10.1007/bf00245304] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Patton AJ, Hough DW, Towner P, Danson MJ. Does Escherichia coli possess a second citrate synthase gene? EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 214:75-81. [PMID: 8508809 DOI: 10.1111/j.1432-1033.1993.tb17898.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Escherichia coli possesses a hexameric citrate synthase that exhibits allosteric kinetics and regulatory sensitivity, and for which the gene (gltA) has previously been cloned and sequenced. A citrate-synthase-deficient strain of E. coli (K114) has been mutated to generate a revertant (K114r4) that produces a dimeric citrate synthase with altered kinetic and regulatory properties. On cloning and sequencing the gltA gene from both K114 and K114r4, a single mutation was found that caused the replacement of Asp362 with Asn. Asp362 has been previously shown to be a catalytically essential residue in E. coli citrate synthase, and we demonstrate that the hexameric enzyme produced on expression of the gltA gene from K114 and K114r4 is inactive. The dimeric citrate synthase from K114r4 has been purified and shown to be immunologically distinct from the wild-type hexameric enzyme. Determination of its N-terminal amino acid sequence demonstrates that the mutant citrate synthase is encoded by a gene distinct from the E. coli gltA gene. The N-terminal sequence is compared with those of other eukaryotic, eubacterial and archaebacterial citrate synthases.
Collapse
Affiliation(s)
- A J Patton
- Department of Biochemistry, University of Bath, England
| | | | | | | |
Collapse
|
33
|
Gluconeogenesis from pyruvate in the hyperthermophilic archaeon Pyrococcus furiosus: involvement of reactions of the Embden-Meyerhof pathway. Arch Microbiol 1993. [DOI: 10.1007/bf00290918] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
34
|
Influence of tungsten on metabolic patterns in Pyrococcus furiosus, a hyperthermophilic archaeon. Arch Microbiol 1993. [DOI: 10.1007/bf00290921] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Else AJ, Hough DW, Danson MJ. Cloning, sequencing, and expression of Trypanosoma brucei dihydrolipoamide dehydrogenase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 212:423-9. [PMID: 8444180 DOI: 10.1111/j.1432-1033.1993.tb17678.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A gene encoding dihydrolipoamide dehydrogenase was isolated from Trypanosoma brucei genomic DNA by using a combination of polymerase chain reaction and screening of a lambda EMBL3 library. The DNA sequence reveals that it encodes a protein of 478 amino acids (M(r) 49935) highly similar to previously sequenced dihydrolipoamide dehydrogenases. The gene was ligated into pMEX8 and expressed in an Escherichia coli mutant that lacks dihydrolipoamide dehydrogenase. Expression resulted in the appearance of dihydrolipoamide dehydrogenase activity concurrent with the production of a protein of the expected M(r) as determined by SDS/PAGE and Western blotting.
Collapse
Affiliation(s)
- A J Else
- Department of Biochemistry, University of Bath, England
| | | | | |
Collapse
|
36
|
On a reversible molybdenum-containing aldehyde oxidoreductase from Clostridium formicoaceticum. Arch Microbiol 1993. [DOI: 10.1007/bf00248479] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Bright JR, Byrom D, Danson MJ, Hough DW, Towner P. Cloning, sequencing and expression of the gene encoding glucose dehydrogenase from the thermophilic archaeon Thermoplasma acidophilum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 211:549-54. [PMID: 8436115 DOI: 10.1111/j.1432-1033.1993.tb17581.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The gene encoding glucose dehydrogenase has been identified by Southern analysis of doubly restricted genomic Thermoplasma acidophilum DNA, using two redundant 17-residue oligonucleotide probes reverse translated from protein N-terminal sequence data. A 1670-bp BamH1-EcoR1 restriction fragment was ligated into pUC19 and pUC18 (constructs pTaGDH1 and pTaGDH2, respectively) and cloned in Escherichia coli. The sequence of the whole fragment was determined, and a 1059-bp open reading frame identified as the gene encoding glucose dehydrogenase. Cell-free extracts from E. coli carrying construct pTaGDH1 displayed glucose dehydrogenase activity indistinguishable from controls, but extracts from cells carrying pTaGDH2 displayed a 600-fold increase in glucose dehydrogenase activity. For high-level expression and purification of native protein, the glucose dehydrogenase coding sequence was subcloned into pMEX8. Glucose dehydrogenase purified from E. coli expressing the pMEX8 construct was indistinguishable by SDS/PAGE, N-terminal amino-acid sequence and kinetic analysis from the native enzyme purified from Tp. acidophilum. The derived 352-amino-acid sequence shows less than 20% identity with the glucose dehydrogenases of Bacillus subtilis and Bacillus megaterium but, by comparison with other eubacterial and eukaryotic dehydrogenase sequences, a portion of its sequence has been tentatively identified as a cofactor-binding region.
Collapse
Affiliation(s)
- J R Bright
- Department of Biochemistry, University of Bath, England
| | | | | | | | | |
Collapse
|
38
|
Segerer AH, Burggraf S, Fiala G, Huber G, Huber R, Pley U, Stetter KO. Life in hot springs and hydrothermal vents. ORIGINS LIFE EVOL B 1993; 23:77-90. [PMID: 11536528 DOI: 10.1007/bf01581992] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hot springs and hydrothermal systems occurring within volcanic areas are inhabited by hyperthermophilic microorganisms, some of which grow at temperatures up to 110 degrees C. Hyperthermophiles grow anaerobically or aerobically by diverse metabolic types. Within the high temperature ecosystems, primary production is independent from solar energy.
Collapse
Affiliation(s)
- A H Segerer
- Lehrstuhl fur Mikrobiologie, Universitat Regensburg, Federal Republic of Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Production of ?-amylase fromHalobacterium halobium. World J Microbiol Biotechnol 1993; 9:25-8. [DOI: 10.1007/bf00656510] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/09/1992] [Accepted: 06/12/1992] [Indexed: 10/26/2022]
|
41
|
Fothergill-Gilmore LA, Michels PA. Evolution of glycolysis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1993; 59:105-235. [PMID: 8426905 DOI: 10.1016/0079-6107(93)90001-z] [Citation(s) in RCA: 348] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
42
|
Chapter 1 Central metabolism of the archaea. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60250-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
43
|
Chapter 4 Bioenergetics and transport in methanogens and related thermophilic archaea. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
44
|
Acetyl-CoA synthetase (ADP forming) in archaea, a novel enzyme involved in acetate formation and ATP synthesis. Arch Microbiol 1993. [DOI: 10.1007/bf00244267] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Chapter 12 Transcription in archaea. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s0167-7306(08)60261-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
46
|
Serrano A. Purification, characterization and function of dihydrolipoamide dehydrogenase from the cyanobacterium Anabaena sp. strain P.C.C. 7119. Biochem J 1992; 288 ( Pt 3):823-30. [PMID: 1471997 PMCID: PMC1131961 DOI: 10.1042/bj2880823] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A dihydrolipoamide dehydrogenase (dihydrolipoamide: NAD+ oxidoreductase, EC 1.8.1.4) (DLD) has been found in the soluble fraction of cells of both unicellular (Synechococcus sp. strain P.C.C. 6301) and filamentous (Calothrix sp. strain P.C.C. 7601 and Anabaena sp. strain P.C.C. 7119) cyanobacteria. DLD from Anabaena sp. was purified 3000-fold to electrophoretic homogeneity. The purified enzyme exhibited a specific activity of 190 units/mg and was characterized as a dimeric FAD-containing protein with a native molecular mass of 104 kDa, a Stokes' radius of 4.28 nm and a very acidic pI value of about 3.7. As is the case with the same enzyme from other sources, cyanobacterial DLD showed specificity for NADH and lipoamide, or lipoic acid, as substrates. Nevertheless, the strong acidic character of the Anabaena DLD is a distinctive feature with respect to the same enzyme from other organisms. The presence of essential thiol groups was suggested by the inactivation produced by thiol-group-reactive reagents and heavy-metal ions, with lipoamide, but not NAD+, behaving as a protective agent. The function and physiological significance of Anabaena DLD are discussed in relation to the fact that 2-oxoacid dehydrogenase complexes have not been detected so far in filamentous cyanobacteria. Glycine decarboxylase activity, which might be involved in photorespiratory metabolism, has been found, however, in cell extracts of Anabaena sp. strain P.C.C. 7119 as the present study demonstrates.
Collapse
Affiliation(s)
- A Serrano
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC y Universidad de Sevilla, Spain
| |
Collapse
|
47
|
The fate of the hydrogens of d-glucose during the lipid biosynthesis and stereochemistry of the triose-phosphate isomerase reaction in archaebacteria Halobacterium halobium. Tetrahedron Lett 1992. [DOI: 10.1016/s0040-4039(00)79020-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
KELLY ROBERTM, BLUMENTALS ILSEI, SNOWDE LESLEYJ, ADAMS MICHAELWW. Physiological and Biochemical Characteristics of Pyrococcus furiosus, a Hyperthermophilic Archaebacterium. Ann N Y Acad Sci 1992. [DOI: 10.1111/j.1749-6632.1992.tb42594.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Abstract
The Entner-Doudoroff pathway is now known to be very widely distributed in nature. Biochemical and physiological studies show that the Entner-Doudoroff pathway can operate in a linear and catabolic mode, in a 'cyclic' mode, in a modified mode involving non-phosphorylated intermediates, or in alternative modes involving C1 metabolism and anabolism. Molecular and genetic analyses of the Entner-Doudoroff pathway in Zymomonas mobilis, Escherichia coli and Pseudomonas aeruginosa have led to an improved understanding of some fundamental aspects of metabolic controls. It can be argued that the Entner-Doudoroff pathway is more primitive than Embden-Meyerhof-Parnas glycolysis.
Collapse
Affiliation(s)
- T Conway
- School of Biological Sciences, University of Nebraska, Lincoln 68588-0118
| |
Collapse
|
50
|
Lill U, Lefrank S, Henschen A, Eggerer H. Conversion, by limited proteolysis, of an archaebacterial citrate synthase into essentially a citryl-CoA hydrolase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 208:459-66. [PMID: 1521537 DOI: 10.1111/j.1432-1033.1992.tb17208.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. Limited proteolysis of citrate synthase from Sulfolobus solfataricus by trypsin reduced the rate of the overall reaction (acetyl-CoA + oxaloacetate + H2O----citrate + CoASH) to 4% but did not affect the hydrolysis of citryl-CoA. Experimental results indicate that a connecting link between the enzyme's ligase and hydrolase activity becomes impaired specifically on treatment with trypsin. Other proteolytic enzymes like chymotrypsin and subtilisin inactivated catalytic functions of citrate synthase, ligase and hydrolase, equally well. 2. Tryptic hydrolysis occurs at the N-terminal region of citrate synthase, but a study by SDS/PAGE revealed no difference in molecular mass between native and proteolytically nicked citrate synthase. The peptide removed from the enzyme by trypsin, therefore, contains less than about 15 amino acid residues. 3. The Km values of the substrates for both native and nicked enzyme were identical, as was the state of aggregation (dimeric) of the two enzyme species. These could be separated by affinity chromatography on Blue-Sepharose and differentiated by their isoelectric points (pI = 6.68 +/- 0.08 and pI = 6.37 +/- 0.03 for native citrate synthase and the large tryptic peptide, respectively) as well as by the N-terminus which is blocked in the native enzyme only. 4. Edman degradation of the large tryptic fragment yielded the N-terminal sequence GLEDVYIKSTSLTYIDGVNGVLRY, which is 71% identical to the N-terminal region (positions 9-32) of citrate synthase from Thermoplasma acidophilum. 5. The conversion of citrate synthase into essentially a citryl-CoA hydrolase is considered the consequence of a conformational change thought to occur on tryptic removal of the N-terminal small peptide.
Collapse
Affiliation(s)
- U Lill
- Institut für Physiologische Chemie, Technischen Universität München, Federal Republic of Germany
| | | | | | | |
Collapse
|