1
|
Fan X, Ong LJY, Sun AR, Prasadam I. From polarity to pathology: Decoding the role of cell orientation in osteoarthritis. J Orthop Translat 2024; 49:62-73. [PMID: 39430130 PMCID: PMC11488446 DOI: 10.1016/j.jot.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 10/22/2024] Open
Abstract
Cell polarity refers to the orientation of tissue and organelles within a cell and the direction of its function. It is one of the most critical characteristics of metazoans. The development, growth, and functional tissue distribution are closely related to holistic tissue or organ homeostasis. However, the connection between cell polarity and osteoarthritis (OA) is less well-known. In OA, multiple chondrocyte clusters and tissue disorganisation can be observed in the degraded cartilage tissue. The excessive upregulation of the planar cell polarity (PCP) signalling pathway leads to the loss of cell polarity and organisation in OA progression and aetiology. Recent research has become increasingly aware of the importance of cell polarity and its correlation with OA. Several cell polarity-related treatments have shed light on OA. A thorough understanding of cell polarity and OA would provide more insights for future investigations to treat this worldwide disease. The translational potential of this article Understanding cell polarity, associated signalling pathways, organelle changes, and cell movement in the development of OA could lead to advances in precision medicine and enhanced treatment strategies for OA patients.
Collapse
Affiliation(s)
- Xiwei Fan
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Louis Jun Ye Ong
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia
| | - Antonia RuJia Sun
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Indira Prasadam
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
2
|
Xu J, Wu X, Zhu H, Zhu Y, Du K, Deng X, Wang C. CRP inhibits the osteoblastic differentiation of OPCs via the up-regulation of primary cilia and repression of the Hedgehog signaling pathway. Med Oncol 2024; 41:72. [PMID: 38345752 DOI: 10.1007/s12032-024-02301-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/05/2024] [Indexed: 02/15/2024]
Abstract
Inflammation disrupts bone metabolism and leads to bone damage. C-reactive protein (CRP) is a typical inflammation marker. Although CRP measurement has been conducted for many decades, how osteoblastic differentiation influences molecular mechanisms remains largely unknown. The present study attempted to investigate the effects of CRP on primary cultured osteoblast precursor cells (OPCs) while elucidating the underlying molecular mechanisms. OPCs were isolated from suckling Sprague-Dawleyrats. Fewer OPCs were observed after recombinant C-reactive protein treatment. In a series of experiments, CRP inhibited OPC proliferation, osteoblastic differentiation, and the OPC gene expression of the hedgehog (Hh) signaling pathway. The inhibitory effect of CRP on OPC proliferation occurred via blockade of the G1-S transition of the cell cycle. In addition, the regulation effect of proto cilium on osteoblastic differentiation was analyzed using the bioinformatics p. This revealed the primary cilia activation of recombinant CRP effect on OPCs through in vitro experiments. A specific Sonic Hedgehog signaling agonist (SAG) rescued osteoblastic differentiation inhibited by recombinant CRP. Moreover, chloral hydrate, which removes primary cilia, inhibited the Suppressor of Fused (SUFU) formation and blocked Gli2 degradation. This counteracted osteogenesis inhibition caused by CRP. Therefore, these data depict that CRP can inhibit the proliferation and osteoblastic differentiation of OPCs. The underlying mechanism could be associated with primary cilia activation and Hh pathway repression.
Collapse
Affiliation(s)
- Jie Xu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiangmei Wu
- Department of Physiology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Huifang Zhu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yinghua Zhu
- Department of Pre-Hospital Emergency, Chongqing Emergency Medical Center, Central Hospital of Chongqing University, Chongqing, 400014, China
| | - Kailong Du
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoyan Deng
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Changdong Wang
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
3
|
Primary Cilia: A Cellular Regulator of Articular Cartilage Degeneration. Stem Cells Int 2022; 2022:2560441. [PMID: 36193252 PMCID: PMC9525753 DOI: 10.1155/2022/2560441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/29/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease that can cause pain and disability in adults. The main pathological characteristic of OA is cartilage degeneration, which is caused by chondrocyte apoptosis, cartilage matrix degradation, and inflammatory factor destruction. The current treatment for patients with OA focuses on delaying its progression, such as oral anti-inflammatory analgesics or injection of sodium gluconate into the joint cavity. Primary cilia are an important structure involved in cellular signal transduction. Thus, they are very sensitive to mechanical and physicochemical stimuli. It is reported that the primary cilia may play an important role in the development of OA. Here, we review the correlation between the morphology (location, length, incidence, and orientation) of chondrocyte primary cilia and OA and summarize the relevant signaling pathways in chondrocytes that could regulate the OA process through primary cilia, including Hedgehog, Wnt, and inflammation-related signaling pathways. These data provide new ideas for OA treatment.
Collapse
|
4
|
Ferreira MJS, Mancini FE, Humphreys PA, Ogene L, Buckley M, Domingos MAN, Kimber SJ. Pluripotent stem cells for skeletal tissue engineering. Crit Rev Biotechnol 2022; 42:774-793. [PMID: 34488516 DOI: 10.1080/07388551.2021.1968785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here, we review the use of human pluripotent stem cells for skeletal tissue engineering. A number of approaches have been used for generating cartilage and bone from both human embryonic stem cells and induced pluripotent stem cells. These range from protocols relying on intrinsic cell interactions and signals from co-cultured cells to those attempting to recapitulate the series of steps occurring during mammalian skeletal development. The importance of generating authentic tissues rather than just differentiated cells is emphasized and enabling technologies for doing this are reported. We also review the different methods for characterization of skeletal cells and constructs at the tissue and single-cell level, and indicate newer resources not yet fully utilized in this field. There have been many challenges in this research area but the technologies to overcome these are beginning to appear, often adopted from related fields. This makes it more likely that cost-effective and efficacious human pluripotent stem cell-engineered constructs may become available for skeletal repair in the near future.
Collapse
Affiliation(s)
- Miguel J S Ferreira
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester, UK
| | - Fabrizio E Mancini
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Paul A Humphreys
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester, UK
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Leona Ogene
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Michael Buckley
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Marco A N Domingos
- Department of Mechanical, Aerospace and Civil Engineering, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester, UK
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Serra R. New and Unexpected Roles for Primary Cilia in Coordinating Response to Mechanical Load in Articular and Growth Plate Cartilages. J Bone Miner Res 2022; 37:1079-1080. [PMID: 35451172 DOI: 10.1002/jbmr.4557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/08/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Rosa Serra
- Cell Developmental and Integrative Biology, University of Alabama, Birmingham, AL, USA
| |
Collapse
|
6
|
Barrell WB, Adel Al-Lami H, Goos JAC, Swagemakers SMA, van Dooren M, Torban E, van der Spek PJ, Mathijssen IMJ, Liu KJ. Identification of a novel variant of the ciliopathic gene FUZZY associated with craniosynostosis. Eur J Hum Genet 2022; 30:282-290. [PMID: 34719684 PMCID: PMC8904458 DOI: 10.1038/s41431-021-00988-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 10/04/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022] Open
Abstract
Craniosynostosis is a birth defect occurring in approximately one in 2000 live births, where premature fusion of the cranial bones inhibits growth of the skull during critical periods of brain development. The resulting changes in skull shape can lead to compression of the brain, causing severe complications. While we have some understanding of the molecular pathology of craniosynostosis, a large proportion of cases are of unknown genetic aetiology. Based on studies in mouse, we previously proposed that the ciliopathy gene Fuz should be considered a candidate craniosynostosis gene. Here, we report a novel variant of FUZ (c.851 G > C, p.(Arg284Pro)) found in monozygotic twins presenting with craniosynostosis. To investigate whether Fuz has a direct role in regulating osteogenic fate and mineralisation, we cultured primary osteoblasts and mouse embryonic fibroblasts (MEFs) from Fuz mutant mice. Loss of Fuz resulted in increased osteoblastic mineralisation. This suggests that FUZ protein normally acts as a negative regulator of osteogenesis. We then used Fuz mutant MEFs, which lose functional primary cilia, to test whether the FUZ p.(Arg284Pro) variant could restore FUZ function during ciliogenesis. We found that expression of the FUZ p.(Arg284Pro) variant was sufficient to partially restore cilia numbers, but did not mediate a comparable response to Hedgehog pathway activation. Together, this suggests the osteogenic effects of FUZ p.(Arg284Pro) do not depend upon initiation of ciliogenesis.
Collapse
Affiliation(s)
- William B Barrell
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
| | - Hadeel Adel Al-Lami
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK
- Department of Orthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Jacqueline A C Goos
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Sigrid M A Swagemakers
- Department of Bioinformatics, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Marieke van Dooren
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus University Medical Centre, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Elena Torban
- Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Peter J van der Spek
- Department of Bioinformatics, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Irene M J Mathijssen
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
7
|
Lithium chloride-induced primary cilia recovery enhances biosynthetic response of chondrocytes to mechanical stimulation. Biomech Model Mechanobiol 2022; 21:605-614. [DOI: 10.1007/s10237-021-01551-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/18/2021] [Indexed: 11/02/2022]
|
8
|
Martin L, Kaci N, Benoist-Lasselin C, Mondoloni M, Decaudaveine S, Estibals V, Cornille M, Loisay L, Flipo J, Demuynck B, de la Luz Cádiz-Gurrea M, Barbault F, Fernández-Arroyo S, Schibler L, Segura-Carretero A, Dambroise E, Legeai-Mallet L. Theobroma cacao improves bone growth by modulating defective ciliogenesis in a mouse model of achondroplasia. Bone Res 2022; 10:8. [PMID: 35078974 PMCID: PMC8789790 DOI: 10.1038/s41413-021-00177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/26/2021] [Accepted: 09/12/2021] [Indexed: 11/09/2022] Open
Abstract
A gain-of-function mutation in the fibroblast growth factor receptor 3 gene (FGFR3) results in achondroplasia (ACH), the most frequent form of dwarfism. Constitutive activation of FGFR3 impairs bone formation and elongation and many signal transduction pathways. Identification of new and relevant compounds targeting the FGFR3 signaling pathway is of broad importance for the treatment of ACH, and natural plant compounds are prime drug candidate sources. Here, we found that the phenolic compound (-)-epicatechin, isolated from Theobroma cacao, effectively inhibited FGFR3's downstream signaling pathways. Transcriptomic analysis in an Fgfr3 mouse model showed that ciliary mRNA expression was modified and influenced significantly by the Indian hedgehog and PKA pathways. (-)-Epicatechin is able to rescue mRNA expression impairments that control both the structural organization of the primary cilium and ciliogenesis-related genes. In femurs isolated from a mouse model (Fgfr3Y367C/+) of ACH, we showed that (-)-epicatechin eliminated bone growth impairment during 6 days of ex vivo culture. In vivo, we confirmed that daily subcutaneous injections of (-)-epicatechin to Fgfr3Y367C/+ mice increased bone elongation and rescued the primary cilium defects observed in chondrocytes. This modification to the primary cilia promoted the typical columnar arrangement of flat proliferative chondrocytes and thus enhanced bone elongation. The results of the present proof-of-principle study support (-)-epicatechin as a potential drug for the treatment of ACH.
Collapse
Affiliation(s)
- Ludovic Martin
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, F‑75015, Paris, France
| | - Nabil Kaci
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, F‑75015, Paris, France.,Inovarion, Paris, France
| | - Catherine Benoist-Lasselin
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, F‑75015, Paris, France
| | - Marine Mondoloni
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, F‑75015, Paris, France
| | - Suzanne Decaudaveine
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, F‑75015, Paris, France
| | - Valentin Estibals
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, F‑75015, Paris, France
| | - Maxence Cornille
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, F‑75015, Paris, France
| | - Léa Loisay
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, F‑75015, Paris, France
| | - Justine Flipo
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, F‑75015, Paris, France
| | - Benoît Demuynck
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, F‑75015, Paris, France
| | - Maria de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, University of Granada, Granada, Spain.,Research and Development of Functional Food Centre (CIDAF), Granada, Spain
| | - Florent Barbault
- Université de Paris, ITODYS, CNRS, UMR 7086, 15 rue J-A de Baïf, Paris, France
| | - Salvador Fernández-Arroyo
- Department of Analytical Chemistry, University of Granada, Granada, Spain.,Biomedical Research Unit, Medicine and Surgery Department, Rovira i Virgili University, Tarragona, Spain
| | | | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Granada, Spain.,Research and Development of Functional Food Centre (CIDAF), Granada, Spain
| | - Emilie Dambroise
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, F‑75015, Paris, France
| | - Laurence Legeai-Mallet
- Université de Paris, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, F‑75015, Paris, France.
| |
Collapse
|
9
|
Shea CA, Murphy P. The Primary Cilium on Cells of Developing Skeletal Rudiments; Distribution, Characteristics and Response to Mechanical Stimulation. Front Cell Dev Biol 2021; 9:725018. [PMID: 34490272 PMCID: PMC8418538 DOI: 10.3389/fcell.2021.725018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022] Open
Abstract
Embryo movement is important for tissue differentiation and the formation of functional skeletal elements during embryonic development: reduced mechanical stimulation results in fused joints and misshapen skeletal rudiments with concomitant changes in the signaling environment and gene expression profiles in both mouse and chick immobile embryos. Despite the clear relationship between movement and skeletogenesis, the precise mechanisms by which mechanical stimuli influence gene regulatory processes are not clear. The primary cilium enables cells to sense mechanical stimuli in the cellular environment, playing a crucial mechanosensory role during kidney development and in articular cartilage and bone but little is known about cilia on developing skeletal tissues. Here, we examine the occurrence, length, position, and orientation of primary cilia across developing skeletal rudiments in mouse embryos during a period of pronounced mechanosensitivity and we report differences and similarities between wildtype and muscle-less mutant (Pax3Spd/Spd) rudiments. Strikingly, joint regions tend to have cilia positioned and oriented away from the joint, while there was a less obvious, but still significant, preferred position on the posterior aspect of cells within the proliferative and hypertrophic zones. Regions of the developing rudiments have characteristic proportions of ciliated cells, with more cilia in the resting and joint zones. Comparing wildtype to muscle-less mutant embryos, cilia are shorter in the mutant with no significant difference in the proportion of ciliated cells. Cilia at the mutant joint were also oriented away from the joint line.
Collapse
Affiliation(s)
- Claire A Shea
- Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Paula Murphy
- Trinity College Dublin, The University of Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Xu J, Deng X, Wu X, Zhu H, Zhu Y, Liu J, Chen Q, Yuan C, Liu G, Wang C. Primary cilia regulate gastric cancer-induced bone loss via cilia/Wnt/β-catenin signaling pathway. Aging (Albany NY) 2021; 13:8989-9010. [PMID: 33690174 PMCID: PMC8034975 DOI: 10.18632/aging.202734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 02/08/2021] [Indexed: 12/13/2022]
Abstract
Cancer-associated bone disease is a frequent occurrence in cancer patients and is associated with pain, bone fragility, loss, and fractures. However, whether primary or non-bone metastatic gastric cancer induces bone loss remains unclear. Here, we collected clinical evidence of bone loss by analyzing serum and X-rays of 25 non-bone metastatic gastric cancer patients. In addition, C57BL mice were injected with the human gastric cancer cell line HGC27 and its effect on bone mass was analyzed by Micro-CT, immunoblotting, and immunohistochemistry. Furthermore, the degree of the proliferation and osteogenic differentiation of mesenchymal stem cells (MSCs) co-cultured with HGC-27 or SGC-7901 cells was analyzed by colony-formation assay, alizarin red staining, immunofluorescence, qPCR, immunoblotting, and alkaline phosphatase activity assay. These indicated that gastric cancer could damage bone tissue before the occurrence of bone metastases. We also found that cilia formation of MSCs was increased in the presence of HGC27 cells, which was associated with abnormal activation of the Wnt/β-catenin pathway. Expression of DKK1 inhibited the Wnt/β-catenin signaling pathway and partially rescued osteogenic differentiation of MSCs. In summary, our results suggest that gastric cancer cells might cause bone damage prior to the occurrence of bone metastasis via cilia-dependent activation of the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jie Xu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaoyan Deng
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiangmei Wu
- Department of Physiology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Huifang Zhu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yinghua Zhu
- Department of Pre-Hospital Emergency, Chongqing Emergency Medical Center, Central Hospital of Chongqing University, Chongqing 400014, China
| | - Jie Liu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Qian Chen
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang 443002, Hubei, China
| | - Geli Liu
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Changdong Wang
- Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
11
|
Moore ER, Mathews OA, Yao Y, Yang Y. Prx1-expressing cells contributing to fracture repair require primary cilia for complete healing in mice. Bone 2021; 143:115738. [PMID: 33188955 PMCID: PMC7769995 DOI: 10.1016/j.bone.2020.115738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/25/2020] [Accepted: 11/07/2020] [Indexed: 02/09/2023]
Abstract
Bone is a dynamic organ that is continuously modified during development, load-induced adaptation, and fracture repair. Understanding the cellular and molecular mechanisms for natural fracture healing can lead to therapeutics that enhance the quality of newly formed tissue, advance the rate of healing, or replace the need for invasive surgical procedures. Prx1-expressing cells in the periosteum are thought to supply the majority of osteoblasts and chondrocytes in the fracture callus, but the exact mechanisms for this behavior are unknown. The primary cilium is a sensory organelle that is known to mediate several signaling pathways involved in fracture healing and required for Prx1-expressing cells to contribute to juvenile bone development and adult load-induced bone formation. We therefore investigated the role of Prx1-expressing cell primary cilia in fracture repair by developing a mouse model that enabled us to simultaneously track Prx1 lineage cell fate and disrupt Prx1-expressing cell primary cilia in vivo. The cilium KO mice exhibited abnormally large calluses with significantly decreased bone formation and persistent cartilage nodules. Analysis of mRNA expression in the early soft callus revealed downregulation of osteogenesis, Hh signaling, and Wnt signaling, and upregulation of chondrogenesis and angiogenesis. The mutant mice also exhibited decreased Osx and Periostin but increased αSMA and PECAM-1 protein expression in the hard callus. We further used a Gli1LacZ reporter and found that Hh signaling was significantly upregulated in the mutant callus at later stages of healing. Interestingly, altered protein expression and Hh signaling did not correlate with labeled Prx1-lineage cells, suggesting loss of cilia altered Hh signaling non-autonomously. Overall, cilium KO mice demonstrated severely delayed and incomplete fracture healing, and our findings suggest Prx1-expressing cell primary cilia are necessary to tune Hh signaling for proper fracture repair.
Collapse
Affiliation(s)
| | - O Amandhi Mathews
- Harvard School of Dental Medicine, Boston, MA, USA; University of Dallas, Irving, TX, USA
| | - Yichen Yao
- Harvard School of Dental Medicine, Boston, MA, USA; Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yingzi Yang
- Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
12
|
Barsch F, Niedermair T, Mamilos A, Schmitt VH, Grevenstein D, Babel M, Burgoyne T, Shoemark A, Brochhausen C. Physiological and Pathophysiological Aspects of Primary Cilia-A Literature Review with View on Functional and Structural Relationships in Cartilage. Int J Mol Sci 2020; 21:ijms21144959. [PMID: 32674266 PMCID: PMC7404129 DOI: 10.3390/ijms21144959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
Cilia are cellular organelles that project from the cell. They occur in nearly all non-hematopoietic tissues and have different functions in different tissues. In mesenchymal tissues primary cilia play a crucial role in the adequate morphogenesis during embryological development. In mature articular cartilage, primary cilia fulfil chemo- and mechanosensitive functions to adapt the cellular mechanisms on extracellular changes and thus, maintain tissue homeostasis and morphometry. Ciliary abnormalities in osteoarthritic cartilage could represent pathophysiological relationships between ciliary dysfunction and tissue deformation. Nevertheless, the molecular and pathophysiological relationships of ‘Primary Cilia’ (PC) in the context of osteoarthritis is not yet fully understood. The present review focuses on the current knowledge about PC and provide a short but not exhaustive overview of their role in cartilage.
Collapse
Affiliation(s)
- Friedrich Barsch
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany and Institute of Exercise and Occupational Medicine, Department of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Tanja Niedermair
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (T.N.); (A.M.); (M.B.)
| | - Andreas Mamilos
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (T.N.); (A.M.); (M.B.)
| | - Volker H. Schmitt
- Cardiology I, Centre for Cardiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55122 Mainz, Germany;
| | - David Grevenstein
- Department for Orthopedic and Trauma Surgery, University of Cologne, 50923 Köln, Germany;
| | - Maximilian Babel
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (T.N.); (A.M.); (M.B.)
| | - Thomas Burgoyne
- Royal Brompton Hospital and Harefield NHS Trust, SW3 6NP London and UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK;
| | - Amelia Shoemark
- Royal Brompton Hospital and Harefield NHS Trust, University of Dundee, Dundee DD1 4HN, UK;
| | - Christoph Brochhausen
- Institute of Pathology, University Regensburg, 93053 Regensburg, Germany; (T.N.); (A.M.); (M.B.)
- Correspondence: ; Tel.: +49-941-944-6636
| |
Collapse
|
13
|
Pawlaczyk-Kamieńska T, Winiarska H, Kulczyk T, Cofta S. Dental Anomalies in Rare, Genetic Ciliopathic Disorder-A Case Report and Review of Literature. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17124337. [PMID: 32560490 PMCID: PMC7345725 DOI: 10.3390/ijerph17124337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/15/2022]
Abstract
Background: Primary ciliary dyskinesia (PCD) is a rare, ciliopathic disorder. In many ciliopathies, dental anomalies are observed alongside other symptoms of the disease. To date, there are no published reports concerning the dental developmental problems that are associated with ciliary defects in PCD patients. Methods: Patients suffering from PCD underwent dental clinical examination, which included the assessment of developmental disorders regarding the number and morphological structure of the teeth (size and shape) as well as developmental disorders of mineralised dental tissues. Then, three-dimensional radiographic examination was performed utilising Cone Beam Computed Tomography (CBCT). Results: Four PCD patients, aged 31-54, agreed to enter the study. Dental examinations showed the presence of dental developmental disorders in three of them. Additionally, CBCT showed abnormalities in those patients. Conclusions: 1. The dental phenotype in PCD patients seems to be heterogeneous. Tooth developmental disorders resulting from abnormal odontogenesis may be a symptom of PCD that is concomitant with other developmental abnormalities resulting from malfunctioning primary cilia. 2. Patients with ciliopathies are likely to develop dental developmental defects. Therefore, beginning in early childhood, they should be included in a targeted specialised dental programme to enable early diagnosis and to ensure dedicated preventive and therapeutic measures.
Collapse
Affiliation(s)
- Tamara Pawlaczyk-Kamieńska
- Department of Risk Group Dentistry, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznań, Poland
- Correspondence:
| | - Hanna Winiarska
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznan University of Medical Sciences, Szamarzewskiego 82/84, 60-569 Poznań, Poland; (H.W.); (S.C.)
| | - Tomasz Kulczyk
- Section of Dental Radiology, Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznań, Poland;
| | - Szczepan Cofta
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznan University of Medical Sciences, Szamarzewskiego 82/84, 60-569 Poznań, Poland; (H.W.); (S.C.)
| |
Collapse
|
14
|
Tao F, Jiang T, Tao H, Cao H, Xiang W. Primary cilia: Versatile regulator in cartilage development. Cell Prolif 2020; 53:e12765. [PMID: 32034931 PMCID: PMC7106963 DOI: 10.1111/cpr.12765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/21/2019] [Accepted: 12/29/2019] [Indexed: 02/07/2023] Open
Abstract
Cartilage is a connective tissue in the skeletal system and has limited regeneration ability and unique biomechanical reactivity. The growth and development of cartilage can be affected by different physical, chemical and biological factors, such as mechanical stress, inflammation, osmotic pressure, hypoxia and signalling transduction. Primary cilia are multifunctional sensory organelles that regulate diverse signalling transduction and cell activities. They are crucial for the regulation of cartilage development and act in a variety of ways, such as react to mechanical stress, mediate signalling transduction, regulate cartilage‐related diseases progression and affect cartilage tumorigenesis. Therefore, research on primary cilia‐mediated cartilage growth and development is currently extremely popular. This review outlines the role of primary cilia in cartilage development in recent years and elaborates on the potential regulatory mechanisms from different aspects.
Collapse
Affiliation(s)
- Fenghua Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Ting Jiang
- Department of Neurological Rehabilitation, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hai Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Hui Cao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wei Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
The Roles of Indian Hedgehog Signaling in TMJ Formation. Int J Mol Sci 2019; 20:ijms20246300. [PMID: 31847127 PMCID: PMC6941023 DOI: 10.3390/ijms20246300] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/10/2019] [Indexed: 01/15/2023] Open
Abstract
The temporomandibular joint (TMJ) is an intricate structure composed of the mandibular condyle, articular disc, and glenoid fossa in the temporal bone. Apical condylar cartilage is classified as a secondary cartilage, is fibrocartilaginous in nature, and is structurally distinct from growth plate and articular cartilage in long bones. Condylar cartilage is organized in distinct cellular layers that include a superficial layer that produces lubricants, a polymorphic/progenitor layer that contains stem/progenitor cells, and underlying layers of flattened and hypertrophic chondrocytes. Uniquely, progenitor cells reside near the articular surface, proliferate, undergo chondrogenesis, and mature into hypertrophic chondrocytes. During the past decades, there has been a growing interest in the molecular mechanisms by which the TMJ develops and acquires its unique structural and functional features. Indian hedgehog (Ihh), which regulates skeletal development including synovial joint formation, also plays pivotal roles in TMJ development and postnatal maintenance. This review provides a description of the many important recent advances in Hedgehog (Hh) signaling in TMJ biology. These include studies that used conventional approaches and those that analyzed the phenotype of tissue-specific mouse mutants lacking Ihh or associated molecules. The recent advances in understanding the molecular mechanism regulating TMJ development are impressive and these findings will have major implications for future translational medicine tools to repair and regenerate TMJ congenital anomalies and acquired diseases, such as degenerative damage in TMJ osteoarthritic conditions.
Collapse
|
16
|
Polygenic risk score for disability and insights into disability-related molecular mechanisms. GeroScience 2019; 41:881-893. [PMID: 31707593 DOI: 10.1007/s11357-019-00125-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022] Open
Abstract
Late life disability is a highly devastating condition affecting 20% or more of persons aged 65 years and older in the USA; it is an important determinant of acute medical and long-term care costs which represent a growing burden on national economies. Disability is a multifactorial trait that contributes substantially to decline of health/wellbeing. Accordingly, gaining insights into the genetics of disability could help in identifying molecular mechanisms of this devastating condition and age-related processes contributing to a large fraction of specific geriatric conditions, concordantly with geroscience. We performed a genome-wide association study of disability in a sample of 24,068 subjects from five studies with 12,550 disabled individuals. We identified 30 promising disability-associated polymorphisms in 19 loci at p < 10-4; four of them attained suggestive significance, p < 10-5. In contrast, polygenic risk scores aggregating effects of minor alleles of independent SNPs that were adversely or beneficially associated with disability showed highly significant associations in meta-analysis, p = 3.13 × 10-45 and p = 5.60 × 10-23, respectively, and were replicated in each study. The analysis of genetic pathways, related diseases, and biological functions supported the connections of genes for the identified SNPs with disabling and age-related conditions primarily through oxidative/nitrosative stress, inflammatory response, and ciliary signaling. We identified musculoskeletal system development, maintenance, and regeneration as important components of gene functions. The beneficial and adverse gene sets may be differently implicated in the development of musculoskeletal-related disability with the beneficial set characterized, e.g., by regulation of chondrocyte proliferation and bone formation, and the adverse set by inflammation and bone loss.
Collapse
|
17
|
Yuan X, Liu M, Cao X, Yang S. Ciliary IFT80 regulates dental pulp stem cells differentiation by FGF/FGFR1 and Hh/BMP2 signaling. Int J Biol Sci 2019; 15:2087-2099. [PMID: 31592124 PMCID: PMC6775288 DOI: 10.7150/ijbs.27231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 02/19/2019] [Indexed: 01/09/2023] Open
Abstract
Primary cilia and intraflagellar transport (IFT) proteins control a wide variety of processes during development and tissue homeostasis. However, their potential roles in the regulation of stem cell differentiation and tooth development remain elusive. Here, we uncovered the critical roles of ciliary IFT80 in cilia formation and differentiation of dental pulp stem cells (DPSCs). IFT80-deficient DPSCs showed reduced fibroblast growth factor receptor 1 (FGFR1) expression, leading to the disruption of FGF2-FGFR1 signaling. We found, during DPSC differentiation, FGF2-FGFR1 signaling induces stress fiber rearrangement to promote cilia elongation, meanwhile stimulates PI3K-AKT signaling to aid Hh/bone morphogenetic protein 2 (BMP2) signaling activation. These signaling pathways and their coupling were disrupted in IFT80-deficient DPSCs, causing impaired differentiation. Our findings revealed a novel mechanism that ciliary protein regulates the odontogenic differentiation of DPSCs through FGF/FGFR1 and Hh/BMP2 signaling.
Collapse
Affiliation(s)
- Xue Yuan
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, State University of New York, Buffalo, NY, United States
| | - Min Liu
- Department of Anatomy & Cell Biology, School of Dental Medicine, University of Pennsylvania, PA, United States
| | - Xu Cao
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shuying Yang
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, State University of New York, Buffalo, NY, United States
- Department of Anatomy & Cell Biology, School of Dental Medicine, University of Pennsylvania, PA, United States
| |
Collapse
|
18
|
King A, Hoch NC, McGregor NE, Sims NA, Smyth IM, Heierhorst J. Dynll1 is essential for development and promotes endochondral bone formation by regulating intraflagellar dynein function in primary cilia. Hum Mol Genet 2019; 28:2573-2588. [DOI: 10.1093/hmg/ddz083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 01/15/2023] Open
Abstract
AbstractMutations in subunits of the cilia-specific cytoplasmic dynein-2 (CD2) complex cause short-rib thoracic dystrophy syndromes (SRTDs), characterized by impaired bone growth and life-threatening perinatal respiratory complications. Different SRTD mutations result in varying disease severities. It remains unresolved whether this reflects the extent of retained hypomorphic protein functions or relative importance of the affected subunits for the activity of the CD2 holoenzyme. To define the contribution of the LC8-type dynein light chain subunit to the CD2 complex, we have generated Dynll1-deficient mouse strains, including the first-ever conditional knockout (KO) mutant for any CD2 subunit. Germline Dynll1 KO mice exhibit a severe ciliopathy-like phenotype similar to mice lacking another CD2 subunit, Dync2li1. Limb mesoderm-specific loss of Dynll1 results in severe bone shortening similar to human SRTD patients. Mechanistically, loss of Dynll1 leads to a partial depletion of other SRTD-related CD2 subunits, severely impaired retrograde intra-flagellar transport, significant thickening of primary cilia and cilia signaling defects. Interestingly, phenotypes of Dynll1-deficient mice are very similar to entirely cilia-deficient Kif3a/Ift88-null mice, except that they never present with polydactyly and retain relatively higher signaling outputs in parts of the hedgehog pathway. Compared to complete loss of Dynll1, maintaining very low DYNLL1 levels in mice lacking the Dynll1-transcription factor ASCIZ (ATMIN) results in significantly attenuated phenotypes and improved CD2 protein levels. The results suggest that primary cilia can maintain some functionality in the absence of intact CD2 complexes and provide a viable animal model for the analysis of the underlying bone development defects of SRTDs.
Collapse
Affiliation(s)
- Ashleigh King
- St. Vincent’s Institute of Medical Research
- Department of Medicine at St. Vincent’s Hospital, Melbourne Medical School, The University of Melbourne, Fitzroy, Victoria, Australia
| | | | | | - Natalie A Sims
- St. Vincent’s Institute of Medical Research
- Department of Medicine at St. Vincent’s Hospital, Melbourne Medical School, The University of Melbourne, Fitzroy, Victoria, Australia
| | - Ian M Smyth
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jörg Heierhorst
- St. Vincent’s Institute of Medical Research
- Department of Medicine at St. Vincent’s Hospital, Melbourne Medical School, The University of Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
19
|
Barba A, Urbina C, Maili L, Greives MR, Blackwell SJ, Mulliken JB, Chiquet B, Blanton SH, Hecht JT, Letra A. Association of IFT88 gene variants with nonsyndromic cleft lip with or without cleft palate. Birth Defects Res 2019; 111:659-665. [PMID: 30953423 DOI: 10.1002/bdr2.1504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Nonsyndromic cleft lip with or without cleft palate (NSCLP) is a common birth defect with multifactorial etiology. Genetic studies have identified numerous gene variants in association with NSCLP. IFT88 (intraflagellar transport 88) has been suggested to play a major role in craniofacial development, as Ift88 mutant mice exhibit cleft palate and mutations in IFT88 were identified in individuals with NSCLP. OBJECTIVE To investigate the association of IFT88 single nucleotide gene variants (SNVs) with NSCLP in a large family data set consisting of non-Hispanic white (NHW) and Hispanic families. METHODS Nine SNVs in/nearby IFT88 were genotyped in 482 NHW families and 301 Hispanic NSCLP families. Genotyping was performed using TaqMan® chemistry. Single- and pairwise-SNV association analyses were performed for all families stratified by ethnicity and family history of NSCLP using the family-based association test (FBAT), and association in the presence of linkage (APL). Bonferroni correction was used to adjust for multiple testing and p values ≤.0055 were considered statistically significant. RESULTS Significant association was found between IFT88 rs9509311 and rs2497490 and NSCLP in NHW all families (p = .004 and .005, respectively), while nominal associations were found for rs7998361 and rs9509307 (p < .05). Pairwise association analyses also showed nominal associations between NSCLP in both NHW and Hispanic data sets (p < .05). No association was found between individual variants in IFT88 and NSCLP in Hispanics. CONCLUSIONS Our results suggest that variation in IFT88 may contribute to NSCLP risk, particularly in multiplex families from a non-Hispanic white population.
Collapse
Affiliation(s)
- Amanda Barba
- Center for Craniofacial Research, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Christian Urbina
- Department of Pediatrics, Pediatrics Research Center, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Lorena Maili
- Department of Pediatrics, Pediatrics Research Center, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Matthew R Greives
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Steven J Blackwell
- Department of Plastic Surgery, Shriners Hospital for Children, Houston, Texas
| | - John B Mulliken
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, Massachusetts
| | - Brett Chiquet
- Center for Craniofacial Research, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas.,Department of Pediatrics, Pediatrics Research Center, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas.,Department of Pediatric Dentistry, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| | - Susan H Blanton
- Department of Human Genetics and John P. Hussman Institute of Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - Jacqueline T Hecht
- Center for Craniofacial Research, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas.,Department of Pediatrics, Pediatrics Research Center, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Ariadne Letra
- Center for Craniofacial Research, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas.,Department of Pediatrics, Pediatrics Research Center, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas.,Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
20
|
Cabaud O, Roubin R, Comte A, Bascunana V, Sergé A, Sedjaï F, Birnbaum D, Rosnet O, Acquaviva C. Mutation of FOP/FGFR1OP in mice recapitulates human short rib-polydactyly ciliopathy. Hum Mol Genet 2019; 27:3377-3391. [PMID: 29982567 DOI: 10.1093/hmg/ddy246] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/29/2018] [Indexed: 12/12/2022] Open
Abstract
Skeletal dysplasias are a clinically and genetically heterogeneous group of bone and cartilage disorders. A total of 436 skeletal dysplasias are listed in the 2015 revised version of the nosology and classification of genetic skeletal disorders, of which nearly 20% are still genetically and molecularly uncharacterized. We report the clinical and molecular characterization of a lethal skeletal dysplasia of the short-rib group caused by mutation of the mouse Fop gene. Fop encodes a centrosomal and centriolar satellite (CS) protein. We show that Fop mutation perturbs ciliogenesis in vivo and that this leads to the alteration of the Hedgehog signaling pathway. Fop mutation reduces CSs movements and affects pericentriolar material composition, which probably participates to the ciliogenesis defect. This study highlights the role of a centrosome and CSs protein producing phenotypes in mice that recapitulate a short rib-polydactyly syndrome when mutated.
Collapse
Affiliation(s)
- Olivier Cabaud
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Régine Roubin
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Audrey Comte
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Virginie Bascunana
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Arnauld Sergé
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Fatima Sedjaï
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Daniel Birnbaum
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Olivier Rosnet
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Claire Acquaviva
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Marseille, France
| |
Collapse
|
21
|
Watanabe M, Kawasaki M, Kawasaki K, Kitamura A, Nagai T, Kodama Y, Meguro F, Yamada A, Sharpe PT, Maeda T, Takagi R, Ohazama A. Ift88 limits bone formation in maxillary process through suppressing apoptosis. Arch Oral Biol 2019; 101:43-50. [PMID: 30878609 DOI: 10.1016/j.archoralbio.2019.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE The development of the maxillary bone is under strict molecular control because of its complicated structure. Primary cilia play a critical role in craniofacial development, since defects in primary cilia are known to cause congenital craniofacial dysmorphologies as a wide spectrum of human diseases: the ciliopathies. The primary cilia also are known to regulate bone formation. However, the role of the primary cilia in maxillary bone development is not fully understood. DESIGN To address this question, we generated mice with a mesenchymal conditional deletion ofIft88 using the Wnt1Cre mice (Ift88fl/fl;Wnt1Cre). The gene Ift88 encodes a protein that is required for the function and formation of primary cilia. RESULTS It has been shown thatIft88fl/fl;Wnt1Cre mice exhibit cleft palate. Here, we additionally observed excess bone formation in the Ift88 mutant maxillary process. We also found ectopic apoptosis in the Ift88 mutant maxillary process at an early stage of development. To investigate whether the ectopic apoptosis is related to the Ift88 mouse maxillary phenotypes, we generated Ift88fl/fl;Wnt1Cre;p53-/- mutants to reduce apoptosis. The Ift88fl/fl;Wnt1Cre;p53-/- mice showed no excess bone formation, suggesting that the cells evading apoptosis by the presence of Ift88 in wild-type mice limit bone formation in maxillary development. On the other hand, the palatal cleft was retained in the Ift88fl/fl;Wnt1Cre;p53-/- mice, indicating that the excess bone formation or abnormal apoptosis was independent of the cleft palate phenotype in Ift88 mutant mice. CONCLUSIONS Ift88 limits bone formation in the maxillary process by suppressing apoptosis.
Collapse
Affiliation(s)
- Momoko Watanabe
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Oral and Maxillofacial Surgery, Department of Health Science, Course for Oral science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Maiko Kawasaki
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, Guy's Hospital, London Bridge, London, UK
| | - Katsushige Kawasaki
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, Guy's Hospital, London Bridge, London, UK; Research Center for Advanced Oral Science, Department of Oral Life Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Kitamura
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Oral and Maxillofacial Surgery, Department of Health Science, Course for Oral science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takahiro Nagai
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Oral and Maxillofacial Surgery, Department of Health Science, Course for Oral science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yasumitsu Kodama
- Division of Oral and Maxillofacial Surgery, Department of Health Science, Course for Oral science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Fumiya Meguro
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akane Yamada
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Division of Oral and Maxillofacial Surgery, Department of Health Science, Course for Oral science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Paul T Sharpe
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, Guy's Hospital, London Bridge, London, UK
| | - Takeyasu Maeda
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Research Center for Advanced Oral Science, Department of Oral Life Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Faculty of Dental Medicine, University of Airlangga, Surabaya, Indonesia
| | - Ritsuo Takagi
- Division of Oral and Maxillofacial Surgery, Department of Health Science, Course for Oral science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Ohazama
- Division of Oral Anatomy, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Department of Craniofacial Development and Stem Cell Biology, Dental Institute, King's College London, Guy's Hospital, London Bridge, London, UK.
| |
Collapse
|
22
|
Hu Z, Hong S, Zhang Y, Dai H, Lin S, Yi T, Zhuang H. Down-regulated WDR35 contributes to fetal anomaly via regulation of osteogenic differentiation. Gene 2019; 697:48-56. [PMID: 30790652 DOI: 10.1016/j.gene.2019.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/03/2019] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Autosomal recessive disorder is closely correlated with congenital fetal malformation. The mutation of WDR35 may lead to short rib-polydactyly syndrome (SRP), asphyxiating thoracic dystrophy (ATD, Jeune syndrome) and Ellis van Creveld syndrome. The purpose of this study is to investigate the role of WDR35 in fetal anomaly. RESULTS The fetuses presented malformation with abnormal head shape, cardiac dilatation, pericardial effusion, and non-displayed left pulmonary artery and left lung. After the detection of genomic DNA (gDNA) in amniotic fluid cells (AFC), chromosomal rearrangement was found in arr[hg19] 2p25.3p23.3. It was revealed through multiple PCR-DHPLC that MYCN, WDR35, LPIN1, ODC1, KLF11 and NBAS contained duplicated copy numbers in 2p25.3p23.3. AF-MSCs were mostly positive for CD44, CD105, negative for CD34 and CD14. Western Blot test showed that WDR35-encoded protein was decreased in the patients' AFC compared to that in normal pregnant women. In the patients' amniotic fluid-derived mesenchymal stem cells (AF-MSCs), WDR35 overexpression could repair cilia formation, and the overexpression of WDR35 or Gli2 could significantly enhance ALP activity and expressions of osteogenic differentiation marker genes, including RUNXE2, OCN, BSP and ALP. However, WDR35 silencing in C3H10T1/2 cells could remarkably inhibit cilia formation and osteogenic differentiation. This inhibitory effect could be attenuated by Gli2 overexpression. CONCLUSIONS The results demonstrated that copy number variation (CNV) of WDR35 may lead to skeletal dysplasia and fetal anomaly, and that down-regulated WDR35 may damage the cilia formation and sequentially indirectly regulate Gli signal, which would eventually result in negative regulation of osteogenic differentiation.
Collapse
Affiliation(s)
- Zhongren Hu
- Department of Obstetrics, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Shurong Hong
- Department of Obstetrics, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Yu Zhang
- Department of Obstetrics, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Huijing Dai
- Department of Obstetrics, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Shuzhen Lin
- Department of Obstetrics, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Tingyu Yi
- Department of Obstetrics, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China
| | - Hongmei Zhuang
- Department of Obstetrics, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China.
| |
Collapse
|
23
|
Yuan X, Cao X, Yang S. IFT80 is required for stem cell proliferation, differentiation, and odontoblast polarization during tooth development. Cell Death Dis 2019; 10:63. [PMID: 30683845 PMCID: PMC6347632 DOI: 10.1038/s41419-018-0951-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/01/2018] [Indexed: 12/01/2022]
Abstract
Primary cilia and intraflagellar transport (IFT) proteins control a wide variety of processes during tissue development and homeostasis. However, their role in regulation of stem cell properties during tooth development remains elusive. Here, we revealed that dental pulp stem cells (DPSCs) express IFT80, which is required for maintaining DPSC properties. Mice with deletion of IFT80 in odontoblast lineage show impaired molar root development and delayed incisor eruption through reduced DPSC proliferation and differentiation, and disrupted odontoblast polarization. Impaired odontoblast differentiation resulted from disrupted hedgehog (Hh) signaling pathways. Decreased DPSC proliferation is associated with impaired fibroblast growth factor 2 (FGF2) signaling caused by loss of IFT80, leading to the disruption of FGF2-FGFR1-PI3K-AKT signaling in IFT80-deficient DPSCs. The results provide the first evidence that IFT80 controls tooth development through influencing cell proliferation, differentiation, and polarization, and Hh and FGF/AKT signaling pathways, demonstrating that IFT proteins are likely to be the new therapeutic targets for tooth and other tissue repair and regeneration.
Collapse
Affiliation(s)
- Xue Yuan
- Department of Oral Biology, School of Dental Medicine University of Buffalo, State University of New York, Buffalo, NY, USA
| | - Xu Cao
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shuying Yang
- Department of Oral Biology, School of Dental Medicine University of Buffalo, State University of New York, Buffalo, NY, USA.
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Han S, Park HR, Lee EJ, Jang JA, Han MS, Kim GW, Jeong JH, Choi JY, Beier F, Jung YK. Dicam promotes proliferation and maturation of chondrocyte through Indian hedgehog signaling in primary cilia. Osteoarthritis Cartilage 2018; 26:945-953. [PMID: 29702220 DOI: 10.1016/j.joca.2018.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Primary cilium is required for mechano-biological signal transduction in chondrocytes, and its interaction with extracellular matrix is critical for cartilage homeostasis. However, the role of cilia-associated proteins that affect the function of cilia remains to be elucidated. Here, we show that Dicam has a novel function as a modulator of primary cilia-mediated Indian hedgehog (Ihh) signaling in chondrocytes. METHODS Cartilage-specific Dicam transgenic mouse was constructed and the phenotype of growth plates at embryonic day 15.5 and 18.5 was analyzed. Primary chondrocytes and tibiae isolated from embryonic day 15.5 mice were used in vitro study. RESULTS Dicam was mainly expressed in resting and proliferating chondrocytes of the growth plate and was increased by PTHrP and BMP2 in primary chondrocytes. Cartilage-specific Dicam gain-of-function demonstrated increased length of growth plate in long bones. Dicam enhanced both proliferation and maturation of growth plate chondrocytes in vivo and in vitro, and it was accompanied by enhanced Ihh and PTHrP signaling. Dicam was localized to primary cilia of chondrocytes, and increased the number of primary cilia and their assembly molecule, IFT88/Polaris as well. Dicam successfully rescued the knock-down phenotype of IFT88/Polaris and it was accompanied by increased number of cilia in tibia organ culture. CONCLUSION These findings suggest that Dicam positively regulates primary cilia and Ihh signaling resulting in elongation of long bone.
Collapse
Affiliation(s)
- S Han
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - H-R Park
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Republic of Korea
| | - E-J Lee
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Republic of Korea
| | - J-A Jang
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Republic of Korea
| | - M-S Han
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Republic of Korea
| | - G-W Kim
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, Daegu Fatima Hospital, Republic of Korea
| | - J-H Jeong
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - J-Y Choi
- Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, BK21 Plus KNU Biomedical Convergence Program, Korea Mouse Phenotyping Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - F Beier
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute, London, Ontario, Canada
| | - Y-K Jung
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Republic of Korea.
| |
Collapse
|
25
|
Fertala J, Arita M, Steplewski A, Arnold WV, Fertala A. Epiphyseal growth plate architecture is unaffected by early postnatal activation of the expression of R992C collagen II mutant. Bone 2018; 112:42-50. [PMID: 29660427 DOI: 10.1016/j.bone.2018.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/10/2018] [Accepted: 04/12/2018] [Indexed: 11/29/2022]
Abstract
Spondyloepiphyseal dysplasia (SED) exemplifies a group of heritable diseases caused by mutations in collagenous proteins of the skeletal system. Its main feature is altered skeletal growth. Pathomechanisms of SED include: changes in the stability of collagen II molecules, inability to form proper collagen fibrils, excessive intracellular retention of mutant molecules, and endoplasmic reticulum stress. The complexity of this pathomechanism presents a challenge for designing therapies for SED. Our earlier research tested whether such therapies only succeed when applied during a limited window of development. Here, employing an inducible mouse model of SED caused by the R992C mutation in collagen II, we corroborate our earlier observations that a therapy must be applied at the prenatal or early postnatal stages of skeletal growth in order to be successful. Moreover, we demonstrate that blocking the expression of the R992C collagen II mutant at the early prenatal stages leads to long-term positive effects. Although, we could not precisely mark the start of the expression of the mutant, these effects are not significantly changed by switching on the mutant production at the early postnatal stages. By demonstrating the need for early therapeutic interventions, our study provides, for the first time, empirically-based directions for designing effective therapies for SED and, quite likely, for other skeletal dysplasias caused by mutations in key macromolecules of the skeletal system.
Collapse
Affiliation(s)
- Jolanta Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Machiko Arita
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrzej Steplewski
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - William V Arnold
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Rothman Institute of Orthopaedics, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Moore ER, Jacobs CR. The primary cilium as a signaling nexus for growth plate function and subsequent skeletal development. J Orthop Res 2018; 36:533-545. [PMID: 28901584 PMCID: PMC5839937 DOI: 10.1002/jor.23732] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/07/2017] [Indexed: 02/04/2023]
Abstract
The primary cilium is a solitary, antenna-like sensory organelle with many important roles in cartilage and bone development, maintenance, and function. The primary cilium's potential role as a signaling nexus in the growth plate makes it an attractive therapeutic target for diseases and disorders associated with bone development and maintenance. Many signaling pathways that are mediated by the cilium-such as Hh, Wnt, Ihh/PTHrP, TGFβ, BMP, FGF, and Notch-are also known to influence endochondral ossification, primarily by directing growth plate formation and chondrocyte behavior. Although a few studies have demonstrated that these signaling pathways can be directly tied to the primary cilium, many pathways have yet to be evaluated in context of the cilium. This review serves to bridge this knowledge gap in the literature, as well as discuss the cilium's importance in the growth plate's ability to sense and respond to chemical and mechanical stimuli. Furthermore, we explore the importance of using the appropriate mechanism to study the cilium in vivo and suggest IFT88 deletion is the best available technique. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:533-545, 2018.
Collapse
Affiliation(s)
- Emily R. Moore
- Department of Biomedical Engineering; Columbia University; 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue New York 10027 New York
| | - Christopher R. Jacobs
- Department of Biomedical Engineering; Columbia University; 351 Engineering Terrace, Mail Code 8904, 1210 Amsterdam Avenue New York 10027 New York
| |
Collapse
|
27
|
Chowdhury D, Williams KB, Chidekel A, Pizarro C, Preedy C, Young M, Hendrickson C, Robinson DL, Kreiger PA, Puffenberger EG, Strauss KA. Management of Congenital Heart Disease Associated with Ellis-van Creveld Short-rib Thoracic Dysplasia. J Pediatr 2017; 191:145-151. [PMID: 29173298 DOI: 10.1016/j.jpeds.2017.08.073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/28/2017] [Accepted: 08/25/2017] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To evaluate clinical outcome of patients with Ellis-van Creveld syndrome (EVC) in whom congenital heart disease (CHD) repair was delayed intentionally to reduce the risk of postoperative respiratory morbidity and mortality. STUDY DESIGN This retrospective review of 51 EVC c.1886+5G>T homozygotes born between 2005 and 2014 focused on 18 subjects who underwent surgery for CHD, subdivided into early (mean, 1.3 months) vs delayed (mean, 50.1 months) repair. RESULTS Growth trajectories differed between control subjects and patients with EVC, and CHD was associated with slower weight gain. Relative to controls, infants with EVC had a 40%-75% higher respiratory rates (independent of CHD) accompanied by signs of compensated respiratory acidosis. Blood gases and respiratory rates approached normal values by age 4 years. Hemodynamically significant CHD was present in 23 children, 18 (78%) of whom underwent surgical repair. Surgery was performed at 1.3 ± 1.3 months for children born between 2005 and 2009 (n = 9) and 50.1 ± 40.2 months (P = .009) for children born between 2010 and 2014 (n = 9). The latter had shorter postoperative mechanical ventilation (1.1 ± 2.4 days vs 49.6 ± 57.1 days; P = .075), shorter intensive care duration of stay (16 ± 24 days vs 48.6 ± 44.2 days; P = .155), and no postoperative tracheostomies (vs 60%; P = .028) or deaths (vs 44%; P = .082). CONCLUSION Among children with EVC and possibly other short-rib thoracic dysplasias, delayed surgical repair of CHD reduces postoperative morbidity and improves survival. Respiratory rate serves as a simple indicator for optimal timing of surgical repair.
Collapse
Affiliation(s)
| | | | - Aaron Chidekel
- Division of Pediatric Pulmonology, Nemours/duPont Hospital for Children, Wilmington, DE
| | - Christian Pizarro
- Division of Pediatric Cardiothoracic Surgery, Nemours/duPont Hospital for Children, Wilmington, DE
| | - Catherine Preedy
- Division of Neonatal Intensive Care, Nemours/duPont Hospital for Children, Wilmington, DE
| | | | | | | | - Portia A Kreiger
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | | | |
Collapse
|
28
|
Arvind V, Huang AH. Mechanobiology of limb musculoskeletal development. Ann N Y Acad Sci 2017; 1409:18-32. [PMID: 28833194 DOI: 10.1111/nyas.13427] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 12/26/2022]
Abstract
While there has been considerable progress in identifying molecular regulators of musculoskeletal development, the role of physical forces in regulating induction, differentiation, and patterning events is less well understood. Here, we highlight recent findings in this area, focusing primarily on model systems that test the mechanical regulation of skeletal and tendon development in the limb. We also discuss a few of the key signaling pathways and mechanisms that have been implicated in mechanotransduction and highlight current gaps in knowledge and opportunities for further research in the field.
Collapse
Affiliation(s)
- Varun Arvind
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alice H Huang
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
29
|
Gambassi S, Geminiani M, Thorpe SD, Bernardini G, Millucci L, Braconi D, Orlandini M, Thompson CL, Petricci E, Manetti F, Taddei M, Knight MM, Santucci A. Smoothened-antagonists reverse homogentisic acid-induced alterations of Hedgehog signaling and primary cilium length in alkaptonuria. J Cell Physiol 2017; 232:3103-3111. [DOI: 10.1002/jcp.25761] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/29/2016] [Accepted: 12/22/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Silvia Gambassi
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Michela Geminiani
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Stephen D. Thorpe
- Institute of Bioengineering; School of Engineering and Materials Science; Queen Mary University of London; Mile End Rd; London United Kingdom
| | - Giulia Bernardini
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Lia Millucci
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Daniela Braconi
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Maurizio Orlandini
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Clare L. Thompson
- Institute of Bioengineering; School of Engineering and Materials Science; Queen Mary University of London; Mile End Rd; London United Kingdom
| | - Elena Petricci
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Fabrizio Manetti
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Maurizio Taddei
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| | - Martin M. Knight
- Institute of Bioengineering; School of Engineering and Materials Science; Queen Mary University of London; Mile End Rd; London United Kingdom
| | - Annalisa Santucci
- Dipartimento di Biotecnologie; Chimica e Farmacia; Università degli Studi di Siena; Siena Italy
| |
Collapse
|
30
|
O'Driscoll M. The pathological consequences of impaired genome integrity in humans; disorders of the DNA replication machinery. J Pathol 2017; 241:192-207. [PMID: 27757957 DOI: 10.1002/path.4828] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 12/13/2022]
Abstract
Accurate and efficient replication of the human genome occurs in the context of an array of constitutional barriers, including regional topological constraints imposed by chromatin architecture and processes such as transcription, catenation of the helical polymer and spontaneously generated DNA lesions, including base modifications and strand breaks. DNA replication is fundamentally important for tissue development and homeostasis; differentiation programmes are intimately linked with stem cell division. Unsurprisingly, impairments of the DNA replication machinery can have catastrophic consequences for genome stability and cell division. Functional impacts on DNA replication and genome stability have long been known to play roles in malignant transformation through a variety of complex mechanisms, and significant further insights have been gained from studying model organisms in this context. Congenital hypomorphic defects in components of the DNA replication machinery have been and continue to be identified in humans. These disorders present with a wide range of clinical features. Indeed, in some instances, different mutations in the same gene underlie different clinical presentations. Understanding the origin and molecular basis of these features opens a window onto the range of developmental impacts of suboptimal DNA replication and genome instability in humans. Here, I will briefly overview the basic steps involved in DNA replication and the key concepts that have emerged from this area of research, before switching emphasis to the pathological consequences of defects within the DNA replication network; the human disorders. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mark O'Driscoll
- Human DNA Damage Response Disorders Group, Genome Damage & Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
31
|
Multiscale modeling of growth plate cartilage mechanobiology. Biomech Model Mechanobiol 2016; 16:667-679. [DOI: 10.1007/s10237-016-0844-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 10/12/2016] [Indexed: 10/20/2022]
|
32
|
Yuan X, Yang S. Primary Cilia and Intraflagellar Transport Proteins in Bone and Cartilage. J Dent Res 2016; 95:1341-1349. [PMID: 27250654 DOI: 10.1177/0022034516652383] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Primary cilia, present on most mammalian cells, function as a sensor to sense the environment change and transduce signaling. Loss of primary cilia causes a group of human pleiotropic syndromes called Ciliopathies. Some of the ciliopathies display skeletal dysplasias, implying the important role of primary cilia in skeletal development and homeostasis. Emerging evidence has shown that loss or malfunction of primary cilia or ciliary proteins in bone and cartilage is associated with developmental and function defects. Intraflagellar transport (IFT) proteins are essential for cilia formation and/or function. In this review, we discuss the role of primary cilia and IFT proteins in the development of bone and cartilage, as well as the differentiation and mechanotransduction of mesenchymal stem cells, osteoblasts, osteocytes, and chondrocytes. We also include the role of primary cilia in tooth development and highlight the current advance of primary cilia and IFT proteins in the pathogenesis of cartilage diseases, including osteoarthritis, osteosarcoma, and chondrosarcoma.
Collapse
Affiliation(s)
- X Yuan
- 1 Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - S Yang
- 1 Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA.,2 Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
33
|
Canonical and noncanonical intraflagellar transport regulates craniofacial skeletal development. Proc Natl Acad Sci U S A 2016; 113:E2589-97. [PMID: 27118846 DOI: 10.1073/pnas.1519458113] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The primary cilium is a cellular organelle that coordinates signaling pathways critical for cell proliferation, differentiation, survival, and homeostasis. Intraflagellar transport (IFT) plays a pivotal role in assembling primary cilia. Disruption and/or dysfunction of IFT components can cause multiple diseases, including skeletal dysplasia. However, the mechanism by which IFT regulates skeletogenesis remains elusive. Here, we show that a neural crest-specific deletion of intraflagellar transport 20 (Ift20) in mice compromises ciliogenesis and intracellular transport of collagen, which leads to osteopenia in the facial region. Whereas platelet-derived growth factor receptor alpha (PDGFRα) was present on the surface of primary cilia in wild-type osteoblasts, disruption of Ift20 down-regulated PDGFRα production, which caused suppression of PDGF-Akt signaling, resulting in decreased osteogenic proliferation and increased cell death. Although osteogenic differentiation in cranial neural crest (CNC)-derived cells occurred normally in Ift20-mutant cells, the process of mineralization was severely attenuated due to delayed secretion of type I collagen. In control osteoblasts, procollagen was easily transported from the endoplasmic reticulum (ER) to the Golgi apparatus. By contrast, despite having similar levels of collagen type 1 alpha 1 (Col1a1) expression, Ift20 mutants did not secrete procollagen because of dysfunctional ER-to-Golgi trafficking. These data suggest that in the multipotent stem cells of CNCs, IFT20 is indispensable for regulating not only ciliogenesis but also collagen intracellular trafficking. Our study introduces a unique perspective on the canonical and noncanonical functions of IFT20 in craniofacial skeletal development.
Collapse
|
34
|
Biological and Chemical Removal of Primary Cilia Affects Mechanical Activation of Chondrogenesis Markers in Chondroprogenitors and Hypertrophic Chondrocytes. Int J Mol Sci 2016; 17:188. [PMID: 26861287 PMCID: PMC4783922 DOI: 10.3390/ijms17020188] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 01/27/2023] Open
Abstract
Chondroprogenitors and hypertrophic chondrocytes, which are the first and last stages of the chondrocyte differentiation process, respectively, are sensitive to mechanical signals. We hypothesize that the mechanical sensitivity of these cells depends on the cell surface primary cilia. To test this hypothesis, we removed the primary cilia by biological means with transfection with intraflagellar transport protein 88 (IFT88) siRNA or by chemical means with chloral hydrate treatment. Transfection of IFT88 siRNA significantly reduced the percentage of ciliated cells in both chondroprogenitor ATDC5 cells as well as primary hypertrophic chondrocytes. Cyclic loading (1 Hz, 10% matrix deformation) of ATDC5 cells in three-dimensional (3D) culture stimulates the mRNA levels of chondrogenesis marker Type II collagen (Col II), hypertrophic chondrocyte marker Type X collagen (Col X), and a molecular regulator of chondrogenesis and chondrocyte hypertrophy bone morphogenetic protein 2 (BMP-2). The reduction of ciliated chondroprogenitors abolishes mechanical stimulation of Col II, Col X, and BMP-2. In contrast, cyclic loading stimulates Col X mRNA levels in hypertrophic chondrocytes, but not those of Col II and BMP-2. Both biological and chemical reduction of ciliated hypertrophic chondrocytes reduced but failed to abolish mechanical stimulation of Col X mRNA levels. Thus, primary cilia play a major role in mechanical stimulation of chondrogenesis and chondrocyte hypertrophy in chondroprogenitor cells and at least a partial role in hypertrophic chondrocytes.
Collapse
|
35
|
Genetic Defects in TAPT1 Disrupt Ciliogenesis and Cause a Complex Lethal Osteochondrodysplasia. Am J Hum Genet 2015; 97:521-34. [PMID: 26365339 DOI: 10.1016/j.ajhg.2015.08.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/18/2015] [Indexed: 11/22/2022] Open
Abstract
The evolutionarily conserved transmembrane anterior posterior transformation 1 protein, encoded by TAPT1, is involved in murine axial skeletal patterning, but its cellular function remains unknown. Our study demonstrates that TAPT1 mutations underlie a complex congenital syndrome, showing clinical overlap between lethal skeletal dysplasias and ciliopathies. This syndrome is characterized by fetal lethality, severe hypomineralization of the entire skeleton and intra-uterine fractures, and multiple congenital developmental anomalies affecting the brain, lungs, and kidneys. We establish that wild-type TAPT1 localizes to the centrosome and/or ciliary basal body, whereas defective TAPT1 mislocalizes to the cytoplasm and disrupts Golgi morphology and trafficking and normal primary cilium formation. Knockdown of tapt1b in zebrafish induces severe craniofacial cartilage malformations and delayed ossification, which is shown to be associated with aberrant differentiation of cranial neural crest cells.
Collapse
|
36
|
Shea CA, Rolfe RA, Murphy P. The importance of foetal movement for co-ordinated cartilage and bone development in utero : clinical consequences and potential for therapy. Bone Joint Res 2015; 4:105-16. [PMID: 26142413 PMCID: PMC4602203 DOI: 10.1302/2046-3758.47.2000387] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Construction of a functional skeleton is accomplished
through co-ordination of the developmental processes of chondrogenesis,
osteogenesis, and synovial joint formation. Infants whose movement in
utero is reduced or restricted and who subsequently suffer
from joint dysplasia (including joint contractures) and thin hypo-mineralised
bones, demonstrate that embryonic movement is crucial for appropriate
skeletogenesis. This has been confirmed in mouse, chick, and zebrafish
animal models, where reduced or eliminated movement consistently yields
similar malformations and which provide the possibility of experimentation
to uncover the precise disturbances and the mechanisms by which
movement impacts molecular regulation. Molecular genetic studies have
shown the important roles played by cell communication signalling
pathways, namely Wnt, Hedgehog, and transforming growth factor-beta/bone
morphogenetic protein. These pathways regulate cell behaviours such
as proliferation and differentiation to control maturation of the
skeletal elements, and are affected when movement is altered. Cell
contacts to the extra-cellular matrix as well as the cytoskeleton
offer a means of mechanotransduction which could integrate mechanical
cues with genetic regulation. Indeed, expression of cytoskeletal
genes has been shown to be affected by immobilisation. In addition
to furthering our understanding of a fundamental aspect of cell control
and differentiation during development, research in this area is
applicable to the engineering of stable skeletal tissues from stem
cells, which relies on an understanding of developmental mechanisms
including genetic and physical criteria. A deeper understanding
of how movement affects skeletogenesis therefore has broader implications
for regenerative therapeutics for injury or disease, as well as
for optimisation of physical therapy regimes for individuals affected
by skeletal abnormalities. Cite this article: Bone Joint Res 2015;4:105–116
Collapse
Affiliation(s)
- C A Shea
- Trinity College Dublin, College Green, Dublin, D2, Ireland
| | | | - P Murphy
- Trinity College Dublin, College Green, Dublin, D2, Ireland
| |
Collapse
|
37
|
Rais Y, Reich A, Simsa-Maziel S, Moshe M, Idelevich A, Kfir T, Miosge N, Monsonego-Ornan E. The growth plate's response to load is partially mediated by mechano-sensing via the chondrocytic primary cilium. Cell Mol Life Sci 2015; 72:597-615. [PMID: 25084815 PMCID: PMC11114052 DOI: 10.1007/s00018-014-1690-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/20/2014] [Accepted: 07/21/2014] [Indexed: 02/03/2023]
Abstract
Mechanical load plays a significant role in bone and growth-plate development. Chondrocytes sense and respond to mechanical stimulation; however, the mechanisms by which those signals exert their effects are not fully understood. The primary cilium has been identified as a mechano-sensor in several cell types, including renal epithelial cells and endothelium, and accumulating evidence connects it to mechano-transduction in chondrocytes. In the growth plate, the primary cilium is involved in several regulatory pathways, such as the non-canonical Wnt and Indian Hedgehog. Moreover, it mediates cell shape, orientation, growth, and differentiation in the growth plate. In this work, we show that mechanical load enhances ciliogenesis in the growth plate. This leads to alterations in the expression and localization of key members of the Ihh-PTHrP loop resulting in decreased proliferation and an abnormal switch from proliferation to differentiation, together with abnormal chondrocyte morphology and organization. Moreover, we use the chondrogenic cell line ATDC5, a model for growth-plate chondrocytes, to understand the mechanisms mediating the participation of the primary cilium, and in particular KIF3A, in the cell's response to mechanical stimulation. We show that this key component of the cilium mediates gene expression in response to mechanical stimulation.
Collapse
Affiliation(s)
- Yoach Rais
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, P.O. Box 12, 76100, Rehovot, Israel
| | - Adi Reich
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, P.O. Box 12, 76100, Rehovot, Israel
- Bone and Extracellular Matrix Branch, National Institute of Child Health and Human Development, Bethesda, 20892-1830, MD, USA
| | - Stav Simsa-Maziel
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, P.O. Box 12, 76100, Rehovot, Israel
| | - Maya Moshe
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, P.O. Box 12, 76100, Rehovot, Israel
| | - Anna Idelevich
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, P.O. Box 12, 76100, Rehovot, Israel
| | - Tal Kfir
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, P.O. Box 12, 76100, Rehovot, Israel
| | - Nicolai Miosge
- Department of Prosthodontics, Oral Biology and Tissue Regeneration Work Group, Medical Faculty, Georg-August-University, 37075, Goettingen, Germany
| | - Efrat Monsonego-Ornan
- Institute of Biochemistry and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, P.O. Box 12, 76100, Rehovot, Israel.
| |
Collapse
|
38
|
Kero D, Novakovic J, Vukojevic K, Petricevic J, Kalibovic Govorko D, Biocina-Lukenda D, Saraga-Babic M. Expression of Ki-67, Oct-4, γ-tubulin and α-tubulin in human tooth development. Arch Oral Biol 2014; 59:1119-29. [DOI: 10.1016/j.archoralbio.2014.05.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 05/12/2014] [Accepted: 05/28/2014] [Indexed: 10/25/2022]
|
39
|
Arita M, Fertala J, Hou C, Steplewski A, Fertala A. Mechanisms of aberrant organization of growth plates in conditional transgenic mouse model of spondyloepiphyseal dysplasia associated with the R992C substitution in collagen II. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:214-29. [PMID: 25451152 DOI: 10.1016/j.ajpath.2014.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 11/24/2022]
Abstract
Mutations in collagen II, a main structural protein of cartilage, are associated with various forms of spondyloepiphyseal dysplasia (SED), whose main features include aberrations of linear growth. Here, we analyzed the pathomechanisms responsible for growth alterations in transgenic mice with conditional expression of the R992C collagen II mutation. Specifically, we studied the alterations of the growth plates of mutant mice in which chondrocytes lacked their typical columnar arrangement. Our studies demonstrated that chondrocytes expressing the thermolabile R992C mutant collagen II molecules endured endoplasmic reticulum stress, had atypical polarization, and had reduced proliferation. Moreover, we demonstrated aberrant organization and morphology of primary cilia. Analyses of the extracellular collagenous deposits in mice expressing the R992C mutant collagen II molecules indicated their poor formation and distribution. By contrast, transgenic mice expressing wild-type collagen II and mice in which the expression of the transgene encoding the R992C collagen II was switched off were characterized by normal growth, and the morphology of their growth plates was correct. Our study with the use of a conditional mouse SED model not only indicates a direct relation between the observed aberration of skeletal tissues and the presence of mutant collagen II, but also identifies cellular and matrix elements of the pathomechanism of SED.
Collapse
Affiliation(s)
- Machiko Arita
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jolanta Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Cheryl Hou
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrzej Steplewski
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrzej Fertala
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
40
|
Verleyen D, Luyten FP, Tylzanowski P. Orphan G-protein coupled receptor 22 (Gpr22) regulates cilia length and structure in the zebrafish Kupffer's vesicle. PLoS One 2014; 9:e110484. [PMID: 25335082 PMCID: PMC4204907 DOI: 10.1371/journal.pone.0110484] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/16/2014] [Indexed: 02/06/2023] Open
Abstract
GPR22 is an orphan G protein-coupled receptor (GPCR). Since the ligand of the receptor is currently unknown, its biological function has not been investigated in depth. Many GPCRs and their intracellular effectors are targeted to cilia. Cilia are highly conserved eukaryotic microtubule-based organelles that protrude from the membrane of most mammalian cells. They are involved in a large variety of physiological processes and diseases. However, the details of the downstream pathways and mechanisms that maintain cilia length and structure are poorly understood. We show that morpholino knock down or overexpression of gpr22 led to defective left-right (LR) axis formation in the zebrafish embryo. Specifically, defective LR patterning included randomization of the left-specific lateral plate mesodermal genes (LPM) (lefty1, lefty2, southpaw and pitx2a), resulting in randomized cardiac looping. Furthermore, gpr22 inactivation in the Kupffer’s vesicle (KV) alone was still able to generate the phenotype, indicating that Gpr22 mainly regulates LR asymmetry through the KV. Analysis of the KV cilia by immunofluorescence and transmission electron microscopy (TEM), revealed that gpr22 knock down or overexpression resulted in changes of cilia length and structure. Further, we found that Gpr22 does not act upstream of the two cilia master regulators, Foxj1a and Rfx2. To conclude, our study characterized a novel player in the field of ciliogenesis.
Collapse
Affiliation(s)
- Daphne Verleyen
- Department of Development and Regeneration, Laboratory for Developmental and Stem Cell Biology, Skeletal Biology and Engineering Research Centre, University of Leuven, Leuven, Belgium
| | - Frank P. Luyten
- Department of Development and Regeneration, Laboratory for Developmental and Stem Cell Biology, Skeletal Biology and Engineering Research Centre, University of Leuven, Leuven, Belgium
| | - Przemko Tylzanowski
- Department of Development and Regeneration, Laboratory for Developmental and Stem Cell Biology, Skeletal Biology and Engineering Research Centre, University of Leuven, Leuven, Belgium
- Department of Biochemistry and Molecular Biology, Medical University, Lublin, Poland
- * E-mail:
| |
Collapse
|
41
|
The chondrocyte primary cilium. Osteoarthritis Cartilage 2014; 22:1071-6. [PMID: 24879961 DOI: 10.1016/j.joca.2014.05.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/29/2014] [Accepted: 05/07/2014] [Indexed: 02/02/2023]
Abstract
UNLABELLED The presence and role of primary, or non-motile, cilia on chondrocytes has confused cartilage researchers for decades. Initial explanations attributed a vestigial nature to chondrocyte cilia. Evidence is now emerging that supports the role of the chondrocyte primary cilium as a sensory organelle, in particular, in mechanotransduction and as a compartment for signaling pathways. Early electron microscopy images depicted bent cilia aligned with the extracellular matrix (ECM) in a manner that suggested a response to mechanical forces. Molecules known to be mechanotransducers in other cell types, including integrins and proteoglycans, are present on chondrocyte cilia. Further, chondrocytes which lack cilia fail to respond to mechanical forces in the same manner that chondrocytes with intact cilia respond. From a clinical perspective, chondrocytes from osteoarthritic (OA) cartilage have cilia with different characteristics than cilia found on chondrocytes from healthy cartilage. OBJECTIVE This review examines the evidence supporting the function of chondrocyte cilia and briefly speculates on the involvement of intraflagellar transport (IFT) in the signaling pathway of mechanotransduction through the cilium. CONCLUSIONS Emerging evidence suggests cilia may be a promising target for preventing and treating OA.
Collapse
|
42
|
Mathieu PS, Bodle JC, Loboa EG. Primary cilium mechanotransduction of tensile strain in 3D culture: Finite element analyses of strain amplification caused by tensile strain applied to a primary cilium embedded in a collagen matrix. J Biomech 2014; 47:2211-7. [PMID: 24831236 DOI: 10.1016/j.jbiomech.2014.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 03/28/2014] [Accepted: 04/05/2014] [Indexed: 01/22/2023]
Abstract
Human adipose-derived stem cells (hASC) exhibit multilineage differentiation potential with lineage specification that is dictated by both the chemical and mechanical stimuli to which they are exposed. We have previously shown that 10% cyclic tensile strain increases hASC osteogenesis and cell-mediated calcium accretion. We have also recently shown that primary cilia are present on hASC and that chemically-induced lineage specification of hASC concurrently results in length and conformation changes of the primary cilia. Further, we have observed cilia length changes in hASC cultured within a collagen I gel in response to 10% cyclic tensile strain. We therefore hypothesize that primary cilia may play a key mechanotransduction role for hASC exposed to tensile strain. The goal of this study was to use finite element analysis (FEA) to determine strains occurring within the ciliary membrane in response to 10% tensile strain applied parallel, or perpendicular, to cilia orientation. To elucidate the mechanical environment experienced by the cilium, several lengths were modeled and evaluated based on cilia lengths measured on hASC grown under varied culture conditions. Principal tensile strains in both hASC and ciliary membranes were calculated using FEA, and the magnitude and location of maximum principal tensile strain determined. We found that maximum principal tensile strain was concentrated at the base of the cilium. In the linear elastic model, applying strain perpendicular to the cilium resulted in maximum strains within the ciliary membrane from 150% to 200%, while applying strain parallel to the cilium resulted in much higher strains, approximately 400%. In the hyperelastic model, applying strain perpendicular to the cilium resulted in maximum strains within the ciliary membrane around 30%, while applying strain parallel to the cilium resulted in much higher strains ranging from 50% to 70%. Interestingly, FEA results indicated that primary cilium length was not directly related to ciliary membrane strain. Rather, it appears that cilium orientation may be more important than cilium length in determining sensitivity of hASC to tensile strain. This is the first study to model the effects of tensile strain on the primary cilium and provides newfound insight into the potential role of the primary cilium as a mechanosensor, particularly in tensile strain and potentially a multitude of other mechanical stimuli beyond fluid shear.
Collapse
Affiliation(s)
- Pattie S Mathieu
- Joint Department of Biomedical Engineering at North Carolina State University and University of North Carolina-Chapel Hill, Engineering Building III (EB3) 4208B, Box 7115, NCSU Campus, Raleigh, NC 27695, USA
| | - Josephine C Bodle
- Joint Department of Biomedical Engineering at North Carolina State University and University of North Carolina-Chapel Hill, Engineering Building III (EB3) 4208B, Box 7115, NCSU Campus, Raleigh, NC 27695, USA
| | - Elizabeth G Loboa
- Joint Department of Biomedical Engineering at North Carolina State University and University of North Carolina-Chapel Hill, Engineering Building III (EB3) 4208B, Box 7115, NCSU Campus, Raleigh, NC 27695, USA; Department of Materials Science & Engineering, North Carolina State University, USA.
| |
Collapse
|
43
|
Yannakoudakis BZ, Liu KJ. Common skeletal features in rare diseases: New links between ciliopathies and FGF-related syndromes. Rare Dis 2013; 1:e27109. [PMID: 25003013 PMCID: PMC3932950 DOI: 10.4161/rdis.27109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/24/2013] [Accepted: 11/06/2013] [Indexed: 12/26/2022] Open
Abstract
Congenital skeletal anomalies are rare disorders, with a subset affecting both the cranial and appendicular skeleton. Two categories, craniosynostosis syndromes and chondrodysplasias, frequently result from aberrant regulation of the fibroblast growth factor (FGF) signaling pathway. Our recent work has implicated FGF signaling in a third category: ciliopathic skeletal dysplasias. In this work, we have used mouse mutants in two ciliopathy genes, Fuzzy (Fuz) and orofacial digital syndrome-1 (Ofd-1), to demonstrate increase in Fgf8 gene expression during critical stages of embryogenesis. While the mechanisms underlying FGF dysregulation differ in the different syndromes, our data raise the possibility that convergence on FGF signal transduction may underlie a wide range of skeletal anomalies. Here, we provide additional evidence of the skeletal phenotypes from the Fuz mouse model and highlight similarities between human ciliopathies and FGF-related syndromes.
Collapse
Affiliation(s)
- Basil Z Yannakoudakis
- Department of Craniofacial Development and Stem Cell Biology; King's College London; London, UK
| | - Karen J Liu
- Department of Craniofacial Development and Stem Cell Biology; King's College London; London, UK
| |
Collapse
|
44
|
Stiff T, Alagoz M, Alcantara D, Outwin E, Brunner HG, Bongers EMHF, O'Driscoll M, Jeggo PA. Deficiency in origin licensing proteins impairs cilia formation: implications for the aetiology of Meier-Gorlin syndrome. PLoS Genet 2013; 9:e1003360. [PMID: 23516378 PMCID: PMC3597520 DOI: 10.1371/journal.pgen.1003360] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 01/18/2013] [Indexed: 11/19/2022] Open
Abstract
Mutations in ORC1, ORC4, ORC6, CDT1, and CDC6, which encode proteins required for DNA replication origin licensing, cause Meier-Gorlin syndrome (MGS), a disorder conferring microcephaly, primordial dwarfism, underdeveloped ears, and skeletal abnormalities. Mutations in ATR, which also functions during replication, can cause Seckel syndrome, a clinically related disorder. These findings suggest that impaired DNA replication could underlie the developmental defects characteristic of these disorders. Here, we show that although origin licensing capacity is impaired in all patient cells with mutations in origin licensing component proteins, this does not correlate with the rate of progression through S phase. Thus, the replicative capacity in MGS patient cells does not correlate with clinical manifestation. However, ORC1-deficient cells from MGS patients and siRNA-mediated depletion of origin licensing proteins also have impaired centrosome and centriole copy number. As a novel and unexpected finding, we show that they also display a striking defect in the rate of formation of primary cilia. We demonstrate that this impacts sonic hedgehog signalling in ORC1-deficient primary fibroblasts. Additionally, reduced growth factor-dependent signaling via primary cilia affects the kinetics of cell cycle progression following cell cycle exit and re-entry, highlighting an unexpected mechanism whereby origin licensing components can influence cell cycle progression. Finally, using a cell-based model, we show that defects in cilia function impair chondroinduction. Our findings raise the possibility that a reduced efficiency in forming cilia could contribute to the clinical features of MGS, particularly the bone development abnormalities, and could provide a new dimension for considering developmental impacts of licensing deficiency.
Collapse
Affiliation(s)
- Tom Stiff
- Double Strand Break Repair Laboratory, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Meryem Alagoz
- Double Strand Break Repair Laboratory, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Diana Alcantara
- Human DNA Damage Response Disorders Group, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Emily Outwin
- Human DNA Damage Response Disorders Group, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Han G. Brunner
- Department of Human Genetics, Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Ernie M. H. F. Bongers
- Department of Human Genetics, Institute for Genetic and Metabolic Disease, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Mark O'Driscoll
- Human DNA Damage Response Disorders Group, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| | - Penny A. Jeggo
- Double Strand Break Repair Laboratory, Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
45
|
Chang CF, Serra R. Ift88 regulates Hedgehog signaling, Sfrp5 expression, and β-catenin activity in post-natal growth plate. J Orthop Res 2013; 31:350-6. [PMID: 23034798 PMCID: PMC3538091 DOI: 10.1002/jor.22237] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/23/2012] [Indexed: 02/04/2023]
Abstract
Primary cilia are present on most cell types including chondrocytes. Dysfunction of primary cilia results in pleiotropic symptoms including skeletal dysplasia. Previously, we showed that deletion of Ift88 and subsequent depletion of primary cilia from chondrocytes resulted in disorganized columnar structure and early loss of growth plate. To understand underlying mechanisms whereby Ift88 regulates growth plate function, we compared gene expression profiles in normal and Ift88 deleted growth plates. Pathway analysis indicated that Hedgehog (Hh) signaling was the most affected pathway in mutant growth plate. Expression of the Wnt antagonist, Sfrp5, was also down-regulated. In addition, Sfrp5 was up-regulated by Shh in rib chondrocytes and regulation of Sfrp5 by Shh was attenuated in mutant cells. This result suggests Sfrp5 is a downstream target of Hh and that Ift88 regulates its expression. Sfrp5 is an extracellular antagonist of Wnt signaling. We observed an increase in Wnt/β-catenin signaling specifically in flat columnar cells of the growth plate in Ift88 mutant mice as measured by increased expression of Axin2 and Lef1 as well as increased nuclear localization of β-catenin. We propose that Ift88 and primary cilia regulate expression of Sfrp5 and Wnt signaling pathways in growth plate via regulation of Ihh signaling.
Collapse
Affiliation(s)
| | - Rosa Serra
- Corresponding author: Rosa Serra, Ph.D., Department of Cell Biology, University of Alabama at Birmingham, 1918 University Blvd., 660 MCLM, Birmingham, AL 35294-0005, 205-934-0842,
| |
Collapse
|
46
|
Young YN, Downs M, Jacobs CR. Dynamics of the primary cilium in shear flow. Biophys J 2013; 103:629-39. [PMID: 22947924 DOI: 10.1016/j.bpj.2012.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 06/29/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022] Open
Abstract
In this work, the equilibrium shape and dynamics of a primary cilium under flow are investigated by using both theoretical modeling and experiment. The cilium is modeled as an elastic beam that may undergo large deflection due to the hydrodynamic load. Equilibrium results show that the anchoring effects of the basal body on the cilium axoneme behave as a nonlinear rotational spring. Details of the rotational spring are elucidated by coupling the elastic beam with an elastic shell. We further study the dynamics of cilium under shear flow with the cilium base angle determined from the nonlinear rotational spring, and obtain good agreement in cilium bending and relaxing dynamics when comparing between modeling and experimental results. These results potentially shed light on the physics underlying the mechanosensitive ion channel transport through the ciliary membrane.
Collapse
Affiliation(s)
- Y-N Young
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey, USA.
| | | | | |
Collapse
|
47
|
Uzbekov RE, Maurel DB, Aveline PC, Pallu S, Benhamou CL, Rochefort GY. Centrosome fine ultrastructure of the osteocyte mechanosensitive primary cilium. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:1430-1441. [PMID: 23171702 DOI: 10.1017/s1431927612013281] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The centrosome is the principal microtubule organization center in cells, giving rise to microtubule-based organelles (e.g., cilia, flagella). The aim was to study the osteocyte centrosome morphology at an ultrastructural level in relation to its mechanosensitive function. Osteocyte centrosomes and cilia in tibial cortical bone were explored by acetylated alpha-tubulin (AαTub) immunostaining under confocal microscopy. For the first time, fine ultrastructure and spatial orientation of the osteocyte centrosome were explored by transmission electron microscopy on serial ultrathin sections. AαTub-positive staining was observed in 94% of the osteocytes examined (222/236). The mother centriole formed a short primary cilium and was longer than the daughter centriole due to an intermediate zone between centriole and cilium. The proximal end of the mother centriole was connected with the surface of daughter centriole by striated rootlets. The mother centriole exhibited distal appendages that interacted with the cell membrane and formed a particular structure called "cilium membrane prolongation." The primary cilium was mainly oriented perpendicular to the long axis of bone. Mother and daughter centrioles change their original mutual orientation during the osteocyte differentiation process. The short primary cilium is hypothesized as a novel type of fluid-sensing organelle in osteocytes.
Collapse
Affiliation(s)
- R E Uzbekov
- Department of Microscopy, François Rabelais University, Tours, France.
| | | | | | | | | | | |
Collapse
|
48
|
Yang S, Wang C. The intraflagellar transport protein IFT80 is required for cilia formation and osteogenesis. Bone 2012; 51:407-17. [PMID: 22771375 PMCID: PMC3412883 DOI: 10.1016/j.bone.2012.06.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 06/20/2012] [Accepted: 06/23/2012] [Indexed: 12/21/2022]
Abstract
Intraflagellar transport (IFT) proteins are essential for the assembly and maintenance of cilia, which play important roles in development and homeostasis. IFT80 is a newly defined IFT protein. Partial mutation of IFT80 in humans causes diseases such as Jeune asphyxiating thoracic dystrophy (JATD) and short rib polydactyly (SRP) type III with abnormal skeletal development. However, the role and mechanism of IFT80 in osteogenesis is unknown. Here, we first detected IFT80 expression pattern and found that IFT80 was highly expressed in mouse long bone, skull, and during osteoblast differentiation. By using lentivirus-mediated RNA interference (RNAi) technology to silence IFT80 in murine mesenchymal progenitor cell line-C3H10T1/2 and bone marrow derived stromal cells, we found that silencing IFT80 led to either shortening or loss of cilia and the decrease of Arl13b expression - a small GTPase that is localized in cilia. Additionally, silencing IFT80 blocked the expression of osteoblast markers and significantly inhibited ALP activity and cell mineralization. We further found that IFT80 silencing inhibited the expression of Gli2, a critical transcriptional factor in the hedgehog signaling pathway. Overexpression of Gli2 rescued the deficiency of osteoblast differentiation from IFT80-silenced cells, and dramatically promoted osteoblast differentiation. Moreover, introduction of Smo agonist (SAG) promotes osteoblast differentiation, which was partially inhibited by IFT80 silencing. Thus, these results suggested that IFT80 plays an important role in osteogenesis through regulating Hedgehog/Gli signal pathways.
Collapse
Affiliation(s)
- Shuying Yang
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, State University of New York, Buffalo, NY, 14214, USA
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University of Buffalo, The State University of New York, Buffalo, NY, 14203, USA
- Address correspondence to: Dr. Shuying Yang, MD, PhD, Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, 14214, USA. Tel: 716-829-6338, Fax: 716-829-3942, . Changdong Wang, Ph.D, Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY, 14214, USA. Tel: 716-829-2426, Fax: 716-829-3942,
| | - Changdong Wang
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, State University of New York, Buffalo, NY, 14214, USA
| |
Collapse
|
49
|
Qiu N, Xiao Z, Cao L, Buechel MM, David V, Roan E, Quarles LD. Disruption of Kif3a in osteoblasts results in defective bone formation and osteopenia. J Cell Sci 2012; 125:1945-57. [PMID: 22357948 DOI: 10.1242/jcs.095893] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We investigated whether Kif3a in osteoblasts has a direct role in regulating postnatal bone formation. We conditionally deleted Kif3a in osteoblasts by crossing osteocalcin (Oc; also known as Bglap)-Cre with Kif3a(flox/null) mice. Conditional Kif3a-null mice (Kif3a(Oc-cKO)) had a 75% reduction in Kif3a transcripts in bone and osteoblasts. Conditional deletion of Kif3a resulted in the reduction of primary cilia number by 51% and length by 27% in osteoblasts. Kif3a(Oc-cKO) mice developed osteopenia by 6 weeks of age unlike Kif3a(flox/+) control mice, as evidenced by reductions in femoral bone mineral density (22%), trabecular bone volume (42%) and cortical thickness (17%). By contrast, Oc-Cre;Kif3a(flox/+) and Kif3a(flox/null) heterozygous mice exhibited no skeletal abnormalities. Loss of bone mass in Kif3a(Oc-cKO) mice was associated with impaired osteoblast function in vivo, as reflected by a 54% reduction in mineral apposition rate and decreased expression of Runx2, osterix (also known as Sp7 transcription factor 7; Sp7), osteocalcin and Dmp1 compared with controls. Immortalized osteoblasts from Kif3a(Oc-cKO) mice exhibited increased cell proliferation, impaired osteoblastic differentiation, and enhanced adipogenesis in vitro. Osteoblasts derived from Kif3a(Oc-cKO) mice also had lower basal cytosolic calcium levels and impaired intracellular calcium responses to fluid flow shear stress. Sonic hedgehog-mediated Gli2 expression and Wnt3a-mediated β-catenin and Axin2 expression were also attenuated in Kif3a(Oc-cKO) bone and osteoblast cultures. These data indicate that selective deletion of Kif3a in osteoblasts disrupts primary cilia formation and/or function and impairs osteoblast-mediated bone formation through multiple pathways including intracellular calcium, hedgehog and Wnt signaling.
Collapse
Affiliation(s)
- Ni Qiu
- Department of Medicine, the University of Tennessee Health Science Center, Memphis, TN 38165, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Chang CF, Ramaswamy G, Serra R. Depletion of primary cilia in articular chondrocytes results in reduced Gli3 repressor to activator ratio, increased Hedgehog signaling, and symptoms of early osteoarthritis. Osteoarthritis Cartilage 2012; 20:152-61. [PMID: 22173325 PMCID: PMC3260404 DOI: 10.1016/j.joca.2011.11.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/30/2011] [Accepted: 11/18/2011] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Primary cilia are present in almost every cell type including chondrocytes. Studies have shown that defects in primary cilia result in skeletal dysplasia. The purpose of this study was to understand how loss of primary cilia affects articular cartilage. DESIGN Ift88 encodes a protein that is required for intraflagellar transport and formation of primary cilia. In this study, we used Col2aCre;Ift88(fl/fl) transgenic mice in which primary cilia were deleted in chondrocytes. Col2aCre;Ift88(fl/fl) articular cartilage was characterized by histological staining, real time RT-PCR, and microindentation. Hedgehog (Hh) signaling was measured by expression of Ptch1 and Gli1 mRNA. The levels of Gli3 proteins were determined by western blot. RESULTS Col2aCre;Ift88(fl/fl) articular cartilage was thicker and had increased cell density, likely due to decreased apoptosis during cartilage remodeling. Mutant articular cartilage also showed increased expression of osteoarthritis (OA) markers including Mmp13, Adamts5, ColX, and Runx2. OA was also evident by reduced stiffness in mutant cartilage as measured by microindentation. Up-regulation of Hh signaling, which has been associated with OA, was present in mutant articular cartilage as measured by expression of Ptch1 and Gli1. Col2aCre;Ift88(fl/fl) cartilage also demonstrated reduced Gli3 repressor to activator ratio. CONCLUSION Our results indicate that primary cilia are required for normal development and maintenance of articular cartilage. It was shown that primary cilia are required for processing full length Gli3 to the truncated repressor form. We propose that OA symptoms in Col2aCre;Ift88(fl/fl) cartilage are due to reduced Hh signal repression by Gli3.
Collapse
Affiliation(s)
| | - Girish Ramaswamy
- Department of Biomedical Engineering, University of Alabama at Birmingham
| | - Rosa Serra
- Department of Cell Biology, University of Alabama at Birmingham,Corresponding author: Rosa Serra, Ph.D., Department of Cell Biology, University of Alabama at Birmingham, 1918 University Blvd., 660 MCLM, Birmingham, AL 35294-0005, 205-934-0842,
| |
Collapse
|