1
|
Biosynthesis and Degradation of Sulfur Modifications in tRNAs. Int J Mol Sci 2021; 22:ijms222111937. [PMID: 34769366 PMCID: PMC8584467 DOI: 10.3390/ijms222111937] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 12/23/2022] Open
Abstract
Various sulfur-containing biomolecules include iron–sulfur clusters that act as cofactors for enzymes, sulfur-containing vitamins such as thiamin, and sulfur-modified nucleosides in RNA, in addition to methionine and cysteine in proteins. Sulfur-containing nucleosides are post-transcriptionally introduced into tRNA molecules, where they ensure precise codon recognition or stabilization of tRNA structure, thereby maintaining cellular proteome integrity. Modulating sulfur modification controls the translation efficiency of specific groups of genes, allowing organisms to adapt to specific environments. The biosynthesis of tRNA sulfur nucleosides involves elaborate ‘sulfur trafficking systems’ within cellular sulfur metabolism and ‘modification enzymes’ that incorporate sulfur atoms into tRNA. This review provides an up-to-date overview of advances in our knowledge of the mechanisms involved. It covers the functions, biosynthesis, and biodegradation of sulfur-containing nucleosides as well as the reaction mechanisms of biosynthetic enzymes catalyzed by the iron–sulfur clusters, and identification of enzymes involved in the de-modification of sulfur atoms of RNA. The mechanistic similarity of these opposite reactions is discussed. Mutations in genes related to these pathways can cause human diseases (e.g., cancer, diabetes, and mitochondrial diseases), emphasizing the importance of these pathways.
Collapse
|
2
|
Chen Y, Chen T, Wu X, Yang G. Oxygen Vacancy-Engineered PEGylated MoO 3-x Nanoparticles with Superior Sulfite Oxidase Mimetic Activity for Vitamin B1 Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903153. [PMID: 31583830 DOI: 10.1002/smll.201903153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Sulfite oxidase (SuOx ) is a molybdenum-dependent enzyme that catalyzes the oxidation of sulfite to sulfate to maintain the intracellular levels of sulfite at an appropriate low level. The deficiency of SuOx would cause severe neurological damage and infant diseases, which makes SuOx of tremendous biomedical importance. Herein, a SuOx mimic nanozyme of PEGylated (polyethylene glycol)-MoO3-x nanoparticles (P-MoO3-x NPs) with abundant oxygen vacancies created by vacancy-engineering is reported. Their level of SuOx -like activity is 12 times higher than that of bulk-MoO3 . It is also established that the superior increased enzyme mimetic activity is due to the introduction of the oxygen vacancies acting as catalytic hotspots, which allows better sulfite capture ability. It is found that vitamin B1 (VB1) inhibits the SuOx mimic activity of P-MoO3-x NPs through the irreversible cleavage by sulfite and the electrostatic interaction with P-MoO3-x NPs. A colorimetric platform is developed for the detection of VB1 with high sensitivity (the low detection limit is 0.46 µg mL-1 ) and good selectivity. These findings pave the way for further investigating the nanozyme which possess intrinsic SuOx mimicing activity and is thus a promising candidate for biomedical detection.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, School of Physics, Sun Yat-sen University, Guangzhou, 510275, Guangdong, P. R. China
| | - Tongming Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, School of Physics, Sun Yat-sen University, Guangzhou, 510275, Guangdong, P. R. China
| | - Xiaoju Wu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, School of Physics, Sun Yat-sen University, Guangzhou, 510275, Guangdong, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, School of Physics, Sun Yat-sen University, Guangzhou, 510275, Guangdong, P. R. China
| |
Collapse
|
3
|
Shigi N. Recent Advances in Our Understanding of the Biosynthesis of Sulfur Modifications in tRNAs. Front Microbiol 2018; 9:2679. [PMID: 30450093 PMCID: PMC6225789 DOI: 10.3389/fmicb.2018.02679] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/19/2018] [Indexed: 12/30/2022] Open
Abstract
Sulfur is an essential element in all living organisms. In tRNA molecules, there are many sulfur-containing nucleosides, introduced post-transcriptionally, that function to ensure proper codon recognition or stabilization of tRNA structure, thereby enabling accurate and efficient translation. The biosynthesis of tRNA sulfur modifications involves unique sulfur trafficking systems that are closely related to cellular sulfur metabolism, and “modification enzymes” that incorporate sulfur atoms into tRNA. Herein, recent biochemical and structural characterization of the biosynthesis of sulfur modifications in tRNA is reviewed, with special emphasis on the reaction mechanisms of modification enzymes. It was recently revealed that TtuA/Ncs6-type 2-thiouridylases from thermophilic bacteria/archaea/eukaryotes are oxygen-sensitive iron-sulfur proteins that utilize a quite different mechanism from other 2-thiouridylase subtypes lacking iron-sulfur clusters such as bacterial MnmA. The various reaction mechanisms of RNA sulfurtransferases are also discussed, including tRNA methylthiotransferase MiaB (a radical S-adenosylmethionine-type iron-sulfur enzyme) and other sulfurtransferases involved in both primary and secondary sulfur-containing metabolites.
Collapse
Affiliation(s)
- Naoki Shigi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| |
Collapse
|
4
|
Shigi N. Sulfur Modifications in tRNA: Function and Implications for Human Disease. MODIFIED NUCLEIC ACIDS IN BIOLOGY AND MEDICINE 2016. [DOI: 10.1007/978-3-319-34175-0_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Metabolic response of Clostridium ljungdahlii to oxygen exposure. Appl Environ Microbiol 2015; 81:8379-91. [PMID: 26431975 DOI: 10.1128/aem.02491-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 09/23/2015] [Indexed: 12/31/2022] Open
Abstract
Clostridium ljungdahlii is an important synthesis gas-fermenting bacterium used in the biofuels industry, and a preliminary investigation showed that it has some tolerance to oxygen when cultured in rich mixotrophic medium. Batch cultures not only continue to grow and consume H2, CO, and fructose after 8% O2 exposure, but fermentation product analysis revealed an increase in ethanol concentration and decreased acetate concentration compared to non-oxygen-exposed cultures. In this study, the mechanisms for higher ethanol production and oxygen/reactive oxygen species (ROS) detoxification were identified using a combination of fermentation, transcriptome sequencing (RNA-seq) differential expression, and enzyme activity analyses. The results indicate that the higher ethanol and lower acetate concentrations were due to the carboxylic acid reductase activity of a more highly expressed predicted aldehyde oxidoreductase (CLJU_c24130) and that C. ljungdahlii's primary defense upon oxygen exposure is a predicted rubrerythrin (CLJU_c39340). The metabolic responses of higher ethanol production and oxygen/ROS detoxification were found to be linked by cofactor management and substrate and energy metabolism. This study contributes new insights into the physiology and metabolism of C. ljungdahlii and provides new genetic targets to generate C. ljungdahlii strains that produce more ethanol and are more tolerant to syngas contaminants.
Collapse
|
6
|
Brychkova G, Yarmolinsky D, Batushansky A, Grishkevich V, Khozin-Goldberg I, Fait A, Amir R, Fluhr R, Sagi M. Sulfite Oxidase Activity Is Essential for Normal Sulfur, Nitrogen and Carbon Metabolism in Tomato Leaves. PLANTS 2015; 4:573-605. [PMID: 27135342 PMCID: PMC4844397 DOI: 10.3390/plants4030573] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 07/30/2015] [Accepted: 08/07/2015] [Indexed: 11/24/2022]
Abstract
Plant sulfite oxidase [SO; E.C.1.8.3.1] has been shown to be a key player in protecting plants against exogenous toxic sulfite. Recently we showed that SO activity is essential to cope with rising dark-induced endogenous sulfite levels in tomato plants (Lycopersicon esculentum/Solanum lycopersicum Mill. cv. Rheinlands Ruhm). Here we uncover the ramifications of SO impairment on carbon, nitrogen and sulfur (S) metabolites. Current analysis of the wild-type and SO-impaired plants revealed that under controlled conditions, the imbalanced sulfite level resulting from SO impairment conferred a metabolic shift towards elevated reduced S-compounds, namely sulfide, S-amino acids (S-AA), Co-A and acetyl-CoA, followed by non-S-AA, nitrogen and carbon metabolite enhancement, including polar lipids. Exposing plants to dark-induced carbon starvation resulted in a higher degradation of S-compounds, total AA, carbohydrates, polar lipids and total RNA in the mutant plants. Significantly, a failure to balance the carbon backbones was evident in the mutants, indicated by an increase in tricarboxylic acid cycle (TCA) cycle intermediates, whereas a decrease was shown in stressed wild-type plants. These results indicate that the role of SO is not limited to a rescue reaction under elevated sulfite, but SO is a key player in maintaining optimal carbon, nitrogen and sulfur metabolism in tomato plants.
Collapse
Affiliation(s)
- Galina Brychkova
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel.
| | - Dmitry Yarmolinsky
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel.
| | - Albert Batushansky
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel.
| | - Vladislav Grishkevich
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel.
| | - Inna Khozin-Goldberg
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel.
| | - Aaron Fait
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel.
| | - Rachel Amir
- Migal-Galilee Technology Center, Southern Industrial Zone, POB831 Kiryat-Shmona 11016, Israel.
| | - Robert Fluhr
- Department of Plant Sciences, Weizmann Institute of Science, P.O.B. 26 Rehovot 76100, Israel.
| | - Moshe Sagi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Israel.
| |
Collapse
|
7
|
Davis AC, Johnson-Winters K, Arnold AR, Tollin G, Enemark JH. Kinetic results for mutations of conserved residues H304 and R309 of human sulfite oxidase point to mechanistic complexities. Metallomics 2015; 6:1664-70. [PMID: 24968320 DOI: 10.1039/c4mt00099d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several point mutations in the gene of human sulfite oxidase (hSO) result in isolated sulfite oxidase deficiency, an inherited metabolic disorder. Three conserved residues (H304, R309, K322) are hydrogen bonded to the phosphate group of the molybdenum cofactor, and the R309H and K322R mutations are responsible for isolated sulfite oxidase deficiency. The kinetic effects of the K322R mutation have been previously reported (Rajapakshe et al., Chem. Biodiversity, 2012, 9, 1621-1634); here we investigate several mutants of H304 and R309 by steady-state kinetics, laser flash photolysis studies of intramolecular electron transfer (IET), and spectroelectrochemistry. An unexpected result is that all of the mutants show decreased rates of IET but increased steady-state rates of catalysis. However, in all cases the rate of IET is greater than the overall turnover rate, showing that IET is not the rate determining step for any of the mutations.
Collapse
Affiliation(s)
- Amanda C Davis
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721-0041, USA
| | | | | | | | | |
Collapse
|
8
|
Schrapers P, Hartmann T, Kositzki R, Dau H, Reschke S, Schulzke C, Leimkühler S, Haumann M. Sulfido and cysteine ligation changes at the molybdenum cofactor during substrate conversion by formate dehydrogenase (FDH) from Rhodobacter capsulatus. Inorg Chem 2015; 54:3260-71. [PMID: 25803130 DOI: 10.1021/ic502880y] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Formate dehydrogenase (FDH) enzymes are attractive catalysts for potential carbon dioxide conversion applications. The FDH from Rhodobacter capsulatus (RcFDH) binds a bis-molybdopterin-guanine-dinucleotide (bis-MGD) cofactor, facilitating reversible formate (HCOO(-)) to CO2 oxidation. We characterized the molecular structure of the active site of wildtype RcFDH and protein variants using X-ray absorption spectroscopy (XAS) at the Mo K-edge. This approach has revealed concomitant binding of a sulfido ligand (Mo=S) and a conserved cysteine residue (S(Cys386)) to Mo(VI) in the active oxidized molybdenum cofactor (Moco), retention of such a coordination motif at Mo(V) in a chemically reduced enzyme, and replacement of only the S(Cys386) ligand by an oxygen of formate upon Mo(IV) formation. The lack of a Mo=S bond in RcFDH expressed in the absence of FdsC implies specific metal sulfuration by this bis-MGD binding chaperone. This process still functioned in the Cys386Ser variant, showing no Mo-S(Cys386) ligand, but retaining a Mo=S bond. The C386S variant and the protein expressed without FdsC were inactive in formate oxidation, supporting that both Mo-ligands are essential for catalysis. Low-pH inhibition of RcFDH was attributed to protonation at the conserved His387, supported by the enhanced activity of the His387Met variant at low pH, whereas inactive cofactor species showed sulfido-to-oxo group exchange at the Mo ion. Our results support that the sulfido and S(Cys386) ligands at Mo and a hydrogen-bonded network including His387 are crucial for positioning, deprotonation, and oxidation of formate during the reaction cycle of RcFDH.
Collapse
Affiliation(s)
- Peer Schrapers
- †Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Tobias Hartmann
- ‡Institut für Biochemie und Biologie, Molekulare Enzymologie, Universität Potsdam, 14476 Potsdam, Germany
| | - Ramona Kositzki
- †Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Holger Dau
- †Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Stefan Reschke
- ‡Institut für Biochemie und Biologie, Molekulare Enzymologie, Universität Potsdam, 14476 Potsdam, Germany
| | - Carola Schulzke
- §Institut für Biochemie, Bioanorganische Chemie, Ernst-Moritz-Arndt-Universität Greifswald, 17487 Greifswald, Germany
| | - Silke Leimkühler
- ‡Institut für Biochemie und Biologie, Molekulare Enzymologie, Universität Potsdam, 14476 Potsdam, Germany
| | - Michael Haumann
- †Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
9
|
Shigi N. Biosynthesis and functions of sulfur modifications in tRNA. Front Genet 2014; 5:67. [PMID: 24765101 PMCID: PMC3980101 DOI: 10.3389/fgene.2014.00067] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/17/2014] [Indexed: 12/19/2022] Open
Abstract
Sulfur is an essential element for a variety of cellular constituents in all living organisms. In tRNA molecules, there are many sulfur-containing nucleosides, such as the derivatives of 2-thiouridine (s2U), 4-thiouridine (s4U), 2-thiocytidine (s2C), and 2-methylthioadenosine (ms2A). Earlier studies established the functions of these modifications for accurate and efficient translation, including proper recognition of the codons in mRNA or stabilization of tRNA structure. In many cases, the biosynthesis of these sulfur modifications starts with cysteine desulfurases, which catalyze the generation of persulfide (an activated form of sulfur) from cysteine. Many sulfur-carrier proteins are responsible for delivering this activated sulfur to each biosynthesis pathway. Finally, specific “modification enzymes” activate target tRNAs and then incorporate sulfur atoms. Intriguingly, the biosynthesis of 2-thiouridine in all domains of life is functionally and evolutionarily related to the ubiquitin-like post-translational modification system of cellular proteins in eukaryotes. This review summarizes the recent characterization of the biosynthesis of sulfur modifications in tRNA and the novel roles of this modification in cellular functions in various model organisms, with a special emphasis on 2-thiouridine derivatives. Each biosynthesis pathway of sulfur-containing molecules is mutually modulated via sulfur trafficking, and 2-thiouridine and codon usage bias have been proposed to control the translation of specific genes.
Collapse
Affiliation(s)
- Naoki Shigi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology Tokyo, Japan
| |
Collapse
|
10
|
Johnson-Winters K, Davis AC, Arnold AR, Berry RE, Tollin G, Enemark JH. Probing the role of a conserved salt bridge in the intramolecular electron transfer kinetics of human sulfite oxidase. J Biol Inorg Chem 2013; 18:645-53. [DOI: 10.1007/s00775-013-1010-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
|
11
|
Davis AC, Cornelison MJ, Meyers KT, Rajapakshe A, Berry RE, Tollin G, Enemark JH. Effects of mutating aromatic surface residues of the heme domain of human sulfite oxidase on its heme midpoint potential, intramolecular electron transfer, and steady-state kinetics. Dalton Trans 2013; 42:3043-9. [DOI: 10.1039/c2dt31508d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Pinske C, Bönn M, Krüger S, Lindenstrauß U, Sawers RG. Metabolic deficiences revealed in the biotechnologically important model bacterium Escherichia coli BL21(DE3). PLoS One 2011; 6:e22830. [PMID: 21826210 PMCID: PMC3149613 DOI: 10.1371/journal.pone.0022830] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 07/01/2011] [Indexed: 11/26/2022] Open
Abstract
The Escherichia coli B strain BL21(DE3) has had a profound impact on biotechnology through its use in the production of recombinant proteins. Little is understood, however, regarding the physiology of this important E. coli strain. We show here that BL21(DE3) totally lacks activity of the four [NiFe]-hydrogenases, the three molybdenum- and selenium-containing formate dehydrogenases and molybdenum-dependent nitrate reductase. Nevertheless, all of the structural genes necessary for the synthesis of the respective anaerobic metalloenzymes are present in the genome. However, the genes encoding the high-affinity molybdate transport system and the molybdenum-responsive transcriptional regulator ModE are absent from the genome. Moreover, BL21(DE3) has a nonsense mutation in the gene encoding the global oxygen-responsive transcriptional regulator FNR. The activities of the two hydrogen-oxidizing hydrogenases, therefore, could be restored to BL21(DE3) by supplementing the growth medium with high concentrations of Ni²⁺ (Ni²⁺-transport is FNR-dependent) or by introducing a wild-type copy of the fnr gene. Only combined addition of plasmid-encoded fnr and high concentrations of MoO₄²⁻ ions could restore hydrogen production to BL21(DE3); however, to only 25-30% of a K-12 wildtype. We could show that limited hydrogen production from the enzyme complex responsible for formate-dependent hydrogen evolution was due solely to reduced activity of the formate dehydrogenase (FDH-H), not the hydrogenase component. The activity of the FNR-dependent formate dehydrogenase, FDH-N, could not be restored, even when the fnr gene and MoO₄²⁻ were supplied; however, nitrate reductase activity could be recovered by combined addition of MoO₄²⁻ and the fnr gene. This suggested that a further component specific for biosynthesis or activity of formate dehydrogenases H and N was missing. Re-introduction of the gene encoding ModE could only partially restore the activities of both enzymes. Taken together these results demonstrate that BL21(DE3) has major defects in anaerobic metabolism, metal ion transport and metalloprotein biosynthesis.
Collapse
Affiliation(s)
- Constanze Pinske
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Markus Bönn
- Institute of Computer Science, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Sara Krüger
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ute Lindenstrauß
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - R. Gary Sawers
- Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
13
|
Abstract
The molybdenum cofactor is composed of a molybdenum coordinated by one or two rather complicated ligands known as either molybdopterin or pyranopterin. Pterin is one of a large family of bicyclic N-heterocycles called pteridines. Such molecules are widely found in Nature, having various forms to perform a variety of biological functions. This article describes the basic nomenclature of pterin, their biological roles, structure, chemical synthesis and redox reactivity. In addition, the biosynthesis of pterins and current models of the molybdenum cofactor are discussed.
Collapse
Affiliation(s)
- Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15282, United States
| | | |
Collapse
|
14
|
Holm RH, Solomon EI, Majumdar A, Tenderholt A. Comparative molecular chemistry of molybdenum and tungsten and its relation to hydroxylase and oxotransferase enzymes. Coord Chem Rev 2011. [DOI: 10.1016/j.ccr.2010.10.017] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Johnson-Winters K, Nordstrom AR, Davis AC, Tollin G, Enemark JH. Effects of large-scale amino acid substitution in the polypeptide tether connecting the heme and molybdenum domains on catalysis in human sulfite oxidase. Metallomics 2010; 2:766-70. [PMID: 21072368 DOI: 10.1039/c0mt00021c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sulfite oxidase (SO) is a molybdenum-cofactor-dependent enzyme that catalyzes the oxidation of sulfite to sulfate, the final step in the catabolism of the sulfur-containing amino acids, cysteine and methionine. The catalytic mechanism of vertebrate SO involves intramolecular electron transfer (IET) from molybdenum to the integral b-type heme of SO and then to exogenous cytochrome c. However, the crystal structure of chicken sulfite oxidase (CSO) has shown that there is a 32 Å distance between the Fe and Mo atoms of the respective heme and molybdenum domains, which are connected by a flexible polypeptide tether. This distance is too long to be consistent with the measured IET rates. Previous studies have shown that IET is viscosity dependent (Feng et al., Biochemistry, 2002, 41, 5816) and also dependent upon the flexibility and length of the tether (Johnson-Winters et al., Biochemistry, 2010, 49, 1290). Since IET in CSO is more rapid than in human sulfite oxidase (HSO) (Feng et al., Biochemistry, 2003, 42, 12235) the tether sequence of HSO has been mutated into that of CSO, and the resultant chimeric HSO enzyme investigated by laser flash photolysis and steady-state kinetics in order to study the specificity of the tether sequence of SO on the kinetic properties. Surprisingly, the IET kinetics of the chimeric HSO protein with the CSO tether sequence are slower than wildtype HSO. This observation raises the possibility that the composition of the non-conserved tether sequence of animal SOs may be optimized for individual species.
Collapse
Affiliation(s)
- Kayunta Johnson-Winters
- Department of Chemistry and Biochemistry, The University of Arizona, 1306 E. University Blvd., Tucson, AZ 85721, USA
| | | | | | | | | |
Collapse
|
16
|
Johnson-Winters K, Tollin G, Enemark JH. Elucidating the catalytic mechanism of sulfite oxidizing enzymes using structural, spectroscopic, and kinetic analyses. Biochemistry 2010; 49:7242-54. [PMID: 20666399 DOI: 10.1021/bi1008485] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sulfite oxidizing enzymes (SOEs) are molybdenum cofactor-dependent enzymes that are found in plants, animals, and bacteria. Sulfite oxidase (SO) is found in animals and plants, while sulfite dehydrogenase (SDH) is found in bacteria. In animals, SO catalyzes the oxidation of toxic sulfite to sulfate as the final step in the catabolism of the sulfur-containing amino acids, methionine and cysteine. In humans, sulfite oxidase deficiency is an inherited recessive disorder that produces severe neonatal neurological problems that lead to early death. Plant SO (PSO) also plays an important role in sulfite detoxification and in addition serves as an intermediate enzyme in the assimilatory reduction of sulfate. In vertebrates, the proposed catalytic mechanism of SO involves two intramolecular one-electron transfer (IET) steps from the molybdenum cofactor to the iron of the integral b-type heme. A similar mechanism is proposed for SDH, involving its molybdenum cofactor and c-type heme. However, PSO, which lacks an integral heme cofactor, uses molecular oxygen as its electron acceptor. Here we review recent results for SOEs from kinetic measurements, computational studies, electron paramagnetic resonance (EPR) spectroscopy, electrochemical measurements, and site-directed mutagenesis on active site residues of SOEs and of the flexible polypepetide tether that connects the heme and molybdenum domains of human SO. Rapid kinetic studies of PSO are also discussed.
Collapse
Affiliation(s)
- Kayunta Johnson-Winters
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
17
|
Qiu JA, Wilson HL, Pushie MJ, Kisker C, George GN, Rajagopalan KV. The structures of the C185S and C185A mutants of sulfite oxidase reveal rearrangement of the active site. Biochemistry 2010; 49:3989-4000. [PMID: 20356030 DOI: 10.1021/bi1001954] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfite oxidase (SO) catalyzes the physiologically critical conversion of sulfite to sulfate. Enzymatic activity is dependent on the presence of the metal molybdenum complexed with a pyranopterin-dithiolene cofactor termed molybdopterin. Comparison of the amino acid sequences of SOs from a variety of sources has identified a single conserved Cys residue essential for catalytic activity. The crystal structure of chicken liver sulfite oxidase indicated that this residue, Cys185 in chicken SO, coordinates the Mo atom in the active site. To improve our understanding of the role of this residue in the catalytic mechanism of sulfite oxidase, serine and alanine variants at position 185 of recombinant chicken SO were generated. Spectroscopic and kinetic studies indicate that neither variant is capable of sulfite oxidation. The crystal structure of the C185S variant was determined to 1.9 A resolution and to 2.4 A resolution in the presence of sulfite, and the C185A variant to 2.8 A resolution. The structures of the C185S and C185A variants revealed that neither the Ser or Ala side chains appeared to closely interact with the Mo atom and that a third oxo group replaced the usual cysteine sulfur ligand at the Mo center, confirming earlier extended X-ray absorption fine structure spectroscopy (EXAFS) work on the human C207S mutant. An unexpected result was that in the C185S variant, in the absence of sulfite, the active site residue Tyr322 became disordered as did the loop region flanking it. In the C185S variant crystallized in the presence of sulfite, the Tyr322 residue relocalized to the active site. The C185A variant structure also indicated the presence of a third oxygen ligand; however, Tyr322 remained in the active site. EXAFS studies of the Mo coordination environment indicate the Mo atom is in the oxidized Mo(VI) state in both the C185S and C185A variants of chicken SO and show the expected trioxodithiolene active site. Density functional theory calculations of the trioxo form of the cofactor reasonably reproducd the Mo horizontal lineO distances of the complex; however, the calculated Mo-S distances were slightly longer than either crystallographic or EXAFS measurements. Taken together, these results indicate that the active sites of the C185S and C185A variants are essentially catalytically inactive, the crystal structures of C185S and C185A variants contain a fully oxidized, trioxo form of the cofactor, and Tyr322 can undergo a conformational change that is relevant to the reaction mechanism. Additional DFT calculations demonstrated that such methods can reasonably reproduce the geometry and bond lengths of the active site.
Collapse
Affiliation(s)
- James A Qiu
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
18
|
Johnson-Winters K, Nordstrom AR, Emesh S, Astashkin AV, Rajapakshe A, Berry RE, Tollin G, Enemark JH. Effects of interdomain tether length and flexibility on the kinetics of intramolecular electron transfer in human sulfite oxidase. Biochemistry 2010; 49:1290-6. [PMID: 20063894 DOI: 10.1021/bi9020296] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfite oxidase (SO) is a vitally important molybdenum enzyme that catalyzes the oxidation of toxic sulfite to sulfate. The proposed catalytic mechanism of vertebrate SO involves two intramolecular one-electron transfer (IET) steps from the molybdenum cofactor to the iron of the integral b-type heme and two intermolecular one-electron steps to exogenous cytochrome c. In the crystal structure of chicken SO [Kisker, C., et al. (1997) Cell 91, 973-983], which is highly homologous to human SO (HSO), the heme iron and molybdenum centers are separated by 32 A and the domains containing these centers are linked by a flexible polypeptide tether. Conformational changes that bring these two centers into greater proximity have been proposed [Feng, C., et al. (2003) Biochemistry 42, 5816-5821] to explain the relatively rapid IET kinetics, which are much faster than those theoretically predicted from the crystal structure. To explore the proposed role(s) of the tether in facilitating this conformational change, we altered both its length and flexibility in HSO by site-specific mutagenesis, and the reactivities of the resulting variants have been studied using laser flash photolysis and steady-state kinetics assays. Increasing the flexibility of the tether by mutating several conserved proline residues to alanines did not produce a discernible systematic trend in the kinetic parameters, although mutation of one residue (P105) to alanine produced a 3-fold decrease in the IET rate constant. Deletions of nonconserved amino acids in the 14-residue tether, thereby shortening its length, resulted in more drastically reduced IET rate constants. Thus, the deletion of five amino acid residues decreased IET by 70-fold, so that it was rate-limiting in the overall reaction. The steady-state kinetic parameters were also significantly affected by these mutations, with the P111A mutation causing a 5-fold increase in the sulfite K(m) value, perhaps reflecting a decrease in the ability to bind sulfite. The electron paramagnetic resonance spectra of these proline to alanine and deletion mutants are identical to those of wild-type HSO, indicating no significant change in the Mo active site geometry.
Collapse
Affiliation(s)
- Kayunta Johnson-Winters
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Byrne RS, Hänsch R, Mendel RR, Hille R. Oxidative half-reaction of arabidopsis thaliana sulfite oxidase: generation of superoxide by a peroxisomal enzyme. J Biol Chem 2009; 284:35479-84. [PMID: 19875441 PMCID: PMC2790977 DOI: 10.1074/jbc.m109.067355] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Revised: 10/28/2009] [Indexed: 11/06/2022] Open
Abstract
Vertebrate forms of the molybdenum-containing enzyme sulfite oxidase possess a b-type cytochrome prosthetic group that accepts reducing equivalents from the molybdenum center and passes them on to cytochrome c. The plant form of the enzyme, on the other hand, lacks a prosthetic group other than its molybdenum center and utilizes molecular oxygen as the physiological oxidant. Hydrogen peroxide is the ultimate product of the reaction. Here, we present data demonstrating that superoxide is produced essentially quantitatively both in the course of the reaction of reduced enzyme with O(2) and during steady-state turnover and only subsequently decays (presumably noncatalytically) to form hydrogen peroxide. Rapid-reaction kinetic studies directly following the reoxidation of reduced enzyme demonstrate a linear dependence of the rate constant for the reaction on [O(2)] with a second-order rate constant of k(ox) = 8.7 x 10(4) +/- 0.5 x 10(4) m(-1)s(-1). When the reaction is carried out in the presence of cytochrome c to follow superoxide generation, biphasic time courses are observed, indicating that a first equivalent of superoxide is generated in the oxidation of the fully reduced Mo(IV) state of the enzyme to Mo(V), followed by a slower oxidation of the Mo(V) state to Mo(VI). The physiological implications of plant sulfite oxidase as a copious generator of superoxide are discussed.
Collapse
Affiliation(s)
- Robert S. Byrne
- From the Department of Molecular and Cellular Biochemistry, University of California, Riverside, California 92521 and
| | - Robert Hänsch
- the Department of Plant Biology, Technical University of Braunschweig, Humboldtsrasse 1, 38106 Braunschweig, Germany
| | - Ralf R. Mendel
- the Department of Plant Biology, Technical University of Braunschweig, Humboldtsrasse 1, 38106 Braunschweig, Germany
| | - Russ Hille
- From the Department of Molecular and Cellular Biochemistry, University of California, Riverside, California 92521 and
| |
Collapse
|
20
|
Groysman S, Holm RH. Biomimetic chemistry of iron, nickel, molybdenum, and tungsten in sulfur-ligated protein sites. Biochemistry 2009; 48:2310-20. [PMID: 19206188 PMCID: PMC2765533 DOI: 10.1021/bi900044e] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biomimetic inorganic chemistry has as its primary goal the synthesis of molecules that approach or achieve the structures, oxidation states, and electronic and reactivity features of native metal-containing sites of variant nuclearity. Comparison of properties of accurate analogues and these sites ideally provides insight into the influence of protein structure and environment on intrinsic properties as represented by the analogue. For polynuclear sites in particular, the goal provides a formidable challenge for, with the exception of iron-sulfur clusters, all such site structures have never been achieved and few have even been closely approximated by chemical synthesis. This account describes the current status of the synthetic analogue approach as applied to the mononuclear sites in certain molybdoenzymes and the polynuclear sites in hydrogenases, nitrogenase, and carbon monoxide dehydrogenases.
Collapse
Affiliation(s)
- Stanislav Groysman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - R. H. Holm
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
21
|
Common thiolation mechanism in the biosynthesis of tRNA thiouridine and sulphur-containing cofactors. EMBO J 2008; 27:3267-78. [PMID: 19037260 DOI: 10.1038/emboj.2008.246] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 11/04/2008] [Indexed: 11/08/2022] Open
Abstract
2-Thioribothymidine (s(2)T), a modified uridine, is found at position 54 in transfer RNAs (tRNAs) from several thermophiles; s(2)T stabilizes the L-shaped structure of tRNA and is essential for growth at higher temperatures. Here, we identified an ATPase (tRNA-two-thiouridine C, TtuC) required for the 2-thiolation of s(2)T in Thermus thermophilus and examined in vitro s(2)T formation by TtuC and previously identified s(2)T-biosynthetic proteins (TtuA, TtuB, and cysteine desulphurases). The C-terminal glycine of TtuB is first activated as an acyl-adenylate by TtuC and then thiocarboxylated by cysteine desulphurases. The sulphur atom of thiocarboxylated TtuB is transferred to tRNA by TtuA. In a ttuC mutant of T. thermophilus, not only s(2)T, but also molybdenum cofactor and thiamin were not synthesized, suggesting that TtuC is shared among these biosynthetic pathways. Furthermore, we found that a TtuB-TtuC thioester was formed in vitro, which was similar to the ubiquitin-E1 thioester, a key intermediate in the ubiquitin system. The results are discussed in relation to the mechanism and evolution of the eukaryotic ubiquitin system.
Collapse
|
22
|
Groysman S, Wang JJ, Tagore R, Lee SC, Holm RH. A Biomimetic Approach to Oxidized Sites in the Xanthine Oxidoreductase Family: Synthesis and Stereochemistry of Tungsten(VI) Analogue Complexes. J Am Chem Soc 2008; 130:12794-807. [DOI: 10.1021/ja804000k] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Stanislav Groysman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, and Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Jun-Jieh Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, and Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Ranitendranath Tagore
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, and Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Sonny C. Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, and Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - R. H. Holm
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, and Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
23
|
Andreesen JR, Makdessi K. Tungsten, the surprisingly positively acting heavy metal element for prokaryotes. Ann N Y Acad Sci 2007; 1125:215-29. [PMID: 18096847 DOI: 10.1196/annals.1419.003] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The history and changing function of tungsten as the heaviest element in biological systems is given. It starts from an inhibitory element/anion, especially for the iron molybdenum-cofactor (FeMoCo)-containing enzyme nitrogenase involved in dinitrogen fixation, as well as for the many "metal binding pterin" (MPT)-, also known as tricyclic pyranopterin- containing classic molybdoenzymes, such as the sulfite oxidase and the xanthine dehydrogenase family of enzymes. They are generally involved in the transformation of a variety of carbon-, nitrogen- and sulfur-containing compounds. But tungstate can serve as a potential positively acting element for some enzymes of the dimethyl sulfoxide (DMSO) reductase family, especially for CO(2)-reducing formate dehydrogenases (FDHs), formylmethanofuran dehydrogenases and acetylene hydratase (catalyzing only an addition of water, but no redox reaction). Tungsten even becomes an essential element for nearly all enzymes of the aldehyde oxidoreductase (AOR) family. Due to the close chemical and physical similarities between molybdate and tungstate, the latter was thought to be only unselectively cotransported or cometabolized with other tetrahedral anions, such as molybdate and also sulfate. However, it has now become clear that it can also be very selectively transported compared to molybdate into some prokaryotic cells by two very selective ABC-type of transporters that contain a binding protein TupA or WtpA. Both proteins exhibit an extremely high affinity for tungstate (K(D) < 1 nM) and can even discriminate between tungstate and molybdate. By that process, tungsten finally becomes selectively incorporated into the few enzymes noted above.
Collapse
Affiliation(s)
- Jan R Andreesen
- Institute of Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Halle, Germany.
| | | |
Collapse
|
24
|
Wu Y, Hu S. Direct electron transfer of xanthine oxidase and its catalytic reduction to nitrate. Anal Chim Acta 2007; 602:181-6. [DOI: 10.1016/j.aca.2007.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 07/18/2007] [Accepted: 09/04/2007] [Indexed: 11/24/2022]
|
25
|
Hänsch R, Lang C, Rennenberg H, Mendel RR. Significance of plant sulfite oxidase. PLANT BIOLOGY (STUTTGART, GERMANY) 2007; 9:589-95. [PMID: 17853359 DOI: 10.1055/s-2007-965433] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Sulfite oxidizing activities are known since years in animals, microorganisms, and also plants. Among plants, the only enzyme well characterized on molecular and biochemical level is the molybdoenzyme sulfite oxidase (SO). It oxidizes sulfite using molecular oxygen as electron acceptor, leading to the production of sulfate and hydrogen peroxide. The latter reaction product seems to be the reason why plant SO is localized in peroxisomes, because peroxisomal catalase is able to decompose hydrogen peroxide. On the other hand, we have indications for an additional reaction taking place in peroxisomes: sulfite can be nonenzymatically oxidized by hydrogen peroxide. This will promote the detoxification of hydrogen peroxide especially in the case of high amounts of sulfite. Hence we assume that SO could possibly serve as "safety valve" for detoxifying excess amounts of sulfite and protecting the cell from sulfitolysis. Supportive evidence for this assumption comes from experiments where we fumigated transgenic poplar plants overexpressing ARABIDOPSIS SO with SO(2) gas. In this paper, we try to explain sulfite oxidation in its co-regulation with sulfate assimilation and summarize other sulfite oxidizing activities described in plants. Finally we discuss the importance of sulfite detoxification in plants.
Collapse
Affiliation(s)
- R Hänsch
- Department of Plant Biology, Technical University of Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany.
| | | | | | | |
Collapse
|
26
|
Morrison MS, Cobine PA, Hegg EL. Probing the role of copper in the biosynthesis of the molybdenum cofactor in Escherichia coli and Rhodobacter sphaeroides. J Biol Inorg Chem 2007; 12:1129-39. [PMID: 17687573 DOI: 10.1007/s00775-007-0279-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 07/20/2007] [Indexed: 10/23/2022]
Abstract
The crystal structure of Cnx1G, an enzyme involved in the biosynthesis of the molybdenum cofactor (Moco) in Arabidopsis thaliana, revealed the remarkable feature of a copper ion bound to the dithiolene unit of a molybdopterin intermediate (Kuper et al. Nature 430:803-806, 2004). To characterize further the role of copper in Moco biosynthesis, we examined the in vivo and/or in vitro activity of two Moco-dependent enzymes, dimethyl sulfoxide reductase (DMSOR) and nitrate reductase (NR), from cells grown under a variety of copper conditions. We found the activities of DMSOR and NR were not affected when copper was depleted from the media of either Escherichia coli or Rhodobacter sphaeroides. These data suggest that while copper may be utilized during Moco biosynthesis when it is available, copper does not appear to be strictly required for Moco biosynthesis in these two organisms.
Collapse
Affiliation(s)
- M Scott Morrison
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112, USA
| | | | | |
Collapse
|
27
|
Kanaujia SP, Ranjani CV, Jeyakanthan J, Ohmori M, Agari K, Kitamura Y, Baba S, Ebihara A, Shinkai A, Kuramitsu S, Shiro Y, Sekar K, Yokoyama S. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic study of molybdopterin synthase from Thermus thermophilus HB8. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:324-6. [PMID: 17401207 PMCID: PMC2330224 DOI: 10.1107/s1744309107011426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2006] [Accepted: 03/12/2007] [Indexed: 11/10/2022]
Abstract
Thermus thermophilus is a Gram-negative aerobic thermophilic eubacterium which can grow at temperatures ranging from 323 to 355 K. In addition to their importance in thermostability or adaptation strategies for survival at high temperatures, the thermostable enzymes in thermophilic organisms contribute to a wide range of biotechnological applications. The molybdenum cofactor in all three kingdoms consists of a tricyclic pyranopterin termed molybdopterin that bears the cis-dithiolene group responsible for molybdenum ligation. The crystals of molybdopterin synthase from T. thermophilus HB8 belong to the primitive monoclinic space group P2(1), with unit-cell parameters a = 33.94, b = 103.32, c = 59.59 A, beta = 101.3 degrees. Preliminary studies and molecular-replacement calculations reveal the presence of three monomers in the asymmetric unit.
Collapse
Affiliation(s)
- Shankar Prasad Kanaujia
- Bioinformatics Centre (Centre of Excellence in Structural Biology and Biocomputing), Indian Institute of Science, Bangalore 560 012, India
| | - Chellamuthu Vasuki Ranjani
- Bioinformatics Centre (Centre of Excellence in Structural Biology and Biocomputing), Indian Institute of Science, Bangalore 560 012, India
| | | | - Miwa Ohmori
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Kazuko Agari
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Yoshiaki Kitamura
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Seiki Baba
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Akio Ebihara
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Akeo Shinkai
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Seiki Kuramitsu
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Yoshitsugu Shiro
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Kanagaraj Sekar
- Bioinformatics Centre (Centre of Excellence in Structural Biology and Biocomputing), Indian Institute of Science, Bangalore 560 012, India
- Supercomputer Education and Research Centre, Indian Institute of Science, Bangalore 560 012, India
- Correspondence e-mail: ,
| | - Shigeyuki Yokoyama
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Correspondence e-mail: ,
| |
Collapse
|
28
|
Feng C, Tollin G, Enemark JH. Sulfite oxidizing enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:527-39. [PMID: 17459792 PMCID: PMC1993547 DOI: 10.1016/j.bbapap.2007.03.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Revised: 03/02/2007] [Indexed: 11/19/2022]
Abstract
Sulfite oxidizing enzymes are essential mononuclear molybdenum (Mo) proteins involved in sulfur metabolism of animals, plants and bacteria. There are three such enzymes presently known: (1) sulfite oxidase (SO) in animals, (2) SO in plants, and (3) sulfite dehydrogenase (SDH) in bacteria. X-ray crystal structures of enzymes from all three sources (chicken SO, Arabidopsis thaliana SO, and Starkeya novella SDH) show nearly identical square pyramidal coordination around the Mo atom, even though the overall structures of the proteins and the presence of additional cofactors vary. This structural information provides a molecular basis for studying the role of specific amino acids in catalysis. Animal SO catalyzes the final step in the degradation of sulfur-containing amino acids and is critical in detoxifying excess sulfite. Human SO deficiency is a fatal genetic disorder that leads to early death, and impaired SO activity is implicated in sulfite neurotoxicity. Animal SO and bacterial SDH contain both Mo and heme domains, whereas plant SO only has the Mo domain. Intraprotein electron transfer (IET) between the Mo and Fe centers in animal SO and bacterial SDH is a key step in the catalysis, which can be studied by laser flash photolysis in the presence of deazariboflavin. IET studies on animal SO and bacterial SDH clearly demonstrate the similarities and differences between these two types of sulfite oxidizing enzymes. Conformational change is involved in the IET of animal SO, in which electrostatic interactions may play a major role in guiding the docking of the heme domain to the Mo domain prior to electron transfer. In contrast, IET measurements for SDH demonstrate that IET occurs directly through the protein medium, which is distinctly different from that in animal SO. Point mutations in human SO can result in significantly impaired IET or no IET, thus rationalizing their fatal effects. The recent developments in our understanding of sulfite oxidizing enzyme mechanisms that are driven by a combination of molecular biology, rapid kinetics, pulsed electron paramagnetic resonance (EPR), and computational techniques are the subject of this review.
Collapse
Affiliation(s)
- Changjian Feng
- College of Pharmacy, University of New Mexico, Albuquerque, NM 87131
| | - Gordon Tollin
- Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, Arizona 85721, USA
| | - John H. Enemark
- Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA
| |
Collapse
|
29
|
Friedle S, Partyka DV, Bennett MV, Holm R. Synthesis of metal dithiolene complexes by Si–S bond cleavage of a bis(silanylsulfanyl)alkene. Inorganica Chim Acta 2006. [DOI: 10.1016/j.ica.2005.09.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Vergnes A, Pommier J, Toci R, Blasco F, Giordano G, Magalon A. NarJ Chaperone Binds on Two Distinct Sites of the Aponitrate Reductase of Escherichia coli to Coordinate Molybdenum Cofactor Insertion and Assembly. J Biol Chem 2006; 281:2170-6. [PMID: 16286471 DOI: 10.1074/jbc.m505902200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Understanding when and how metal cofactor insertion occurs into a multisubunit metalloenzyme is of fundamental importance. Molybdenum cofactor insertion is a tightly controlled process that involves specific interactions between the proteins that promote cofactor delivery, enzyme-specific chaperones, and the apoenzyme. In the assembly pathway of the multisubunit molybdoenzyme, membrane-bound nitrate reductase A from Escherichia coli, a NarJ-assisted molybdenum cofactor (Moco) insertion step, must precede membrane anchoring of the apoenzyme. Here, we have shown that the NarJ chaperone interacts at two distinct binding sites of the apoenzyme, one interfering with its membrane anchoring and another one being involved in molybdenum cofactor insertion. The presence of the two NarJ-binding sites within NarG is required to ensure productive formation of active nitrate reductase. Our findings supported the view that enzyme-specific chaperones play a central role in the biogenesis of multisubunit molybdoenzymes by coordinating subunits assembly and molybdenum cofactor insertion.
Collapse
Affiliation(s)
- Alexandra Vergnes
- Laboratoire de Chimie Bactérienne, Institut Biologie Structurale et Microbiologie (IBSM), Centre National de la Recherche Scientifique, 31 chemin Joseph Aiguier, 13402 Marseille cedex 09, France
| | | | | | | | | | | |
Collapse
|
31
|
Noriega C, Hassett DJ, Rowe JJ. The mobA gene is required for assimilatory and respiratory nitrate reduction but not xanthine dehydrogenase activity in Pseudomonas aeruginosa. Curr Microbiol 2005; 51:419-24. [PMID: 16235022 DOI: 10.1007/s00284-005-0125-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Accepted: 06/23/2005] [Indexed: 10/25/2022]
Abstract
The requirement for the mobA gene in key assimilatory and respiratory nitrogen metabolism of Pseudomonas aeruginosa PAO1 was investigated by mutational analysis of PA3030 (mobA; MoCo guanylating enzyme), PA1779 (nasA; assimilatory nitrate reductase), and PA3875 (narG; respiratory nitrate reductase). The mobA mutant was deficient in both assimilatory and respiratory nitrate reductase activities, whereas xanthine dehydrogenase activity remained unaffected. Thus, P. aeruginosa requires both the molybdopterin (MPT) and molybdopterin guanine dinucleotide (MGD) forms of the molybdenum cofactor for a complete spectrum of nitrogen metabolism, and one form cannot substitute for the other. Regulation studies using a Phi(PA3030-lacZGm) reporter strain suggest that expression of mobA is not influenced by the type of nitrogen source or by anaerobiosis, whereas assimilatory nitrate reductase activity was detected only in the presence of nitrate.
Collapse
Affiliation(s)
- Chris Noriega
- Department of Biology, University of Dayton, Dayton, OH 45469, USA
| | | | | |
Collapse
|
32
|
Duda DM, Walden H, Sfondouris J, Schulman BA. Structural analysis of Escherichia coli ThiF. J Mol Biol 2005; 349:774-86. [PMID: 15896804 DOI: 10.1016/j.jmb.2005.04.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 03/31/2005] [Accepted: 04/05/2005] [Indexed: 11/15/2022]
Abstract
Escherichia coli ThiF is an enzyme in the biosynthetic cascade for generating the essential cofactor thiamin pyrophosphate. In this cascade, ThiF catalyzes adenylation of the C terminus of ThiS. We report here the crystal structures of ThiF, alone and in complex with ATP. The structures provide insight into a preference for ATP during adenylation of the protein ThiS. Additionally, the structures reveal an ordered crossover loop predicted to clamp the flexible tail of ThiS into the ThiF active site during the adenylation reaction. The importance of the crossover loop for ThiF activity is highlighted by mutational analysis. Comparison of ThiF with the structural homologues MoeB, APPBP1-UBA3, and SAE1-SAE2 reveals that the ATP-binding site, including an arginine-finger, is maintained throughout evolution, and shows divergence occurring in protein substrate-binding sites and regions devoted to unique steps in the specific function of each enzyme.
Collapse
Affiliation(s)
- David M Duda
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
33
|
Kappler U, Bailey S. Molecular Basis of Intramolecular Electron Transfer in Sulfite-oxidizing Enzymes Is Revealed by High Resolution Structure of a Heterodimeric Complex of the Catalytic Molybdopterin Subunit and a c-Type Cytochrome Subunit. J Biol Chem 2005; 280:24999-5007. [PMID: 15863498 DOI: 10.1074/jbc.m503237200] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sulfite-oxidizing molybdoenzymes convert the highly reactive and therefore toxic sulfite to sulfate and have been identified in insects, animals, plants, and bacteria. Although the well studied enzymes from higher animals serve to detoxify sulfite that arises from the catabolism of sulfur-containing amino acids, the bacterial enzymes have a central role in converting sulfite formed during dissimilatory oxidation of reduced sulfur compounds. Here we describe the structure of the Starkeya novella sulfite dehydrogenase, a heterodimeric complex of the catalytic molybdopterin subunit and a c-type cytochrome subunit, that reveals the molecular mechanism of intramolecular electron transfer in sulfite-oxidizing enzymes. The close approach of the two redox centers in the protein complex (Mo-Fe distance 16.6 A) allows for rapid electron transfer via tunnelling or aided by the protein environment. The high resolution structure of the complex has allowed the identification of potential through-bond pathways for electron transfer including a direct link via Arg-55A and/or an aromatic-mediated pathway. A potential site of electron transfer to an external acceptor cytochrome c was also identified on the SorB subunit on the opposite side to the interaction with the catalytic SorA subunit.
Collapse
Affiliation(s)
- Ulrike Kappler
- Centre for Metals in Biology, University of Queensland, St. Lucia, Queensland 4072, Australia
| | | |
Collapse
|
34
|
Unciuleac M, Warkentin E, Page CC, Boll M, Ermler U. Structure of a xanthine oxidase-related 4-hydroxybenzoyl-CoA reductase with an additional [4Fe-4S] cluster and an inverted electron flow. Structure 2005; 12:2249-56. [PMID: 15576037 DOI: 10.1016/j.str.2004.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 10/08/2004] [Accepted: 10/13/2004] [Indexed: 10/26/2022]
Abstract
The Mo-flavo-Fe/S-dependent heterohexameric protein complex 4-hydroxybenzoyl-CoA reductase (4-HBCR, dehydroxylating) is a central enzyme of the anaerobic degradation of phenolic compounds and belongs to the xanthine oxidase (XO) family of molybdenum enzymes. Its X-ray structure was established at 1.6 A resolution. The most pronounced difference between 4-HBCR and other structurally characterized members of the XO family is the insertion of 40 amino acids within the beta subunit, which carries an additional [4Fe-4S] cluster at a distance of 16.5 A to the isoalloxazine ring of FAD. The architecture of 4-HBCR and concomitantly performed electron transfer rate calculations suggest an inverted electron transfer chain from the donor ferredoxin via the [4Fe-4S] cluster to the Mo over a distance of 55 A. The binding site of 4-hydroxybenzoyl-CoA is located in an 18 A long channel lined up by several aromatic side chains around the aromatic moiety, which are proposed to shield and stabilize the postulated radical intermediates during catalysis.
Collapse
Affiliation(s)
- Mihaela Unciuleac
- Institut für Biologie II, Mikrobiologie Schänzlestrasse 1, D-79104 Freiburg, Germany
| | | | | | | | | |
Collapse
|
35
|
Boll M. Key enzymes in the anaerobic aromatic metabolism catalysing Birch-like reductions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1707:34-50. [PMID: 15721605 DOI: 10.1016/j.bbabio.2004.01.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2003] [Accepted: 01/23/2004] [Indexed: 11/16/2022]
Abstract
Several novel enzyme reactions have recently been discovered in the aromatic metabolism of anaerobic bacteria. Many of these reactions appear to be catalyzed by oxygen-sensitive enzymes by means of highly reactive radical intermediates. This contribution deals with two key reactions in this metabolism: the ATP-driven reductive dearomatisation of the benzene ring and the reductive removal of a phenolic hydroxyl group. The two reactions catalyzed by benzoyl-CoA reductase (BCR) and 4-hydroxybenzoyl-CoA reductase (4-HBCR) are both mechanistically difficult to achieve; both are considered to proceed in 'Birch-like' reductions involving single electron and proton transfer steps to the aromatic ring. The problem of both reactions is the extremely high redox barrier for the first electron transfer to the substrate (e.g., -1.9 V in case of a benzoyl-CoA (BCoA) analogue), which is solved in the two enzymes in different manners. Studying these enzymatic reactions provides insights into general principles of how oxygen-dependent reactions are replaced by alternative processes under anoxic conditions.
Collapse
Affiliation(s)
- Matthias Boll
- Institut für Biologie II, Universität Freiburg, Schänzlestr. 1, D-79104 Freiburg, Germany.
| |
Collapse
|
36
|
Kurosaki M, Terao M, Barzago MM, Bastone A, Bernardinello D, Salmona M, Garattini E. The aldehyde oxidase gene cluster in mice and rats. Aldehyde oxidase homologue 3, a novel member of the molybdo-flavoenzyme family with selective expression in the olfactory mucosa. J Biol Chem 2004; 279:50482-98. [PMID: 15383531 DOI: 10.1074/jbc.m408734200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian molybdo-flavoenzymes are oxidases requiring FAD and molybdopterin (molybdenum cofactor) for their catalytic activity. This family of proteins was thought to consist of four members, xanthine oxidoreductase, aldehyde oxidase 1 (AOX1), and the aldehyde oxidase homologues 1 and 2 (AOH1 and AOH2, respectively). Whereas the first two enzymes are present in humans and various other mammalian species, the last two proteins have been described only in mice. Here, we report on the identification, in both mice and rats, of a novel molybdo-flavoenzyme, AOH3. In addition, we have cloned the cDNAs coding for rat AOH1 and AOH2, demonstrating that this animal species has the same complement of molybdo-flavoproteins as the mouse. The AOH3 cDNA is characterized by remarkable similarity to AOX1, AOH1, AOH2, and xanthine oxidoreductase cDNAs. Mouse AOH3 is selectively expressed in Bowman's glands of the olfactory mucosa, although small amounts of the corresponding mRNA are present also in the skin. In the former location, two alternatively spliced forms of the AOH3 transcript with different 3'-untranslated regions were identified. The general properties of AOH3 were determined by purification of mouse AOH3 from the olfactory mucosa. The enzyme possesses aldehyde oxidase activity and oxidizes, albeit with low efficiency, exogenous substrates that are recognized by AOH1 and AOX1. The Aoh3 gene maps to mouse chromosome 1 band c1 and rat chromosome 7 in close proximity to the Aox1, Aoh1, and Aoh2 loci and has an exon/intron structure almost identical to that of the other molybdo-flavoenzyme genes in the two species.
Collapse
Affiliation(s)
- Mami Kurosaki
- Laboratory of Molecular Biology, Centro Catullo e Daniela Borgomainerio, Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- Jason Kuchar
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824-4320, USA
| | | |
Collapse
|
38
|
Santamaria-Araujo JA, Fischer B, Otte T, Nimtz M, Mendel RR, Wray V, Schwarz G. The Tetrahydropyranopterin Structure of the Sulfur-free and Metal-free Molybdenum Cofactor Precursor. J Biol Chem 2004; 279:15994-9. [PMID: 14761975 DOI: 10.1074/jbc.m311815200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The molybdenum cofactor (Moco), a highly conserved pterin compound coordinating molybdenum (Mo), is required for the activity of all Mo-dependent enzymes with the exception of nitrogenase. Moco is synthesized by a unique and evolutionary old multi-step pathway with two intermediates identified so far, the sulfur-free and metal-free pterin derivative precursor Z and molybdopterin, a pterin with an enedithiolate function essential for Mo ligation. The latter pterin component is believed to form a tetrahydropyranopterin similar to the one found for Moco in the crystal structure of Mo as well as tungsten (W) enzymes. Here we report the spectroscopic characterization and structure elucidation of precursor Z purified from Escherichia coli overproducing MoaA and MoaC, two proteins essential for bacterial precursor Z synthesis. We have shown that purified precursor Z is as active as precursor Z present in E. coli cell extracts, demonstrating that no modifications during the purification procedure have occurred. High resolution electrospray ionization mass spectrometry afforded a [M + H]+ ion compatible with a molecular formula of C10H15N5O8P. Consequently 1H NMR spectroscopy not allowed structural characterization of the molecule but confirmed that this intermediate undergoes direct oxidation to the previously well characterized non-productive follow-up product compound Z. The 1H chemical shift and coupling constant data are incompatible with previous structural proposals and indicate that precursor Z already is a tetrahydropyranopterin system and carries a geminal diol function in the C1' position.
Collapse
|
39
|
Wilson HL, Rajagopalan KV. The Role of Tyrosine 343 in Substrate Binding and Catalysis by Human Sulfite Oxidase. J Biol Chem 2004; 279:15105-13. [PMID: 14729666 DOI: 10.1074/jbc.m314288200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the crystal structure of chicken sulfite oxidase, the residue Tyr(322) (Tyr(343) in human sulfite oxidase) was found to directly interact with a bound sulfate molecule and was proposed to have an important role in mediating the substrate specificity and catalytic activity of this molybdoprotein. In order to understand the role of this residue in the catalytic mechanism of sulfite oxidase, steady-state and stopped-flow analyses were performed on wild-type and Y343F human sulfite oxidase over the pH range 6-10. In steady-state assays of Y343F sulfite oxidase using cytochrome c as the electron acceptor, k(cat) was somewhat impaired ( approximately 34% wild-type activity at pH 8.5), whereas the K(m)(sulfite) showed a 5-fold increase over wild type. In rapid kinetic assays of the reductive half-reaction of wild-type human sulfite oxidase, k(red)(heme) changed very little over the entire pH range, with a significant increase in K(d)(sulfite) at high pH. The k(red)(heme) of the Y343F variant was significantly impaired across the entire pH range, and unlike the wild-type protein, both k(red)(heme) and K(d)(sulfite) were dependent on pH, with a significant increase in both kinetic parameters at high pH. Additionally, reduction of the molybdenum center by sulfite was directly measured for the first time in rapid reaction assays using sulfite oxidase lacking the N-terminal heme-containing domain. Reduction of the molybdenum center was quite fast (k(red)(Mo) = 972 s(-1) at pH 8.65 for wild-type protein), indicating that this is not the rate-limiting step in the catalytic cycle. Reduction of the molybdenum center of the Y343F variant by sulfite was more significantly impaired at high pH than at low pH. These results demonstrate that the Tyr(343) residue is important for both substrate binding and oxidation of sulfite by sulfite oxidase.
Collapse
Affiliation(s)
- Heather L Wilson
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
40
|
Abstract
A childhood fascination with animals, plants, and insects was aided and abetted by many giants, beginning with my parents. The Bronx High School of Science and the City College of New York (CCNY) made a solid and priceless grounding in chemistry and biology available free of charge. Abe Mazur at CCNY revealed the wonders of biochemistry and illustrated that it was possible to pursue these wonders while being paid to do so. He also directed me to Duke University Medical School for PhD work under the tutelage of Phil Handler. With the exception of a sabbatical year at Harvard with Frank Westheimer, my entire career has been spent at Duke serving under three fine and supportive chairmen: Handler, Hill, and Raetz. The premier discoveries to emanate from my laboratory have been the sulfite oxidase, the several superoxide dismutases, the manganese catalase, and the catalase/peroxidase. Many other topics piqued my interest and resulted in ~ 400 publications. Herein I have recounted some of the circumstances surrounding that work and named a few of the people involved. The first 20 years I worked happily at the bench and the next 35 years just as happily facilitating the work of younger people. It has been so rewarding that I wish for nothing more than to be allowed to keep at it.
Collapse
Affiliation(s)
- Irwin Fridovich
- Department of Biochemistry Duke University Medical Center Box 3711 Durham North Carolina 27710, USA.
| |
Collapse
|
41
|
Rudolph MJ, Wuebbens MM, Turque O, Rajagopalan KV, Schindelin H. Structural studies of molybdopterin synthase provide insights into its catalytic mechanism. J Biol Chem 2003; 278:14514-22. [PMID: 12571227 DOI: 10.1074/jbc.m300449200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molybdenum cofactor biosynthesis is an evolutionarily conserved pathway present in eubacteria, archaea, and eukaryotes, including humans. Genetic deficiencies of enzymes involved in cofactor biosynthesis in humans lead to a severe and usually fatal disease. The molybdenum cofactor contains a tricyclic pyranopterin, termed molybdopterin, that bears the cis-dithiolene group responsible for molybdenum ligation. The dithiolene group of molybdopterin is generated by molybdopterin synthase, which consists of a large (MoaE) and small (MoaD) subunit. The crystal structure of molybdopterin synthase revealed a heterotetrameric enzyme in which the C terminus of each MoaD subunit is deeply inserted into a MoaE subunit to form the active site. In the activated form of the enzyme, the MoaD C terminus is present as a thiocarboxylate. The present study identified the position of the thiocarboxylate sulfur by exploiting the anomalous signal originating from the sulfur atom. The structure of molybdopterin synthase in a novel crystal form revealed a binding pocket for the terminal phosphate of molybdopterin, the product of the enzyme, and suggested a binding site for the pterin moiety present in precursor Z and molybdopterin. Finally, the crystal structure of the MoaE homodimer provides insights into the conformational changes accompanying binding of the MoaD subunit.
Collapse
Affiliation(s)
- Michael J Rudolph
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, 11794-5215, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
Xanthine oxidoreductase (XOR) is a complex molybdoflavoenzyme, present in milk and many other tissues, which has been studied for over 100 years. While it is generally recognized as a key enzyme in purine catabolism, its structural complexity and specialized tissue distribution suggest other functions that have never been fully identified. The publication, just over 20 years ago, of a hypothesis implicating XOR in ischemia-reperfusion injury focused research attention on the enzyme and its ability to generate reactive oxygen species (ROS). Since that time a great deal more information has been obtained concerning the tissue distribution, structure, and enzymology of XOR, particularly the human enzyme. XOR is subject to both pre- and post-translational control by a range of mechanisms in response to hormones, cytokines, and oxygen tension. Of special interest has been the finding that XOR can catalyze the reduction of nitrates and nitrites to nitric oxide (NO), acting as a source of both NO and peroxynitrite. The concept of a widely distributed and highly regulated enzyme capable of generating both ROS and NO is intriguing in both physiological and pathological contexts. The details of these recent findings, their pathophysiological implications, and the requirements for future research are addressed in this review.
Collapse
Affiliation(s)
- Roger Harrison
- Department of Biology and Biochemistry, University of Bath, Bath, UK.
| |
Collapse
|
43
|
Feng C, Kedia RV, Hazzard JT, Hurley JK, Tollin G, Enemark JH. Effect of solution viscosity on intramolecular electron transfer in sulfite oxidase. Biochemistry 2002; 41:5816-21. [PMID: 11980485 DOI: 10.1021/bi016059f] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our previous studies have shown that the rate constant for intramolecular electron transfer (IET) between the heme and molybdenum centers of chicken liver sulfite oxidase varies from approximately 20 to 1400 s(-1) depending upon reaction conditions [Pacheco, A., Hazzard, J. T., Tollin, G., and Enemark, J. H. (1999) J. Biol. Inorg. Chem. 4, 390-401]. These two centers are linked by a flexible polypeptide loop, suggesting that conformational changes, which alter the Mo-Fe distance, may play an important role in the observed IET rates. In this study, we have investigated IET in sulfite oxidase using laser flash photolysis as a function of solution viscosity. The solution viscosity was varied over the range of 1.0-2.0 cP by addition of either polyethylene glycol 400 or sucrose. In the presence of either viscosogen, an appreciable decrease in the IET rate constant value is observed with an increase in the solvent viscosity. The IET rate constant exhibits a linear dependence on the negative 0.7th power of the viscosity. Steady-state kinetics and EPR experiments are consistent with the interpretation that viscosity, and not other properties of the added viscosogens, is responsible for the dependence of IET rates on the solvent composition. The results are consistent with the role of conformational changes on IET in sulfite oxidase, which helps to clarify the inconsistency between the large rate constant for IET between the Mo and Fe centers and the long distance (approximately 32 A) between these two metal centers observed in the crystal structure [Kisker, C., Schindelin, H., Pacheco, A., Wehbi, W., Garnett, R. M., Rajagopalan, K. V., Enemark, J. H., and Rees, D. C. (1997) Cell 91, 973-983].
Collapse
Affiliation(s)
- Changjian Feng
- Department of Chemistry, The University of Arizona, Tucson, Arizona 85721, USA
| | | | | | | | | | | |
Collapse
|