1
|
Abdullah O, Omran Z. Geldanamycins: Potent Hsp90 Inhibitors with Significant Potential in Cancer Therapy. Int J Mol Sci 2024; 25:11293. [PMID: 39457075 PMCID: PMC11509085 DOI: 10.3390/ijms252011293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Geldanamycin, an ansa-macrolide composed of a rigid benzoquinone ring and an aliphatic ansa-bridge, was isolated from Streptomyces hygroscopicus. Geldanamycin is a potent heat shock protein inhibitor with remarkable antiproliferative activity. However, it shows pronounced hepatotoxicity in animal models and unfavorable pharmacokinetic properties. Four geldanamycin analogs have progressed through various phases of clinical trials, but none have yet completed clinical evaluation or received FDA approval. To enhance the efficacy of these Hsp90 inhibitors, strategies such as prodrug approaches or nanocarrier delivery systems could be employed to minimize systemic and organ toxicity. Furthermore, exploring new drug combinations may help overcome resistance, potentially improving therapeutic outcomes. This review discusses the mechanism of action of geldanamycin, its pharmacokinetic properties, and the various approaches employed to alleviate its toxicity and maximize its clinical efficacy. The main focus is on those derivatives that have progressed to clinical trials or that have shown important in vivo activity in preclinical models.
Collapse
Affiliation(s)
- Omeima Abdullah
- College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Ziad Omran
- King Abdullah International Medical Research Center, King Saud Bin Abdelaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
| |
Collapse
|
2
|
Logan IE, Nguyen KT, Chatterjee T, Manivannan B, Paul NP, Kim SR, Sixta EM, Bastian LP, Marean-Reardon C, Karajannis MA, Fernández-Valle C, Estevez AG, Franco MC. Selective nitration of Hsp90 acts as a metabolic switch promoting tumor cell proliferation. Redox Biol 2024; 75:103249. [PMID: 38945076 PMCID: PMC11261529 DOI: 10.1016/j.redox.2024.103249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024] Open
Abstract
Tumors develop in an oxidative environment characterized by peroxynitrite production and downstream protein tyrosine (Y) nitration. We showed that tyrosine nitration supports schwannoma cell proliferation and regulates cell metabolism in the inheritable tumor disorder NF2-related Schwannomatosis (NF2-SWN). Here, we identified the chaperone Heat shock protein 90 (Hsp90) as the first nitrated protein that acts as a metabolic switch to promote schwannoma cell proliferation. Doubling the endogenous levels of nitrated Hsp90 in schwannoma cells or supplementing nitrated Hsp90 into normal Schwann cells increased their proliferation. Metabolically, nitration on either Y33 or Y56 conferred Hsp90 distinct functions; nitration at Y33 (Hsp90NY33) down-regulated mitochondrial oxidative phosphorylation, while nitration at Y56 (Hsp90NY56) increased glycolysis by activating the purinergic receptor P2X7 in both schwannoma and normal Schwann cells. Hsp90NY33 and Hsp90NY56 showed differential subcellular and spatial distribution corresponding with their metabolic and proliferative functions in schwannoma three-dimensional cell culture models. Collectively, these results underscore the role of tyrosine nitration as a post-translational modification regulating critical cellular processes. Nitrated proteins, particularly nitrated Hsp90, emerge as a novel category of tumor-directed therapeutic targets.
Collapse
Affiliation(s)
- Isabelle E Logan
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA; Center for Translational Science, Florida International University, Florida, 34987, USA
| | - Kyle T Nguyen
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Tilottama Chatterjee
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA
| | | | - Ngozi P Paul
- Center for Translational Science, Florida International University, Florida, 34987, USA
| | - Sharon R Kim
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Evelyn M Sixta
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Lydia P Bastian
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Carrie Marean-Reardon
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Matthias A Karajannis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Cristina Fernández-Valle
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Alvaro G Estevez
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA; Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Florida, 33199, USA
| | - Maria Clara Franco
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, 97331, USA; Center for Translational Science, Florida International University, Florida, 34987, USA; Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Florida, 33199, USA.
| |
Collapse
|
3
|
Ma X, Wang L, Li J, Guo Y, He S. The pathogenicity and immune effects of different generations of Mycoplasma synoviae on chicken embryos. Br Poult Sci 2024; 65:19-27. [PMID: 38018666 DOI: 10.1080/00071668.2023.2287733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/05/2023] [Indexed: 11/30/2023]
Abstract
1. Mycoplasma synoviae (MS) is the primary causative agent of synovitis in avian species. In order to investigate the pathogenicity and immunological responses associated with MS in specific pathogen-free chicken embryos, a series of generations (F1, F95, F120, F160 and F200) of MS were introduced into 7-day-old SPF chicken embryos and subsequent mortality rates were recorded and analysed2. Reverse transcription-quantitative polymerase chain reaction was performed to detect expression of heat shock proteins HSP27, HSP40, HSP60, HSP70 and HSP90 and inflammatory factors interleukin (IL)-1β, caspase-1 and IL-18 in the tracheal tissue.3. The results showed that the mortality rate of SPF chicken embryos decreased with an increase in the number of passages, with the highest being 80% (8/10) for F1 generation and the lowest being 10% (1/10) for F200. The expression of HSP27, IL-1β, HSP40, caspase-1, HSP70 and HSP90 showed a significant downregulation trend with an increase in the generation (except IL-18; P < 0.05). The HSP60 expression was significantly upregulated with increasing generations (P < 0.05).4. A relationship between pathogenicity and the number of passages was observed and the decrease in pathogenicity appeared to be associated with HSP and genes related to inflammatory factors. The present work offers a scientific foundation for screening potential MS strains that might be employed to develop attenuated vaccines.
Collapse
Affiliation(s)
- X Ma
- School of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia, China
| | - L Wang
- School of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia, China
| | - J Li
- School of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia, China
| | - Y Guo
- Ningxia Academy of Agricultural and Forestry Science's Yinchuan, Institute of Animal Science, Yinchuan, Ningxia, China
| | - S He
- School of Animal Science and Technology, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
4
|
Tang J, Hu H, Zhou C, Zhang N. Human Aha1's N-terminal extension confers it holdase activity in vitro. Protein Sci 2023; 32:e4735. [PMID: 37486705 PMCID: PMC10443363 DOI: 10.1002/pro.4735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/07/2023] [Accepted: 07/21/2023] [Indexed: 07/25/2023]
Abstract
Molecular chaperones are key components of protein quality control system, which plays an essential role in controlling protein homeostasis. Aha1 has been identified as a co-chaperone of Hsp90 known to strongly accelerate Hsp90's ATPase activity. Meanwhile, it is reported that Aha1 could also act as an autonomous chaperone and protect stressed or disordered proteins from aggregation. Here, in this article, a series of in vitro experiments were conducted to verify whether Aha1 has a non-Hsp90-dependent holdase activity and to elucidate the associated molecular mechanism for substrate recognition. According to the results of the refolding assay, the highly conserved N-terminal extension spanning M1 to R16 in Aha1 from higher eukaryotes is responsible for the holdase activity of the protein. As revealed by the NMR data, Aha1's N-terminal extension mainly adopts a disordered conformation in solution and shows no tight contacts with the core structure of Aha1's N-terminal domain. Based on the intrinsically disordered structure feature and the primary sequence of Aha1's N-terminal extension, the fuzzy-type protein-protein interactions involving this specific region and the unfolded substrate proteins are expected. The following mutation analysis data demonstrated that the Van der Waals contacts potentially involving two tryptophans including W4 and W11 do not play a dominant role in the interaction between Aha1 and unfolded maltose binding protein (MBP). Meanwhile, since the high concentration of NaCl could abolish the holdase activity of Aha1, the electrostatic interactions mediated by those charged residues in Aha1's N-terminal extension are thus indicated to play a crucial role in the substrate recognition.
Collapse
Affiliation(s)
- Junying Tang
- School of Chinese Materia MedicaNanjing University of Chinese MedicineNanjingChina
- State Key Laboratory of Chemical Biology, Analytical Research Center for Organic and Biological MoleculesShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Huifang Hu
- State Key Laboratory of Chemical Biology, Analytical Research Center for Organic and Biological MoleculesShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| | - Chen Zhou
- State Key Laboratory of Chemical Biology, Analytical Research Center for Organic and Biological MoleculesShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Naixia Zhang
- School of Chinese Materia MedicaNanjing University of Chinese MedicineNanjingChina
- State Key Laboratory of Chemical Biology, Analytical Research Center for Organic and Biological MoleculesShanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
- University of the Chinese Academy of SciencesBeijingChina
| |
Collapse
|
5
|
Khmelinskii I, Makarov VI. Photo-activation of mitochondrial ATP synthesis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 228:112376. [PMID: 35121525 DOI: 10.1016/j.jphotobiol.2021.112376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
ATP production by mitochondria isolated from Saccharomyces cerevisiae cells was accelerated upon both direct and indirect mitochondrial photo-activation (MPA). The extent of direct MPA was dependent on the wavelength of excitation light. Direct MPA was created by light in cytochrome c spectral absorption bands (440, 520 and 550 nm), this light was absorbed producing electronically excited cytochrome c, and the excitation energy of the latter was used in the ATP production chain. The activity of cytochrome c was tested with 600 nm light, where cytochrome c does not absorb, and thus ATP production rate remained the same as in darkness. Note that ATP production rates were significantly larger under light at 550, 520 and 440 nm. Therefore, photo-activation of cytochrome c was the first step of MPA synthesis of ATP. Indirect MPA of ATP production also proceeded via electronically excited cytochrome c, by energy transfer from electronically excited Co/BN film to cytochrome c located in the inner mitochondrial membrane (IMM). Co/BN excitons were generated by photons absorbed by the Co/BN film, which was not in contact with the mitochondrial sample. Next, these excitons propagated along the Co/BN film to the part of the film that was in contact with the mitochondrial sample. There the exciton energy was transferred to cytochrome c located in the IMM, producing electronically excited cytochrome c. Thus, excited cytochrome c was generated in a way different from that of direct MPA. Next, the energy of excited cytochrome c was used in activated ATP synthesis, with virtually the same effect for 519 and 427 nm excitation. Thus, the first step of ATP synthesis in indirect MPA was the exciton energy transfer from Co/BN film to cytochrome c located in the IMM, producing an electronically excited cytochrome c molecule. A phenomenological mechanism of direct and indirect MPA was proposed, and the model parameters were obtained by fitting the model to the experimental data. However, more information is needed before the detailed mechanism of ATP synthesis activation by electronically excited cytochrome c could be understood. The present results support the earlier proposed hypothesis of indirect MPA of ATP production in vertebrate retina in daylight.
Collapse
Affiliation(s)
- Igor Khmelinskii
- Faculty of Science and Technology, Department of Chemistry and Pharmacy, and Center of Electronics, Optoelectronics, and Telecommunications, University of Algarve, Portugal
| | - Vladimir I Makarov
- Department of Physics, University of Puerto Rico, Rio Piedras Campus, San Juan, USA.
| |
Collapse
|
6
|
Abdelmoaty AAA, Zhang P, Lin W, Fan YJ, Ye SN, Xu JH. C0818, a novel curcumin derivative, induces ROS-dependent cytotoxicity in human hepatocellular carcinoma cells in vitro via disruption of Hsp90 function. Acta Pharmacol Sin 2022; 43:446-456. [PMID: 33824458 PMCID: PMC8792041 DOI: 10.1038/s41401-021-00642-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/08/2021] [Indexed: 02/03/2023] Open
Abstract
Heat shock protein 90 (Hsp90) is the most common molecular chaperone that controls the maturation of many oncoproteins critical in tumor development. Hsp90 has been considered as a promising target for cancer treatment, but the clinical significance of Hsp90 and the mechanisms of Hsp90 regulating the tumor-promoting effects in hepatocellular carcinoma (HCC) remain obscure. Previous studies have shown that curcumin, a polyphenol derived from the plant turmeric (Curcuma longa), inhibits tumor growth, which may provide an effective alternative therapy for HCC. Compared to curcumin, a novel derivative of curcumin, 3,5-(E)-Bis(3-methoxy-4-hydroxybenzal)-4-piperidinone hydrochloride (C0818) that is more potent in Hsp90 inhibition and antitumor activity. In this study, we investigated the effect of C0818 on HCC cells in vitro and its relation to Hsp90 inhibition. We showed that C0818 concentration-dependently inhibited the proliferation, the colony formation and induced apoptosis in HepG2 and Sk-Hep-1 cells. C0818 concentration-dependently inhibited DNA synthesis and induced G2/M phase arrest in HepG2 and Sk-Hep-1 cells. We further demonstrated that C0818 induced ROS- and caspase-dependent apoptosis in HCC cells through the mitochondrial-mediated pathway. C0818 induced the degradation of Hsp90 client proteins as RAS, C-Raf, P-C-Raf, Erk, P-ERK, MEK, P-MEK, Akt and P-Akt, which led to subsequent inhibition of the RAS/RAF/MEK/ERK and PI3K/AKT pathways. We revealed that C0818 could inhibit the binding of Hsp90 with its clients without affecting their transcription, which subsequently induced the degradation of Hsp90 clients by the proteasome rather than the lysosome. These results are of potential importance for elucidating a novel Hsp90 inhibitor targeting HCC.
Collapse
Affiliation(s)
- Ahmed Attia Ahmed Abdelmoaty
- Department of Pharmacology, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, 350122, China
| | - Ping Zhang
- Department of Pharmacology, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, 350122, China
| | - Wen Lin
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China
| | - Ying-Juan Fan
- Department of Pharmacology, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, 350122, China
| | - Sheng-Nan Ye
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, China.
| | - Jian-Hua Xu
- Department of Pharmacology, School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
7
|
Exploring Mechanisms of Allosteric Regulation and Communication Switching in the Multiprotein Regulatory Complexes of the Hsp90 Chaperone with Cochaperones and Client Proteins : Atomistic Insights from Integrative Biophysical Modeling and Network Analysis of Conformational Landscapes. J Mol Biol 2022; 434:167506. [DOI: 10.1016/j.jmb.2022.167506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/16/2022]
|
8
|
HSP90 as a regulator of extracellular matrix dynamics. Biochem Soc Trans 2021; 49:2611-2625. [PMID: 34913470 DOI: 10.1042/bst20210374] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023]
Abstract
The extracellular matrix (ECM) is a dynamic and organised extracellular network assembled from proteins and carbohydrates exported from the cell. The ECM is critical for multicellular life, providing spatial and temporal cellular cues to maintain tissue homeostasis. Consequently, ECM production must be carefully balanced with turnover to ensure homeostasis; ECM dysfunction culminates in disease. Hsp90 is a molecular chaperone central to protein homeostasis, including in the ECM. Intracellular and extracellular Hsp90 isoforms collaborate to regulate the levels and status of proteins in the ECM via multiple mechanisms. In so doing, Hsp90 regulates ECM dynamics, and changes in Hsp90 levels or activity support the development of ECM-related diseases, like cancer and fibrosis. Consequently, Hsp90 levels may have prognostic value, while inhibition of Hsp90 may have therapeutic potential in conditions characterised by ECM dysfunction.
Collapse
|
9
|
Liang ZX, Liu HS, Xiong L, Yang X, Wang FW, Zeng ZW, He XW, Wu XR, Lan P. A novel NF-κB regulator encoded by circPLCE1 inhibits colorectal carcinoma progression by promoting RPS3 ubiquitin-dependent degradation. Mol Cancer 2021; 20:103. [PMID: 34412652 PMCID: PMC8375079 DOI: 10.1186/s12943-021-01404-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Constitutive activation of nuclear factor-κB (NF-κB) signaling plays a key role in the development and progression of colorectal carcinoma (CRC). However, the underlying mechanisms of excessive activation of NF-κB signaling remain largely unknown. METHODS We used high throughput RNA sequencing to identify differentially expressed circular RNAs (circRNAs) between normal human intestinal epithelial cell lines and CRC cell lines. The identification of protein encoded by circPLCE1 was performed using LC-MS. The function of novel protein was validated in vitro and in vivo by gain or loss of function assays. Mechanistic results were concluded by immunoprecipitation analyses. RESULTS A novel protein circPLCE1-411 encoded by circular RNA circPLCE1 was identified as a crucial player in the NF-κB activation of CRC. Mechanistically, circPLCE1-411 promoted the ubiquitin-dependent degradation of the critical NF-κB regulator RPS3 via directly binding the HSP90α/RPS3 complex to facilitate the dissociation of RPS3 from the complex, thereby reducing NF-κB nuclear translocation in CRC cells. Functionally, circPLCE1 inhibited tumor proliferation and metastasis in CRC cells, as well as patient-derived xenograft and orthotopic xenograft tumor models. Clinically, circPLCE1 was downregulated in CRC tissues and correlated with advanced clinical stages and poor survival. CONCLUSIONS circPLCE1 presents an epigenetic mechanism which disrupts NF-κB nuclear translocation and serves as a novel and promising therapeutic target and prognostic marker.
Collapse
Affiliation(s)
- Zhen-Xing Liang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, Guangdong, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Hua-Shan Liu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, Guangdong, 510655, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Li Xiong
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xin Yang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, Guangdong, 510655, China
| | - Feng-Wei Wang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zi-Wei Zeng
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, Guangdong, 510655, China
| | - Xiao-Wen He
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, Guangdong, 510655, China
| | - Xian-Rui Wu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, Guangdong, 510655, China. .,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China. .,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
| | - Ping Lan
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuancun Erheng Rd, Guangzhou, Guangdong, 510655, China. .,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China. .,Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
| |
Collapse
|
10
|
Hu H, Wang Q, Du J, Liu Z, Ding Y, Xue H, Zhou C, Feng L, Zhang N. Aha1 Exhibits Distinctive Dynamics Behavior and Chaperone-Like Activity. Molecules 2021; 26:molecules26071943. [PMID: 33808352 PMCID: PMC8037086 DOI: 10.3390/molecules26071943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022] Open
Abstract
Aha1 is the only co-chaperone known to strongly stimulate the ATPase activity of Hsp90. Meanwhile, besides the well-studied co-chaperone function, human Aha1 has also been demonstrated to exhibit chaperoning activity against stress-denatured proteins. To provide structural insights for a better understanding of Aha1's co-chaperone and chaperone-like activities, nuclear magnetic resonance (NMR) techniques were used to reveal the unique structure and internal dynamics features of full-length human Aha1. We then found that, in solution, both the two domains of Aha1 presented distinctive thermal stabilities and dynamics behaviors defined by their primary sequences and three-dimensional structures. The low thermal stability (melting temperature of Aha128-162: 54.45 °C) and the internal dynamics featured with slow motions on the µs-ms time scale were detected for Aha1's N-terminal domain (Aha1N). The aforementioned experimental results suggest that Aha1N is in an energy-unfavorable state, which would therefore thermostatically favor the interaction of Aha1N with its partner proteins such as Hsp90's middle domain. Differently from Aha1N, Aha1C (Aha1's C-terminal domain) exhibited enhanced thermal stability (melting temperature of Aha1204-335: 72.41 °C) and the internal dynamics featured with intermediate motions on the ps-ns time scale. Aha1C's thermal and structural stabilities make it competent for the stabilization of the exposed hydrophobic groove of dimerized Hsp90's N-terminal domain. Of note, according to the NMR data and the thermal shift results, although the very N-terminal region (M1-W27) and the C-terminal relaxin-like factor (RLF) motif showed no tight contacts with the remaining parts of human Aha1, they were identified to play important roles in the recognition of intrinsically disordered pathological α-synuclein.
Collapse
Affiliation(s)
- Huifang Hu
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; (H.H.); (J.D.); (Y.D.)
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China;
| | - Qing Wang
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China;
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingwen Du
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; (H.H.); (J.D.); (Y.D.)
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China;
| | - Zhijun Liu
- National Facility for Protein Science in Shanghai, ZhangJiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (Z.L.); (H.X.)
| | - Yiluan Ding
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; (H.H.); (J.D.); (Y.D.)
| | - Hongjuan Xue
- National Facility for Protein Science in Shanghai, ZhangJiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (Z.L.); (H.X.)
| | - Chen Zhou
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; (H.H.); (J.D.); (Y.D.)
- Correspondence: (C.Z.); (L.F.); (N.Z.)
| | - Linyin Feng
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China;
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Correspondence: (C.Z.); (L.F.); (N.Z.)
| | - Naixia Zhang
- Analytical Research Center for Organic and Biological Molecules, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; (H.H.); (J.D.); (Y.D.)
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China;
- Correspondence: (C.Z.); (L.F.); (N.Z.)
| |
Collapse
|
11
|
Everson N, Bach J, Hammill JT, Falade MO, Rice AL, Guy RK, Eagon S. Identification of Plasmodium falciparum heat shock 90 inhibitors via molecular docking. Bioorg Med Chem Lett 2021; 35:127818. [PMID: 33513390 DOI: 10.1016/j.bmcl.2021.127818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/07/2021] [Accepted: 01/19/2021] [Indexed: 11/19/2022]
Abstract
A virtual screen was performed to identify anti-malarial compounds targeting Plasmodium falciparum heat shock 90 protein by applying a series of drug-like and commercial availability filters to compounds in the ZINC database, resulting in a virtual library of more than 13 million candidates. The goal of the virtual screen was to identify novel compounds which could serve as a starting point for the development of antimalarials with a mode of action different from anything currently used in the clinic. The screen targeted the ATP binding pocket of the highly conserved Plasmodium heat shock 90 protein, as this protein is critical to the survival of the parasite and has several significant structural differences from the human homolog. The top twelve compounds from the virtual screen were tested in vitro, with all twelve showing no antiproliferative activity against the human fibroblast cell line and three compounds exhibiting single digit or better micromolar antiproliferative activity against the chloroquine-sensitive P. falciparum 3D7 strain.
Collapse
Affiliation(s)
- Nikalet Everson
- Norwegian University of Science and Technology, Høgskoleringen 1, 7491 Trondheim, Norway
| | - Jordan Bach
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Jared T Hammill
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Mofolusho O Falade
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Amy L Rice
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - R Kiplin Guy
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40508, USA
| | - Scott Eagon
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
12
|
Li C, Chu H, Liu X, Chiu MC, Zhao X, Wang D, Wei Y, Hou Y, Shuai H, Cai J, Chan JFW, Zhou J, Yuen KY. Human coronavirus dependency on host heat shock protein 90 reveals an antiviral target. Emerg Microbes Infect 2020; 9:2663-2672. [PMID: 33179566 PMCID: PMC7751432 DOI: 10.1080/22221751.2020.1850183] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid accumulation of viral proteins in host cells render viruses highly dependent on cellular chaperones including heat shock protein 90 (Hsp90). Three highly pathogenic human coronaviruses, including MERS-CoV, SARS-CoV and SARS-CoV-2, have emerged in the past 2 decades. However, there is no approved antiviral agent against these coronaviruses. We inspected the role of Hsp90 for coronavirus propagation. First, an Hsp90 inhibitor, 17-AAG, significantly suppressed MERS-CoV propagation in cell lines and physiological-relevant human intestinal organoids. Second, siRNA depletion of Hsp90β, but not Hsp90α, significantly restricted MERS-CoV replication and abolished virus spread. Third, Hsp90β interaction with MERS-CoV nucleoprotein (NP) was revealed in a co-immunoprecipitation assay. Hsp90β is required to maintain NP stability. Fourth, 17-AAG substantially inhibited the propagation of SARS-CoV and SARS-CoV-2. Collectively, Hsp90 is a host dependency factor for human coronavirus MERS-CoV, SARS-CoV and SARS-COV-2. Hsp90 inhibitors can be repurposed as a potent and broad-spectrum antiviral against human coronaviruses.
Collapse
Affiliation(s)
- Cun Li
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China.,Department of Microbiology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China.,Department of Microbiology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Xiaojuan Liu
- Department of Microbiology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Man Chun Chiu
- Department of Microbiology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Xiaoyu Zhao
- Department of Microbiology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Dong Wang
- Department of Microbiology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Yuxuan Wei
- Department of Microbiology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Yuxin Hou
- Department of Microbiology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Huiping Shuai
- Department of Microbiology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Jianpiao Cai
- Department of Microbiology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China.,Department of Microbiology, The University of Hong Kong, Hong Kong, People's Republic of China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Jie Zhou
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China.,Department of Microbiology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Kwok Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong, People's Republic of China.,Department of Microbiology, The University of Hong Kong, Hong Kong, People's Republic of China.,Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, People's Republic of China
| |
Collapse
|
13
|
Zavareh RB, Spangenberg SH, Woods A, Martínez-Peña F, Lairson LL. HSP90 Inhibition Enhances Cancer Immunotherapy by Modulating the Surface Expression of Multiple Immune Checkpoint Proteins. Cell Chem Biol 2020; 28:158-168.e5. [PMID: 33113406 DOI: 10.1016/j.chembiol.2020.10.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/31/2020] [Accepted: 10/07/2020] [Indexed: 12/19/2022]
Abstract
Cancer immunotherapies, including immune checkpoint blockade, have the potential to significantly impact treatments for diverse tumor types. At present, response failures and immune-related adverse events remain significant issues, which could be addressed using optimized combination therapies. Through a cell-based chemical screen of ∼200,000 compounds, we identified that HSP90 inhibitors robustly decrease PD-L1 surface expression, through a mechanism that appears to involve the regulation of master transcriptional regulators (i.e., STAT-3 and c-Myc). Interestingly, HSP90 inhibitors were found to also modulate the surface expression of additional checkpoint proteins (i.e., PD-L2). In the MC-38 syngeneic mouse tumor model, HSP90 inhibition was found to dramatically reduce PD-L1 surface expression on isolated live tumor cells and, consistent with recent findings, was found to increase the number of activated CD8+ T cells within the tumor microenvironment. These findings provide further rationale to explore HSP90 inhibitors as part of combination immunotherapies for the treatment of cancer.
Collapse
Affiliation(s)
- Reza Beheshti Zavareh
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA; California Institute for Biomedical Research, 11119 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Stephan H Spangenberg
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ashley Woods
- California Institute for Biomedical Research, 11119 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Francisco Martínez-Peña
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Luke L Lairson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
14
|
Astl L, Stetz G, Verkhivker GM. Dissecting Molecular Principles of the Hsp90 Chaperone Regulation by Allosteric Modulators Using a Hierarchical Simulation Approach and Network Modeling of Allosteric Interactions: Conformational Selection Dictates the Diversity of Protein Responses and Ligand-Specific Functional Mechanisms. J Chem Theory Comput 2020; 16:6656-6677. [PMID: 32941034 DOI: 10.1021/acs.jctc.0c00503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Conformational plasticity of the Hsp90 molecular chaperones underlies the diversity of functional mechanisms that these versatile molecular machines employ to coordinate their vast protein clientele in the cellular environment. Despite a steady progress in studies of the Hsp90 machinery, a great deal remains unknown about molecular principles and ligand-specific functional mechanisms of the Hsp90 regulation by allosteric modulators that attracted significant attention because of their therapeutic potential. Due to structural complexity and dynamic nature of the Hsp90 responses to allosteric modulators, the atomistic details about the mode of action of these small molecules continue to be fairly scarce and controversial. In this work, we employ an integrative strategy that encompassed atomistic simulations of the Hsp90 proteins and hierarchical modeling of Hsp90-ligand binding with network analysis to explore functional mechanisms of the Hsp90 regulation by a panel of allosteric modulators (novobiocin, KU-135, KU-174, and KU-32) with different models of action. The results show that functional mechanisms of allosteric modulation in the Hsp90 proteins may be driven by conformational selection principles in which ligands elicit pre-existing states of the unbound chaperone to drive ligand-specific protein responses and distinct scenarios of Hsp90 regulation. We found that novobiocin can selectively sequester an ensemble of open chaperone conformations and inhibit the progression of the functional cycle through a cascade of cumulative dynamic changes. In contrast, KU-32 displayed unique preferences toward partially closed dynamic states, inducing robust allosteric signaling and stimulation of the ATPase cycle. The proposed model of the Hsp90 regulation by allosteric modulators reconciled diverse experimental data and showed that allosteric modulators may operate via targeted exploitation of dynamic landscapes eliciting vastly different protein responses and diverse mechanisms of action.
Collapse
Affiliation(s)
- Lindy Astl
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Gabrielle Stetz
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Gennady M Verkhivker
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States.,Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
15
|
Stetz G, Astl L, Verkhivker GM. Exploring Mechanisms of Communication Switching in the Hsp90-Cdc37 Regulatory Complexes with Client Kinases through Allosteric Coupling of Phosphorylation Sites: Perturbation-Based Modeling and Hierarchical Community Analysis of Residue Interaction Networks. J Chem Theory Comput 2020; 16:4706-4725. [PMID: 32492340 DOI: 10.1021/acs.jctc.0c00280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Understanding molecular principles underlying chaperone-based modulation of kinase client activity is critically important to dissect functions and activation mechanisms of many oncogenic proteins. The recent experimental studies have suggested that phosphorylation sites in the Hsp90 and Cdc37 proteins can serve as conformational communication switches of chaperone regulation and kinase interactions. However, a mechanism of allosteric coupling between phosphorylation sites in the Hsp90 and Cdc37 during client binding is poorly understood, and the molecular signatures underpinning specific roles of phosphorylation sites in the Hsp90 regulation remain unknown. In this work, we employed a combination of evolutionary analysis, coarse-grained molecular simulations together with perturbation-based network modeling and scanning of the unbound and bound Hsp90 and Cdc37 structures to quantify allosteric effects of phosphorylation sites and identify unique signatures that are characteristic for communication switches of kinase-specific client binding. By using network-based metrics of the dynamic intercommunity bridgeness and community centrality, we characterize specific signatures of phosphorylation switches involved in allosteric regulation. Through perturbation-based analysis of the dynamic residue interaction networks, we show that mutations of kinase-specific phosphorylation switches can induce long-range effects and lead to a global rewiring of the allosteric network and signal transmission in the Hsp90-Cdc37-kinase complex. We determine a specific group of phosphorylation sites in the Hsp90 where mutations may have a strong detrimental effect on allosteric interaction network, providing insight into the mechanism of phosphorylation-induced communication switching. The results demonstrate that kinase-specific phosphorylation switches of communications in the Hsp90 may be partly predisposed for their regulatory role based on preexisting allosteric propensities.
Collapse
Affiliation(s)
- Gabrielle Stetz
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Lindy Astl
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Gennady M Verkhivker
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States.,Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
16
|
Astl L, Stetz G, Verkhivker GM. Allosteric Mechanism of the Hsp90 Chaperone Interactions with Cochaperones and Client Proteins by Modulating Communication Spines of Coupled Regulatory Switches: Integrative Atomistic Modeling of Hsp90 Signaling in Dynamic Interaction Networks. J Chem Inf Model 2020; 60:3616-3631. [DOI: 10.1021/acs.jcim.0c00380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lindy Astl
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Gabrielle Stetz
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California92618, United States
| |
Collapse
|
17
|
Zhou C, Zhang C, Zhu H, Liu Z, Su H, Zhang X, Chen T, Zhong Y, Hu H, Xiong M, Zhou H, Xu Y, Zhang A, Zhang N. Allosteric Regulation of Hsp90α's Activity by Small Molecules Targeting the Middle Domain of the Chaperone. iScience 2020; 23:100857. [PMID: 32058968 PMCID: PMC6997908 DOI: 10.1016/j.isci.2020.100857] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/20/2019] [Accepted: 01/15/2020] [Indexed: 12/11/2022] Open
Abstract
Hsp90 is a target for anti-cancer drug development. Both the conformational events tuned by ATP/ADP and co-chaperones and the chaperoning cycle timing are required for Hsp90's fully functional display. Interfering with either one of the conformational events or the cycle timing will down-regulate Hsp90's function. In this manuscript, non-covalent allosteric modulators (SOMCL-16-171 and SOMCL-16-175) targeting Hsp90α’s middle domain (Hsp90M) were developed for the first time. Multiple techniques were then applied to characterize the interactions between two active compounds and Hsp90α. Two loops and one α-helix (F349-N360, K443-E451, and D372-G387) in Hsp90M were identified responsible for the recognition of SOMCL-16-171 and SOMCL-16-175. Meanwhile, the binding of SOMCL-16-171 and SOMCL-16-175 to Hsp90M was demonstrated to allosterically modulate the structure and function of Hsp90α’s N-terminal domain. Finally, cellular assays were conducted to evaluate the cellular activity of SOMCL-16-175, and the results indicate that SOMCL-16-175 destabilizes Hsp90's client proteins and reduces cell viability. Allosteric modulators targeting Hsp90α's middle domain were developed for the first time Key elements in Hsp90M for the recognition of allosteric modulators were identified Compound SOMCL-16-175 promotes Hsp90α’s ATPase activity and reduces cell viability SOMCL-16-175 destabilizes Hsp90's clients without triggering heat shock response
Collapse
Affiliation(s)
- Chen Zhou
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Chi Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongwen Zhu
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhijun Liu
- National Facility for Protein Science in Shanghai, ZhangJiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Haixia Su
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xianglei Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Tingting Chen
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yan Zhong
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Huifang Hu
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Muya Xiong
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Hu Zhou
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yechun Xu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| | - Naixia Zhang
- Department of Analytical Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
18
|
Verkhivker GM. Dynamics-based community analysis and perturbation response scanning of allosteric interaction networks in the TRAP1 chaperone structures dissect molecular linkage between conformational asymmetry and sequential ATP hydrolysis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:899-912. [PMID: 29684503 DOI: 10.1016/j.bbapap.2018.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 01/29/2023]
Abstract
Allosteric interactions of the Hsp90 chaperones with cochaperones and diverse protein clients can often exhibit distinct asymmetric features that determine regulatory mechanisms and cellular functions in many signaling networks. The recent crystal structures of the mitochondrial Hsp90 isoform TRAP1 in complexes with ATP analogs have provided first evidence of significant asymmetry in the closed dimerized state that triggers independent activity of the chaperone protomers, whereby preferential hydrolysis of the buckled protomer is followed by conformational flipping between protomers and hydrolysis of the second protomer. Despite significant insights in structural characterizations of the TRAP1 chaperone, the atomistic details and mechanics of allosteric interactions that couple sequential ATP hydrolysis with asymmetric conformational switching in the TRAP1 protomers remain largely unknown. In this work, we explored atomistic and coarse-grained simulations of the TRAP1 dimer structures in combination with the ensemble-based network modeling and perturbation response scanning of residue interaction networks to probe salient features underlying allosteric signaling mechanism. This study has revealed that key effector sites that orchestrate allosteric interactions occupy the ATP binding region and N-terminal interface of the buckled protomer, whereas the main sensors of allosteric signals that drive functional conformational changes during ATPase cycle are consolidated near the client binding region of the straight protomer, channeling the energy of ATP hydrolysis for client remodeling. The community decomposition analysis of the interaction networks and reconstruction of allosteric communication pathways in the TRAP1 structures have quantified mechanism of allosteric regulation, revealing control points and interactions that coordinate asymmetric switching during ATP hydrolysis.
Collapse
Affiliation(s)
- Gennady M Verkhivker
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA 92866, United States; Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA 92618, United States.
| |
Collapse
|
19
|
Stetz G, Verkhivker GM. Functional Role and Hierarchy of the Intermolecular Interactions in Binding of Protein Kinase Clients to the Hsp90–Cdc37 Chaperone: Structure-Based Network Modeling of Allosteric Regulation. J Chem Inf Model 2018; 58:405-421. [DOI: 10.1021/acs.jcim.7b00638] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Gabrielle Stetz
- Graduate Program
in Computational and Data Sciences, Department of Computational Sciences,
Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Gennady M. Verkhivker
- Graduate Program
in Computational and Data Sciences, Department of Computational Sciences,
Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
- Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
20
|
Verkhivker GM. Computational Modeling of the Hsp90 Interactions with Cochaperones and Small-Molecule Inhibitors. Methods Mol Biol 2018; 1709:253-273. [PMID: 29177665 DOI: 10.1007/978-1-4939-7477-1_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Allosteric interactions of the molecular chaperone Hsp90 with a diverse array of cochaperones and client proteins, such as protein kinases and transcription factors, allow for efficient molecular communication in signal transduction networks. Deregulation of pathways involving these proteins is commonly associated with cancer pathologies and allosteric inhibition of oncogenic clients by targeting Hsp90 provides a powerful therapeutic strategy in cancer research. We review several validated computational approaches and tools used in the studies of the Hsp90 interactions with proteins and small molecules. These methods include experimentally guided docking to predict Hs90-protein interactions, molecular and binding free energy simulations to analyze Hsp90 binding with small molecules, and structure-based network modeling to evaluate allosteric interactions and communications in the Hsp90 regulatory complexes. Through the lens of allosteric-centric view on Hsp90 function and regulation, we discuss newly emerging computational tools that link protein structure modeling with biophysical simulations and network-based systems biology approaches.
Collapse
Affiliation(s)
- Gennady M Verkhivker
- Schmid College of Science and Technology, Chapman University, University Drive, Orange, CA, 92866, USA.
- Chapman University School of Pharmacy, Irvine, CA, USA.
| |
Collapse
|
21
|
Czemeres J, Buse K, Verkhivker GM. Atomistic simulations and network-based modeling of the Hsp90-Cdc37 chaperone binding with Cdk4 client protein: A mechanism of chaperoning kinase clients by exploiting weak spots of intrinsically dynamic kinase domains. PLoS One 2017; 12:e0190267. [PMID: 29267381 PMCID: PMC5739471 DOI: 10.1371/journal.pone.0190267] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022] Open
Abstract
A fundamental role of the Hsp90 and Cdc37 chaperones in mediating conformational development and activation of diverse protein kinase clients is essential in signal transduction. There has been increasing evidence that the Hsp90-Cdc37 system executes its chaperoning duties by recognizing conformational instability of kinase clients and modulating their folding landscapes. The recent cryo-electron microscopy structure of the Hsp90-Cdc37-Cdk4 kinase complex has provided a framework for dissecting regulatory principles underlying differentiation and recruitment of protein kinase clients to the chaperone machinery. In this work, we have combined atomistic simulations with protein stability and network-based rigidity decomposition analyses to characterize dynamic factors underlying allosteric mechanism of the chaperone-kinase cycle and identify regulatory hotspots that control client recognition. Through comprehensive characterization of conformational dynamics and systematic identification of stabilization centers in the unbound and client- bound Hsp90 forms, we have simulated key stages of the allosteric mechanism, in which Hsp90 binding can induce instability and partial unfolding of Cdk4 client. Conformational landscapes of the Hsp90 and Cdk4 structures suggested that client binding can trigger coordinated dynamic changes and induce global rigidification of the Hsp90 inter-domain regions that is coupled with a concomitant increase in conformational flexibility of the kinase client. This process is allosteric in nature and can involve reciprocal dynamic exchanges that exert global effect on stability of the Hsp90 dimer, while promoting client instability. The network-based rigidity analysis and emulation of thermal unfolding of the Cdk4-cyclin D complex and Hsp90-Cdc37-Cdk4 complex revealed weak spots of kinase instability that are present in the native Cdk4 structure and are targeted by the chaperone during client recruitment. Our findings suggested that this mechanism may be exploited by the Hsp90-Cdc37 chaperone to recruit and protect intrinsically dynamic kinase clients from degradation. The results of this investigation are discussed and interpreted in the context of diverse experimental data, offering new insights into mechanisms of chaperone regulation and binding.
Collapse
Affiliation(s)
- Josh Czemeres
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Kurt Buse
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M. Verkhivker
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Wang Y, Li Y, Ding T. Heat shock protein 90β in the Vero cell membrane binds Japanese encephalitis virus. Int J Mol Med 2017; 40:474-482. [PMID: 28656253 PMCID: PMC5505021 DOI: 10.3892/ijmm.2017.3041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/14/2017] [Indexed: 12/20/2022] Open
Abstract
The pathogenesis of Japanese encephalitis virus (JEV) is complex and unclearly defined, and in particular, the effects of the JEV receptor (JEVR) on diverse susceptible cells are elusive. In contrast to previous studies investigating JEVR in rodent or mosquito cells, in this study, we used primate Vero cells instead. We noted that few novel proteins co‑immunoprecipitated with JEV, and discovered that one of these was heat shock protein 90β (HSP90β), which was probed by mass spectrometry with the highest score of 60.3 after questing the monkey and human protein databases. The specific HSP90β‑JEV binding was confirmed by western blot analysis under non‑reducing conditions, and this was significantly inhibited by an anti‑human HSP90β monoclonal antibody in a dose‑dependent manner, as shown by immunofluorescence assay and flow cytometry. In addition, the results of confocal laser scanning microscopic examination demonstrated that the HSP90β‑JEV binding occurred on the Vero cell surface. Finally, JEV progeny yields determined by plaque assay were also markedly decreased in siRNA‑treated Vero cells, particularly at 24 and 36 h post‑infection. Thus, our data indicate that HSP90β is a binding receptor for JEV in Vero cells.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Microbiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yan Li
- Department of Microbiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Tianbing Ding
- Department of Microbiology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
23
|
Stetz G, Verkhivker GM. Computational Analysis of Residue Interaction Networks and Coevolutionary Relationships in the Hsp70 Chaperones: A Community-Hopping Model of Allosteric Regulation and Communication. PLoS Comput Biol 2017; 13:e1005299. [PMID: 28095400 PMCID: PMC5240922 DOI: 10.1371/journal.pcbi.1005299] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 12/06/2016] [Indexed: 12/28/2022] Open
Abstract
Allosteric interactions in the Hsp70 proteins are linked with their regulatory mechanisms and cellular functions. Despite significant progress in structural and functional characterization of the Hsp70 proteins fundamental questions concerning modularity of the allosteric interaction networks and hierarchy of signaling pathways in the Hsp70 chaperones remained largely unexplored and poorly understood. In this work, we proposed an integrated computational strategy that combined atomistic and coarse-grained simulations with coevolutionary analysis and network modeling of the residue interactions. A novel aspect of this work is the incorporation of dynamic residue correlations and coevolutionary residue dependencies in the construction of allosteric interaction networks and signaling pathways. We found that functional sites involved in allosteric regulation of Hsp70 may be characterized by structural stability, proximity to global hinge centers and local structural environment that is enriched by highly coevolving flexible residues. These specific characteristics may be necessary for regulation of allosteric structural transitions and could distinguish regulatory sites from nonfunctional conserved residues. The observed confluence of dynamics correlations and coevolutionary residue couplings with global networking features may determine modular organization of allosteric interactions and dictate localization of key mediating sites. Community analysis of the residue interaction networks revealed that concerted rearrangements of local interacting modules at the inter-domain interface may be responsible for global structural changes and a population shift in the DnaK chaperone. The inter-domain communities in the Hsp70 structures harbor the majority of regulatory residues involved in allosteric signaling, suggesting that these sites could be integral to the network organization and coordination of structural changes. Using a network-based formalism of allostery, we introduced a community-hopping model of allosteric communication. Atomistic reconstruction of signaling pathways in the DnaK structures captured a direction-specific mechanism and molecular details of signal transmission that are fully consistent with the mutagenesis experiments. The results of our study reconciled structural and functional experiments from a network-centric perspective by showing that global properties of the residue interaction networks and coevolutionary signatures may be linked with specificity and diversity of allosteric regulation mechanisms. The diversity of allosteric mechanisms in the Hsp70 proteins could range from modulation of the inter-domain interactions and conformational dynamics to fine-tuning of the Hsp70 interactions with co-chaperones. The goal of this study is to present a systematic computational analysis of the dynamic and evolutionary factors underlying allosteric structural transformations of the Hsp70 proteins. We investigated the relationship between functional dynamics, residue coevolution, and network organization of residue interactions in the Hsp70 proteins. The results of this study revealed that conformational dynamics of the Hsp70 proteins may be linked with coevolutionary propensities and mutual information dependencies of the protein residues. Modularity and connectivity of allosteric interactions in the Hsp70 chaperones are coordinated by stable functional sites that feature unique coevolutionary signatures and high network centrality. The emergence of the inter-domain communities that are coordinated by functional centers and include highly coevolving residues could facilitate structural transitions through cooperative reorganization of the local interacting modules. We determined that the differences in the modularity of the residue interactions and organization of coevolutionary networks in DnaK may be associated with variations in their allosteric mechanisms. The network signatures of the DnaK structures are characteristic of a population-shift allostery that allows for coordinated structural rearrangements of local communities. A dislocation of mediating centers and insufficient coevolutionary coupling between functional regions may render a reduced cooperativity and promote a limited entropy-driven allostery in the Sse1 chaperone that occurs without structural changes. The results of this study showed that a network-centric framework and a community-hopping model of allosteric communication pathways may provide novel insights into molecular and evolutionary principles of allosteric regulation in the Hsp70 proteins.
Collapse
Affiliation(s)
- Gabrielle Stetz
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
- Chapman University School of Pharmacy, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Xu Y, Wallace MAG, Fitzgerald MC. Thermodynamic Analysis of the Geldanamycin-Hsp90 Interaction in a Whole Cell Lysate Using a Mass Spectrometry-Based Proteomics Approach. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1670-1676. [PMID: 27530778 DOI: 10.1007/s13361-016-1457-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/14/2016] [Accepted: 07/16/2016] [Indexed: 06/06/2023]
Abstract
Geldanamycin is a natural product with well-established and potent anti-cancer activities. Heat shock protein 90 (Hsp90) is the known target of geldanamycin, which directly binds to Hsp90's N-terminal ATP binding domain and inhibits Hsp90's ATPase activity. The affinity of geldanamycin for Hsp90 has been measured in multiple studies. However, there have been large discrepancies between the reported dissociation constants (i.e., Kd values), which have ranged from low nanomolar to micromolar. Here the stability of proteins from rates of oxidation (SPROX) technique was used in combination with an isobaric mass tagging strategy to measure the binding affinity of geldanamycin to unpurified Hsp90 in an MCF-7 cell lysate. The Kd values determined here were dependent on how long geldanamycin was equilibrated with the lysate prior to SPROX analysis. The Kd values determined using equilibration times of 0.5 and 24 h were 1 and 0.03 μM, respectively. These Kd values, which are similar to those previously reported in a geldanamycin-Hsp90 binding study that involved the use of a fluorescently labeled geldanamycin analogue, establish that the slow-tight binding behavior previously observed for the fluorescently labeled geldanamycin analogue is not an artifact of the fluorescent label, but rather an inherent property of the geldanamycin-Hsp90 binding interaction. The slow-tight binding property of this complex may be related to time-dependent conformational changes in Hsp90 and/or to time-dependent chemical changes in geldanamycin, both of which have been previously proposed to explain the slow-tight binding behavior of the geldanamycin-Hsp90 complex. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yingrong Xu
- Pfizer, Inc., Groton, CT, 06340, USA
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - M Ariel Geer Wallace
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27709, USA
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | | |
Collapse
|
25
|
Wu D, Zhang M, Lu Y, Tang S, Kemper N, Hartung J, Bao E. Aspirin-induced heat stress resistance in chicken myocardial cells can be suppressed by BAPTA-AM in vitro. Cell Stress Chaperones 2016; 21:817-27. [PMID: 27262845 PMCID: PMC5003798 DOI: 10.1007/s12192-016-0706-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/09/2016] [Accepted: 05/27/2016] [Indexed: 02/02/2023] Open
Abstract
Our recent studies have displayed the protective functions of aspirin against heat stress (HS) in chicken myocardial cells, and it may be associated with heat shock proteins (HSPs). In this study, we further investigated the potential role of HSPs in the aspirin-induced heat stress resistance. Four of the most important HSPs including HspB1 (Hsp27), Hsp60, Hsp70, and Hsp90 were induced by aspirin pretreatment and were suppressed by BAPTA-AM. When HSPs were induced by aspirin, much slighter HS injury was detected. But more serious damages were observed when HSPs were suppressed by BAPTA-AM than those cells exposed to HS without BAPTA-AM, even the myocardial cells have been treated with aspirin in prior. Comparing to other HSPs, HspB1 presented the largest increase after aspirin treatments, 86-fold higher than the baseline (the level before HS). These findings suggested that multiple HSPs participated in aspirin's anti-heat stress function but HspB1 may contribute the most. Interestingly, during the experiments, we also found that apoptosis rate as well as the oxidative stress indicators (T-SOD and MDA) was not consistently responding to heat stress injury as expected. By selecting from a series of candidates, myocardial cell damage-related enzymes (CK-MB and LDH), cytopathological tests, and necrosis rate (measured by flow cytometry assays) are believed to be reliable indicators to evaluate heat stress injury in chicken's myocardial cells and they will be used in our further investigations.
Collapse
Affiliation(s)
- Di Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Miao Zhang
- College of Animal Science and Technology, Jinling Institute of Technology, Nanjing, 210038, China
| | - Yinjun Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Shu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - N Kemper
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - J Hartung
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Endong Bao
- College of Veterinary Medicine, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China.
| |
Collapse
|
26
|
Song X, Zhao Z, Qi X, Tang S, Wang Q, Zhu T, Gu Q, Liu M, Li J. Identification of epipolythiodioxopiperazines HDN-1 and chaetocin as novel inhibitor of heat shock protein 90. Oncotarget 2016; 6:5263-74. [PMID: 25742791 PMCID: PMC4467147 DOI: 10.18632/oncotarget.3029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/01/2015] [Indexed: 11/25/2022] Open
Abstract
The molecular chaperone heat shock protein 90 (Hsp90) has emerged as an important target for cancer treatment. HDN-1, an epipolythiopiperazine-2, 5-diones (ETPs) compound, was here identified as a new Hsp90 inhibitor. HDN-1 bound directly to C-terminus of Hsp90α, resulting in a potential conformational change that interfered with the binding of 17-AAG and novobiocin to Hsp90α. In contrast, association of 17-AAG, novobiocin or ATP with Hsp90α did not prevent the binding HDN-1 to Hsp90α. HDN-1 in combination with 17-AAG exhibited an enhanced inhibitory effect on non-small lung cancer cell proliferation. Molecular docking analyses revealed that HDN-1 bound to Hsp90α at C-terminal 526–570 region. In addition, HDN-1 degraded multiple oncoproteins and promoted EGF-induced wild type and mutated EGFR downregulation. Notably, chaetocin, used as a SUV39H1 inhibitor with similar structure to HDN-1, bound to Hsp90 and degraded Hsp90 client proteins and SUV39H1 as did HDN-1. These results indicate that HDN-1 and chaetocin are inhibitors of Hsp90 and that SUV39H1 is a novel client protein of Hsp90.
Collapse
Affiliation(s)
- Xiaoping Song
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P. R. China
| | - Zhimin Zhao
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P. R. China
| | - Xin Qi
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P. R. China
| | - Shuai Tang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P. R. China
| | - Qiang Wang
- Department of Pharmacy, School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, P. R. China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P. R. China
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P. R. China
| | - Ming Liu
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P. R. China
| | - Jing Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, P. R. China
| |
Collapse
|
27
|
Abstract
Under stressful conditions, the heat shock protein 90 (HSP90) molecular chaperone protects cellular proteins (client proteins) from degradation via the ubiquitin-proteasome pathway. HSP90 expression is upregulated in cancers, and this contributes to the malignant phenotype of increased proliferation and decreased apoptosis and maintenance of metastatic potential via conservation of its client proteins, including human epidermal growth factor receptor 2, anaplastic lymphoma kinase, androgen receptor, estrogen receptor, Akt, Raf-1, cell cycle proteins, and B-cell lymphoma 2 among others. Hence, inhibition of HSP90 leads to the simultaneous degradation of its many clients, thereby disrupting multiple oncogenic signaling cascades. This has sparked tremendous interest in the development of HSP90 inhibitors as an innovative anticancer strategy. Based on the wealth of compelling data from preclinical studies, a number of HSP90 inhibitors have entered into clinical testing. However, despite enormous promise and anticancer activity reported to date, none of the HSP90 inhibitors in development has been approved for cancer therapy, and the full potential of this class of agents is yet to be realized. This article provides a review on ganetespib, a small molecule HSP90 inhibitor that is currently under evaluation in a broad range of cancer types in combination with other therapeutic agents with the hope of further enhancing its efficacy and overcoming drug resistance. Based on our current understanding of the complex HSP90 machinery combined with the emerging data from these key clinical trials, ganetespib has the potential to be the first-in-class HSP90 inhibitor to be approved as a new anticancer therapy.
Collapse
Affiliation(s)
- Komal Jhaveri
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shanu Modi
- Breast Medicine Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
28
|
Xie Y, Song L, Weng Z, Liu S, Liu Z. Hsp90, Hsp60 and sHsp families of heat shock protein genes in channel catfish and their expression after bacterial infections. FISH & SHELLFISH IMMUNOLOGY 2015; 44:642-51. [PMID: 25827625 DOI: 10.1016/j.fsi.2015.03.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/25/2015] [Accepted: 03/20/2015] [Indexed: 05/26/2023]
Abstract
Heat shock proteins (Hsps) are a suite of highly conserved proteins whose expressions are generally induced by elevated temperature. However, many Hsps play important roles in both innate and adaptive immunity. On the basis of our previous work on Hsp40 and Hsp70 gene families in channel catfish (Ictalurus punctatus), the objective of this study was to characterize Hsp90, Hsp60, Hsp10, and small Hsp genes, and to investigate their expression profiles after bacterial infections. A total of 20 Hsp genes were identified and annotated in the channel catfish genome, including five Hsp90 genes, one Hsp60 gene, one Hsp10 gene, and 13 sHsp genes. Six Hsp genes were differentially expressed after Edwardsiella ictaluri infection, and 12 were differentially expressed after Flavobacterium columnare infection. Although expression of these genes exhibited both temporal and spatial regulation, the induction of Hsp genes was observed soon after bacterial infection, while the suppression of Hsp genes was observed at later time-points, suggesting their distinct roles in immune responses and disease defenses. A pathogen-specific expression pattern of Hsp90 was observed. After F. columnare infection, all Hsp90 genes were found up-regulated except Hsp90ab1, which was not significantly regulated. However, after E. ictaluri infection, only one Hsp90 gene was found significantly down-regulated. Both pathogen-specific and tissue-specific pattern of expression were observed with small Hsps after E. ictaluri and F. columnare bacterial infections. These results suggested that most of Hsp genes may play important roles in immune response and/or disease defense in channel catfish.
Collapse
Affiliation(s)
- Yangjie Xie
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Lin Song
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Zhaohong Weng
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA; Fisheries College, Jimei University, Xiamen 361021, PR China
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
29
|
Liu W, Landgraf R. Phosphorylated and unphosphorylated serine 13 of CDC37 stabilize distinct interactions between its client and HSP90 binding domains. Biochemistry 2015; 54:1493-504. [PMID: 25619116 DOI: 10.1021/bi501129g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Folding and maturation of most protein kinases require chaperone assistance. In higher eukaryotes, CDC37 is the predominant cochaperone that facilitates the transfer of kinase clients to HSP90. Kinase recognition is thought to occur through the N-terminal domain, which has, thus far, eluded structure determination. Client processing also requires the phosphorylation of the N-terminal tail at Ser13 by protein kinase CK2 (casein kinase 2). How phosphorylation alters the molecular properties of CDC37 is not understood. We show that the phosphorylation at Ser13 induces a large shift toward a more compact structure, based on ANS fluorescence, while modestly increasing secondary structure. Moreover, this transition requires interactions of the N-terminal domain and the remainder of CDC37. The stabilizing property of the phosphorylation event can be recreated in trans by a (phospho-Ser13) peptide derived from the N-terminal tail. However, the phosphorylation-induced transition is not dependent on the transferred phosphate group but rather the loss of serine-like properties at position 13. The complete absence of the N-terminal tail results in reduced secondary structure and unresponsiveness to subsequent addition of peptides. The N-terminal tail may therefore serve as an intramolecular chaperone that ensures that CDC37 assumes one of two readily interconvertible states in a manner that impacts the interaction of the client binding N-domain and the MC-domains, involved in dimerization and HSP90 binding.
Collapse
Affiliation(s)
- Wenjun Liu
- Department of Biochemistry and Molecular Biology and ‡Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine , Miami, Florida 33136, United States
| | | |
Collapse
|
30
|
Seraphim TV, Gava LM, Mokry DZ, Cagliari TC, Barbosa LR, Ramos CH, Borges JC. The C-terminal region of the human p23 chaperone modulates its structure and function. Arch Biochem Biophys 2015; 565:57-67. [DOI: 10.1016/j.abb.2014.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/27/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
|
31
|
Cai MJ, Li XR, Pei XY, Liu W, Wang JX, Zhao XF. Heat shock protein 90 maintains the stability and function of transcription factor Broad Z7 by interacting with its Broad-Complex-Tramtrack-Bric-a-brac domain. INSECT MOLECULAR BIOLOGY 2014; 23:720-732. [PMID: 25060629 DOI: 10.1111/imb.12118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Heat shock protein 90 (Hsp90) is a highly conserved chaperone protein that interacts with various client proteins to mediate their folding and stability. The Broad-Complex-Tramtrack-Bric-a-brac (BTB) domain, also known as poxvirus and zinc finger (POZ) domain, exists widely in different proteins and is highly conserved. However, the stability mechanism of BTB domain-containing proteins has not been fully understood. Co-immunoprecipitation and a protein pull-down assay were performed to investigate the interaction between Hsp90 and the transcription factor Broad isoform Z7 (BrZ7) in vivo and in vitro. The middle domain of Hsp90 directly associated with the BTB domain of BrZ7. The Hsp90 inhibitor 17-(Allylamino)-17-demethoxygeldanamycin (17-AAG) interrupted the interaction between Hsp90 and BrZ7 and decreased the protein level of BrZ7 but did not affect the mRNA level of BrZ7. The addition of the proteasome inhibitor peptide aldehyde Cbz-leu-leu leucinal suppressed the 17-AAG-induced degradation of BrZ7. BTB domain deletion and 17-AAG treatment resulted in inhibition of BrZ7 function in gene expression in the 20-hydroxyecdysone and juvenile hormone pathways. These results reveal that the middle domain of Hsp90 associates with the BTB domain of BrZ7 to prevent BrZ7 degradation and maintain BrZ7 function in gene expression in the lepidopteran insect Helicoverpa armigera.
Collapse
Affiliation(s)
- M-J Cai
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science, Shandong University, Jinan, China
| | | | | | | | | | | |
Collapse
|
32
|
Heat shock proteins at the crossroads between cancer and Alzheimer's disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:239164. [PMID: 25147790 PMCID: PMC4131517 DOI: 10.1155/2014/239164] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/12/2014] [Indexed: 12/31/2022]
Abstract
Heat shock proteins 70 and heat shock proteins 90 (Hsp70/90) have been implicated in many crucial steps of carcinogenesis: stabilizing oncogenic proteins, inhibiting programmed cell death and replicative senescence, induction of tumor angiogenesis, and activation of the invasion and metastasis. Plenty of cancer related proteins have the ability of regulating the expression of Hsp70/90 through heat shock factor 1. Cancer and Alzheimer's disease (AD) have plenty of overlapping regions in molecular genetics and cell biology associated with Hsp70/90. The Hsp70, as a protein stabilizer, has a cellular protection against neurodegeneration of the central nervous system, while Hsp90 promote neurodegenerative disorders indirectly through regulating the expression of Hsp70 and other chaperones. All these make existing anticancer drugs target Hsp70/90 which might be used in AD therapy.
Collapse
|
33
|
Development of radamide analogs as Grp94 inhibitors. Bioorg Med Chem 2014; 22:4083-98. [PMID: 25027801 DOI: 10.1016/j.bmc.2014.05.075] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 05/21/2014] [Accepted: 05/28/2014] [Indexed: 12/29/2022]
Abstract
Hsp90 isoform-selective inhibition is highly desired as it can potentially avoid the toxic side-effects of pan-inhibition. The current study developed selective inhibitors of one such isoform, Grp94, predicated on the chimeric and pan-Hsp90 inhibitor, radamide (RDA). Replacement of the quinone moiety of RDA with a phenyl ring (2) was found to be better suited for Grp94 inhibition as it can fully interact with a unique hydrophobic pocket present in Grp94. An extensive SAR for this scaffold showed that substitutions at the 2- and 4-positions (8 and 27, respectively) manifested excellent Grp94 affinity and selectivity. Introduction of heteroatoms into the ring also proved beneficial, with a 2-pyridine derivative (38) exhibiting the highest Grp94 affinity (K(d)=820 nM). Subsequent cell-based assays showed that these Grp94 inhibitors inhibit migration of the metastatic breast cancer cell line, MDA-MB-231, as well as exhibit an anti-proliferative affect against the multiple myeloma cell line, RPMI 8226.
Collapse
|
34
|
A Novel Mechanism for Cross-Adaptation between Heat and Altitude Acclimation: The Role of Heat Shock Protein 90. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/121402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Heat shock protein 90 (HSP90) is a member of a family of molecular chaperone proteins which can be upregulated by various stressors including heat stress leading to increases in HSP90 protein expression. Its primary functions include (1) renaturing and denaturing of damaged proteins caused by heat stress and (2) interacting with client proteins to induce cell signaling for gene expression. The latter function is of interest because, in cancer cells, HSP90 has been reported to interact with the transcription hypoxic-inducible factor 1α (HIF1α). In a normoxic environment, HIF1α is degraded and therefore has limited physiological function. In contrast, in a hypoxic environment, stabilized HIF1α acts to promote erythropoiesis and angiogenesis. Since HSP90 interacts with HIF1α, and HSP90 can be upregulated from heat acclimation in humans, we present a proposal that heat acclimation can mimic molecular adaptations to those of altitude exposure. Specifically, we propose that heat acclimation increases HSP90 which then stabilizes HIF1α in a normoxic environment. This has many implications since HIF1α regulates red blood cell and vasculature formation. In this paper we will discuss (1) the functional roles of HSP90 and HIF1α, (2) the interaction between HSP90 and other client proteins including HIF1α, and (3) results from in vitro studies that may suggest how the relationship between HSP90 and HIF1α might be applied to individuals preparing to make altitude sojourns.
Collapse
|
35
|
Amici R, Bigogno C, Boggio R, Colombo A, Courtney SM, Dal Zuffo R, Dondio G, Fusar F, Gagliardi S, Minucci S, Molteni M, Montalbetti CAGN, Mortoni A, Varasi M, Vultaggio S, Mercurio C. Chiral Resolution and Pharmacological Characterization of the Enantiomers of the Hsp90 Inhibitor 2-Amino-7-[4-fluoro-2-(3-pyridyl)phenyl]-4-methyl-7,8-dihydro-6H-quinazolin-5-one Oxime. ChemMedChem 2014; 9:1574-85. [DOI: 10.1002/cmdc.201400037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Indexed: 12/13/2022]
|
36
|
Ernst JT, Neubert T, Liu M, Sperry S, Zuccola H, Turnbull A, Fleck B, Kargo W, Woody L, Chiang P, Tran D, Chen W, Snyder P, Alcacio T, Nezami A, Reynolds J, Alvi K, Goulet L, Stamos D. Identification of novel HSP90α/β isoform selective inhibitors using structure-based drug design. demonstration of potential utility in treating CNS disorders such as Huntington's disease. J Med Chem 2014; 57:3382-400. [PMID: 24673104 DOI: 10.1021/jm500042s] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A structure-based drug design strategy was used to optimize a novel benzolactam series of HSP90α/β inhibitors to achieve >1000-fold selectivity versus the HSP90 endoplasmic reticulum and mitochondrial isoforms (GRP94 and TRAP1, respectively). Selective HSP90α/β inhibitors were found to be equipotent to pan-HSP90 inhibitors in promoting the clearance of mutant huntingtin protein (mHtt) in vitro, however with less cellular toxicity. Improved tolerability profiles may enable the use of HSP90α/β selective inhibitors in treating chronic neurodegenerative indications such as Huntington's disease (HD). A potent, selective, orally available HSP90α/β inhibitor was identified (compound 31) that crosses the blood-brain barrier. Compound 31 demonstrated proof of concept by successfully reducing brain Htt levels following oral dosing in rats.
Collapse
Affiliation(s)
- Justin T Ernst
- Vertex Pharmaceuticals , 11010 Torreyana Road, San Diego, California 92121, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Verkhivker GM. Computational Studies of Allosteric Regulation in the Hsp90 Molecular Chaperone: From Functional Dynamics and Protein Structure Networks to Allosteric Communications and Targeted Anti-Cancer Modulators. Isr J Chem 2014. [DOI: 10.1002/ijch.201300143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Hunter MC, O’Hagan KL, Kenyon A, Dhanani KCH, Prinsloo E, Edkins AL. Hsp90 binds directly to fibronectin (FN) and inhibition reduces the extracellular fibronectin matrix in breast cancer cells. PLoS One 2014; 9:e86842. [PMID: 24466266 PMCID: PMC3899338 DOI: 10.1371/journal.pone.0086842] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 12/16/2013] [Indexed: 12/30/2022] Open
Abstract
Heat shock protein 90 (Hsp90) has been identified in the extracellular space and has been shown to chaperone a finite number of extracellular proteins involved in cell migration and invasion. We used chemical cross-linking and immunoprecipitation followed by tandem mass spectrometry (MS/MS) to isolate a complex containing Hsp90 and the matrix protein fibronectin (FN) from breast cancer cells. Further analysis showed direct binding of Hsp90 to FN using an in vitro co-immunoprecipitation assay, a solid phase binding assay and surface plasmon resonance (SPR) spectroscopy. Confocal microscopy showed regions of co-localisation of Hsp90 and FN in breast cancer cell lines. Exogenous Hsp90β was shown to increase the formation of extracellular FN matrix in the Hs578T cell line, whilst knockdown or inhibition of Hsp90 led to a reduction in the levels of both soluble and insoluble FN and could be partially rescued by addition of exogenous Hsp90β. Treatment of cells with novobiocin led to internalization of FN into vesicles that were positive for the presence of the lysosomal marker, LAMP-1. Taken together, the direct interaction between FN and Hsp90, as well as the decreased levels of both soluble and insoluble FN upon Hsp90 inhibition or knockdown, suggested that FN may be a new client protein for Hsp90 and that Hsp90 was involved in FN matrix assembly and/or stability. The identification of FN as a putative client protein of Hsp90 suggests a role for Hsp90 in FN matrix stability, which is important for a number of fundamental cellular processes including embryogenesis, wound healing, cell migration and metastasis.
Collapse
Affiliation(s)
- Morgan C. Hunter
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Kyle L. O’Hagan
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Amy Kenyon
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Karim C. H. Dhanani
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Earl Prinsloo
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, Eastern Cape, South Africa
| | - Adrienne L. Edkins
- Biomedical Biotechnology Research Unit, Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, Eastern Cape, South Africa
- * E-mail:
| |
Collapse
|
39
|
Blacklock K, Verkhivker GM. Allosteric regulation of the Hsp90 dynamics and stability by client recruiter cochaperones: protein structure network modeling. PLoS One 2014; 9:e86547. [PMID: 24466147 PMCID: PMC3896489 DOI: 10.1371/journal.pone.0086547] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 12/06/2013] [Indexed: 12/29/2022] Open
Abstract
The fundamental role of the Hsp90 chaperone in supporting functional activity of diverse protein clients is anchored by specific cochaperones. A family of immune sensing client proteins is delivered to the Hsp90 system with the aid of cochaperones Sgt1 and Rar1 that act cooperatively with Hsp90 to form allosterically regulated dynamic complexes. In this work, functional dynamics and protein structure network modeling are combined to dissect molecular mechanisms of Hsp90 regulation by the client recruiter cochaperones. Dynamic signatures of the Hsp90-cochaperone complexes are manifested in differential modulation of the conformational mobility in the Hsp90 lid motif. Consistent with the experiments, we have determined that targeted reorganization of the lid dynamics is a unifying characteristic of the client recruiter cochaperones. Protein network analysis of the essential conformational space of the Hsp90-cochaperone motions has identified structurally stable interaction communities, interfacial hubs and key mediating residues of allosteric communication pathways that act concertedly with the shifts in conformational equilibrium. The results have shown that client recruiter cochaperones can orchestrate global changes in the dynamics and stability of the interaction networks that could enhance the ATPase activity and assist in the client recruitment. The network analysis has recapitulated a broad range of structural and mutagenesis experiments, particularly clarifying the elusive role of Rar1 as a regulator of the Hsp90 interactions and a stability enhancer of the Hsp90-cochaperone complexes. Small-world organization of the interaction networks in the Hsp90 regulatory complexes gives rise to a strong correspondence between highly connected local interfacial hubs, global mediator residues of allosteric interactions and key functional hot spots of the Hsp90 activity. We have found that cochaperone-induced conformational changes in Hsp90 may be determined by specific interaction networks that can inhibit or promote progression of the ATPase cycle and thus control the recruitment of client proteins.
Collapse
Affiliation(s)
- Kristin Blacklock
- School of Computational Sciences and Crean School of Health and Life Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M. Verkhivker
- School of Computational Sciences and Crean School of Health and Life Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
40
|
Ernst JT, Liu M, Zuccola H, Neubert T, Beaumont K, Turnbull A, Kallel A, Vought B, Stamos D. Correlation between chemotype-dependent binding conformations of HSP90α/β and isoform selectivity-Implications for the structure-based design of HSP90α/β selective inhibitors for treating neurodegenerative diseases. Bioorg Med Chem Lett 2013; 24:204-8. [PMID: 24332488 DOI: 10.1016/j.bmcl.2013.11.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/12/2013] [Accepted: 11/15/2013] [Indexed: 11/19/2022]
Abstract
HSP90 continues to be a target of interest for neurodegeneration indications. Selective knockdown of the HSP90 cytosolic isoforms α and β is sufficient to reduce mutant huntingtin protein levels in vitro. Chemotype-dependent binding conformations of HSP90α/β appear to strongly influence isoform selectivity. The rational design of HSP90α/β inhibitors selective versus the mitochondrial (TRAP1) and endoplasmic reticulum (GRP94) isoforms offers a potential mitigating strategy for mechanism-based toxicities. Better tolerated HSP90 inhibitors would be attractive for targeting chronic neurodegenerative diseases such as Huntington's disease.
Collapse
Affiliation(s)
- Justin T Ernst
- Vertex Pharmaceuticals, Department of Chemistry and Drug Innovation, 11010 Torreyana Road, San Diego, CA 92121, United States.
| | - Michael Liu
- Vertex Pharmaceuticals, Department of Biology, 11010 Torreyana Road, San Diego, CA 92121, United States
| | - Harmon Zuccola
- Vertex Pharmaceuticals, Department of Protein Sciences, 130 Waverly Street, Cambridge, MA 02139, United States
| | - Timothy Neubert
- Vertex Pharmaceuticals, Department of Chemistry and Drug Innovation, 11010 Torreyana Road, San Diego, CA 92121, United States
| | - Kevin Beaumont
- Vertex Pharmaceuticals, Department of Biology, 11010 Torreyana Road, San Diego, CA 92121, United States
| | - Amy Turnbull
- Vertex Pharmaceuticals, Department of Biology, 11010 Torreyana Road, San Diego, CA 92121, United States
| | - Adam Kallel
- Vertex Pharmaceuticals, Department of Chemistry and Drug Innovation, 11010 Torreyana Road, San Diego, CA 92121, United States
| | - Bryan Vought
- Vertex Pharmaceuticals, Department of Protein Sciences, 130 Waverly Street, Cambridge, MA 02139, United States
| | - Dean Stamos
- Vertex Pharmaceuticals, Department of Chemistry and Drug Innovation, 11010 Torreyana Road, San Diego, CA 92121, United States
| |
Collapse
|
41
|
Blacklock K, Verkhivker GM. Experimentally Guided Structural Modeling and Dynamics Analysis of Hsp90–p53 Interactions: Allosteric Regulation of the Hsp90 Chaperone by a Client Protein. J Chem Inf Model 2013; 53:2962-78. [DOI: 10.1021/ci400434g] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Kristin Blacklock
- School
of Computational Sciences and Crean School of Health and Life Sciences,
Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Gennady M. Verkhivker
- School
of Computational Sciences and Crean School of Health and Life Sciences,
Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
- Department
of Pharmacology, University of California San Diego, 9500 Gilman
Drive, La Jolla, California 92093, United States
| |
Collapse
|
42
|
Structural bioinformatics and protein docking analysis of the molecular chaperone-kinase interactions: towards allosteric inhibition of protein kinases by targeting the hsp90-cdc37 chaperone machinery. Pharmaceuticals (Basel) 2013; 6:1407-28. [PMID: 24287464 PMCID: PMC3854018 DOI: 10.3390/ph6111407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/30/2013] [Accepted: 11/05/2013] [Indexed: 01/05/2023] Open
Abstract
A fundamental role of the Hsp90-Cdc37 chaperone system in mediating maturation of protein kinase clients and supporting kinase functional activity is essential for the integrity and viability of signaling pathways involved in cell cycle control and organism development. Despite significant advances in understanding structure and function of molecular chaperones, the molecular mechanisms and guiding principles of kinase recruitment to the chaperone system are lacking quantitative characterization. Structural and thermodynamic characterization of Hsp90-Cdc37 binding with protein kinase clients by modern experimental techniques is highly challenging, owing to a transient nature of chaperone-mediated interactions. In this work, we used experimentally-guided protein docking to probe the allosteric nature of the Hsp90-Cdc37 binding with the cyclin-dependent kinase 4 (Cdk4) kinase clients. The results of docking simulations suggest that the kinase recognition and recruitment to the chaperone system may be primarily determined by Cdc37 targeting of the N-terminal kinase lobe. The interactions of Hsp90 with the C-terminal kinase lobe may provide additional "molecular brakes" that can lock (or unlock) kinase from the system during client loading (release) stages. The results of this study support a central role of the Cdc37 chaperone in recognition and recruitment of the kinase clients. Structural analysis may have useful implications in developing strategies for allosteric inhibition of protein kinases by targeting the Hsp90-Cdc37 chaperone machinery.
Collapse
|
43
|
Blacklock K, Verkhivker GM. Differential modulation of functional dynamics and allosteric interactions in the Hsp90-cochaperone complexes with p23 and Aha1: a computational study. PLoS One 2013; 8:e71936. [PMID: 23977182 PMCID: PMC3747073 DOI: 10.1371/journal.pone.0071936] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/10/2013] [Indexed: 12/27/2022] Open
Abstract
Allosteric interactions of the molecular chaperone Hsp90 with a large cohort of cochaperones and client proteins allow for molecular communication and event coupling in signal transduction networks. The integration of cochaperones into the Hsp90 system is driven by the regulatory mechanisms that modulate the progression of the ATPase cycle and control the recruitment of the Hsp90 clientele. In this work, we report the results of computational modeling of allosteric regulation in the Hsp90 complexes with the cochaperones p23 and Aha1. By integrating protein docking, biophysical simulations, modeling of allosteric communications, protein structure network analysis and the energy landscape theory we have investigated dynamics and stability of the Hsp90-p23 and Hsp90-Aha1 interactions in direct comparison with the extensive body of structural and functional experiments. The results have revealed that functional dynamics and allosteric interactions of Hsp90 can be selectively modulated by these cochaperones via specific targeting of the regulatory hinge regions that could restrict collective motions and stabilize specific chaperone conformations. The protein structure network parameters have quantified the effects of cochaperones on conformational stability of the Hsp90 complexes and identified dynamically stable communities of residues that can contribute to the strengthening of allosteric interactions. According to our results, p23-mediated changes in the Hsp90 interactions may provide "molecular brakes" that could slow down an efficient transmission of the inter-domain allosteric signals, consistent with the functional role of p23 in partially inhibiting the ATPase cycle. Unlike p23, Aha1-mediated acceleration of the Hsp90-ATPase cycle may be achieved via modulation of the equilibrium motions that facilitate allosteric changes favoring a closed dimerized form of Hsp90. The results of our study have shown that Aha1 and p23 can modulate the Hsp90-ATPase activity and direct the chaperone cycle by exerting the precise control over structural stability, global movements and allosteric communications in Hsp90.
Collapse
Affiliation(s)
- Kristin Blacklock
- School of Computational Sciences and Crean School of Health and Life Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M. Verkhivker
- School of Computational Sciences and Crean School of Health and Life Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
44
|
Franke J, Eichner S, Zeilinger C, Kirschning A. Targeting heat-shock-protein 90 (Hsp90) by natural products: geldanamycin, a show case in cancer therapy. Nat Prod Rep 2013; 30:1299-323. [PMID: 23934201 DOI: 10.1039/c3np70012g] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Covering 2005 to 2013. In this review recent progress in the development of heat shock proteins (Hsp90) in oncogenesis is illuminated. Particular emphasis is put on inhibitors such as geldanamycin and analogues that serve as a natural product show case. Hsp90 has emerged as an important target in cancer therapy and/or against pathogenic cells which elicit abnormal Hsp patterns. Competition for ATP by geldanamycin and related compounds abrogate the chaperone function of Hsp90. In this context, this account pursues three topics in detail: a) Hsp90 and its biochemistry, b) Hsp90 and its role in oncogenesis and c) strategies to create compound libraries of structurally complex inhibitors like geldanamycin on which SAR studies and the development of drugs that are currently in different stages of clinical testing rely.
Collapse
Affiliation(s)
- Jana Franke
- Institut für Organische Chemie und Zentrum für Biomolekulare Wirkstoffchemie (BMWZ), Leibniz Universität Hannover, Schneiderberg 1B, D-30167 Hannover, Germany.
| | | | | | | |
Collapse
|
45
|
Terracciano S, Chini MG, Piaz FD, Vassallo A, Riccio R, Bruno I, Bifulco G. Dimeric and trimeric triazole based molecules as a new class of Hsp90 molecular chaperone inhibitors. Eur J Med Chem 2013; 65:464-76. [DOI: 10.1016/j.ejmech.2013.05.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 01/05/2023]
|
46
|
Lee WH, Lee JM, Lim C, Kim S, Kim SG. Structural requirements within protoporphyrin IX in the inhibition of heat shock protein 90. Chem Biol Interact 2013; 204:49-57. [DOI: 10.1016/j.cbi.2013.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 03/28/2013] [Accepted: 04/15/2013] [Indexed: 02/04/2023]
|
47
|
Li Y, Wen T, Zhu M, Li L, Wei J, Wu X, Guo M, Liu S, Zhao H, Xia S, Huang W, Wang P, Wu Z, Zhao L, Shui W, Li Z, Yin Z. Glycoproteomic analysis of tissues from patients with colon cancer using lectin microarrays and nanoLC-MS/MS. MOLECULAR BIOSYSTEMS 2013; 9:1877-87. [PMID: 23567825 DOI: 10.1039/c3mb00013c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The current study evaluated the glycoproteomic profile of tissues from colon cancer patients. The lectin microarray was first performed to compare the glycoprotein profiles between colon cancer and matched normal tissues. Level of N-acetylglucosamine (GlcNAc) that Solanum tuberosum lectin (STL) bound was found to be elevated in colon cancer, which was verified through lectin histochemistry. The subsequent glycoproteomic analysis based on STL enrichment of glycoproteins followed by label-free quantitative nano liquid chromatography-mass spectrometry/mass spectrometry (nanoLC-MS/MS) analysis identified 72 proteins in high confidence. Among these proteins, 17 were exclusively detected in cancer tissues, and 14 were significantly upregulated in tumor tissues. Annexin A1 and HSP90β were chosen for further investigation by immunoprecipitation coupled with lectin blots, western blots and tissue microarrays. Both Annexin A1 and HSP90β were GlcNAcylated, and their protein expressions were elevated in colon cancer, compared to normal tissues. Moreover, specific changes of GlcNAc abundances in Annexin A1 and HSP90β suggested that tumor-specific glycan patterns could serve as candidate biomarkers of colon cancer for distinguishing cancer patients from healthy individuals.
Collapse
Affiliation(s)
- Yangguang Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Protein kinase D2 and heat shock protein 90 beta are required for BCL6-associated zinc finger protein mRNA stabilization induced by vascular endothelial growth factor-A. Angiogenesis 2013; 16:675-88. [DOI: 10.1007/s10456-013-9345-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 03/08/2013] [Indexed: 10/27/2022]
|
49
|
Protein-protein interactions and multi-component complexes of aminoacyl-tRNA synthetases. Top Curr Chem (Cham) 2013; 344:119-44. [PMID: 24072587 DOI: 10.1007/128_2013_479] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Protein-protein interaction occurs transiently or stably when two or more proteins bind together to mediate a wide range of cellular processes such as protein modification, signal transduction, protein trafficking, and structural folding. The macromolecules involved in protein biosynthesis such as aminoacyl-tRNA synthetase (ARS) have a number of protein-protein interactions. The mammalian multi-tRNA synthetase complex (MSC) consists of eight different enzymes: EPRS, IRS, LRS, QRS, MRS, KRS, RRS, and DRS, and three auxiliary proteins: AIMP1/p43, AIMP2/p38, and AIMP/p18. The distinct ARS proteins are also connected to diverse protein networks to carry out biological functions. In this chapter we first show the protein networks of the entire MSC and explain how MSC components interact with or can regulate other proteins. Finally, it is pointed out that the understanding of protein-protein interaction mechanism will provide insight to potential therapeutic application for diseases related to the MSC network.
Collapse
|
50
|
Calderwood SK. Molecular cochaperones: tumor growth and cancer treatment. SCIENTIFICA 2013; 2013:217513. [PMID: 24278769 PMCID: PMC3820307 DOI: 10.1155/2013/217513] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/01/2013] [Indexed: 05/12/2023]
Abstract
Molecular chaperones play important roles in all cellular organisms by maintaining the proteome in an optimally folded state. They appear to be at a premium in cancer cells whose evolution along the malignant pathways requires the fostering of cohorts of mutant proteins that are employed to overcome tumor suppressive regulation. To function at significant rates in cells, HSPs interact with cochaperones, proteins that assist in catalyzing individual steps in molecular chaperoning as well as in posttranslational modification and intracellular localization. We review current knowledge regarding the roles of chaperones such as heat shock protein 90 (Hsp90) and Hsp70 and their cochaperones in cancer. Cochaperones are potential targets for cancer therapy in themselves and can be used to assess the likely prognosis of individual malignancies. Hsp70 cochaperones Bag1, Bag3, and Hop play significant roles in the etiology of some cancers as do Hsp90 cochaperones Aha1, p23, Cdc37, and FKBP1. Others such as the J domain protein family, HspBP1, TTC4, and FKBPL appear to be associated with more benign tumor phenotypes. The key importance of cochaperones for many pathways of protein folding in cancer suggests high promise for the future development of novel pharmaceutical agents.
Collapse
Affiliation(s)
- Stuart K. Calderwood
- Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA
- *Stuart K. Calderwood:
| |
Collapse
|