1
|
Thami PK, Choga WT, Dandara C, O’Brien SJ, Essex M, Gaseitsiwe S, Chimusa ER. Whole genome sequencing reveals population diversity and variation in HIV-1 specific host genes. Front Genet 2023; 14:1290624. [PMID: 38179408 PMCID: PMC10765519 DOI: 10.3389/fgene.2023.1290624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
HIV infection continues to be a major global public health issue. The population heterogeneity in susceptibility or resistance to HIV-1 and progression upon infection is attributable to, among other factors, host genetic variation. Therefore, identifying population-specific variation and genetic modifiers of HIV infectivity can catapult the invention of effective strategies against HIV-1 in African populations. Here, we investigated whole genome sequences of 390 unrelated HIV-positive and -negative individuals from Botswana. We report 27.7 million single nucleotide variations (SNVs) in the complete genomes of Botswana nationals, of which 2.8 million were missing in public databases. Our population structure analysis revealed a largely homogenous structure in the Botswana population. Admixture analysis showed elevated components shared between the Botswana population and the Niger-Congo (65.9%), Khoe-San (32.9%), and Europeans (1.1%) ancestries in the population of Botswana. Statistical significance of the mutational burden of deleterious and loss-of-function variants per gene against a null model was estimated. The most deleterious variants were enriched in five genes: ACTRT2 (the Actin Related Protein T2), HOXD12 (homeobox D12), ABCB5 (ATP binding cassette subfamily B member 5), ATP8B4 (ATPase phospholipid transporting 8B4) and ABCC12 (ATP Binding Cassette Subfamily C Member 12). These genes are enriched in the glycolysis and gluconeogenesis (p < 2.84e-6) pathways and therefore, may contribute to the emerging field of immunometabolism in which therapy against HIV-1 infection is being evaluated. Published transcriptomic evidence supports the role of the glycolysis/gluconeogenesis pathways in the regulation of susceptibility to HIV, and that cumulative effects of genetic modifiers in glycolysis/gluconeogenesis pathways may potentially have effects on the expression and clinical variability of HIV-1. Identified genes and pathways provide novel avenues for other interventions, with the potential for informing the design of new therapeutics.
Collapse
Affiliation(s)
- Prisca K. Thami
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Wonderful T. Choga
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- UCT/SAMRC Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council, Cape Town, South Africa
| | - Stephen J. O’Brien
- Laboratory of Genomics Diversity, Center for Computer Technologies, ITMO University, St. Petersburg, Russia
- Guy Harvey Oceanographic Center Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Myron Essex
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health AIDS Initiative, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health AIDS Initiative, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| | - Emile R. Chimusa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, United Kingdom
| |
Collapse
|
2
|
Grant HE, Roy S, Williams R, Tutill H, Ferns B, Cane PA, Carswell JW, Ssemwanga D, Kaleebu P, Breuer J, Leigh Brown AJ. A large population sample of African HIV genomes from the 1980s reveals a reduction in subtype D over time associated with propensity for CXCR4 tropism. Retrovirology 2022; 19:28. [PMID: 36514107 PMCID: PMC9746199 DOI: 10.1186/s12977-022-00612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/12/2022] [Indexed: 12/15/2022] Open
Abstract
We present 109 near full-length HIV genomes amplified from blood serum samples obtained during early 1986 from across Uganda, which to our knowledge is the earliest and largest population sample from the initial phase of the HIV epidemic in Africa. Consensus sequences were made from paired-end Illumina reads with a target-capture approach to amplify HIV material following poor success with standard approaches. In comparisons with a smaller 'intermediate' genome dataset from 1998 to 1999 and a 'modern' genome dataset from 2007 to 2016, the proportion of subtype D was significantly higher initially, dropping from 67% (73/109), to 57% (26/46) to 17% (82/465) respectively (p < 0.0001). Subtype D has previously been shown to have a faster rate of disease progression than other subtypes in East African population studies, and to have a higher propensity to use the CXCR4 co-receptor ("X4 tropism"); associated with a decrease in time to AIDS. Here we find significant differences in predicted tropism between A1 and D subtypes in all three sample periods considered, which is particularly striking the 1986 sample: 66% (53/80) of subtype D env sequences were predicted to be X4 tropic compared with none of the 24 subtype A1. We also analysed the frequency of subtype in the envelope region of inter-subtype recombinants, and found that subtype A1 is over-represented in env, suggesting recombination and selection have acted to remove subtype D env from circulation. The reduction of subtype D frequency over three decades therefore appears to be a result of selective pressure against X4 tropism and its higher virulence. Lastly, we find a subtype D specific codon deletion at position 24 of the V3 loop, which may explain the higher propensity for subtype D to utilise X4 tropism.
Collapse
Affiliation(s)
- Heather E Grant
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK.
| | - Sunando Roy
- Division of Infection and Immunity, University College London, London, UK
| | - Rachel Williams
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Helena Tutill
- Division of Infection and Immunity, University College London, London, UK
| | - Bridget Ferns
- Department of Virology, University College London Hospitals NHS Foundation Trust, London, UK
| | | | | | - Deogratius Ssemwanga
- Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Pontiano Kaleebu
- Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, UK
| | | |
Collapse
|
3
|
Souto B, Triunfante V, Santos-Pereira A, Martins J, Araújo PMM, Osório NS. Evolutionary dynamics of HIV-1 subtype C in Brazil. Sci Rep 2021; 11:23060. [PMID: 34845263 PMCID: PMC8629974 DOI: 10.1038/s41598-021-02428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022] Open
Abstract
The extensive genetic diversity of HIV-1 is a major challenge for the prevention and treatment of HIV-1 infections. Subtype C accounts for most of the HIV-1 infections in the world but has been mainly localized in Southern Africa, Ethiopia and India. For elusive reasons, South Brazil harbors the largest HIV-1 subtype C epidemic in the American continent that is elsewhere dominated by subtype B. To investigate this topic, we collected clinical data and viral sequences from 2611 treatment-naïve patients diagnosed with HIV-1 in Brazil. Molecular epidemiology analysis supported 35 well-delimited transmission clusters of subtype C highlighting transmission within South Brazil but also from the South to all other Brazilian regions and internationally. Individuals infected with subtype C had lower probability to be deficient in CD4+ T cells when compared to subtype B. The HIV-1 epidemics in the South was characterized by high female-to-male infection ratios and women-to-child transmission. Our results suggest that HIV-1 subtype C probably takes advantage of longer asymptomatic periods to maximize transmission and is unlikely to outcompete subtype B in settings where the infection of women is relatively less relevant. This study contributes to elucidate factors possibly underlying the geographical distribution and expansion patterns of the most spread HIV-1 subtypes.
Collapse
Affiliation(s)
- Bernardino Souto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.,Department of Medicine, Federal University of São Carlos, São Carlos, Brazil
| | - Vera Triunfante
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Ana Santos-Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Joana Martins
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Pedro M M Araújo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno S Osório
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
4
|
Price MA, Rida W, Kilembe W, Karita E, Inambao M, Ruzagira E, Kamali A, Sanders EJ, Anzala O, Hunter E, Allen S, Edward VA, Wall KM, Tang J, Fast PE, Kaleebu P, Lakhi S, Mutua G, Bekker LG, Abu-Baker G, Tichacek A, Chetty P, Latka MH, Maenetje P, Makkan H, Kibengo F, Priddy F, Gilmour J. Control of the HIV-1 Load Varies by Viral Subtype in a Large Cohort of African Adults With Incident HIV-1 Infection. J Infect Dis 2020; 220:432-441. [PMID: 30938435 PMCID: PMC6603968 DOI: 10.1093/infdis/jiz127] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 03/22/2019] [Indexed: 12/14/2022] Open
Abstract
Few human immunodeficiency virus (HIV)–infected persons can maintain low viral levels without therapeutic intervention. We evaluate predictors of spontaneous control of the viral load (hereafter, “viral control”) in a prospective cohort of African adults shortly after HIV infection. Viral control was defined as ≥2 consecutively measured viral loads (VLs) of ≤10 000 copies/mL after the estimated date of infection, followed by at least 4 subsequent measurements for which the VL in at least 75% was ≤10 000 copies/mL in the absence of ART. Multivariable logistic regression characterized predictors of viral control. Of 590 eligible volunteers, 107 (18.1%) experienced viral control, of whom 25 (4.2%) maintained a VL of 51–2000 copies/mL, and 5 (0.8%) sustained a VL of ≤50 copies/mL. The median ART-free follow-up time was 3.3 years (range, 0.3–9.7 years). Factors independently associated with control were HIV-1 subtype A (reference, subtype C; adjusted odds ratio [aOR], 2.1 [95% confidence interval {CI}, 1.3–3.5]), female sex (reference, male sex; aOR, 1.8 [95% CI, 1.1–2.8]), and having HLA class I variant allele B*57 (reference, not having this allele; aOR, 1.9 [95% CI, 1.0–3.6]) in a multivariable model that also controlled for age at the time of infection and baseline CD4+ T-cell count. We observed strong associations between infecting HIV-1 subtype, HLA type, and sex on viral control in this cohort. HIV-1 subtype is important to consider when testing and designing new therapeutic and prevention technologies, including vaccines.
Collapse
Affiliation(s)
- Matt A Price
- International AIDS Vaccine Initiative, New York, New York.,Department of Epidemiology and Biostatistics, University of California-San Francisco
| | | | - William Kilembe
- Rwanda Zambia HIV Research Group, Lusaka and Ndola.,Rwanda Zambia HIV Research Group, Zambia and Kigali.,Rwanda Zambia HIV Research Group, Rwanda
| | - Etienne Karita
- Rwanda Zambia HIV Research Group, Lusaka and Ndola.,Rwanda Zambia HIV Research Group, Zambia and Kigali.,Rwanda Zambia HIV Research Group, Rwanda
| | - Mubiana Inambao
- Rwanda Zambia HIV Research Group, Lusaka and Ndola.,Rwanda Zambia HIV Research Group, Zambia and Kigali.,Rwanda Zambia HIV Research Group, Rwanda
| | | | - Anatoli Kamali
- International AIDS Vaccine Initiative, New York, New York
| | - Eduard J Sanders
- Kenyan Medical Research Institute-Wellcome Trust, Kilifi, Nairobi, Kenya.,Nuffield Department of Clinical Medicine, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Headington, London, United Kingdom
| | - Omu Anzala
- KAVI Institute of Clinical Research, Nairobi, Kenya
| | - Eric Hunter
- Rwanda Zambia HIV Research Group, Lusaka and Ndola.,Rwanda Zambia HIV Research Group, Zambia and Kigali.,Rwanda Zambia HIV Research Group, Rwanda.,Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Susan Allen
- Rwanda Zambia HIV Research Group, Lusaka and Ndola.,Rwanda Zambia HIV Research Group, Zambia and Kigali.,Rwanda Zambia HIV Research Group, Rwanda.,Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Vinodh A Edward
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut.,The Aurum Institute, South Africa.,School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, South Africa.,Advancing Care and Treatment for TB/HIV, South African Medical Research Council, Johannesburg, South Africa
| | - Kristin M Wall
- Rwanda Zambia HIV Research Group, Lusaka and Ndola.,Rwanda Zambia HIV Research Group, Zambia and Kigali.,Rwanda Zambia HIV Research Group, Rwanda.,Department of Epidemiology, Emory University, Atlanta, Georgia
| | - Jianming Tang
- Department of Medicine, University of Alabama-Birmingham
| | | | | | - Shabir Lakhi
- Rwanda Zambia HIV Research Group, Lusaka and Ndola.,Rwanda Zambia HIV Research Group, Zambia and Kigali.,Rwanda Zambia HIV Research Group, Rwanda
| | | | | | | | - Amanda Tichacek
- Rwanda Zambia HIV Research Group, Lusaka and Ndola.,Rwanda Zambia HIV Research Group, Zambia and Kigali.,Rwanda Zambia HIV Research Group, Rwanda.,Department of Epidemiology, Emory University, Atlanta, Georgia
| | - Paramesh Chetty
- International AIDS Vaccine Initiative, New York, New York.,International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom
| | | | | | | | | | - Fran Priddy
- International AIDS Vaccine Initiative, New York, New York
| | - Jill Gilmour
- International AIDS Vaccine Initiative Human Immunology Laboratory, London, United Kingdom
| |
Collapse
|
5
|
Okonko IO, Okoli EM. Determination of antibodies to human immunodeficiency virus type 1&2&O and P24 - antigen in pregnant women in port harcourt Nigeria. J Immunoassay Immunochem 2019; 41:208-218. [PMID: 31885351 DOI: 10.1080/15321819.2019.1708387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The need for a cure against HIV infection and a need to improve HIV screening amongst low risk population such as pregnant women have been an issue since the emergence of HIV. Therefore, a hospital-based cross-sectional study was adopted to determine the prevalence of antibodies to HIV-1/2/O and P24 antigen among pregnant women in Port Harcourt, Nigeria. Estimating the HIV seropositivity in pregnant women will offer vital information for monitoring the trend of HIV infection in the general population and assist in prevention from mother-to-child transmission. The occurrence of antibodies to HIV type 1/2/O and P24 antigen among the pregnant women was investigated using fourth-generation ELISA. The influence of the women's age, marital status, occupation, educational status and gestation period on the prevalence of these antibodies against HIV type 1/2/O and P24 antigen was also considered. Of the 86 pregnant women, 14 were found to be HIV-positive with seropositivity rate of 32.6%. Majority of HIV seropositive women (41.2%) were in the age group of 31-42 years. Higher seropositivity was observed among singles (50.0%), those with secondary education (44.7%), unemployed (47.8%) and in those in their third trimester (40.0%). Additionally, this study observed high seropositivity of antibodies to HIV type 1, 2, O and P24 antigen among pregnant women in Port Harcourt, Nigeria and calls for urgent and concerted efforts aimed at promoting behavioral and socio-cultural practices that could change the current high rate of HIV seropositivity amongst pregnant women in Nigeria. A combination of preventive strategies such as the use of condoms, breaking the chain of transmission within sexual networks by prompt treatment and reducing the amount of unsafe sexual behavior, promoting sexual abstinence and behavioral change from high-risk behavior are advocated.
Collapse
Affiliation(s)
- Iheanyi Omezuruike Okonko
- Virus Research Unit, Department of Microbiology, University of Port Harcourt, Port Harcourt, Nigeria
| | - Eberechukwu Maryann Okoli
- Virus Research Unit, Department of Microbiology, University of Port Harcourt, Port Harcourt, Nigeria
| |
Collapse
|
6
|
Pessôa R, Loureiro P, Esther Lopes M, Carneiro-Proietti ABF, Sabino EC, Busch MP, Sanabani SS. Ultra-Deep Sequencing of HIV-1 near Full-Length and Partial Proviral Genomes Reveals High Genetic Diversity among Brazilian Blood Donors. PLoS One 2016; 11:e0152499. [PMID: 27031505 PMCID: PMC4816342 DOI: 10.1371/journal.pone.0152499] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/15/2016] [Indexed: 11/28/2022] Open
Abstract
Background Here, we aimed to gain a comprehensive picture of the HIV-1 diversity in the northeast and southeast part of Brazil. To this end, a high-throughput sequencing-by-synthesis protocol and instrument were used to characterize the near full length (NFLG) and partial HIV-1 proviral genome in 259 HIV-1 infected blood donors at four major blood centers in Brazil: Pro-Sangue foundation (São Paulo state (SP), n 51), Hemominas foundation (Minas Gerais state (MG), n 41), Hemope foundation (Recife state (PE), n 96) and Hemorio blood bank (Rio de Janeiro (RJ), n 70). Materials and Methods A total of 259 blood samples were obtained from 195 donors with long-standing infections and 64 donors with a lack of stage information. DNA was extracted from the peripheral blood mononuclear cells (PBMCs) to amplify the HIV-1 NFLGs from five overlapping fragments. The amplicons were molecularly bar-coded, pooled, and sequenced by Illumina paired-end protocol. Results Of the 259 samples studied, 208 (80%) NFLGs and 49 (18.8%) partial fragments were de novo assembled into contiguous sequences and successfully subtyped. Of these 257 samples, 183 (71.2%) were pure subtypes consisting of clade B (n = 167, 65%), C (n = 10, 3.9%), F1 (n = 4, 1.5%), and D (n = 2, 0.7%). Recombinant viruses were detected in 74 (28.8%) samples and consist of unique BF1 (n = 41, 15.9%), BC (n = 7, 2.7%), BCF1 (n = 4, 1.5%), CF1 and CDK (n = 1, 0.4%, each), CRF70_BF1 (n = 4, 1.5%), CRF71_BF1 (n = 12, 4.7%), and CRF72_BF1 (n = 4, 1.5%). Evidence of dual infection was detected in four patients coinfected with the same subtype (n = 3) and distinct subtype (n = 1). Conclusion Based on this work, subtype B appears to be the prevalent subtype followed by a high proportion of intersubtype recombinants that appeared to be arising continually in this country. Our study represents the largest analysis of the viral NFLG ever undertaken worldwide and provides insights into the understanding the genesis of the HIV-1 epidemic in this particular area of South America and informs vaccine design and clinical trials.
Collapse
Affiliation(s)
- Rodrigo Pessôa
- Clinical Laboratory, Department of Pathology, LIM 03, Hospital das Clínicas (HC), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Paula Loureiro
- Pernambuco State Center of Hematology and Hemotherapy—HEMOPE, Recife, Pernambuco, Brazil
| | | | | | - Ester C Sabino
- Department of Infectious Disease/Institute of Tropical Medicine, University of São Paulo, Sao Paulo, Brazil
| | - Michael P. Busch
- Blood Systems Research Institute, San Francisco, California, United States of America
| | - Sabri S Sanabani
- Clinical Laboratory, Department of Pathology, LIM 03, Hospital das Clínicas (HC), School of Medicine, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
7
|
Zhao X, Qian L, Zhou D, Qi D, Liu C, Kong X. Stability of HIV-1 subtype B and C Tat is associated with variation in the carboxyl-terminal region. Virol Sin 2016; 31:199-206. [PMID: 27007880 DOI: 10.1007/s12250-016-3681-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/01/2016] [Indexed: 12/14/2022] Open
Abstract
The multifunctional trans-activator Tat is an essential regulatory protein for HIV-1 replication and is characterized by high sequence diversity. Numerous experimental studies have examined Tat in HIV-1 subtype B, but research on subtype C Tat is lacking, despite the high prevalence of infections caused by subtype C worldwide. We hypothesized that amino acid differences contribute to functional differences among Tat proteins. In the present study, we found that subtype B NL4-3 Tat and subtype C isolate HIV1084i Tat exhibited differences in stability by overexpressing the fusion protein Tat-Flag. In addition, 1084i Tat can activate LTR and NF-κB more efficiently than NL4-3 Tat. In analyses of the activities of the truncated forms of Tat, we found that the carboxyl-terminal region of Tat regulates its stability and transactivity. According to our results, we speculated that the differences in stability between B-Tat and C-Tat result in differences in transactivation ability.
Collapse
Affiliation(s)
- Xuechao Zhao
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Lingyu Qian
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Deyu Zhou
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Di Qi
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chang Liu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiaohong Kong
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
8
|
The 57th amino acid conveys the differential subcellular localization of human immunodeficiency virus-1 Tat derived from subtype B and C. Virus Genes 2016; 52:179-88. [PMID: 26832332 DOI: 10.1007/s11262-015-1267-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
The multifunctional transactivator Tat protein is an essentially regulatory protein for HIV-1 replication and it plays a role in pathogenesis of HIV-1 infection. At present, numerous experimental studies about HIV-1 Tat focus on subtype B, very few has been under study of subtype C-Tat. In view of the amino acid variation of the clade-specific Tat proteins, we hypothesized that the amino acid difference contributed to differential function of Tat proteins. In the present study, we documented that subtype B NL4-3 Tat and subtype C isolate HIV1084i Tat from pediatric patient in Zambia exhibited distinct nuclear localization by over-expressing fusion protein Tat-EGFP. Interestingly, 1084i Tat showed uniform nuclear distribution, whereas NL4-3 Tat primarily localized in nucleolus. The 57th amino acid, highly conserved between B-Tat (arginine) and C-Tat (serine), is located in the basic domain of Tat, and played an important role in this subcellular localization. Meanwhile, we found that substitution of arginine to serine at the site 57 decreases Tat transactivation of the HIV-1 LTR promoter.
Collapse
|
9
|
Association between gp120 envelope V1V2 and V4V5 variable loop profiles in a defined HIV-1 transmission cluster. AIDS 2015; 29:1161-71. [PMID: 26035318 DOI: 10.1097/qad.0000000000000692] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Variations in the HIV-1 gp120 Env variable loop sequences correlate with virus phenotypes associated with transmission and/or disease progression. We aimed to identify whether signature sequences could be identified in the gp120 Env between acute infection and chronic infection viruses obtained from a group of individuals infected with closely related viruses. METHODS To analyse acute infection versus chronic infection viruses, we studied a transmission cluster of 11 individuals, in which six presented during acute infection and five during chronic infection. Multiple HIV-1 gp120 Env clones were sequenced from each patient with predicted amino acid sequences compared between the groups. RESULTS Cluster analysis of V1V5 Env sequences (n = 215) identified that acute infection viruses had lower potential N-linked glycosylation site (PNGS) densities than viruses from chronic infection, with a higher amino acid length/PNGS ratio. We found a negative correlation between the V1V2 and V4V5 regions for both amino acid length (Pearson P < 0.01) and PNGS numbers (Pearson P < 0.01) during HIV-1 transmission. This association was lost following seroconversion. These findings were confirmed by analysing sequences from the Los Alamos database that were selected and grouped according to timing of transmission. This included acute infection sequences collected 0-10 days (n = 400) and chronic infection sequences 0.5-3 years postseroconversion (n = 394). CONCLUSION Our observations are consistent with a structural association between the V1V2 and V4V5 gp120 regions that is lost following viral transmission. These structural considerations should be taken into consideration when devising HIV-1 immunogens aimed at inducing protective antibody responses targeting transmitted viruses.
Collapse
|
10
|
Chabrol F. Biomedicine, Public Health, and Citizenship in the Advent of Antiretrovirals in Botswana. Dev World Bioeth 2014; 14:75-82. [DOI: 10.1111/dewb.12051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Dey SK, Zahan N, Afrose S, Islam T, Shajahan M, Saha S, Mahmud SA, Talukder AA, Mizuguchi M, Ushijima H. Molecular epidemiology of HIV in Asia. HIV & AIDS REVIEW 2014. [DOI: 10.1016/j.hivar.2014.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
12
|
Abstract
Objective: To describe immunologic, virologic, and clinical HIV disease progression by HIV-1 subtype among Africans with well documented estimated dates of HIV infection (EDIs). Design: Prospective cohort. Methods: Adults and youth with documented HIV-1 infection in the past 12 months were recruited from seroincidence cohorts in East and Southern Africa and followed at 3–6 month intervals. Blood for lymphocyte subset and viral load determination was collected at each visit. Pol was sequenced from the first positive specimen to ascertain subtype. Preantiretroviral therapy disease progression was measured by three time-to-event endpoints: CD4+ cell count 350 cells/μl or less, viral load measurement at least 1 × 105 copies/ml, and clinical AIDS. Results: From 2006 to 2011, 615 participants were enrolled at nine research centers in Kenya, Rwanda, South Africa, Uganda, and Zambia; 579 (94.1%) had viral subtyping completed. Predominant subtypes were C (256, 44.2%), A (209, 36.1%), and D (84, 14.5%). After adjustment for age, sex, and human leukocyte antigen alleles in Cox regression analyses, subtype C-infected participants progressed faster than subtype A to all three endpoints [CD4+ hazard ratio 1.60, 95% (confidence interval) CI 1.16, 2.20; viral load hazard ratio 1.59, 95% CI 1.12, 2.25; and AIDS hazard ratio 1.60, 95% CI 1.11, 2.31). Subtype D-infected participants reached high viral load more rapidly (hazard ratio 1.61, 95% CI 1.01, 2.57) and progressed nearly twice as fast to AIDS compared to subtype A (hazard ratio 1.93, 95% CI 1.21, 3.09). Conclusion: Subtype-specific differences in HIV disease progression suggest that the local subtype distribution be considered when planning HIV programs and designing and defining clinical endpoints for HIV prevention trials.
Collapse
|
13
|
Dahiya S, Irish BP, Nonnemacher MR, Wigdahl B. Genetic variation and HIV-associated neurologic disease. Adv Virus Res 2013; 87:183-240. [PMID: 23809924 DOI: 10.1016/b978-0-12-407698-3.00006-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
HIV-associated neurologic disease continues to be a significant complication in the era of highly active antiretroviral therapy. A substantial subset of the HIV-infected population shows impaired neuropsychological performance as a result of HIV-mediated neuroinflammation and eventual central nervous system (CNS) injury. CNS compartmentalization of HIV, coupled with the evolution of genetically isolated populations in the CNS, is responsible for poor prognosis in patients with AIDS, warranting further investigation and possible additions to the current therapeutic strategy. This chapter reviews key advances in the field of neuropathogenesis and studies that have highlighted how molecular diversity within the HIV genome may impact HIV-associated neurologic disease. We also discuss the possible functional implications of genetic variation within the viral promoter and possibly other regions of the viral genome, especially in the cells of monocyte-macrophage lineage, which are arguably key cellular players in HIV-associated CNS disease.
Collapse
Affiliation(s)
- Satinder Dahiya
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Bryan P Irish
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Santoro MM, Perno CF. HIV-1 Genetic Variability and Clinical Implications. ISRN MICROBIOLOGY 2013; 2013:481314. [PMID: 23844315 PMCID: PMC3703378 DOI: 10.1155/2013/481314] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 04/16/2013] [Indexed: 11/29/2022]
Abstract
Despite advances in antiretroviral therapy that have revolutionized HIV disease management, effective control of the HIV infection pandemic remains elusive. Beyond the classic non-B endemic areas, HIV-1 non-B subtype infections are sharply increasing in previous subtype B homogeneous areas such as Europe and North America. As already known, several studies have shown that, among non-B subtypes, subtypes C and D were found to be more aggressive in terms of disease progression. Luckily, the response to antiretrovirals against HIV-1 seems to be similar among different subtypes, but these results are mainly based on small or poorly designed studies. On the other hand, differences in rates of acquisition of resistance among non-B subtypes are already being observed. This different propensity, beyond the type of treatment regimens used, as well as access to viral load testing in non-B endemic areas seems to be due to HIV-1 clade specific peculiarities. Indeed, some non-B subtypes are proved to be more prone to develop resistance compared to B subtype. This phenomenon can be related to the presence of subtype-specific polymorphisms, different codon usage, and/or subtype-specific RNA templates. This review aims to provide a complete picture of HIV-1 genetic diversity and its implications for HIV-1 disease spread, effectiveness of therapies, and drug resistance development.
Collapse
Affiliation(s)
- Maria Mercedes Santoro
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Carlo Federico Perno
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- INMI L Spallanzani Hospital, Antiretroviral Therapy Monitoring Unit, Via Portuense 292, 00149 Rome, Italy
| |
Collapse
|
15
|
Abstract
One of the major characteristics of HIV-1 is its high genetic variability and extensive heterogeneity. This characteristic is due to its molecular traits, which in turn allows it to vary, recombine, and diversify at a high frequency. As such, it generates complex molecular forms, termed recombinants, which evade the human immune system and so survive. There is no sequence constraint to the recombination pattern as it appears to occur at inter-group (between groups M and O), as well as interand intra-subtype within group M. Rapid emergence and active global transmission of HIV-1 recombinants, known as circulating recombinant forms (CRFs) and unique recombinant forms (URFs), requires urgent attention. To date, 55 CRFs have been reported around the world. The first CRF01_AE originated from Central Africa but spread widely in Asia. The most recent CRF; CRF55_01B is a recombinant form of CRF01_AE and subtype B, although its origin is yet to be publicly disclosed. HIV-1 recombination is an ongoing event and plays an indispensable role in HIV epidemics in different regions. Africa, Asia and South America are identified as recombination hot-spots. They are affected by continual emergence and cocirculation of newly emerging CRFs and URFs, which are now responsible for almost 20% of HIV-1 infections worldwide. Better understanding of recombinants is necessary to determine their biological and molecular attributes.
Collapse
Affiliation(s)
- Katherine A Lau
- Retroviral Genetics Division, Centre for Virus Research, Westmead Millennium Institute , Westmead Hospital, The University of Sydney
| | - Justin J L Wong
- Gene and Stem Cell Therapy Program, Centenary Institute , Royal Prince Alfred Hospital, The University of Sydney, Sydney, Australia
| |
Collapse
|
16
|
Ruiz A, Schmitt K, Culley N, Stephens EB. Simian-Human immunodeficiency viruses expressing chimeric subtype B/C Vpu proteins demonstrate the importance of the amino terminal and transmembrane domains in the rate of CD4(+) T cell loss in macaques. Virology 2012; 435:395-405. [PMID: 23218949 DOI: 10.1016/j.virol.2012.10.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 08/20/2012] [Accepted: 10/20/2012] [Indexed: 10/27/2022]
Abstract
Previously, we reported that simian-human immunodeficiency viruses expressing either the lab adapted subtype B (SHIV(KU-1bMC33)) or subtype C (SHIV(SCVpu)) Vpu proteins of human immunodeficiency virus type 1 (HIV-1) had different rates of CD4(+) T cell loss following inoculation into macaques. In this study, we have generated SHIVs that express either the subtype B or subtype C N-terminal (NTD) and transmembrane (TMD) domains and the opposing cytoplasmic domain (SHIV(VpuBC), SHIV(VpuCB)). In culture systems, SHIV(VpuBC) replicated faster than SHIV(VpuCB) while both proteins exhibited similar ability to down-modulate CD4 surface expression. Following inoculation into macaques, SHIV(VpuBC) resulted in rapid CD4(+) T cell loss similar to the parental SHIV(KU-1bMC33), while the rate of CD4(+) T cell loss in those inoculated with SHIV(VpuCB) was intermediate of SHIV(SCVpu) and SHIV(KU-1bMC33). These results emphasize the importance of the Vpu NTD/TMD region in the rate of CD4(+) T cell loss in the pathogenic X4 SHIV/macaque model.
Collapse
Affiliation(s)
- Autumn Ruiz
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
17
|
Sanabani SS, Pastena ÉRDS, da Costa AC, Martinez VP, Kleine-Neto W, de Oliveira ACS, Sauer MM, Bassichetto KC, Oliveira SMS, Tomiyama HTI, Sabino EC, Kallas EG. Characterization of partial and near full-length genomes of HIV-1 strains sampled from recently infected individuals in São Paulo, Brazil. PLoS One 2011; 6:e25869. [PMID: 22022460 PMCID: PMC3193532 DOI: 10.1371/journal.pone.0025869] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 09/13/2011] [Indexed: 12/03/2022] Open
Abstract
Background Genetic variability is a major feature of human immunodeficiency virus type 1 (HIV-1) and is considered the key factor frustrating efforts to halt the HIV epidemic. A proper understanding of HIV-1 genomic diversity is a fundamental prerequisite for proper epidemiology, genetic diagnosis, and successful drugs and vaccines design. Here, we report on the partial and near full-length genomic (NFLG) variability of HIV-1 isolates from a well-characterized cohort of recently infected patients in São Paul, Brazil. Methodology HIV-1 proviral DNA was extracted from the peripheral blood mononuclear cells of 113 participants. The NFLG and partial fragments were determined by overlapping nested PCR and direct sequencing. The data were phylogenetically analyzed. Results Of the 113 samples (90.3% male; median age 31 years; 79.6% homosexual men) studied, 77 (68.1%) NFLGs and 32 (29.3%) partial fragments were successfully subtyped. Of the successfully subtyped sequences, 88 (80.7%) were subtype B sequences, 12 (11%) BF1 recombinants, 3 (2.8%) subtype C sequences, 2 (1.8%) BC recombinants and subclade F1 each, 1 (0.9%) CRF02 AG, and 1 (0.9%) CRF31 BC. Primary drug resistance mutations were observed in 14/101 (13.9%) of samples, with 5.9% being resistant to protease inhibitors and nucleoside reverse transcriptase inhibitors (NRTI) and 4.9% resistant to non-NRTIs. Predictions of viral tropism were determined for 86 individuals. X4 or X4 dual or mixed-tropic viruses (X4/DM) were seen in 26 (30.2%) of subjects. The proportion of X4 viruses in homosexuals was detected in 19/69 (27.5%). Conclusions Our results confirm the existence of various HIV-1 subtypes circulating in São Paulo, and indicate that subtype B account for the majority of infections. Antiretroviral (ARV) drug resistance is relatively common among recently infected patients. The proportion of X4 viruses in homosexuals was significantly higher than the proportion seen in other study populations.
Collapse
Affiliation(s)
- Sabri Saeed Sanabani
- Division of Clinical Immunology and Allergy, Faculty of Medicine, University of São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Gonzalez-Rabade N, McGowan EG, Zhou F, McCabe MS, Bock R, Dix PJ, Gray JC, Ma JKC. Immunogenicity of chloroplast-derived HIV-1 p24 and a p24-Nef fusion protein following subcutaneous and oral administration in mice. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:629-38. [PMID: 21443546 DOI: 10.1111/j.1467-7652.2011.00609.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
High-level expression of foreign proteins in chloroplasts of transplastomic plants provides excellent opportunities for the development of oral vaccines against a range of debilitating or fatal diseases. The HIV-1 capsid protein p24 and a fusion of p24 with the negative regulatory protein Nef (p24-Nef) accumulate to ∼4% and ∼40% of the total soluble protein of leaves of transplastomic tobacco (Nicotiana tabacum L.) plants. This study has investigated the immunogenicity in mice of these two HIV-1 proteins, using cholera toxin B subunit as an adjuvant. Subcutaneous immunization with purified chloroplast-derived p24 elicited a strong antigen-specific serum IgG response, comparable to that produced by Escherichia coli-derived p24. Oral administration of a partially purified preparation of chloroplast-derived p24-Nef fusion protein, used as a booster after subcutaneous injection with either p24 or Nef, also elicited strong antigen-specific serum IgG responses. Both IgG1 and IgG2a subtypes, associated with cell-mediated Th1 and humoral Th2 responses, respectively, were found in sera after subcutaneous and oral administration. These results indicate that chloroplast-derived HIV-1 p24-Nef is a promising candidate as a component of a subunit vaccine delivered by oral boosting, after subcutaneous priming by injection of p24 and/or Nef.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Adjuvants, Immunologic/administration & dosage
- Administration, Oral
- Animals
- Chloroplasts/genetics
- Chloroplasts/immunology
- Female
- HIV Core Protein p24/administration & dosage
- HIV Core Protein p24/genetics
- HIV Core Protein p24/immunology
- Immunity, Humoral/immunology
- Immunization, Secondary
- Injections, Subcutaneous
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Nicotine/toxicity
- Plants, Genetically Modified/genetics
- Nicotiana/genetics
- nef Gene Products, Human Immunodeficiency Virus/administration & dosage
- nef Gene Products, Human Immunodeficiency Virus/genetics
- nef Gene Products, Human Immunodeficiency Virus/immunology
Collapse
|
19
|
Franca RF, Castro-Jorge LA, Neto RJ, Jorge DM, Lima DM, Colares JK, Paula SO, da Fonseca BAL. Genotypic characteristics of HIV type 1 based on gp120 hypervariable region 3 of isolates from Southern Brazil. AIDS Res Hum Retroviruses 2011; 27:903-9. [PMID: 21087177 DOI: 10.1089/aid.2010.0266] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to investigate HIV-1 molecular diversity and the epidemiological profile of HIV-1-infected patients from Ribeirão Preto, Brazil. A nested PCR followed by sequencing of a 302-base pair fragment of the env gene (C2-V3 region) was performed in samples from HIV-1-positive patients. A total of 45 sequences were aligned with final manual adjustments. The phylogenetic analyses showed a higher prevalence of HIV-1 subtype B in the studied population (97.8%) with only one sample yielding an F1 subtype. The viral genotyping prediction showed that CCR5 tropism was the most prevalent in the studied cohort. Geno2pheno analysis showed that R5 and CXCR4 prediction were 69% and 31%, respectively. There was no statistical significance, either in viral load or in CD4(+) T cell count when R5 and X4 prediction groups were compared. Moreover, the GPGR tetramer was the most common V3 loop core motif identified in the HIV-1 strains studied (34.1%) followed by GWGR, identified in 18.1% of the samples. The high level of B subtype in this Brazilian population reinforces the nature of the HIV epidemic in Brazil, and corroborates previous data obtained in the Brazilian HIV-infected population.
Collapse
Affiliation(s)
- Rafael F.O. Franca
- Program of Graduate Studies on Applied and Basic Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luiza A. Castro-Jorge
- Program of Graduate Studies on Applied and Basic Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Roberto J.P. Neto
- School of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Daniel M.M. Jorge
- Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Danielle M. Lima
- Department of Clinical Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jeová K.B. Colares
- Department of Clinical Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sérgio O. Paula
- Department of Biology, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Benedito A. Lopes da Fonseca
- Program of Graduate Studies on Applied and Basic Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Clinical Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
20
|
In vivo patterns of resistance to the HIV attachment inhibitor BMS-488043. Antimicrob Agents Chemother 2010; 55:729-37. [PMID: 21078948 DOI: 10.1128/aac.01173-10] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Attachment inhibitors (AI) are a novel class of HIV-1 antivirals, with little information available on clinical resistance. BMS-488043 is an orally bioavailable AI that binds to gp120 of HIV-1 and abrogates its binding to CD4(+) lymphocytes. A clinical proof-of-concept study of the AI BMS-488043, administered as monotherapy for 8 days, demonstrated significant viral load reductions. In order to examine the effects of AI monotherapy on HIV-1 sensitivity, phenotypic sensitivity assessment of baseline and postdosing (day 8) samples was performed. These analyses revealed that four subjects had emergent phenotypic resistance (a 50% effective concentration [EC(50)] >10-fold greater than the baseline value) and four had high baseline EC(50)s (>200 nM). Population sequencing and sequence determination of cloned envelope genes uncovered five gp120 mutations at four loci (V68A, L116I, S375I/N, and M426L) associated with BMS-488043 resistance. Substitution at the 375 locus, located near the CD4 binding pocket, was the most common (maintained in 5/8 subjects at day 8). The five substitutions were evaluated for their effects on AI sensitivity through reverse genetics in functional envelopes, confirming their role in decreasing sensitivity to the drug. Additional analyses revealed that these substitutions did not alter sensitivity to other HIV-1 entry inhibitors. Thus, our studies demonstrate that although the majority of the subjects' viruses maintained sensitivity to BMS-488043, substitutions can be selected that decrease HIV-1 susceptibility to the AI. Most importantly, the substitutions described here are not associated with resistance to other approved antiretrovirals, and therefore, attachment inhibitors could complement the current arsenal of anti-HIV agents.
Collapse
|
21
|
Coutsinos D, Invernizzi CF, Xu H, Brenner BG, Wainberg MA. Factors Affecting Template Usage in the Development of K65R Resistance in Subtype C Variants of HIV Type-1. ACTA ACUST UNITED AC 2010; 20:117-31. [DOI: 10.3851/imp1443] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Background: We have shown that the K65R resistance mutation in HIV type-1 (HIV-1) reverse transcriptase (RT) is selected more rapidly in subtype C than subtype B HIV-1 in biochemical, cell culture and clinical studies. Template-usage experiments demonstrated that subtype C nucleotide coding sequences caused RT to preferentially pause, leading to K65R acquisition. This new study now further establishes the basis for differential occurrence of both K65R and thymidine analogue mutations (TAMs) between subtypes. Methods: Gel-based nucleotide extension assays were used to study the homopolymeric sequence surrounding K65. Results: When positive double-stranded DNA synthesis was evaluated from a negative single-stranded DNA template, pausing at the 67 region, which is linked to occurrence of TAMs, was alleviated with both subtype B and C templates at high dCTP concentrations, but this alleviation was more pronounced with the subtype C template. By contrast, pausing at the 65 region on the subtype C but not subtype B template always occurred and was not alleviated at high levels of nucleotide triphosphates or by other means. Furthermore, templates containing repeats of the homopolymeric sequence spanning codons 64–66 of pol showed corresponding pausing repeats at the 65 region with the subtype C template only. Inverted RNA and DNA templates both displayed pausing at position K65 for the subtype C template and a ladder of pausing events culminating at codon 67 for the subtype B templates. Conclusions: These results further establish a mechanistic basis for the exclusion of both K65R and TAMs on single templates as well as the preferential acquisition of K65R in subtype C viruses.
Collapse
Affiliation(s)
- Dimitrios Coutsinos
- McGill University AIDS Center, Jewish General Hospital, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Cédric F Invernizzi
- McGill University AIDS Center, Jewish General Hospital, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Hongtao Xu
- McGill University AIDS Center, Jewish General Hospital, Montréal, QC, Canada
| | - Bluma G Brenner
- McGill University AIDS Center, Jewish General Hospital, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
| | - Mark A Wainberg
- McGill University AIDS Center, Jewish General Hospital, Montréal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Department of Medicine, McGill University, Montréal, QC, Canada
| |
Collapse
|
22
|
CCR5- and CXCR4-tropic subtype C human immunodeficiency virus type 1 isolates have a lower level of pathogenic fitness than other dominant group M subtypes: implications for the epidemic. J Virol 2009; 83:5592-605. [PMID: 19297481 DOI: 10.1128/jvi.02051-08] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) subtype C is the dominant subtype globally, due largely to the incidence of subtype C infections in sub-Saharan Africa and east Asia. We compared the relative replicative fitness (ex vivo) of the major (M) group of HIV-1 subtypes A, B, C, D, and CRF01_AE and group O isolates. To estimate pathogenic fitness, pairwise competitions were performed between CCR5-tropic (R5) or CXCR4-tropic (X4) virus isolates in peripheral blood mononuclear cells (PBMC). A general fitness order was observed among 33 HIV-1 isolates; subtype B and D HIV-1 isolates were slightly more fit than the subtype A and dramatically more fit than the 12 subtype C isolates. All group M isolates were more fit (ex vivo) than the group O isolates. To estimate ex vivo transmission fitness, a subset of primary HIV-1 isolates were examined in primary human explants from penile, cervical, and rectal tissues. Only R5 isolates and no X4 HIV-1 isolates could replicate in these tissues, whereas the spread to PM1 cells was dependent on active replication and passive virus transfer. In tissue competition experiments, subtype C isolates could compete with and, in some cases, even win over subtype A and D isolates. However, when the migratory cells from infected tissues were mixed with a susceptible cell line, the subtype C isolates were outcompeted by other subtypes, as observed in experiments with PBMC. These findings suggest that subtype C HIV-1 isolates might have equal transmission fitness but reduced pathogenic fitness relative to other group M HIV-1 isolates.
Collapse
|
23
|
Mujugira A, Wester CW, Kim S, Bussmann H, Gaolathe T. Patients with advanced HIV type 1 infection initiating antiretroviral therapy in Botswana: treatment response and mortality. AIDS Res Hum Retroviruses 2009; 25:127-33. [PMID: 19239353 PMCID: PMC6463982 DOI: 10.1089/aid.2008.0172] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The response to highly active antiretroviral treatment (HAART) and predictors of mortality among patients with advanced HIV infection (CD4(+) cell count <50 cells/mm(3)) in Botswana are described. Clinical and laboratory data for 349 patients with CD4 <50 cells/mm(3) initiating HAART from January 23 to November 18, 2002 at Princess Marina Hospital in Gaborone, Botswana were extracted from clinical charts and electronic patient management systems. The Kaplan-Meier method was used to estimate survival and log-rank tests used for group comparisons. Cox regression was used to identify independent predictors of survival. A total of 349 adults initiated HAART. In all, 78.2% (95% CI: 73.7%, 82.9%) of patients survived 1 year. Among survivors, the mean CD4(+) cell count increase was 239.8 cells/mm(3) (95% CI: 217.0, 262.8) at 12 months; 92.1% (95% CI: 87.8%, 94.9%) of patients (as treated) had plasma HIV-1 RNA < or =400 copies/ml at 9 months declining to 59.9% (95% CI: 54.7%, 64.9%) (ITT). There was a 2-fold higher mortality rate among patients with CD4(+) < or =10 cells/mm(3) compared to 11-49 cells/mm(3), hazard ratio (HR) = 1.91 (95% CI:1.16, 3.14). A 10 cell/mm(3) higher CD4(+) cell count corresponded to a 22% decrease in hazard of death (HR = 0.78; 95% CI: 0.64, 0.94). Lower baseline CD4(+) cell count (p < 0.001) and WHO clinical stage 4 HR = 2.41 (95% CI:1.32, 4.38) were independent predictors of poorer survival. HAART confers significant benefit even among persons with advanced immunosuppression. Adults with CD4(+) cell counts < or =10 cells/mm(3) and/or WHO clinical stage 4 disease at the time of HAART initiation have a higher risk of death.
Collapse
Affiliation(s)
- Andrew Mujugira
- Infectious Disease Care Clinic, Princess Marina Hospital, Gaborone, Botswana.
| | | | | | | | | |
Collapse
|
24
|
Land AM, Luo M, Pilon R, Sandstrom P, Embree J, Wachihi C, Kimani J, Plummer FA, Ball TB. High prevalence of genetically similar HIV-1 recombinants among infected sex workers in Nairobi, Kenya. AIDS Res Hum Retroviruses 2008; 24:1455-60. [PMID: 19032067 DOI: 10.1089/aid.2008.0179] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV-1, a highly diverse infectious agent, shows the greatest sequence diversity in highly exposed individuals, including greater levels of recombination. HIV-1 diversity in Nairobi, Kenya was examined in 240 individuals, including both those with high and low exposure to HIV. Sequence analysis of a 590 nucleotide proviral region encompassing vpu and part of env revealed that most viruses were clade A1 (70%), while both clade D (9%) and clade C (6%) virus were also observed, as was recombinant virus (15%). Participation in sex work was significantly associated with clade: these subjects had a lower likelihood of infection with clade C virus and a higher likelihood of infection with a recombinant isolate (p = 0.038). Interestingly, most of the recombinants formed distinct groups based on shared recombination breakpoints between common clades (n = 33/37). This study shows the value of continued HIV sequence analysis to examine and monitor viral genetic variability.
Collapse
Affiliation(s)
- Allison M. Land
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ma Luo
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard Pilon
- National HIV and Retrovirology Laboratories, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Paul Sandstrom
- National HIV and Retrovirology Laboratories, Public Health Agency of Canada, Ottawa, Ontario, Canada
| | - Joanne Embree
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Charles Wachihi
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Joshua Kimani
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Francis A. Plummer
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - T. Blake Ball
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
25
|
Khoja S, Ojwang P, Khan S, Okinda N, Harania R, Ali S. Genetic analysis of HIV-1 subtypes in Nairobi, Kenya. PLoS One 2008; 3:e3191. [PMID: 18784834 PMCID: PMC2527130 DOI: 10.1371/journal.pone.0003191] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 08/18/2008] [Indexed: 01/17/2023] Open
Abstract
Background Genetic analysis of a viral infection helps in following its spread in a given population, in tracking the routes of infection and, where applicable, in vaccine design. Additionally, sequence analysis of the viral genome provides information about patterns of genetic divergence that may have occurred during viral evolution. Objective In this study we have analyzed the subtypes of Human Immunodeficiency Virus -1 (HIV-1) circulating in a diverse sample population of Nairobi, Kenya. Methodology 69 blood samples were collected from a diverse subject population attending the Aga Khan University Hospital in Nairobi, Kenya. Total DNA was extracted from peripheral blood mononuclear cells (PBMCs), and used in a Polymerase Chain Reaction (PCR) to amplify the HIV gag gene. The PCR amplimers were partially sequenced, and alignment and phylogenetic analysis of these sequences was performed using the Los Alamos HIV Database. Results Blood samples from 69 HIV-1 infected subjects from varying ethnic backgrounds were analyzed. Sequence alignment and phylogenetic analysis showed 39 isolates to be subtype A, 13 subtype D, 7 subtype C, 3 subtype AD and CRF01_AE, 2 subtype G and 1 subtype AC and 1 AG. Deeper phylogenetic analysis revealed HIV subtype A sequences to be highly divergent as compared to subtypes D and C. Conclusion Our analysis indicates that HIV-1 subtypes in the Nairobi province of Kenya are dominated by a genetically diverse clade A. Additionally, the prevalence of highly divergent, complex subtypes, intersubtypes, and the recombinant forms indicates viral mixing in Kenyan population, possibly as a result of dual infections.
Collapse
Affiliation(s)
- Suhail Khoja
- Department of Biological and Biomedical Sciences, Aga Khan University Hospital, Karachi, Pakistan
| | - Peter Ojwang
- Department of Pathology, Aga Khan University Hospital, Nairobi, Kenya
| | - Saeed Khan
- Department of Biological and Biomedical Sciences, Aga Khan University Hospital, Karachi, Pakistan
| | - Nancy Okinda
- Department of Pathology, Aga Khan University Hospital, Nairobi, Kenya
| | - Reena Harania
- Department of Medicine, Aga Khan University Hospital, Nairobi, Kenya
| | - Syed Ali
- Department of Biological and Biomedical Sciences, Aga Khan University Hospital, Karachi, Pakistan
- * E-mail:
| |
Collapse
|
26
|
Active-site mutations in the South african human immunodeficiency virus type 1 subtype C protease have a significant impact on clinical inhibitor binding: kinetic and thermodynamic study. J Virol 2008; 82:11476-9. [PMID: 18768960 DOI: 10.1128/jvi.00726-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human immunodeficiency virus (HIV) infections in sub-Saharan Africa represent about 56% of global infections. Study of active-site mutations (the V82A single mutation and the V82F I84V double mutation) in the less-studied South African HIV type 1 subtype C (C-SA) protease indicated that neither mutation had a significant impact on the proteolytic functioning of the protease. However, the binding affinities of, and inhibition by, saquinavir, ritonavir, indinavir, and nelfinavir were weaker for each variant than for the wild-type protease, with the double mutant exhibiting the most dramatic change. Therefore, our results show that the C-SA V82F I84V double mutation decreased the binding affinities of protease inhibitors to levels significantly lower than that required for effective inhibition.
Collapse
|
27
|
El Hattaoui M, Charei N, Boumzebra D, Aajly L, Fadouach S. [Prevalence of cardiomyopathy in HIV infection: prospective study on 158 HIV patients]. Med Mal Infect 2008; 38:387-91. [PMID: 18583077 DOI: 10.1016/j.medmal.2008.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 01/04/2008] [Accepted: 03/05/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND There is evidence that the human immunodeficiency virus (HIV) may affect the heart and left ventricular dysfunction appears to be common. OBJECTIVE This was the first study in Morocco to investigate the frequency of cardiomyopathy in patients infected with HIV. METHODS We made a prospective echocardiographic study of 158 patients starting in September 2004 (88 men and 70 women, mean age 34 [5.4] years) with positive HIV serology and a clinical diagnosis of HIV infection according to CDC criteria and 80 seronegative control subjects. Patients were classified as AIDS group (90 patients) and HIV group (+) (68 patients) and HIV (-) (80 subjects). RESULTS Twenty-eight out of 156 (17.7%) cases of cardiomyopathy were found, distributed in 24 out of 90 (26.6%) in the AIDS group and four out of 68 (2.8%) in the HIV+group (p<0.01) and none in the HIV (-) group. Left ventricular diastolic dysfunction was noted among 88 out of 158 (55.7%) infected patients. There was a significant increase of cardiomyopathy in patients with HIV infection and decreased CD4 (less than 100 per millimetre cube; n=16 [57%]) compared to those with CD4 between 100 and 200 per millimetre cube; n=6 (21.42%) (p=0.03). CONCLUSION Echocardiography was a useful technique for the early detection of cardiac dysfunction in asymptomatic HIV positive carriers and AIDS patients. The frequency is related to HIV infection stage and CD4+ counts. Left ventricular diastolic dysfunction can precede systolic dysfunction and may be a useful technique for the early detection of cardiac dysfunction.
Collapse
Affiliation(s)
- M El Hattaoui
- Service de cardiologie, CHU Mohammed-VI, Marrakech, Maroc.
| | | | | | | | | |
Collapse
|
28
|
Liu L, Wan Y, Xu J, Huang X, Wu L, Liu Y, Shao Y. Immunogenicity comparison between codon optimized HIV-1 CRF BC_07 gp140 and gp145 vaccines. AIDS Res Hum Retroviruses 2007; 23:1396-404. [PMID: 18184083 DOI: 10.1089/aid.2007.0131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To develop an effective vaccine against the most prevalent HIV strain "B'/C recombinant" in China, we compared the immunogenicity of B'/C-derived gp140 and gp145. The codon optimized gp140 and gp145 env gene derived from CN54, an ancestor-like B'/C recombinant strain, were synthesized and cloned into a plasmid as DNA vaccines, designated as pDRVISV140 and pDRVISV145, respectively. BALB/c mice were inoculated three times at week 0, 2, and 4 and sacrificed at week 7. Both T cell immunity and humoral immunity were determined. The mock vector pDRVISV1.0 carrying no HIV immunogen was included as control. Our data showed that B'/C recombinant-derived gp145 mounted stronger T cell and broader linear antibody but less binding antibody immune responses than gp140 did. Though both gp145 and gp140 raised neutralization antibodies against laboratory-adapted strain SF33, both failed to neutralize B' or B'/C clade primary strains. Overall, this is the first time the immunogenicity of B'/C recombinant-derived gp140 and gp145 was examined and compared; our data prefer B'/C-derived gp145 to gp140 as an HIV vaccine immunogen. The failure to induce neutralization antibodies against primary isolates indicates that it is insufficient to enhance the immunogenicity of conserved epitopes by simply employing gp145 or gp140; strategies to enhance antibody responses against conserved epitopes should be explored further.
Collapse
Affiliation(s)
- Lianxing Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wu Chang District, Wuhan 430071, China
- State Key Laboratory for Infectious Diseases Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Xuan Wu District, Beijing 100050, China
- Graduate School of the Chinese Academy of Sciences, Shi Jing Shan District, Beijing 100049, China
| | - Yanmin Wan
- State Key Laboratory for Infectious Diseases Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Xuan Wu District, Beijing 100050, China
| | - Jianqing Xu
- State Key Laboratory for Infectious Diseases Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Xuan Wu District, Beijing 100050, China
| | - Xianggang Huang
- State Key Laboratory for Infectious Diseases Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Xuan Wu District, Beijing 100050, China
| | - Lan Wu
- State Key Laboratory for Infectious Diseases Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Xuan Wu District, Beijing 100050, China
- Vaccine Research Center, NIAIDS, NIH, Bethesda, Maryland
| | - Yong Liu
- State Key Laboratory for Infectious Diseases Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Xuan Wu District, Beijing 100050, China
| | - Yiming Shao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wu Chang District, Wuhan 430071, China
- State Key Laboratory for Infectious Diseases Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Xuan Wu District, Beijing 100050, China
| |
Collapse
|
29
|
Hill MS, Ruiz A, Pacyniak E, Pinson DM, Culley N, Yen B, Wong SW, Stephens EB. Modulation of the severe CD4+ T-cell loss caused by a pathogenic simian-human immunodeficiency virus by replacement of the subtype B vpu with the vpu from a subtype C HIV-1 clinical isolate. Virology 2007; 371:86-97. [PMID: 17950774 DOI: 10.1016/j.virol.2007.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 07/11/2007] [Accepted: 09/05/2007] [Indexed: 11/17/2022]
Abstract
Previously, we showed that the Vpu protein from subtype C human immunodeficiency virus type 1 (HIV-1) was efficiently targeted to the cell surface, suggesting that this protein has biological properties that differ from the well-studied subtype B Vpu protein. In this study, we have further analyzed the biological properties of the subtype C Vpu protein. Flow cytometric analysis revealed that the subtype B Vpu (strain HXB2) was more efficient at down-regulating CD4 surface expression than the Vpu proteins from four subtype C clinical isolates. We constructed a simian-human immunodeficiency virus virus, designated as SHIV(SCVpu), in which the subtype B vpu gene from the pathogenic SHIV(KU-1bMC33) was substituted with the vpu from a clinical isolate of subtype C HIV-1 (strain C.96.BW16B01). Cell culture studies revealed that SHIV(SCVpu) replicated with slightly reduced kinetics when compared with the parental SHIV(KU-1bMC33) and that the viral Env and Gag precursor proteins were synthesized and processed similarly compared to the parental SHIV(KU-1bMC33). To determine if substitution of the subtype C Vpu protein affected the pathogenesis of the virus, three pig-tailed macaques were inoculated with SHIV(SCVpu) and circulating CD4+ T-cell levels and viral loads were monitored for up to 44 weeks. Our results show that SHIV(SCVpu) caused a more gradual decline in the rate of CD4+ T cells in pig-tailed macaques compared to those inoculated with parental subtype B SHIV(KU-1bMC33). These results show for the first time that different Vpu proteins of HIV-1 can influence the rate at which CD4+ T-cell loss occurs in the SHIV/pig-tailed macaque model.
Collapse
Affiliation(s)
- M Sarah Hill
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Siddappa NB, Kashi VP, Venkatramanan M, Balasiddaiah A, Jayasuryan N, Mahadevan A, Desai A, Satish KS, Shankar SK, Ravi V, Ranga U. Gene expression analysis from human immunodeficiency virus type 1 subtype C promoter and construction of bicistronic reporter vectors. AIDS Res Hum Retroviruses 2007; 23:1268-78. [PMID: 17961115 DOI: 10.1089/aid.2006.0305] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We report the cloning and sequence analysis of the long terminal repeat (LTR) of several primary HIV-1 subtype C strains of India. Phylogenetically, all the LTRs and the paired env sequences clustered with subtype C reference strains. The LTRs demonstrated extensive polymorphism in the transcription factor binding sites (TFBS) within the enhancer and the modulator regions. We generated reporter vectors under the control of a select subset of the subtype C LTRs. The reporter vectors are distinguished by the simultaneous expression of two independent reporter genes, secreted alkaline phosphatase (SEAP) and enhanced green fluorescence protein (EGFP), in response to Tat. Expression of EGFP was facilitated by engineering an internal ribosome entry site (IRES) into the expression cassette. Although subtype C strains cause a large majority of the global infections, and important differences in the transcription factor binding sites have been identified in the subtype C promoter, few reporter vectors containing subtype C-LTR have been described. We analyzed gene expression from the C-LTR reporter vectors in different cell lines under diverse experimental conditions and compared it to the B-LTR reporter vector. The reporter vectors were responsive to Tat derived from diverse viral subtypes. Furthermore, a positive correlation was observed between the expression of the reporter genes and the viral structural protein p24 when the cells were infected with viral molecular clones. The LTR reporters we developed could be of significant use in the study of viral transactivation, in the evaluation of biological properties of viral subtypes, and in the screening for antiviral inhibitors.
Collapse
Affiliation(s)
- Nagadenahalli Byrareddy Siddappa
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, Bangalore, India
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - Venkatesh Prasanna Kashi
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Mohanram Venkatramanan
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
- Center for Infectious Medicine, Karolinska Institutet, Department of Medicine Karolinska Huddinge, Stockholm, Sweden
| | - Anangi Balasiddaiah
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | | | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Anita Desai
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | - Susarla K. Shankar
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Vasanthapuram Ravi
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Udaykumar Ranga
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
31
|
Abstract
The enormous genetic diversity of HIV-1 is a major challenge to vaccine development and may have important clinical consequences. HIV-1 group M predominates globally, with nine subtypes, several sub-subtypes and over 30 circulating recombinant forms that may exhibit differences with respect to transmissibility, pathogenicity and development of antiretroviral resistance. Subtype D appears to be more virulent than other subtypes, in particular subtype A. Subtype C may be less virulent and more transmissible, although the evidence for this is inconclusive. All group M non-B subtypes appear to be equally susceptible to combination antiretroviral therapy, but development of resistance mutations may vary significantly between subtypes. Further research into the clinical implications of HIV-1 diversity is crucial for effective HIV-1 prevention and treatment.
Collapse
Affiliation(s)
- Susan M Graham
- University of Washington, Box 359909, 325 Ninth Avenue, Seattle, WA 98104, USA
| |
Collapse
|
32
|
Fernández-Romero JA, Thorn M, Turville SG, Titchen K, Sudol K, Li J, Miller T, Robbiani M, Maguire RA, Buckheit RW, Hartman TL, Phillips DM. Carrageenan/MIV-150 (PC-815), a combination microbicide. Sex Transm Dis 2007; 34:9-14. [PMID: 16924181 DOI: 10.1097/01.olq.0000223287.46097.4b] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The objective of this article is to study the effect of PC-815, a novel combination microbicide containing carrageenan and the nonnucleoside reverse transcriptase inhibitor (NNRTI) MIV-150, in blocking HIV-1 and HIV-2 infections in vitro as compared with Carraguard alone. GOAL The goal of this study was to develop a combination microbicide that is more efficacious than Carraguard against HIV-1 and HIV-2. STUDY DESIGN The microtiter syncytial assay was used to evaluate: 1) the antiviral and virucidal activity of MIV-150 against HIV-1MN; 2) the additive effect of MIV-150 when combined with carrageenan; and 3) a possible interference of seminal fluid in the antiviral activity of these compounds. RESULTS MIV-150 effectively inactivated free virus. Combination of MIV-150 and Carraguard demonstrated an additive antiviral effect. Seminal fluid had no effect on the antiviral activity of MIV-150 or Carraguard. The average concentration that blocks 50% of infection (EC50) for PC-815 was approximately 10 times stronger than Carraguard for the different clinical isolates used in the study. CONCLUSION Theoretically, PC-815 is likely to be a more efficacious microbicide than Carraguard.
Collapse
|
33
|
Abstract
During the rapid spread of HIV-1 in humans, the main (M) group of HIV-1 has evolved into ten distinct subtypes, undergone countless recombination events and diversified extensively. The impact of this extreme genetic diversity on the phenotype of HIV-1 has only recently become a research focus, but early findings indicate that the dominance of HIV-1 subtype C in the current epidemic might be related to the lower virulence of this subtype compared with other subtypes. Here, we explore whether HIV-1 has reached peak virulence or has already started the slow path to attenuation.
Collapse
Affiliation(s)
- Kevin K. Ariën
- the Department of Microbiology, HIV and Retrovirology Research Unit, Institute of Tropical Medicine, Nationalestraat 155, Antwerp, B2000 Belgium
- Present Address: the Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, De Pintelaan 185, Ghent, B-9000 Belgium
| | - Guido Vanham
- the Department of Microbiology, HIV and Retrovirology Research Unit, Institute of Tropical Medicine, Nationalestraat 155, Antwerp, B2000 Belgium
| | - Eric J. Arts
- the Division of Infectious Diseases, Department of Medicine, Case Western Reserve University, 2109, Adelbert Rd, Cleveland, 44195 Ohio USA
| |
Collapse
|
34
|
O'Neill E, Baugh LL, Novitsky VA, Essex ME, Garcia JV. Intra- and intersubtype alternative Pak2-activating structural motifs of human immunodeficiency virus type 1 Nef. J Virol 2006; 80:8824-9. [PMID: 16912329 PMCID: PMC1563850 DOI: 10.1128/jvi.00910-06] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The design of antiviral strategies against human immunodeficiency virus type 1 (HIV-1) has been largely derived from studies of subtype B viruses, although they constitute only 12% of infections worldwide. At 50% of all HIV-1 infections worldwide, subtype C viruses are the most predominant. Here, we present evidence that subtype C Nefs display functional Pak2-activating motifs that differ from those found in subtype B and E Nefs. The identification of multiple Pak2-activating structural motifs that singly affect one Nef activity revealed a functional plasticity that has implications for future drug and vaccine design aimed at HIV-1 Nef and its effects on the deregulation of the immune system.
Collapse
Affiliation(s)
- Eduardo O'Neill
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, 75390, USA.
| | | | | | | | | |
Collapse
|
35
|
Martinez J, Coplan P, Wainberg MA. Is HIV drug resistance a limiting factor in the development of anti-HIV NNRTI and NRTI-based vaginal microbicide strategies? Antiviral Res 2006; 71:343-50. [PMID: 16787667 DOI: 10.1016/j.antiviral.2006.05.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Revised: 04/21/2006] [Accepted: 05/22/2006] [Indexed: 11/16/2022]
Abstract
Antiviral drugs that act at specific sites within the HIV life cycle have important rationale for development as anti-HIV microbicides. However, to be effective, such drugs must act by directly interfering with viral enzymatic function and eliminate the ability of HIV to mediate infection. Compounds that are developed as microbicides must have high potency, and should ideally not be well absorbed from the vaginal cavity in order to minimize any potential problems of drug resistance. Such compounds should also be active over long periods of time and should be able to be combined with other active agents, in order to promote the concept of synergy, such as that which has been demonstrated in HIV therapeutic studies.
Collapse
Affiliation(s)
- Jorge Martinez
- McGill University AIDS Center, Lady Davis Institute-Jewish General Hospital, 3755 Chemin Côte Ste-Catherine, Montreal, Quebec H3T 1E1, Canada
| | | | | |
Collapse
|
36
|
Quiñones-Mateu ME, Arts EJ. Virus fitness: concept, quantification, and application to HIV population dynamics. Curr Top Microbiol Immunol 2006; 299:83-140. [PMID: 16568897 DOI: 10.1007/3-540-26397-7_4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Viral fitness has been broadly studied during the past three decades, mainly to test evolutionary models and population theories difficult to analyze and interpret with more complex organisms. More recent studies, however, are focused in the role of fitness on viral transmission, pathogenesis, and drug resistance. Here, we used human immunodeficiency virus (HIV) as one of the most relevant models to evaluate the importance of viral quasispecies and fitness in HIV evolution, population dynamics, disease progression, and potential clinical implications.
Collapse
Affiliation(s)
- M E Quiñones-Mateu
- Department of Molecular Genetics, Section Virology, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue/NN10, Cleveland, OH 44195, USA.
| | | |
Collapse
|
37
|
Martínez AMB, Hora VPD, Santos ALD, Mendoza-Sassi R, Von Groll A, Soares EAJM, D'Avila N, Silveira J, Leal RG, Tanuri A, Soares MA. Determinants of HIV-1 mother-to-child transmission in Southern Brazil. AN ACAD BRAS CIENC 2006; 78:113-21. [PMID: 16532211 DOI: 10.1590/s0001-37652006000100011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Different human immunodeficiency virus type 1 (HIV-1) subtypes may have distinct biological, immunological and pathogenic properties. Efficiency of mother-to-child transmission (MTCT) may be among those properties, but few and controversial results have been described so far. In this study, 102 children born from HIV-1-infected mothers between 1998 and 2004 in the city of Rio Grande, Brazil were analyzed for potential risk factors associated with MTCT. That geographic region is characterized by a high proportion of subtype C-infected subjects, and it allowed comparison between subtypes B and C and their influence on MTCT. The analysis also included clinical, obstetric and immunological parameters. Multivariate regression analyses were conducted to evaluate the influence of the parameters on MTCT, and prevalence ratios (PR) and 95% confidence intervals (CI95) were also calculated. A surprisingly high prevalence of subtype C of over 70% was found. Only the HIV viral load and the use of ACTG 076 protocol were predictive of MTCT. HIV subtype and CD4 T-cell counts were not associated with increased risk of transmission. Although a clear expansion of subtype C is evident in southern Brazil, it does not seem to correlate with increased risk of vertical transmission.
Collapse
Affiliation(s)
- Ana M B Martínez
- Fundação Universidade Federal do Rio Grande, 96200-190 Rio Grande, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Uma das características mais marcantes do HIV-1 é a imensa diversidade observada entre as cepas que compõem a pandemia de HIV/AIDS. Na última década, a classificação das variantes do vírus em grupos, subtipos e formas recombinantes circulantes (CRF) e a observação de padrões específicos de mutação têm provado serem ferramentas poderosas para os estudos da dinâmica molecular do vírus. O acompanhamento da distribuição mundial da diversidade do HIV-1 tem sido empregado, por exemplo, em programas de vigilância epidemiológica, bem como na reconstrução da história de epidemias regionais. Além disto, a observação de padrões específicos de distribuição espacial do vírus sugere a existência de diferenças na patogenia e transmissibilidade entre os diversos subtipos. A análise molecular das seqüências do vírus também permite a estimativa do tempo de divergência entre as variantes e das forças dinâmicas que modelam as árvores filogenéticas.
Collapse
Affiliation(s)
- Mônica Edelenyi Pinto
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | |
Collapse
|
39
|
Ndung'u T, Sepako E, McLane MF, Chand F, Bedi K, Gaseitsiwe S, Doualla-Bell F, Peter T, Thior I, Moyo SM, Gilbert PB, Novitsky VA, Essex M. HIV-1 subtype C in vitro growth and coreceptor utilization. Virology 2006; 347:247-60. [PMID: 16406460 DOI: 10.1016/j.virol.2005.11.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 10/28/2005] [Accepted: 11/19/2005] [Indexed: 11/23/2022]
Abstract
Human immunodeficiency virus type 1 subtype C (HIV-1C) accounts for about 50% of all HIV infections in the pandemic and is the predominant subtype in the heavily burdened region of southern Africa. HIV-1C possesses unique genetic and phenotypic features that might be associated with biological differences compared to other subtypes. Here, we generated virus isolates from individuals at different stages of HIV-1C infection and investigated the chemokine receptor repertoire that the derived HIV-1C isolates may utilize for entry. Our results show that the R5 phenotype predominates among viruses in Botswana, with a lesser contribution of viruses showing the dualtropic X4R5 phenotype. No viruses of pure X4 phenotype were found, which suggests no discernable evolution of HIV-1C to a monotropic X4 phenotype as the epidemic ages in Botswana. Usage of other coreceptors was rare and apparently insignificant. These results enhance our understanding of HIV-1C biology, with implications for designing and testing therapeutic and prophylactic agents.
Collapse
Affiliation(s)
- Thumbi Ndung'u
- Botswana-Harvard School of Public Health AIDS Initiative Partnership for HIV Research and Education, Private Bag BO320, Bontleng, Gaborone, Botswana, Africa
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gilbert PB, Novitsky V, Essex M. Covariability of selected amino acid positions for HIV type 1 subtypes C and B. AIDS Res Hum Retroviruses 2005; 21:1016-30. [PMID: 16379605 DOI: 10.1089/aid.2005.21.1016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We studied covariability of selected amino acid positions in globally dominant HIV-1 subtype C viruses. The analyzed sequences spanned the V3 loop, Gag p17, Gag p24, and five CTL epitope-rich regions in Gag, Nef, and Tat. The corresponding regions in HIV-1 subtype B were also evaluated. The analyses identified a great number of covarying pairs and triples of sites in the HIV-1B V3 loop (173 site pairs, 242 site triples). Several of these interactions were found in the earlier studies [e.g., the V3 loop covariability analyses by Korber et al. (Proc Natl Acad Sci USA 1993;90:7176-7180) and Bickel et al. (AIDS Res Hum Retroviruses 1996;12:1401-1411)] and have known biological significance. However, generally these key covarying sites did not covary in the HIV-1C V3 loop (total 17 covarying site pairs), suggesting that the V3 loop may have subtype differences in functional or structural operating characteristics. Covariability of positions 309 and 312 was observed in the immunodominant region HIV-1C Gag 291-320 but no covariability was found in the corresponding region of HIV-1B, and vice versa for Nef 122-141; these findings may reflect subtype-specific covariability within immunologically relevant regions. Gag p17 exhibited greater covariability and less diversity for HIV-1B than HIV-1C, raising the hypothesis that Gag p17 is highly immunodominant in HIV-1B and is especially important for HIV-1B vaccines. Information on covariability should be better exploited in assessments of HIV-1 diversity and how to surmount it with vaccine design.
Collapse
Affiliation(s)
- Peter B Gilbert
- Department of Biostatistics, University of Washington, and Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
| | | | | |
Collapse
|
41
|
Chen R, Yokoyama M, Sato H, Reilly C, Mansky LM. Human immunodeficiency virus mutagenesis during antiviral therapy: impact of drug-resistant reverse transcriptase and nucleoside and nonnucleoside reverse transcriptase inhibitors on human immunodeficiency virus type 1 mutation frequencies. J Virol 2005; 79:12045-57. [PMID: 16140780 PMCID: PMC1212631 DOI: 10.1128/jvi.79.18.12045-12057.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of antiviral drug resistance is an important problem in the treatment of human immunodeficiency virus type 1 (HIV-1) infection. Potent antiretroviral therapy is currently used for treatment, and typically consists of at least two reverse transcriptase (RT) inhibitors. We have previously reported that both drugs and drug-resistant RT mutants can increase virus mutation frequencies. To further assess the contributions of nucleoside RT inhibitors (NRTIs), nonnucleoside RT inhibitors (NNRTIs), and drug-resistant RTs to HIV mutagenesis, a new high-throughput assay system was developed. This assay system was designed to specifically detect frameshift mutations in the luciferase gene in a single virus replication cycle. New drug-resistant RTs were identified that significantly altered virus mutation frequencies. Consistent with our previous observations of NRTIs, abacavir, stavudine, and zalcitabine increased HIV-1 mutation frequencies, supporting the general hypothesis that the NRTIs currently used in antiviral drug therapy increase virus mutation frequencies. Interestingly, similar observations were made with NNRTIs. This is the first report to show that NNRTIs can influence virus mutation frequencies. NNRTI combinations, NRTI-NNRTI combinations, and combinations of drug and drug-resistant RTs led to significant changes in the virus mutation frequencies compared to virus replication of drug-resistant virus in the absence of drug or wild-type virus in the presence of drug. This indicates that combinations of RT drugs or drugs and drug-resistant virus created during the evolution of drug resistance can act together to increase HIV-1 mutation frequencies, which would have important implications for drug therapy regimens. Finally, the influence of drug-resistant RT mutants from CRF01_AE viruses on HIV-1 mutation frequencies was analyzed and it was found that only a highly drug resistant RT led to altered virus mutation frequencies. The results further suggest that high-level drug-resistant RT can significantly influence virus mutation frequencies. A structural model that explains the mutation frequency data is discussed.
Collapse
Affiliation(s)
- Renxiang Chen
- Institute for Molecular Virology, University of Minnesota, 18-242 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
42
|
Ndung'u T, Gaseitsiwe S, Sepako E, Doualla-Bell F, Peter T, Kim S, Thior I, Novitsky VA, Essex M. Major histocompatibility complex class II (HLA-DRB and -DQB) allele frequencies in Botswana: association with human immunodeficiency virus type 1 infection. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2005; 12:1020-8. [PMID: 16148166 PMCID: PMC1235800 DOI: 10.1128/cdli.12.9.1020-1028.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 06/01/2005] [Accepted: 06/28/2005] [Indexed: 11/20/2022]
Abstract
Southern Africa is facing an unprecedented public health crisis due to the high prevalence of human immunodeficiency virus type 1 (HIV-1). Vaccine development and testing efforts, mainly based on elicitation of HIV-specific T cells, are under way. To understand the role of human leukocyte antigen (HLA) class II alleles in HIV pathogenesis and to facilitate HLA-based HIV-1 vaccine design, we analyzed the frequencies of HLA class II alleles within the southern African country of Botswana. Common HLA class II alleles were identified within the Botswana population through the molecular genotyping of DRB and DQB1 loci. The DRB1 allele groups DRB1*01, DRB1*02/15, DRB1*03, DRB1*11, and DRB1*13 were encountered at frequencies above 20%. Within the DQB1 locus, DQB1*06 (47.7%) was the most common allele group, followed by DQB1*03 (39.2%) and DQB1*04 (25.8%). We found that DRB1*01 was more common in HIV-negative than in HIV-positive individuals and that those who expressed DRB1*08 had lower median viral loads. We demonstrate that the frequencies of certain HLA class II alleles in this Botswana population differ substantially from those in North American populations, including African-Americans. Common allele groups within Botswana cover large percentages of other African populations and could be targeted in regional vaccine designs.
Collapse
Affiliation(s)
- Thumbi Ndung'u
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 651 Huntington Avenue, FXB-402, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yagyu F, Okitsu S, Tanamoto K, Ushijima H. Determination of HIV-1 subtypes (A-D, F, G, CRF01_AE) by PCR in the transmembrane region (gp41) with novel primers. J Med Virol 2005; 76:16-23. [PMID: 15778948 DOI: 10.1002/jmv.20318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
HIV-1 has a huge genetic diversity. So far, nine subtypes have been isolated, namely, subtypes A, B, C, D, F, G, H, J, and K. Epidemiological study provides information which may help in the development of HIV-1 prevention programs or health policies. In the future, subtyping may also be critical for vaccine development, and an effective anti-viral drug will need to be effective for different subtypes of HIV virus. The analysis of the nucleotide sequence of the v3 region is considered the most reliable method for determining the HIV-1 subtype. However, the procedures for determining the v3 sequences are complicated and time consuming, requiring expensive reagents, equipment, and well-trained personnel. The polymerase chain reaction (PCR) method using subtype-specific primers for HIV-1 subtyping is easier and faster. The objective of this study was to develop subtype-specific primers for subtyping PCR. The specific primers were designed for subtypes A, B, C, D, F, G, and CRF01_AE, and these primers could be applied to assay for various HIV-1 subtypes in the clinical samples. The specific primers were designed for each subtypes in the gp41 region. The result of PCR was compared with the subtypes which was determined by the v3 sequence. The results of subtyping by PCR using the newly designed primers could detect 29 of 33 patients tested, and all matched those obtained by nucleotide sequencing of the env v3 region except for three subjects, which were differentiated as CRF02_AG. The newly designed primers functioned accurately and conclusively. In comparison with PCR as a method for the determination of subtypes, sequence analysis requires better-trained personnel, more expensive reagents, and more equipment and time.
Collapse
Affiliation(s)
- Fumihiro Yagyu
- Department of Developmental Medical Sciences, Institute of International Health, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
44
|
|
45
|
Ariën KK, Abraha A, Quiñones-Mateu ME, Kestens L, Vanham G, Arts EJ. The replicative fitness of primary human immunodeficiency virus type 1 (HIV-1) group M, HIV-1 group O, and HIV-2 isolates. J Virol 2005; 79:8979-90. [PMID: 15994792 PMCID: PMC1168791 DOI: 10.1128/jvi.79.14.8979-8990.2005] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The main (M) group of human immunodeficiency virus type 1 (HIV-1) is responsible for the global AIDS epidemic while HIV-1 group O (outlier) and HIV type 2 are endemic only in west and central Africa. The failure of HIV-2 and especially HIV-1 group O to spread following the initial zoonotic jumps is not well understood. This study was designed to examine the relative replicative capacities between these human lentiviruses. A pairwise competition experiment was performed with peripheral blood mononuclear cells with eight HIV-2 isolates, 6 group O viruses, and 15 group M viruses of subtype A (2 viruses), B (5 viruses), C (4 viruses), D (2 viruses) and CRF01_AE (2 viruses). HIV-1 group M isolates of any subtype were typically 100-fold-more fit than group O or HIV-2 strains when competed in peripheral blood mononuclear cells from various humans. This order in replicative fitness was also observed when virus pairs were added to human dendritic cells and then cocultured with primary, quiescent T cells, which is the model for HIV-1 transmission. These results suggest that reduced replicative and transmission fitness may be contributing to the low prevalence and limited geographical spread of HIV-2 and group O HIV-1 in the human population.
Collapse
Affiliation(s)
- Kevin K Ariën
- Centre for AIDS Research, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | | | |
Collapse
|
46
|
Wu Y, Hong K, Chenine AL, Whitney JB, Xu W, Chen Q, Geng Y, Ruprecht RM, Shao Y. Molecular cloning and in vitro evaluation of an infectious simian-human immunodeficiency virus containing env of a primary Chinese HIV-1 subtype C isolate. J Med Primatol 2005; 34:101-7. [PMID: 15860117 DOI: 10.1111/j.1600-0684.2005.00098.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human immunodeficiency virus (HIV) clade C is the most prevalent subtype and accounts for approximately 50% of all HIV infections worldwide. In China, the prevalent HIV strains are B'/C subtypes, in which the envelope belongs to subtype C. To evaluate potential AIDS vaccines targeting Chinese viral strains in non-human primate models, we constructed an infectious simian-human immunodeficiency virus (SHIV) that expresses most of the envelope of a primary HIV strain, which was isolated from a HIV-positive intravenous drug user from XinJiang province in China. The resulting chimeric SHIV-XJ02170 was infectious in human, rhesus monkey and cynomolgus monkey peripheral blood mononuclear cells (PBMC) and used CCR5 exclusively as coreceptor.
Collapse
Affiliation(s)
- YingYun Wu
- College of Life Sciences, NanKai University, TianJin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Siddappa NB, Dash PK, Mahadevan A, Jayasuryan N, Hu F, Dice B, Keefe R, Satish KS, Satish B, Sreekanthan K, Chatterjee R, Venu K, Satishchandra P, Ravi V, Shankar SK, Shankarappa R, Ranga U. Identification of subtype C human immunodeficiency virus type 1 by subtype-specific PCR and its use in the characterization of viruses circulating in the southern parts of India. J Clin Microbiol 2004; 42:2742-51. [PMID: 15184461 PMCID: PMC427845 DOI: 10.1128/jcm.42.6.2742-2751.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) subtype C viruses are associated with nearly half of worldwide HIV-1 infections and are most predominant in India and the southern and eastern parts of Africa. Earlier reports from India identified the preponderance of subtype C and a small proportion of subtype A viruses. Subsequent reports identifying multiple subtypes suggest new introductions and/or their detection due to extended screening. The southern parts of India constitute emerging areas of the epidemic, but it is not known whether HIV-1 infection in these areas is associated with subtype C viruses or is due to the potential new introduction of non-subtype C viruses. Here, we describe the development of a specific and sensitive PCR-based strategy to identify subtype C-viruses (C-PCR). The strategy is based on amplifying a region encompassing a long terminal repeat and gag in the first round, followed by two sets of nested primers; one amplifies multiple subtypes, while the other is specific to subtype C. The common HIV and subtype C-specific fragments are distinguishable by length differences in agarose gels and by the difference in the numbers of NF-kappaB sites encoded in the subtype C-specific fragment. We implemented this method to screen 256 HIV-1-infected individuals from 35 towns and cities in four states in the south and a city in the east. With the exception of single samples of subtypes A and B and a B/C recombinant, we found all to be infected with subtype C viruses, and the subtype assignments were confirmed in a subset by using heteroduplex mobility assays and phylogenetic analysis of sequences. We propose the use of C-PCR to facilitate rapid molecular epidemiologic characterization to aid vaccine and therapeutic strategies.
Collapse
Affiliation(s)
- Nagadenahalli B Siddappa
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ranga U, Shankarappa R, Siddappa NB, Ramakrishna L, Nagendran R, Mahalingam M, Mahadevan A, Jayasuryan N, Satishchandra P, Shankar SK, Prasad VR. Tat protein of human immunodeficiency virus type 1 subtype C strains is a defective chemokine. J Virol 2004; 78:2586-90. [PMID: 14963162 PMCID: PMC369202 DOI: 10.1128/jvi.78.5.2586-2590.2004] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1)-associated dementia (HAD) is correlated with increased monocyte migration to the brain, and the incidence of HAD among otherwise asymptomatic subjects appears to be lower in India than in the United States and Europe (1 to 2% versus 15 to 30%). Because of the genetic differences between HIV-1 strains circulating in these regions, we sought to identify viral determinants associated with this difference. We targeted Tat protein for these studies in view of its association with monocyte chemotactic function. Analyses of Tat sequences representing nine subtypes revealed that at least six amino acid residues are differentially conserved in subtype C Tat (C-Tat). Of these, cysteine (at position 31) was highly (>99%) conserved in non-subtype C viruses and more than 90% of subtype C viruses encoded a serine. We hypothesized a compromised chemotactic function of C-Tat due to the disruption of CC motif and tested it with the wild type C-Tat (CS) and its two isogenic variants (CC and SC) derived by site-directed mutagenesis. We found that the CS natural variant was defective for monocyte chemotactic activity without a loss in the transactivation property. While the CC mutant is functionally competent for both the functions, in contrast, the SC mutant was defective in both. Therefore, the loss of the C-Tat chemotactic property may underlie the reduced incidence of HAD; although not presenting conclusive evidence, this study provides the first evidence for a potential epidemiologic phenomenon associated with biological differences in the subtype C viruses.
Collapse
Affiliation(s)
- Udaykumar Ranga
- Molecular Virology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Herring BL, Ge YC, Wang B, Ratnamohan M, Zheng F, Cunningham AL, Saksena NK, Dwyer DE. Segregation of human immunodeficiency virus type 1 subtypes by risk factor in Australia. J Clin Microbiol 2004; 41:4600-4. [PMID: 14532189 PMCID: PMC254314 DOI: 10.1128/jcm.41.10.4600-4604.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to determine which human immunodeficiency virus type 1 (HIV-1) subtypes were circulating in Australia and to correlate the subtypes with risk factors associated with the acquisition of HIV-1 infection. DNA was extracted from peripheral blood mononuclear cells, and HIV-1 env genes were amplified and subtyped using heteroduplex mobility analysis, with selected samples sequenced and phylogenetic analysis performed. The HIV-1 env subtypes were determined for 141 samples, of which 40 were from female patients and 101 were from male patients; 13 samples were from children. Forty-seven patients were infected by homosexual or bisexual contact, 46 were infected through heterosexual contact, 21 were infected from injecting drug use (IDU), 13 were infected by vertical transmission, 8 were infected from nosocomial exposure, and 6 were infected by other modes of transmission, including exposure to blood products, ritualistic practices, and two cases of intrafamilial transmission. Five subtypes were detected; B (n = 104), A (n = 5), C (n = 17), E (CRF01_AE; n = 13), and G (n = 2). Subtype B predominated in HIV-1 acquired homosexually (94% of cases) and by IDU (100%), whereas non-subtype B infections were mostly seen in heterosexually (57%) or vertically (22%) acquired HIV-1 infections and were usually imported from Africa and Asia. Subtype B strains of group M viruses predominate in Australia in HIV-1 transmitted by homosexual or bisexual contact and IDU. However, non-B subtypes have been introduced, mostly acquired via heterosexual contact.
Collapse
Affiliation(s)
- Belinda L Herring
- Center for Virus Research, Westmead Millennium Institute, Westmead Hospital, Westmead, NSW 2145, Australia
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Cayabyab M, Rohne D, Pollakis G, Mische C, Messele T, Abebe A, Etemad-Moghadam B, Yang P, Henson S, Axthelm M, Goudsmit J, Letvin NL, Sodroski J. Rapid CD4+ T-lymphocyte depletion in rhesus monkeys infected with a simian-human immunodeficiency virus expressing the envelope glycoproteins of a primary dual-tropic Ethiopian Clade C HIV type 1 isolate. AIDS Res Hum Retroviruses 2004; 20:27-40. [PMID: 15000696 DOI: 10.1089/088922204322749477] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Simian-human immunodeficiency virus (SHIV) chimerae with the envelope glycoproteins of X4 or R5/X4 HIV-1 isolates from clade B can cause rapid and severe CD4(+) T cell depletion and AIDS-like illness in infected monkeys. We created a SHIV (SHIV-MCGP1.3) expressing the envelope glycoproteins of a primary R5/X4, clade C HIV-1 isolate. Infection of a rhesus monkey with SHIV-MCGP1.3 resulted in a low level of viremia and no significant alteration in CD4(+) T-lymphocyte counts. However, serial intravenous passage of the virus resulted in the emergence of SHIV-MCGP1.3 variants that replicated efficiently and caused profound CD4(+) T cell depletion during the acute phase of infection. The CD4(+) T cell counts in the infected monkeys gradually returned to normal, and the animals remained healthy. The ability to cause rapid and profound loss of CD4(+) T lymphocytes in vivo is a property shared by passaged, CXCR4-using SHIVs, irrespective of the clade of origin of the HIV-1 envelope glycoproteins.
Collapse
Affiliation(s)
- Mark Cayabyab
- Department of Cancer Immunology/AIDS, Dana-Farber Cancer Institute, and Department of Pathology, Division of AIDS, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|