1
|
Chen P, Wu W, Zhang J, Chen J, Li Y, Sun L, Hou S, Yang J. Pathological mechanisms of connexin26-related hearing loss: Potassium recycling, ATP-calcium signaling, or energy supply? Front Mol Neurosci 2022; 15:976388. [PMID: 36187349 PMCID: PMC9520402 DOI: 10.3389/fnmol.2022.976388] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Hereditary deafness is one of the most common human birth defects. GJB2 gene mutation is the most genetic etiology. Gap junction protein 26 (connexin26, Cx26) encoded by the GJB2 gene, which is responsible for intercellular substance transfer and signal communication, plays a critical role in hearing acquisition and maintenance. The auditory character of different Connexin26 transgenic mice models can be classified into two types: profound congenital deafness and late-onset progressive hearing loss. Recent studies demonstrated that there are pathological changes including endocochlear potential reduction, active cochlear amplification impairment, cochlear developmental disorders, and so on, in connexin26 deficiency mice. Here, this review summarizes three main hypotheses to explain pathological mechanisms of connexin26-related hearing loss: potassium recycling disruption, adenosine-triphosphate-calcium signaling propagation disruption, and energy supply dysfunction. Elucidating pathological mechanisms underlying connexin26-related hearing loss can help develop new protective and therapeutic strategies for this common deafness. It is worthy of further study on the detailed cellular and molecular upstream mechanisms to modify connexin (channel) function.
Collapse
Affiliation(s)
- Penghui Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Wenjin Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jifang Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Junmin Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yue Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Lianhua Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Shule Hou
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Shule Hou,
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Jun Yang,
| |
Collapse
|
2
|
Holman HA, Poppi LA, Frerck M, Rabbitt RD. Spontaneous and Acetylcholine Evoked Calcium Transients in the Developing Mouse Utricle. Front Cell Neurosci 2019; 13:186. [PMID: 31133810 PMCID: PMC6514437 DOI: 10.3389/fncel.2019.00186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/12/2019] [Indexed: 11/13/2022] Open
Abstract
Spontaneous calcium transients are present during early postnatal development in the mouse retina and cochlea, and play an important role in maturation of the sensory organs and neural circuits in the central nervous system (CNS). It is not known whether similar calcium transients occur during postnatal development in the vestibular sensory organs. Here we demonstrate spontaneous intracellular calcium transients in sensory hair cells (HCs) and supporting cells (SCs) in the murine utricular macula during the first two postnatal weeks. Calcium transients were monitored using a genetically encoded calcium indicator, GCaMP5G (G5), at 100 ms-frame−1 in excised utricle sensory epithelia, including HCs, SCs, and neurons. The reporter line expressed G5 and tdTomato (tdT) in a Gad2-Cre dependent manner within a subset of utricular HCs, SCs and neurons. Kinetics of the G5 reporter limited temporal resolution to calcium events lasting longer than 200 ms. Spontaneous calcium transients lasting 1-2 s were observed in the expressing population of HCs at birth and slower spontaneous transients lasting 10-30 s appeared in SCs by P3. Beginning at P5, calcium transients could be modulated by application of the efferent neurotransmitter acetylcholine (ACh). In mature mice, calcium transients in the utricular macula occurred spontaneously, had a duration 1-2 s, and could be modulated by the exogenous application of acetylcholine (ACh) or muscarine. Long-lasting calcium transients evoked by ACh in mature mice were blocked by atropine, consistent with previous reports describing the role of muscarinic receptors expressed in calyx bearing afferents in efferent control of vestibular sensation. Large spontaneous and ACh evoked transients were reversibly blocked by the inositol trisphosphate receptor (IP3R) antagonist aminoethoxydiphenyl borate (2-APB). Results demonstrate long-lasting calcium transients are present in the utricular macula during the first postnatal week, and that responses to ACh mature over this same time period.
Collapse
Affiliation(s)
- Holly A Holman
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Lauren A Poppi
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.,School of Biomedical Science and Pharmacy, Hunter Medical Research Institute, University of Newcastle, Newcastle, NSW, Australia
| | - Micah Frerck
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Richard D Rabbitt
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.,Neuroscience Program, University of Utah, Salt Lake City, UT, United States.,Otolaryngology-Head and Neck Surgery, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
3
|
Vijayakumar S, Depreux FF, Jodelka FM, Lentz JJ, Rigo F, Jones TA, Hastings ML. Rescue of peripheral vestibular function in Usher syndrome mice using a splice-switching antisense oligonucleotide. Hum Mol Genet 2018. [PMID: 28633508 DOI: 10.1093/hmg/ddx234] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Usher syndrome type 1C (USH1C/harmonin) is associated with profound retinal, auditory and vestibular dysfunction. We have previously reported on an antisense oligonucleotide (ASO-29) that dramatically improves auditory function and balance behavior in mice homozygous for the harmonin mutation Ush1c c.216G > A following a single systemic administration. The findings were suggestive of improved vestibular function; however, no direct vestibular assessment was made. Here, we measured vestibular sensory evoked potentials (VsEPs) to directly assess vestibular function in Usher mice. We report that VsEPs are absent or abnormal in Usher mice, indicating profound loss of vestibular function. Strikingly, Usher mice receiving ASO-29 treatment have normal or elevated vestibular response thresholds when treated during a critical period between postnatal day 1 and 5, respectively. In contrast, treatment of mice with ASO-29 treatment at P15 was minimally effective at rescuing vestibular function. Interestingly, ASO-29 treatment at P1, P5 or P15 resulted in sufficient vestibular recovery to support normal balance behaviors, suggesting a therapeutic benefit to balance with ASO-29 treatment at P15 despite the profound vestibular functional deficits that persist with treatment at this later time. These findings provide the first direct evidence of an effective treatment of peripheral vestibular function in a mouse model of USH1C and reveal the potential for using antisense technology to treat vestibular dysfunction.
Collapse
Affiliation(s)
- Sarath Vijayakumar
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, 304 Barkley Memorial Center, Lincoln, NE 68583, USA
| | - Frederic F Depreux
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Francine M Jodelka
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Jennifer J Lentz
- Department of Otorhinolaryngology, Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Timothy A Jones
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, 304 Barkley Memorial Center, Lincoln, NE 68583, USA
| | - Michelle L Hastings
- Department of Cell Biology and Anatomy, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
4
|
Lanvers-Kaminsky C, Ciarimboli G. Pharmacogenetics of drug-induced ototoxicity caused by aminoglycosides and cisplatin. Pharmacogenomics 2017; 18:1683-1695. [PMID: 29173064 DOI: 10.2217/pgs-2017-0125] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aminoglycosides and the anticancer drug cisplatin can cause permanent hearing loss, which impacts patients' quality of life and results in considerable subsequent costs. Since patients' individual susceptibility to aminoglycoside- and cisplatin-induced ototoxicity varies considerably, strategies are needed to identify patients at risk, who may require alternative treatments or specific protection strategies. For both drugs, various genetic variants were linked to an increased or decreased risk for ototoxicity. Except for the association between the A1555G mitochondrial DNA mutation and aminoglycoside ototoxicity, their evidence is considered low because study cohorts were often small and replication studies either missing or contradictory. This review summarizes the pharmacogenetic markers linked to aminoglycoside- or cisplatin-induced ototoxicity and discusses reasons for replication failure and future perspective.
Collapse
Affiliation(s)
- Claudia Lanvers-Kaminsky
- Department of Pediatric Hematology & Oncology, University Children's Hospital of Muenster, Muenster, Germany
| | - Giuliano Ciarimboli
- Experimental Nephrology, Department of Internal Medicine D, University Hospital of Muenster, Muenster, Germany
| |
Collapse
|
5
|
Ryals M, Pak K, Jalota R, Kurabi A, Ryan AF. A kinase inhibitor library screen identifies novel enzymes involved in ototoxic damage to the murine organ of Corti. PLoS One 2017; 12:e0186001. [PMID: 29049311 PMCID: PMC5648133 DOI: 10.1371/journal.pone.0186001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 09/22/2017] [Indexed: 11/25/2022] Open
Abstract
Ototoxicity is a significant side effect of a number of drugs, including the aminoglycoside antibiotics and platinum-based chemotherapeutic agents that are used to treat life-threatening illnesses. Although much progress has been made, the mechanisms that lead to ototoxic loss of inner ear sensory hair cells (HCs) remains incompletely understood. Given the critical role of protein phosphorylation in intracellular processes, including both damage and survival signaling, we screened a library of kinase inhibitors targeting members of all the major families in the kinome. Micro-explants from the organ of Corti of mice in which only the sensory cells express GFP were exposed to 200 μM of the ototoxic aminoglycoside gentamicin with or without three dosages of each kinase inhibitor. The loss of sensory cells was compared to that seen with gentamicin alone, or without treatment. Of the 160 inhibitors, 15 exhibited a statistically significant protective effect, while 3 significantly enhanced HC loss. The results confirm some previous studies of kinase involvement in HC damage and survival, and also highlight several novel potential kinase pathway contributions to ototoxicity.
Collapse
Affiliation(s)
- Matthew Ryals
- Department of Surgery/Otolaryngology, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
| | - Kwang Pak
- Department of Surgery/Otolaryngology, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
| | - Rahul Jalota
- Department of Surgery/Otolaryngology, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
| | - Arwa Kurabi
- Department of Surgery/Otolaryngology, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
| | - Allen F. Ryan
- Department of Surgery/Otolaryngology, University of California, San Diego, School of Medicine, La Jolla, California, United States of America
- Research Service, Veterans Administration Medical Center, San Diego, California, United States of America
- * E-mail:
| |
Collapse
|
6
|
Xu L, Carrer A, Zonta F, Qu Z, Ma P, Li S, Ceriani F, Buratto D, Crispino G, Zorzi V, Ziraldo G, Bruno F, Nardin C, Peres C, Mazzarda F, Salvatore AM, Raspa M, Scavizzi F, Chu Y, Xie S, Yang X, Liao J, Liu X, Wang W, Wang S, Yang G, Lerner RA, Mammano F. Design and Characterization of a Human Monoclonal Antibody that Modulates Mutant Connexin 26 Hemichannels Implicated in Deafness and Skin Disorders. Front Mol Neurosci 2017; 10:298. [PMID: 29018324 PMCID: PMC5615210 DOI: 10.3389/fnmol.2017.00298] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/05/2017] [Indexed: 12/21/2022] Open
Abstract
Background: Mutations leading to changes in properties, regulation, or expression of connexin-made channels have been implicated in 28 distinct human hereditary diseases. Eight of these result from variants of connexin 26 (Cx26), a protein critically involved in cell-cell signaling in the inner ear and skin. Lack of non-toxic drugs with defined mechanisms of action poses a serious obstacle to therapeutic interventions for diseases caused by mutant connexins. In particular, molecules that specifically modulate connexin hemichannel function without affecting gap junction channels are considered of primary importance for the study of connexin hemichannel role in physiological as well as pathological conditions. Monoclonal antibodies developed in the last three decades have become the most important class of therapeutic biologicals. Recombinant methods permit rapid selection and improvement of monoclonal antibodies from libraries with large diversity. Methods: By screening a combinatorial library of human single-chain fragment variable (scFv) antibodies expressed in phage, we identified a candidate that binds an extracellular epitope of Cx26. We characterized antibody action using a variety of biochemical and biophysical assays in HeLa cells, organotypic cultures of mouse cochlea and human keratinocyte-derived cells. Results: We determined that the antibody is a remarkably efficient, non-toxic, and completely reversible inhibitor of hemichannels formed by connexin 26 and does not affect direct cell-cell communication via gap junction channels. Importantly, we also demonstrate that the antibody efficiently inhibits hyperative mutant Cx26 hemichannels implicated in autosomal dominant non-syndromic hearing impairment accompanied by keratitis and hystrix-like ichthyosis-deafness (KID/HID) syndrome. We solved the crystal structure of the antibody, identified residues that are critical for binding and used molecular dynamics to uncover its mechanism of action. Conclusions: Although further studies will be necessary to validate the effect of the antibody in vivo, the methodology described here can be extended to select antibodies against hemichannels composed by other connexin isoforms and, consequently, to target other pathologies associated with hyperactive hemichannels. Our study highlights the potential of this approach and identifies connexins as therapeutic targets addressable by screening phage display libraries expressing human randomized antibodies.
Collapse
Affiliation(s)
- Liang Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Andrea Carrer
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy.,Department of Physics and Astronomy "G. Galilei,", University of PadovaPadova, Italy
| | - Francesco Zonta
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China.,CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy
| | - Zhihu Qu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China
| | - Peixiang Ma
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China
| | - Sheng Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China
| | - Federico Ceriani
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy.,Department of Physics and Astronomy "G. Galilei,", University of PadovaPadova, Italy
| | - Damiano Buratto
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy.,Department of Physics and Astronomy "G. Galilei,", University of PadovaPadova, Italy
| | - Giulia Crispino
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy.,Department of Physics and Astronomy "G. Galilei,", University of PadovaPadova, Italy.,Venetian Institute of Molecular MedicinePadova, Italy
| | - Veronica Zorzi
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy.,Institute of Otolaryngology, Catholic University School of MedicineRome, Italy
| | - Gaia Ziraldo
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy.,Department of Physics and Astronomy "G. Galilei,", University of PadovaPadova, Italy.,Institute of Otolaryngology, Catholic University School of MedicineRome, Italy
| | - Francesca Bruno
- Department of Physics and Astronomy "G. Galilei,", University of PadovaPadova, Italy.,Venetian Institute of Molecular MedicinePadova, Italy
| | - Chiara Nardin
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy.,Department of Science, Roma Tre UniversityRome, Italy
| | - Chiara Peres
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy
| | - Flavia Mazzarda
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy.,Department of Science, Roma Tre UniversityRome, Italy
| | - Anna M Salvatore
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy
| | - Marcello Raspa
- CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy
| | | | - Youjun Chu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China
| | - Sichun Xie
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China
| | - Xuemei Yang
- School of Life Science and Technology, Shanghai Tech UniversityShanghai, China
| | - Jun Liao
- School of Life Science and Technology, Shanghai Tech UniversityShanghai, China
| | - Xiao Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China.,Institute of Biochemistry and Cell Biology, Shanghai Institute for Biological Sciences, Chinese Academy of SciencesShanghai, China.,University of Chinese Academy of SciencesBeijing, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China
| | - Shanshan Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China
| | - Guang Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China
| | - Richard A Lerner
- Department of Cell and Molecular Biology, The Scripps Research InstituteLa Jolla, CA, United States
| | - Fabio Mammano
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech UniversityShanghai, China.,CNR Institute of Cell Biology and NeurobiologyMonterotondo, Italy.,Department of Physics and Astronomy "G. Galilei,", University of PadovaPadova, Italy.,Venetian Institute of Molecular MedicinePadova, Italy
| |
Collapse
|
7
|
Fan Y, Zhang Y, Wu R, Chen X, Zhang Y, Chen X, Zhu D. miR-431 is involved in regulating cochlear function by targeting Eya4. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2119-2126. [DOI: 10.1016/j.bbadis.2016.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
|
8
|
Teeling EC, Jones G, Rossiter SJ. Phylogeny, Genes, and Hearing: Implications for the Evolution of Echolocation in Bats. BAT BIOACOUSTICS 2016. [DOI: 10.1007/978-1-4939-3527-7_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Akil O, Rouse SL, Chan DK, Lustig LR. Surgical method for virally mediated gene delivery to the mouse inner ear through the round window membrane. J Vis Exp 2015:52187. [PMID: 25867531 PMCID: PMC4401361 DOI: 10.3791/52187] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gene therapy, used to achieve functional recovery from sensorineural deafness, promises to grant better understanding of the underlying molecular and genetic mechanisms that contribute to hearing loss. Introduction of vectors into the inner ear must be done in a way that widely distributes the agent throughout the cochlea while minimizing injury to the existing structures. This manuscript describes a post-auricular surgical approach that can be used for mouse cochlear therapy using molecular, pharmacologic, and viral delivery to mice postnatal day 10 and older via the round window membrane (RWM). This surgical approach enables rapid and direct delivery into the scala tympani while minimizing blood loss and avoiding animal mortality. This technique involves negligible or no damage to essential structures of the inner and middle ear as well as neck muscles while wholly preserving hearing. To demonstrate the efficacy of this surgical technique, the vesicular glutamate transporter 3 knockout (VGLUT3 KO) mice will be used as an example of a mouse model of congenital deafness that recovers hearing after delivery of VGLUT3 to the inner ear using an adeno-associated virus (AAV-1).
Collapse
Affiliation(s)
- Omar Akil
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco;
| | - Stephanie L Rouse
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco
| | - Dylan K Chan
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco
| | - Lawrence R Lustig
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco
| |
Collapse
|
10
|
Otoferlin deficiency in zebrafish results in defects in balance and hearing: rescue of the balance and hearing phenotype with full-length and truncated forms of mouse otoferlin. Mol Cell Biol 2015; 35:1043-54. [PMID: 25582200 DOI: 10.1128/mcb.01439-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Sensory hair cells convert mechanical motion into chemical signals. Otoferlin, a six-C2 domain transmembrane protein linked to deafness in humans, is hypothesized to play a role in exocytosis at hair cell ribbon synapses. To date, however, otoferlin has been studied almost exclusively in mouse models, and no rescue experiments have been reported. Here we describe the phenotype associated with morpholino-induced otoferlin knockdown in zebrafish and report the results of rescue experiments conducted with full-length and truncated forms of otoferlin. We found that expression of otoferlin occurs early in development and is restricted to hair cells and the midbrain. Immunofluorescence microscopy revealed localization to both apical and basolateral regions of hair cells. Knockdown of otoferlin resulted in hearing and balance defects, as well as locomotion deficiencies. Further, otoferlin morphants had uninflated swim bladders. Rescue experiments conducted with mouse otoferlin restored hearing, balance, and inflation of the swim bladder. Remarkably, truncated forms of otoferlin retaining the C-terminal C2F domain also rescued the otoferlin knockdown phenotype, while the individual N-terminal C2A domain did not. We conclude that otoferlin plays an evolutionarily conserved role in vertebrate hearing and that truncated forms of otoferlin can rescue hearing and balance.
Collapse
|
11
|
Nishii K, Shibata Y, Kobayashi Y. Connexin mutant embryonic stem cells and human diseases. World J Stem Cells 2014; 6:571-578. [PMID: 25426253 PMCID: PMC4178256 DOI: 10.4252/wjsc.v6.i5.571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/11/2014] [Accepted: 09/17/2014] [Indexed: 02/06/2023] Open
Abstract
Intercellular communication via gap junctions allows cells within multicellular organisms to share small molecules. The effect of such interactions has been elucidated using mouse gene knockout strategies. Although several mutations in human gap junction-encoding connexin (Cx) have been described, Cx mutants in mice do not always recapitulate the human disease. Among the 20 mouse Cxs, Cx26, Cx43, and Cx45 play roles in early cardiac or placental development, and disruption of the genes results in lethality that hampers further analyses. Embryonic stem cells (ESCs) that lack Cx43 or Cx45 have made analysis feasible in both in vitro differentiated cell cultures and in vivo chimeric tissues. The success of mouse ESCs studies is leading to the use of induced pluripotent stem cells to learn more about the pathogenesis of human Cx diseases. This review summarizes the current status of mouse Cx disruption models and ESC differentiation studies, and discusses their implication for understanding human Cx diseases.
Collapse
|
12
|
Padmanarayana M, Hams N, Speight LC, Petersson EJ, Mehl RA, Johnson CP. Characterization of the lipid binding properties of Otoferlin reveals specific interactions between PI(4,5)P2 and the C2C and C2F domains. Biochemistry 2014; 53:5023-33. [PMID: 24999532 PMCID: PMC4144714 DOI: 10.1021/bi5004469] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
![]()
Otoferlin
is a transmembrane protein consisting of six C2 domains,
proposed to act as a calcium sensor for exocytosis. Although otoferlin
is believed to bind calcium and lipids, the lipid specificity and
identity of the calcium binding domains are controversial. Further,
it is currently unclear whether the calcium binding affinity of otoferlin
quantitatively matches the maximal intracellular presynaptic calcium
concentrations of ∼30–50 μM known to elicit exocytosis.
To characterize the calcium and lipid binding properties of otoferlin,
we used isothermal titration calorimetry (ITC), liposome sedimentation
assays, and fluorescence spectroscopy. Analysis of ITC data indicates
that with the exception of the C2A domain, the C2 domains of otoferlin
bind multiple calcium ions with moderate (Kd = 25–95 μM) and low affinities (Kd = 400–700 μM) in solution. However, in the presence
of liposomes, the calcium sensitivity of the domains increased by
up to 10-fold. It was also determined that calcium enhanced liposome
binding for domains C2B–C2E, whereas the C2F domain bound liposomes
in a calcium-independent manner. Mutations that abrogate calcium binding
in C2F do not disrupt liposome binding, supporting the conclusion
that the interaction of the C2F domain with phosphatidylserine is
calcium-independent. Further, domains C2C and C2F, not domains C2A,
C2B, C2D, and C2E, bound phosphatidylinositol 4,5-bisphosphate 1,2-dioleoyl-sn-glycero-3-phospho(1′-myoinositol-4′,5′-bisphosphate) [PI(4,5)P2], which preferentially
steered them toward liposomes harboring PI(4,5)P2. Remarkably, lysine
mutations L478A and L480A in C2C selectively weaken the PI(4,5)P2
interaction while leaving phosphatidylserine binding unaffected. Finally,
shifts in the emission spectra of an environmentally sensitive fluorescent
unnatural amino acid indicate that the calcium binding loops of the
C2F domain directly interact with the lipid bilayer of negatively
charged liposomes in a calcium-independent manner. On the basis of
these results, we propose that the C2F and C2C domains of otoferlin
preferentially bind PI(4,5)P2 and that PI(4,5)P2 may serve to target
otoferlin to the presynapse in a calcium-independent manner. This
positioning would facilitate fast calcium-dependent exocytosis at
the hair cell synapse.
Collapse
Affiliation(s)
- Murugesh Padmanarayana
- Department of Biochemistry and Biophysics, Oregon State University , Corvallis, Oregon 973331, United States
| | | | | | | | | | | |
Collapse
|
13
|
Kluth S, Distl O. Congenital sensorineural deafness in dalmatian dogs associated with quantitative trait loci. PLoS One 2013; 8:e80642. [PMID: 24324618 PMCID: PMC3851758 DOI: 10.1371/journal.pone.0080642] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 10/14/2013] [Indexed: 12/13/2022] Open
Abstract
A genome-wide association study (GWAS) was performed for 235 Dalmatian dogs using the canine Illumina high density bead chip to identify quantitative trait loci (QTL) associated with canine congenital sensorineural deafness (CCSD). Data analysis was performed for all Dalmatian dogs and in addition, separately for brown-eyed and blue-eyed dogs because of the significant influence of eye colour on CCSD in Dalmatian dogs. Mixed linear model analysis (MLM) revealed seven QTL with experiment-wide significant associations (-log10P>5.0) for CCSD in all Dalmatian dogs. Six QTL with experiment-wide significant associations for CCSD were found in brown-eyed Dalmatian dogs and in blue-eyed Dalmatian dogs, four experiment-wide significant QTL were detected. The experiment-wide CCSD-associated SNPs explained 82% of the phenotypic variance of CCSD. Five CCSD-loci on dog chromosomes (CFA) 6, 14, 27, 29 and 31 were in close vicinity of genes shown as causative for hearing loss in human and/or mouse.
Collapse
Affiliation(s)
- Susanne Kluth
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ottmar Distl
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
14
|
Probst FJ, Corrigan RR, del Gaudio D, Salinger AP, Lorenzo I, Gao SS, Chiu I, Xia A, Oghalai JS, Justice MJ. A point mutation in the gene for asparagine-linked glycosylation 10B (Alg10b) causes nonsyndromic hearing impairment in mice (Mus musculus). PLoS One 2013; 8:e80408. [PMID: 24303013 PMCID: PMC3841196 DOI: 10.1371/journal.pone.0080408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/02/2013] [Indexed: 01/10/2023] Open
Abstract
The study of mouse hearing impairment mutants has led to the identification of a number of human hearing impairment genes and has greatly furthered our understanding of the physiology of hearing. The novel mouse mutant neurological/sensory 5 (nse5) demonstrates a significantly reduced or absent startle response to sound and is therefore a potential murine model of human hearing impairment. Genetic analysis of 500 intercross progeny localized the mutant locus to a 524 kilobase (kb) interval on mouse chromosome 15. A missense mutation in a highly-conserved amino acid was found in the asparagine-linked glycosylation 10B gene (Alg10b), which is within the critical interval for the nse5 mutation. A 20.4 kb transgene containing a wildtype copy of the Alg10b gene rescued the mutant phenotype in nse5/nse5 homozygous animals, confirming that the mutation in Alg10b is responsible for the nse5/nse5 mutant phenotype. Homozygous nse5/nse5 mutants had abnormal auditory brainstem responses (ABRs), distortion product otoacoustic emissions (DPOAEs), and cochlear microphonics (CMs). Endocochlear potentials (EPs), on the other hand, were normal. ABRs and DPOAEs also confirmed the rescue of the mutant nse5/nse5 phenotype by the wildtype Alg10b transgene. These results suggested a defect in the outer hair cells of mutant animals, which was confirmed by histologic analysis. This is the first report of mutation in a gene involved in the asparagine (N)-linked glycosylation pathway causing nonsyndromic hearing impairment, and it suggests that the hearing apparatus, and the outer hair cells in particular, are exquisitely sensitive to perturbations of the N-linked glycosylation pathway.
Collapse
Affiliation(s)
- Frank J. Probst
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rebecca R. Corrigan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daniela del Gaudio
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andrew P. Salinger
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Isabel Lorenzo
- Genetically Engineered Mouse Shared Resource, Baylor College of Medicine, Houston, Texas, United States of America
| | - Simon S. Gao
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Ilene Chiu
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Anping Xia
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California, United States of America
| | - John S. Oghalai
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California, United States of America
| | - Monica J. Justice
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
15
|
Meyer A, Petit C, Safieddine S. [Gene therapy for human hearing loss: challenges and promises]. Med Sci (Paris) 2013; 29:883-9. [PMID: 24148127 DOI: 10.1051/medsci/20132910016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Thanks to the advances accomplished in human genomics during the last twenty years, major progress has been made towards understanding the pathogenesis of various forms of congenital or acquired deafness. The identification of deafness genes, which are potential therapeutic targets, and generation and functional characterization of murine models for human deafness forms have advanced the knowledge of the molecular physiology of auditory sensory cells. These milestones have opened the way for the development of new therapeutic strategies, alternatives to conventional prostheses, hearing amplification for mild-to-severe hearing loss, or cochlear implantation for severe-to-profound deafness. In this review, we first summarize the progress made over the last decade in using gene therapy and antisense RNA delivery, including the development of new methods for cochlear gene transfer. We then discuss the potential of gene therapy for curing acquired or inherited deafness and the major obstacles that must be overcome before clinical application can be considered.
Collapse
Affiliation(s)
- Anaïs Meyer
- Institut Pasteur, unité de génétique et physiologie de l'audition, 25, rue du Docteur Roux, 75724 Paris Cedex 15, France - Inserm UMRS 1120, 75015 Paris, France
| | | | | |
Collapse
|
16
|
Ryder E, Gleeson D, Sethi D, Vyas S, Miklejewska E, Dalvi P, Habib B, Cook R, Hardy M, Jhaveri K, Bottomley J, Wardle-Jones H, Bussell JN, Houghton R, Salisbury J, Skarnes WC, Ramirez-Solis R. Molecular characterization of mutant mouse strains generated from the EUCOMM/KOMP-CSD ES cell resource. Mamm Genome 2013; 24:286-94. [PMID: 23912999 PMCID: PMC3745610 DOI: 10.1007/s00335-013-9467-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/27/2013] [Indexed: 01/03/2023]
Abstract
The Sanger Mouse Genetics Project generates knockout mice strains using the EUCOMM/KOMP-CSD embryonic stem (ES) cell collection and characterizes the consequences of the mutations using a high-throughput primary phenotyping screen. Upon achieving germline transmission, new strains are subject to a panel of quality control (QC) PCR- and qPCR-based assays to confirm the correct targeting, cassette structure, and the presence of the 3' LoxP site (required for the potential conditionality of the allele). We report that over 86 % of the 731 strains studied showed the correct targeting and cassette structure, of which 97 % retained the 3' LoxP site. We discuss the characteristics of the lines that failed QC and postulate that the majority of these may be due to mixed ES cell populations which were not detectable with the original screening techniques employed when creating the ES cell resource.
Collapse
Affiliation(s)
- Edward Ryder
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Safieddine S, El-Amraoui A, Petit C. The auditory hair cell ribbon synapse: from assembly to function. Annu Rev Neurosci 2012; 35:509-28. [PMID: 22715884 DOI: 10.1146/annurev-neuro-061010-113705] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cochlear inner hair cells (IHCs), the mammalian auditory sensory cells, encode acoustic signals with high fidelity by Graded variations of their membrane potential trigger rapid and sustained vesicle exocytosis at their ribbon synapses. The kinetics of glutamate release allows proper transfer of sound information to the primary afferent auditory neurons. Understanding the physiological properties and underlying molecular mechanisms of the IHC synaptic machinery, and especially its high temporal acuity, which is pivotal to speech perception, is a central issue of auditory science. During the past decade, substantial progress in high-resolution imaging and electrophysiological recordings, as well as the development of genetic approaches both in humans and in mice, has produced major insights regarding the morphological, physiological, and molecular characteristics of this synapse. Here we review this recent knowledge and discuss how it enlightens the way the IHC ribbon synapse develops and functions.
Collapse
Affiliation(s)
- Saaid Safieddine
- Institut Pasteur, Unité de Génétique et Physiologie de l'Audition, F75015, Paris, France.
| | | | | |
Collapse
|
18
|
Rabconnectin3α promotes stable activity of the H+ pump on synaptic vesicles in hair cells. J Neurosci 2012; 32:11144-56. [PMID: 22875945 DOI: 10.1523/jneurosci.1705-12.2012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Acidification of synaptic vesicles relies on the vacuolar-type ATPase (V-ATPase) and provides the electrochemical driving force for neurotransmitter exchange. The regulatory mechanisms that ensure assembly of the V-ATPase holoenzyme on synaptic vesicles are unknown. Rabconnectin3α (Rbc3α) is a potential candidate for regulation of V-ATPase activity because of its association with synaptic vesicles and its requirement for acidification of intracellular compartments. Here, we provide the first evidence for a role of Rbc3α in synaptic vesicle acidification and neurotransmission. In this study, we characterized mutant alleles of rbc3α isolated from a large-scale screen for zebrafish with auditory/vestibular defects. We show that Rbc3α is localized to basal regions of hair cells in which synaptic vesicles are present. To determine whether Rbc3α regulates V-ATPase activity, we examined the acidification of synaptic vesicles and localization of the V-ATPase in hair cells. In contrast to wild-type hair cells, we observed that synaptic vesicles had elevated pH, and a cytosolic subunit of the V-ATPase was no longer enriched in synaptic regions of mutant hair cells. As a consequence of defective acidification of synaptic vesicles, afferent neurons in rbc3α mutants had reduced firing rates and reduced accuracy of phase-locked action potentials in response to mechanical stimulation of hair cells. Collectively, our data suggest that Rbc3α modulates synaptic transmission in hair cells by promoting V-ATPase activity in synaptic vesicles.
Collapse
|
19
|
The mechanosensory structure of the hair cell requires clarin-1, a protein encoded by Usher syndrome III causative gene. J Neurosci 2012; 32:9485-98. [PMID: 22787034 DOI: 10.1523/jneurosci.0311-12.2012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mutation in the clarin-1 gene (Clrn1) results in loss of hearing and vision in humans (Usher syndrome III), but the role of clarin-1 in the sensory hair cells is unknown. Clarin-1 is predicted to be a four transmembrane domain protein similar to members of the tetraspanin family. Mice carrying null mutation in the clarin-1 gene (Clrn1(-/-)) show loss of hair cell function and a possible defect in ribbon synapse. We investigated the role of clarin-1 using various in vitro and in vivo approaches. We show by immunohistochemistry and patch-clamp recordings of Ca(2+) currents and membrane capacitance from inner hair cells that clarin-1 is not essential for formation or function of ribbon synapse. However, reduced cochlear microphonic potentials, FM1-43 [N-(3-triethylammoniumpropyl)-4-(4-(dibutylamino)styryl) pyridinium dibromide] loading, and transduction currents pointed to diminished cochlear hair bundle function in Clrn1(-/-) mice. Electron microscopy of cochlear hair cells revealed loss of some tall stereocilia and gaps in the v-shaped bundle, although tip links and staircase arrangement of stereocilia were not primarily affected by Clrn1(-/-) mutation. Human clarin-1 protein expressed in transfected mouse cochlear hair cells localized to the bundle; however, the pathogenic variant p.N48K failed to localize to the bundle. The mouse model generated to study the in vivo consequence of p.N48K in clarin-1 (Clrn1(N48K)) supports our in vitro and Clrn1(-/-) mouse data and the conclusion that CLRN1 is an essential hair bundle protein. Furthermore, the ear phenotype in the Clrn1(N48K) mouse suggests that it is a valuable model for ear disease in CLRN1(N48K), the most prevalent Usher syndrome III mutation in North America.
Collapse
|
20
|
Xia L, Yin S, Wang J. Inner ear gene transfection in neonatal mice using adeno-associated viral vector: a comparison of two approaches. PLoS One 2012; 7:e43218. [PMID: 22912830 PMCID: PMC3422324 DOI: 10.1371/journal.pone.0043218] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 07/18/2012] [Indexed: 01/06/2023] Open
Abstract
Local gene transfection is a promising technique for the prevention and/or correction of inner ear diseases, particularly those resulting from genetic defects. Adeno-associated virus (AAV) is an ideal viral vector for inner ear gene transfection because of its safety, stability, long-lasting expression, and its high tropism for many different cell types. Recently, a new generation of AAV vectors with a tyrosine mutation (mut-AAV) has demonstrated significant improvement in transfection efficiency. A method for inner ear gene transfection via the intact round window membrane (RWM) has been developed in our laboratory. This method has not been tested in neonatal mice, an important species for the study of inherited hearing loss. Following a preliminary study to optimize the experimental protocol in order to reduce mortality, the present study investigated inner ear gene transfection in mice at postnatal day 7. We compared transfection efficiency, the safety of the scala tympani injection via RWM puncture, and the trans-RWM diffusion following partial digestion with an enzyme technique. The results revealed that approximately 47% of inner hair cells (IHCs) and 17% of outer hair cells (OHCs) were transfected via the trans-RWM approach. Transfection efficiency via RWM puncture (58% and 19% for IHCs and OHCs, respectively) was slightly higher, but the difference was not significant.
Collapse
Affiliation(s)
- Li Xia
- Department of Otolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiao Tong University, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Shankai Yin
- Department of Otolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiao Tong University, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- * E-mail: (SY); (JW)
| | - Jian Wang
- Department of Otolaryngology, Affiliated Sixth People's Hospital of Shanghai Jiao Tong University, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
- School of Human Communication Disorder, Dalhousie University, Halifax, Nova Scotia, Canada
- * E-mail: (SY); (JW)
| |
Collapse
|
21
|
Abstract
The inner ear is a structurally complex vertebrate organ built to encode sound, motion, and orientation in space. Given its complexity, it is not surprising that inner ear dysfunction is a relatively common consequence of human genetic mutation. Studies in model organisms suggest that many genes currently known to be associated with human hearing impairment are active during embryogenesis. Hence, the study of inner ear development provides a rich context for understanding the functions of genes implicated in hearing loss. This chapter focuses on molecular mechanisms of inner ear development derived from studies of model organisms.
Collapse
Affiliation(s)
- Doris K Wu
- National Institute on Deafness and Other Communication Disorders, Rockville, Maryland 20850, USA.
| | | |
Collapse
|
22
|
Abstract
Cadherins are Ca(2+)-dependent cell-cell adhesion molecules that play critical roles in animal morphogenesis. Various cadherin-related molecules have also been identified, which show diverse functions, not only for the regulation of cell adhesion but also for that of cell proliferation and planar cell polarity. During the past decade, understanding of the roles of these molecules in the nervous system has significantly progressed. They are important not only for the development of the nervous system but also for its functions and, in turn, for neural disorders. In this review, we discuss the roles of cadherins and related molecules in neural development and function in the vertebrate brain.
Collapse
Affiliation(s)
- Shinji Hirano
- Department of Neurobiology and Anatomy, Kochi Medical School, Okoh-cho Kohasu, Nankoku-City 783–8505, Japan.
| | | |
Collapse
|
23
|
Peng H, Liu M, Pecka J, Beisel KW, Ding SJ. Proteomic analysis of the organ of corti using nanoscale liquid chromatography coupled with tandem mass spectrometry. Int J Mol Sci 2012; 13:8171-8188. [PMID: 22942697 PMCID: PMC3430228 DOI: 10.3390/ijms13078171] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/05/2012] [Accepted: 06/25/2012] [Indexed: 11/27/2022] Open
Abstract
The organ of Corti (OC) in the cochlea plays an essential role in auditory signal transduction in the inner ear. For its minute size and trace amount of proteins, the identification of the molecules in pathophysiologic processes in the bone-encapsulated OC requires both delicate separation and a highly sensitive analytical tool. Previously, we reported the development of a high resolution metal-free nanoscale liquid chromatography system for highly sensitive phosphoproteomic analysis. Here this system was coupled with a LTQ-Orbitrap XL mass spectrometer to investigate the OC proteome from normal hearing FVB/N male mice. A total of 628 proteins were identified from six replicates of single LC-MS/MS analysis, with a false discovery rate of 1% using the decoy database approach by the OMSSA search engine. This is currently the largest proteome dataset for the OC. A total of 11 proteins, including cochlin, myosin VI, and myosin IX, were identified that when defective are associated with hearing impairment or loss. This study demonstrated the effectiveness of our nanoLC-MS/MS platform for sensitive identification of hearing loss-associated proteins from minute amount of tissue samples.
Collapse
Affiliation(s)
- Hong Peng
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; E-Mails: (H.P.); (M.L.)
- Department of Environmental, Agricultural & Occupational Health, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Miao Liu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; E-Mails: (H.P.); (M.L.)
| | - Jason Pecka
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA; E-Mail:
| | - Kirk W. Beisel
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (K.W.B.); (S.-J.D.); Tel.: +1-402-280-4069 (K.W.B.); +1-402-559-4183 (S.-J.D.); Fax: +1-402-280-2690 (K.W.B.); +1-402-559-4651 (S.-J.D.)
| | - Shi-Jian Ding
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; E-Mails: (H.P.); (M.L.)
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Authors to whom correspondence should be addressed; E-Mails: (K.W.B.); (S.-J.D.); Tel.: +1-402-280-4069 (K.W.B.); +1-402-559-4183 (S.-J.D.); Fax: +1-402-280-2690 (K.W.B.); +1-402-559-4651 (S.-J.D.)
| |
Collapse
|
24
|
Rudnicki A, Avraham KB. microRNAs: the art of silencing in the ear. EMBO Mol Med 2012; 4:849-59. [PMID: 22745034 PMCID: PMC3491818 DOI: 10.1002/emmm.201100922] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/15/2012] [Accepted: 05/24/2012] [Indexed: 11/11/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression through the RNA interference (RNAi) pathway and by inhibition of mRNA translation. miRNAs first made their appearance in the auditory and vestibular systems in 2005, with the discovery of a triad of hair cell-specific miRNAs later found to be involved in both human and mouse deafness. Since then, miRNAs have been implicated in other medical conditions related to these systems, such as cholesteatomas, vestibular schwannomas and otitis media. Due to the limitations in studying miRNAs and their targets derived from human inner ears, animal models are vital in this field of research. Therefore their role in inner ear development and function has been demonstrated by studies in zebrafish and mice. Transcriptomic and proteomic approaches have been undertaken to identify miRNAs and their targets. Finally, it has been suggested that miRNAs may be used in the future in regeneration of inner ear hair cells and ultimately play a role in therapeutics.
Collapse
Affiliation(s)
- Anya Rudnicki
- Sackler Faculty of Medicine, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, Israel
| | | |
Collapse
|
25
|
Keller JM, Noben-Trauth K. Genome-wide linkage analyses identify Hfhl1 and Hfhl3 with frequency-specific effects on the hearing spectrum of NIH Swiss mice. BMC Genet 2012; 13:32. [PMID: 22540152 PMCID: PMC3416580 DOI: 10.1186/1471-2156-13-32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/27/2012] [Indexed: 11/26/2022] Open
Abstract
Background The mammalian cochlea receives and analyzes sound at specific places along the cochlea coil, commonly referred to as the tonotopic map. Although much is known about the cell-level molecular defects responsible for severe hearing loss, the genetics responsible for less severe and frequency-specific hearing loss remains unclear. We recently identified quantitative trait loci (QTLs) Hfhl1 and Hfhl2 that affect high-frequency hearing loss in NIH Swiss mice. Here we used 2f1-f2 distortion product otoacoustic emissions (DPOAE) measurements to refine the hearing loss phenotype. We crossed the high frequency hearing loss (HFHL) line of NIH Swiss mice to three different inbred strains and performed linkage analysis on the DPOAE data obtained from the second-generation populations. Results We identified a QTL of moderate effect on chromosome 7 that affected 2f1-f2 emissions intensities (Hfhl1), confirming the results of our previous study that used auditory brainstem response (ABR) thresholds to identify QTLs affecting HFHL. We also identified a novel significant QTL on chromosome 9 (Hfhl3) with moderate effects on 2f1-f2 emissions intensities. By partitioning the DPOAE data into frequency subsets, we determined that Hfhl1 and Hfhl3 affect hearing primarily at frequencies above 24 kHz and 35 kHz, respectively. Furthermore, we uncovered additional QTLs with small effects on isolated portions of the DPOAE spectrum. Conclusions This study identifies QTLs with effects that are isolated to limited portions of the frequency map. Our results support the hypothesis that frequency-specific hearing loss results from variation in gene activity along the cochlear partition and suggest a strategy for creating a map of cochlear genes that influence differences in hearing sensitivity and/or vulnerability in restricted portions of the cochlea.
Collapse
Affiliation(s)
- James M Keller
- Laboratory of Molecular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 5 Research Court, Rockville, MD 20850, USA.
| | | |
Collapse
|
26
|
Yang J, Wang L, Song H, Sokolov M. Current understanding of usher syndrome type II. Front Biosci (Landmark Ed) 2012; 17:1165-83. [PMID: 22201796 DOI: 10.2741/3979] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Usher syndrome is the most common deafness-blindness caused by genetic mutations. To date, three genes have been identified underlying the most prevalent form of Usher syndrome, the type II form (USH2). The proteins encoded by these genes are demonstrated to form a complex in vivo. This complex is localized mainly at the periciliary membrane complex in photoreceptors and the ankle-link of the stereocilia in hair cells. Many proteins have been found to interact with USH2 proteins in vitro, suggesting that they are potential additional components of this USH2 complex and that the genes encoding these proteins may be the candidate USH2 genes. However, further investigations are critical to establish their existence in the USH2 complex in vivo. Based on the predicted functional domains in USH2 proteins, their cellular localizations in photoreceptors and hair cells, the observed phenotypes in USH2 mutant mice, and the known knowledge about diseases similar to USH2, putative biological functions of the USH2 complex have been proposed. Finally, therapeutic approaches for this group of diseases are now being actively explored.
Collapse
Affiliation(s)
- Jun Yang
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, Utah 84132
| | | | | | | |
Collapse
|
27
|
Liu CC, Gao SS, Yuan T, Steele C, Puria S, Oghalai JS. Biophysical mechanisms underlying outer hair cell loss associated with a shortened tectorial membrane. J Assoc Res Otolaryngol 2011; 12:577-94. [PMID: 21567249 PMCID: PMC3173552 DOI: 10.1007/s10162-011-0269-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Accepted: 04/17/2011] [Indexed: 01/09/2023] Open
Abstract
The tectorial membrane (TM) connects to the stereociliary bundles of outer hair cells (OHCs). Humans with an autosomal dominant C1509G mutation in alpha-tectorin, a protein constituent of the TM, are born with a partial hearing loss that worsens over time. The Tecta(C1509/+) transgenic mouse with the same point mutation has partial hearing loss secondary to a shortened TM that only contacts the first row of OHCs. As well, Tecta(C1509G/+) mice have increased expression of the OHC electromotility protein, prestin. We sought to determine whether these changes impact OHC survival. Distortion product otoacoustic emission thresholds in a quiet environment did not change to 6 months of age. However, noise exposure produced acute threshold shifts that fully recovered in Tecta (+/+) mice but only partially recovered in Tecta(C1509G/+) mice. While Tecta(+/+) mice lost OHCs primarily at the base and within all three rows, Tecta(C1509G/+) mice lost most of their OHCs in a more apical region of the cochlea and nearly completely within the first row. In order to estimate the impact of a shorter TM on the forces faced by the stereocilia within the first OHC row, both the wild type and the heterozygous conditions were simulated in a computational model. These analyses predicted that the shear force on the stereocilia is ~50% higher in the heterozygous condition. We then measured electrically induced movements of the reticular lamina in situ and found that while they decreased to the noise floor in prestin null mice, they were increased by 4.58 dB in Tecta(C1509G/+) mice compared to Tecta(+/+) mice. The increased movements were associated with a fourfold increase in OHC death as measured by vital dye staining. Together, these findings indicate that uncoupling the TM from some OHCs leads to partial hearing loss and places the remaining coupled OHCs at higher risk. Both the mechanics of the malformed TM and the increased prestin-related movements of the organ of Corti contribute to this higher risk profile.
Collapse
Affiliation(s)
- Christopher C. Liu
- The Bobby R. Alford Department of Otolaryngology–Head and Neck Surgery, Baylor College of Medicine, Houston, TX 77030 USA
| | - Simon S. Gao
- Department of Bioengineering, Rice University, Houston, TX 77005 USA
| | - Tao Yuan
- The Bobby R. Alford Department of Otolaryngology–Head and Neck Surgery, Baylor College of Medicine, Houston, TX 77030 USA
| | - Charles Steele
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94304-5739 USA
| | - Sunil Puria
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94304-5739 USA
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739 USA
| | - John S. Oghalai
- Department of Bioengineering, Rice University, Houston, TX 77005 USA
- Department of Otolaryngology–Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA 94305-5739 USA
| |
Collapse
|
28
|
Brownstein Z, Friedman LM, Shahin H, Oron-Karni V, Kol N, Abu Rayyan A, Parzefall T, Lev D, Shalev S, Frydman M, Davidov B, Shohat M, Rahile M, Lieberman S, Levy-Lahad E, Lee MK, Shomron N, King MC, Walsh T, Kanaan M, Avraham KB. Targeted genomic capture and massively parallel sequencing to identify genes for hereditary hearing loss in Middle Eastern families. Genome Biol 2011; 12:R89. [PMID: 21917145 PMCID: PMC3308052 DOI: 10.1186/gb-2011-12-9-r89] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/08/2011] [Accepted: 09/14/2011] [Indexed: 01/29/2023] Open
Abstract
Background Identification of genes responsible for medically important traits is a major challenge in human genetics. Due to the genetic heterogeneity of hearing loss, targeted DNA capture and massively parallel sequencing are ideal tools to address this challenge. Our subjects for genome analysis are Israeli Jewish and Palestinian Arab families with hearing loss that varies in mode of inheritance and severity. Results A custom 1.46 MB design of cRNA oligonucleotides was constructed containing 246 genes responsible for either human or mouse deafness. Paired-end libraries were prepared from 11 probands and bar-coded multiplexed samples were sequenced to high depth of coverage. Rare single base pair and indel variants were identified by filtering sequence reads against polymorphisms in dbSNP132 and the 1000 Genomes Project. We identified deleterious mutations in CDH23, MYO15A, TECTA, TMC1, and WFS1. Critical mutations of the probands co-segregated with hearing loss. Screening of additional families in a relevant population was performed. TMC1 p.S647P proved to be a founder allele, contributing to 34% of genetic hearing loss in the Moroccan Jewish population. Conclusions Critical mutations were identified in 6 of the 11 original probands and their families, leading to the identification of causative alleles in 20 additional probands and their families. The integration of genomic analysis into early clinical diagnosis of hearing loss will enable prediction of related phenotypes and enhance rehabilitation. Characterization of the proteins encoded by these genes will enable an understanding of the biological mechanisms involved in hearing loss.
Collapse
Affiliation(s)
- Zippora Brownstein
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Crispino G, Di Pasquale G, Scimemi P, Rodriguez L, Galindo Ramirez F, De Siati RD, Santarelli RM, Arslan E, Bortolozzi M, Chiorini JA, Mammano F. BAAV mediated GJB2 gene transfer restores gap junction coupling in cochlear organotypic cultures from deaf Cx26Sox10Cre mice. PLoS One 2011; 6:e23279. [PMID: 21876744 PMCID: PMC3158073 DOI: 10.1371/journal.pone.0023279] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 07/11/2011] [Indexed: 11/24/2022] Open
Abstract
The deafness locus DFNB1 contains GJB2, the gene encoding connexin26 and GJB6, encoding connexin30, which appear to be coordinately regulated in the inner ear. In this work, we investigated the expression and function of connexin26 and connexin30 from postnatal day 5 to adult age in double transgenic Cx26(Sox10Cre) mice, which we obtained by crossing connexin26 floxed mice with a deleter Sox10-Cre line. Cx26(Sox10Cre) mice presented with complete connexin26 ablation in the epithelial gap junction network of the cochlea, whereas connexin30 expression was developmentally delayed; immunolabeling patterns for both connexins were normal in the cochlear lateral wall. In vivo electrophysiological measurements in Cx26(Sox10Cre) mice revealed profound hearing loss accompanied by reduction of endocochlear potential, and functional experiments performed in postnatal cochlear organotypic cultures showed impaired gap junction coupling. Transduction of these cultures with a bovine adeno associated virus vector restored connexin26 protein expression and rescued gap junction coupling. These results suggest that restoration of normal connexin levels by gene delivery via recombinant adeno associated virus could be a way to rescue hearing function in DFNB1 mouse models and, in future, lead to the development of therapeutic interventions in humans.
Collapse
Affiliation(s)
- Giulia Crispino
- Fondazione per la Ricerca Biomedica Avanzata, Istituto Veneto di Medicina Molecolare, Padova, Italy
- Dipartimento di Fisica “G. Galilei”, Università di Padova, Padova, Italy
| | - Giovanni Di Pasquale
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Pietro Scimemi
- Dipartimento di Specialità Medico–Chirurgiche e Servizio di Audiologia, Università di Padova, Padova, Italy
| | - Laura Rodriguez
- Fondazione per la Ricerca Biomedica Avanzata, Istituto Veneto di Medicina Molecolare, Padova, Italy
- Dipartimento di Fisica “G. Galilei”, Università di Padova, Padova, Italy
| | - Fabian Galindo Ramirez
- Fondazione per la Ricerca Biomedica Avanzata, Istituto Veneto di Medicina Molecolare, Padova, Italy
| | - Romolo Daniele De Siati
- Dipartimento di Specialità Medico–Chirurgiche e Servizio di Audiologia, Università di Padova, Padova, Italy
| | - Rosa Maria Santarelli
- Dipartimento di Specialità Medico–Chirurgiche e Servizio di Audiologia, Università di Padova, Padova, Italy
| | - Edoardo Arslan
- Dipartimento di Specialità Medico–Chirurgiche e Servizio di Audiologia, Università di Padova, Padova, Italy
| | - Mario Bortolozzi
- Fondazione per la Ricerca Biomedica Avanzata, Istituto Veneto di Medicina Molecolare, Padova, Italy
- Dipartimento di Fisica “G. Galilei”, Università di Padova, Padova, Italy
- Istituto CNR di Neuroscienze, Padova, Italy
| | - John A. Chiorini
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Fabio Mammano
- Fondazione per la Ricerca Biomedica Avanzata, Istituto Veneto di Medicina Molecolare, Padova, Italy
- Dipartimento di Fisica “G. Galilei”, Università di Padova, Padova, Italy
- Istituto CNR di Neuroscienze, Padova, Italy
| |
Collapse
|
30
|
Lenz DR, Avraham KB. Hereditary hearing loss: from human mutation to mechanism. Hear Res 2011; 281:3-10. [PMID: 21664957 DOI: 10.1016/j.heares.2011.05.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 05/26/2011] [Accepted: 05/27/2011] [Indexed: 11/17/2022]
Abstract
The genetic heterogeneity of hereditary hearing loss is thus far represented by hundreds of genes encoding a large variety of proteins. Mutations in these genes have been discovered for patients with different modes of inheritance and types of hearing loss, ranging from syndromic to non-syndromic and mild to profound. In many cases, the mechanisms whereby the mutations lead to hearing loss have been partly elucidated using cell culture systems and mouse and other animal models. The discovery of the genes has completely changed the practice of genetic counseling in this area, providing potential diagnosis in many cases that can be coupled with clinical phenotypes and offer predictive information for families. In this review we provide three examples of gene discovery in families with hereditary hearing loss, all associated with elucidation of some of the mechanisms leading to hair cell degeneration and pathology of deafness.
Collapse
Affiliation(s)
- Danielle R Lenz
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
31
|
Abstract
Ca(2+) acts as a fundamental signal transduction element in inner ear, delivering information about sound, acceleration and gravity through a small number of mechanotransduction channels in the hair cell stereocilia and voltage activated Ca(2+) channels at the ribbon synapse, where it drives neurotransmission. The mechanotransduction process relies on the endocochlear potential, an electrical potential difference between endolymph and perilymph, the two fluids bathing respectively the apical and basolateral membrane of the cells in the organ of Corti. In mouse models, deafness and lack or reduction of the endocochlear potential correlate with ablation of connexin (Cx) 26 or 30. These Cxs form heteromeric channels assembled in a network of gap junction plaques connecting the supporting and epithelial cells of the organ of Corti presumably for K(+) recycle and transfer of key metabolites, for example, the Ca(2+) -mobilizing second messenger IP(3) . Ca(2+) signaling in these cells could play a crucial role in regulating Cx expression and function. Another district where Ca(2+) signaling alterations link to hearing loss is hair cell apex, where ablation or missense mutations of the PMCA2 Ca(2+) -pump of the stereocilia cause deafness and loss of balance. If less Ca(2+) is exported from the stereocilia, as in the PMCA2 mouse mutants, Ca(2+) concentration in endolymph is expected to fall causing an alteration of the mechanotransduction process. This may provide a clue as to why, in some cases, PMCA2 mutations potentiated the deafness phenotype induced by coexisting mutations of cadherin-23 (Usher syndrome type 1D), a single pass membrane Ca(2+) binding protein that is abundantly expressed in the stereocilia.
Collapse
Affiliation(s)
- Fabio Mammano
- Department of Physics "G. Galilei," University of Padova, Italy.
| |
Collapse
|
32
|
Alagramam KN, Goodyear RJ, Geng R, Furness DN, van Aken AFJ, Marcotti W, Kros CJ, Richardson GP. Mutations in protocadherin 15 and cadherin 23 affect tip links and mechanotransduction in mammalian sensory hair cells. PLoS One 2011; 6:e19183. [PMID: 21532990 PMCID: PMC3080917 DOI: 10.1371/journal.pone.0019183] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 03/29/2011] [Indexed: 11/26/2022] Open
Abstract
Immunocytochemical studies have shown that protocadherin-15 (PCDH15) and cadherin-23 (CDH23) are associated with tip links, structures thought to gate the mechanotransducer channels of hair cells in the sensory epithelia of the inner ear. The present report describes functional and structural analyses of hair cells from Pcdh15av3J (av3J), Pcdh15av6J (av6J) and Cdh23v2J (v2J) mice. The av3J and v2J mice carry point mutations that are predicted to introduce premature stop codons in the transcripts for Pcdh15 and Cdh23, respectively, and av6J mice have an in-frame deletion predicted to remove most of the 9th cadherin ectodomain from PCDH15. Severe disruption of hair-bundle morphology is observed throughout the early-postnatal cochlea in av3J/av3J and v2J/v2J mice. In contrast, only mild-to-moderate bundle disruption is evident in the av6J/av6J mice. Hair cells from av3J/av3J mice are unaffected by aminoglycosides and fail to load with [3H]-gentamicin or FM1-43, compounds that permeate the hair cell's mechanotransducer channels. In contrast, hair cells from av6J/av6J mice load with both FM1-43 and [3H]-gentamicin, and are aminoglycoside sensitive. Transducer currents can be recorded from hair cells of all three mutants but are reduced in amplitude in all mutants and have abnormal directional sensitivity in the av3J/av3J and v2J/v2J mutants. Scanning electron microscopy of early postnatal cochlear hair cells reveals tip-link like links in av6J/av6J mice, substantially reduced numbers of links in the av3J/av3J mice and virtually none in the v2J/v2J mice. Analysis of mature vestibular hair bundles reveals an absence of tip links in the av3J/av3J and v2J/v2J mice and a reduction in av6J/av6J mice. These results therefore provide genetic evidence consistent with PCDH15 and CDH23 being part of the tip-link complex and necessary for normal mechanotransduction.
Collapse
Affiliation(s)
- Kumar N. Alagramam
- Otolaryngology Head and Neck Surgery, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Richard J. Goodyear
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Ruishuang Geng
- Otolaryngology Head and Neck Surgery, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - David N. Furness
- Institute for Science and Technology in Medicine, School of Life Sciences, Keele University, Staffordshire, United Kingdom
| | | | - Walter Marcotti
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Corné J. Kros
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
- * E-mail: (CJK); (GPR)
| | - Guy P. Richardson
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
- * E-mail: (CJK); (GPR)
| |
Collapse
|
33
|
Richardson GP, de Monvel JB, Petit C. How the Genetics of Deafness Illuminates Auditory Physiology. Annu Rev Physiol 2011; 73:311-34. [DOI: 10.1146/annurev-physiol-012110-142228] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guy P. Richardson
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, United Kingdom;
| | - Jacques Boutet de Monvel
- Unité de Génétique et Physiologie de l'Audition, Département de Neuroscience, Institut Pasteur, F-75724 Paris cedex 15, France; ,
- Inserm UMRS 587, F-75015 Paris, France
- Université Pierre & Marie Curie, F-75005 Paris, France
| | - Christine Petit
- Unité de Génétique et Physiologie de l'Audition, Département de Neuroscience, Institut Pasteur, F-75724 Paris cedex 15, France; ,
- Inserm UMRS 587, F-75015 Paris, France
- Université Pierre & Marie Curie, F-75005 Paris, France
- Collège de France, F-75005 Paris, France
| |
Collapse
|
34
|
Loss-of-function mutations of ILDR1 cause autosomal-recessive hearing impairment DFNB42. Am J Hum Genet 2011; 88:127-37. [PMID: 21255762 DOI: 10.1016/j.ajhg.2010.12.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 12/16/2010] [Accepted: 12/20/2010] [Indexed: 12/28/2022] Open
Abstract
By using homozygosity mapping in a consanguineous Pakistani family, we detected linkage of nonsyndromic hearing loss to a 7.6 Mb region on chromosome 3q13.31-q21.1 within the previously reported DFNB42 locus. Subsequent candidate gene sequencing identified a homozygous nonsense mutation (c.1135G>T [p.Glu379X]) in ILDR1 as the cause of hearing impairment. By analyzing additional consanguineous families with homozygosity at this locus, we detected ILDR1 mutations in the affected individuals of 10 more families from Pakistan and Iran. The identified ILDR1 variants include missense, nonsense, frameshift, and splice-site mutations as well as a start codon mutation in the family that originally defined the DFNB42 locus. ILDR1 encodes the evolutionarily conserved immunoglobulin-like domain containing receptor 1, a putative transmembrane receptor of unknown function. In situ hybridization detected expression of Ildr1, the murine ortholog, early in development in the vestibule and in hair cells and supporting cells of the cochlea. Expression in hair cell- and supporting cell-containing neurosensory organs is conserved in the zebrafish, in which the ildr1 ortholog is prominently expressed in the developing ear and neuromasts of the lateral line. These data identify loss-of-function mutations of ILDR1, a gene with a conserved expression pattern pointing to a conserved function in hearing in vertebrates, as underlying nonsyndromic prelingual sensorineural hearing impairment.
Collapse
|
35
|
Matsumoto Y, Katayama KI, Okamoto T, Yamada K, Takashima N, Nagao S, Aruga J. Impaired auditory-vestibular functions and behavioral abnormalities of Slitrk6-deficient mice. PLoS One 2011; 6:e16497. [PMID: 21298075 PMCID: PMC3027700 DOI: 10.1371/journal.pone.0016497] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/20/2010] [Indexed: 01/17/2023] Open
Abstract
A recent study revealed that Slitrk6, a transmembrane protein containing a leucine-rich repeat domain, has a critical role in the development of the inner ear neural circuit. However, it is still unknown how the absence of Slitrk6 affects auditory and vestibular functions. In addition, the role of Slitrk6 in regions of the central nervous system, including the dorsal thalamus, has not been addressed. To understand the physiological role of Slitrk6, Slitrk6-knockout (KO) mice were subjected to systematic behavioral analyses including auditory and vestibular function tests. Compared to wild-type mice, the auditory brainstem response (ABR) of Slitrk6-KO mice indicated a mid-frequency range (8-16 kHz) hearing loss and reduction of the first ABR wave. The auditory startle response was also reduced. A vestibulo-ocular reflex (VOR) test showed decreased vertical (head movement-induced) VOR gains and normal horizontal VOR. In an open field test, locomotor activity was reduced; the tendency to be in the center region was increased, but only in the first 5 min of the test, indicating altered adaptive responses to a novel environment. Altered adaptive responses were also found in a hole-board test in which head-dip behavior was increased and advanced. Aside from these abnormalities, no clear abnormalities were noted in the mood, anxiety, learning, spatial memory, or fear memory-related behavioral tests. These results indicate that the Slitrk6-KO mouse can serve as a model of hereditary sensorineural deafness. Furthermore, the altered responses of Slitrk6-KO mice to the novel environment suggest a role of Slitrk6 in some cognitive functions.
Collapse
Affiliation(s)
- Yoshifumi Matsumoto
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI), Wako-shi, Japan
| | - Kei-ichi Katayama
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI), Wako-shi, Japan
| | - Takehito Okamoto
- Laboratory for Motor Learning Control, RIKEN Brain Science Institute (BSI), Wako-shi, Japan
| | - Kazuyuki Yamada
- Support Unit for Animal Experiments, RIKEN Brain Science Institute (BSI), Wako-shi, Japan
| | - Noriko Takashima
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI), Wako-shi, Japan
| | - Soichi Nagao
- Laboratory for Motor Learning Control, RIKEN Brain Science Institute (BSI), Wako-shi, Japan
| | - Jun Aruga
- Laboratory for Behavioral and Developmental Disorders, RIKEN Brain Science Institute (BSI), Wako-shi, Japan
| |
Collapse
|
36
|
Dror AA, Avraham KB. Hearing Impairment: A Panoply of Genes and Functions. Neuron 2010; 68:293-308. [DOI: 10.1016/j.neuron.2010.10.011] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2010] [Indexed: 12/13/2022]
|
37
|
Abstract
The 6-billion human population provides a vast reservoir of mutations, which, in addition to the opportunity of detecting very subtle defects, including specific cognitive dysfunctions as well as late appearing disorders, offers a unique background in which to investigate the roles of cell-cell adhesion proteins. Here we focus on inherited human disorders involving members of the cadherin superfamily. Most of the advances concern monogenic disorders. Yet, with the development of single nucleotide polymorphism (SNP) association studies, cadherin genes are emerging as susceptibility genes in multifactorial disorders. Various skin and heart disorders revealed the critical role played by desmosomal cadherins in epidermis, hairs, and myocardium, which experience high mechanical stress. Of particular interest in that respect is the study of Usher syndrome type 1 (USH1), a hereditary syndromic form of deafness. Studies of USH1 brought to light the crucial role of transient fibrous links formed by cadherin 23 and protocadherin 15 in the cohesion of the developing hair bundle, the mechanoreceptive structure of the auditory sensory cells, as well as the involvement of these cadherins in the formation of the tip-link, a key component of the mechano-electrical transduction machinery. Finally, in line with the well-established role of cadherins in synaptic formation, maintenance, strength, and plasticity, a growing number of cadherin family members, especially protocadherins, have been found to be involved in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Aziz El-Amraoui
- Institut Pasteur, Unité de Génétique et Physiologie de l'Audition, 25 Rue du Dr Roux, 75015 Paris, France.
| | | |
Collapse
|
38
|
Chaible LM, Corat MA, Abdelhay E, Dagli MLZ. Genetically modified animals for use in research and biotechnology. GENETICS AND MOLECULAR RESEARCH 2010; 9:1469-82. [PMID: 20677136 DOI: 10.4238/vol9-3gmr867] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Transgenic animals are used extensively in the study of in vivo gene function, as models for human diseases and in the production of biopharmaceuticals. The technology behind obtaining these animals involves molecular biology techniques, cell culture and embryo manipulation; the mouse is the species most widely used as an experimental model. In scientific research, diverse models are available as tools for the elucidation of gene function, such as transgenic animals, knockout and conditional knockout animals, knock-in animals, humanized animals, and knockdown animals. We examined the evolution of the science for the development of these animals, as well as the techniques currently used in obtaining these animal models. We review the phenotypic techniques used for elucidation of alterations caused by genetic modification. We also investigated the role of genetically modified animals in the biotechnology industry, where they promise a revolution in obtaining heterologous proteins through natural secretions, such as milk, increasing the scale of production and facilitating purification, thereby lowering the cost of production of hormones, growth factors and enzymes.
Collapse
Affiliation(s)
- L M Chaible
- Laboratório de Oncologia Experimental, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, SP, Brasil
| | | | | | | |
Collapse
|
39
|
Bahloul A, Michel V, Hardelin JP, Nouaille S, Hoos S, Houdusse A, England P, Petit C. Cadherin-23, myosin VIIa and harmonin, encoded by Usher syndrome type I genes, form a ternary complex and interact with membrane phospholipids. Hum Mol Genet 2010; 19:3557-65. [PMID: 20639393 PMCID: PMC2928128 DOI: 10.1093/hmg/ddq271] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Cadherin-23 is a component of early transient lateral links of the auditory sensory cells' hair bundle, the mechanoreceptive structure to sound. This protein also makes up the upper part of the tip links that control gating of the mechanoelectrical transduction channels. We addressed the issue of the molecular complex that anchors these links to the hair bundle F-actin core. By using surface plasmon resonance assays, we show that the cytoplasmic regions of the two cadherin-23 isoforms that do or do not contain the exon68-encoded peptide directly interact with harmonin, a submembrane PDZ (post-synaptic density, disc large, zonula occludens) domain-containing protein, with unusually high affinity. This interaction involves the harmonin Nter-PDZ1 supramodule, but not the C-terminal PDZ-binding motif of cadherin-23. We establish that cadherin-23 directly binds to the tail of myosin VIIa. Moreover, cadherin-23, harmonin and myosin VIIa can form a ternary complex, which suggests that myosin VIIa applies tension forces on hair bundle links. We also show that the cadherin-23 cytoplasmic region, harmonin and myosin VIIa interact with phospholipids on synthetic liposomes. Harmonin and the cytoplasmic region of cadherin-23, both independently and as a binary complex, can bind specifically to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), which may account for the role of this phospholipid in the adaptation of mechanoelectrical transduction in the hair bundle. The distributions of cadherin-23, harmonin, myosin VIIa and PI(4,5)P2 in the growing and mature auditory hair bundles as well as the abnormal locations of harmonin and myosin VIIa in cadherin-23 null mutant mice strongly support the functional relevance of these interactions.
Collapse
Affiliation(s)
- Amel Bahloul
- Département de Neuroscience, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Phenotype and genetics of progressive sensorineural hearing loss (Snhl1) in the LXS set of recombinant inbred strains of mice. PLoS One 2010; 5:e11459. [PMID: 20628639 PMCID: PMC2898796 DOI: 10.1371/journal.pone.0011459] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 06/10/2010] [Indexed: 11/19/2022] Open
Abstract
Progressive sensorineural hearing loss is the most common form of acquired hearing impairment in the human population. It is also highly prevalent in inbred strains of mice, providing an experimental avenue to systematically map genetic risk factors and to dissect the molecular pathways that orchestrate hearing in peripheral sensory hair cells. Therefore, we ascertained hearing function in the inbred long sleep (ILS) and inbred short sleep (ISS) strains. Using auditory-evoked brain stem response (ABR) and distortion product otoacoustic emission (DPOAE) measurements, we found that ISS mice developed a high-frequency hearing loss at twelve weeks of age that progressed to lower frequencies by 26 weeks of age in the presence of normal endocochlear potentials and unremarkable inner ear histology. ILS mice exhibited milder hearing loss, showing elevated thresholds and reduced DPOAEs at the higher frequencies by 26 weeks of age. To map the genetic variants that underlie this hearing loss we computed ABR thresholds of 63 recombinant inbred stains derived from the ISS and ILS founder strains. A single locus was linked to markers associated with ISS alleles on chromosome 10 with a highly significant logarithm of odds (LOD) score of 15.8. The 2-LOD confidence interval spans approximately 4 Megabases located at position 54-60 Mb. This locus, termed sensorineural hearing loss 1 (Snhl1), accounts for approximately 82% of the phenotypic variation. In summary, this study identifies a novel hearing loss locus on chromosome 10 and attests to the prevalence and genetic heterogeneity of progressive hearing loss in common mouse strains.
Collapse
|
41
|
Abstract
Morphogenesis of sensory hair cells, in particular their mechanotransduction organelle, the stereociliary bundle, requires highly organized remodeling of the actin cytoskeleton. The roles of Rho family small GTPases during this process remain unknown. Here we show that deletion of Rac1 in the otic epithelium resulted in severe defects in cochlear epithelial morphogenesis. The mutant cochlea was severely shortened with a reduced number of auditory hair cells and cellular organization of the auditory sensory epithelium was abnormal. Rac1 mutant hair cells also displayed defects in planar cell polarity and morphogenesis of the stereociliary bundle, including bundle fragmentation or deformation, and mispositioning or absence of the kinocilium. We further demonstrate that a Rac-PAK (p21-activated kinase) signaling pathway mediates kinocilium-stereocilia interactions and is required for cohesion of the stereociliary bundle. Together, these results reveal a critical function of Rac1 in morphogenesis of the auditory sensory epithelium and stereociliary bundle.
Collapse
|
42
|
Abbas L, Whitfield TT. The zebrafish inner ear. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1546-5098(10)02904-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
43
|
Abstract
OBJECTIVE The fundamental processes involved in the mechanism of hearing seem to be controlled by hundreds of genes and hereditary hearing impairment may be caused by a large variety of genetic mutations in different genes. Approximately 150 loci for monogenic syndromic and non-syndromic hearing impairment (HI) disorders have been mapped to the human genome. The identification of these genes and functional analysis of the proteins they encode, are paving the way towards a better understanding of the physiology and pathophysiology of the auditory system. To date, approximately 50 causative genes have been identified. METHODS The clinical and neuroradioldical findings of syndromal hearing impairment are analysed. RESULTS This paper presents an updated report on genetic syndromes in which a hearing impairment is involved, with a particular attention to the ones associated with external ear and craniofacial malformations. CONCLUSIONS Concepts in human genetics are rapidly evolving together with technologies. The concept itself of gene is changing. A genetic diagnosis of syndromal hearing impairment has many practical consequences: it can implies specific prognosis, specific management, specific recurrence risk in relatives and, if the diagnosis is confirmed at the molecular level, possibility of a specific early prenatal diagnosis for severe syndromes. It is important to highlight the necessity that the pediatric otolaryngologist must have a close collaboration with a clinical geneticist and a neuroradiologist.
Collapse
|
44
|
Grillet N, Schwander M, Hildebrand MS, Sczaniecka A, Kolatkar A, Velasco J, Webster JA, Kahrizi K, Najmabadi H, Kimberling WJ, Stephan D, Bahlo M, Wiltshire T, Tarantino LM, Kuhn P, Smith RJ, Müller U. Mutations in LOXHD1, an evolutionarily conserved stereociliary protein, disrupt hair cell function in mice and cause progressive hearing loss in humans. Am J Hum Genet 2009; 85:328-37. [PMID: 19732867 PMCID: PMC2771534 DOI: 10.1016/j.ajhg.2009.07.017] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/22/2009] [Accepted: 07/27/2009] [Indexed: 11/23/2022] Open
Abstract
Hearing loss is the most common form of sensory impairment in humans and is frequently progressive in nature. Here we link a previously uncharacterized gene to hearing impairment in mice and humans. We show that hearing loss in the ethylnitrosourea (ENU)-induced samba mouse line is caused by a mutation in Loxhd1. LOXHD1 consists entirely of PLAT (polycystin/lipoxygenase/alpha-toxin) domains and is expressed along the membrane of mature hair cell stereocilia. Stereociliary development is unaffected in samba mice, but hair cell function is perturbed and hair cells eventually degenerate. Based on the studies in mice, we screened DNA from human families segregating deafness and identified a mutation in LOXHD1, which causes DFNB77, a progressive form of autosomal-recessive nonsyndromic hearing loss (ARNSHL). LOXHD1, MYO3a, and PJVK are the only human genes to date linked to progressive ARNSHL. These three genes are required for hair cell function, suggesting that age-dependent hair cell failure is a common mechanism for progressive ARNSHL.
Collapse
Affiliation(s)
- Nicolas Grillet
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Martin Schwander
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael S. Hildebrand
- Department of Otolaryngology—Head and Neck Surgery, University of Iowa City, IA 55242, USA
| | - Anna Sczaniecka
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anand Kolatkar
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Janice Velasco
- Genome Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
| | - Jennifer A. Webster
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Dietrich Stephan
- Genome Institute of the Novartis Research Foundation, San Diego, CA 92121, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ 85004, USA
- Banner Alzheimer's Institute, Phoenix, AZ 85004, USA
| | - Melanie Bahlo
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville 3052 VIC, Australia
| | - Tim Wiltshire
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Lisa M. Tarantino
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Peter Kuhn
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Richard J.H. Smith
- Department of Otolaryngology—Head and Neck Surgery, University of Iowa City, IA 55242, USA
| | - Ulrich Müller
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
45
|
Kelly MC, Chen P. Development of form and function in the mammalian cochlea. Curr Opin Neurobiol 2009; 19:395-401. [PMID: 19683914 DOI: 10.1016/j.conb.2009.07.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Revised: 07/06/2009] [Accepted: 07/13/2009] [Indexed: 01/05/2023]
Abstract
The cochlea possesses specialized features to receive sound signals and to resolve and convert the frequency and intensity components within each signal for auditory perception. It consists of precisely patterned and polarized sensory cells adorned with a highly specialized mechanotransduction apparatus for sensitivity and adaptation, and discrete nonsensory cellular networks for biochemical and mechanical support to drive an integrated cellular response and mechanotransduction. This review summarizes recent discoveries about the roles of FGF, Notch, and Hedgehog signaling and transcriptional factors in the differentiation and patterning of the auditory sensory organ, the Usher complex, and the planar cell polarity pathway in the formation and polarization of mechanotransduction component hair bundles, and the contribution of nonsensory cell networks in the stria vascularis and the sensory region toward the maturation of the mammalian cochlea.
Collapse
Affiliation(s)
- Michael C Kelly
- Department of Cell Biology, Emory University, 615 Michael Street, Atlanta, GA 30322, USA
| | | |
Collapse
|
46
|
Linking genes underlying deafness to hair-bundle development and function. Nat Neurosci 2009; 12:703-10. [PMID: 19471269 PMCID: PMC3332156 DOI: 10.1038/nn.2330] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 04/07/2009] [Indexed: 11/25/2022]
Abstract
The identification of genes underlying monogenic, early-onset forms of deafness in humans has provided unprecedented insight into the molecular mechanisms of hearing in the peripheral auditory system. The molecules involved in the development and function of the cochlea eluded characterization until recently due to the paucity of the principle cell types present in cochlear hair cells, yet a genetic approach has circumvented this problem and succeeded in identifying proteins and deciphering some of the molecular complexes that operate in these cells . In combination with mouse models, the genetic approach is now revealing some of the principles underlying the development and physiology of the cochlea. The review centers on this facet of the genetics of hearing. Focusing on the hair bundle, the mechanosensory device of the sensory hair cell, we highlight recent advances in understanding the way in which the hair bundle is formed, how it operates as a mechanotransducer and how it processes sound. In particular, we discuss how this work highlights the roles played by various hair-bundle link types.
Collapse
|