1
|
Badr A, Daily KP, Eltobgy M, Estfanous S, Tan MH, Chun-Tien Kuo J, Whitham O, Carafice C, Gupta G, Amer HM, Shamseldin MM, Yousif A, Deems NP, Fitzgerald J, Yan P, Webb A, Zhang X, Pietrzak M, Ghoneim HE, Dubey P, Barrientos RM, Lee RJ, Kokiko-Cochran ON, Amer AO. Microglia-targeted inhibition of miR-17 via mannose-coated lipid nanoparticles improves pathology and behavior in a mouse model of Alzheimer's disease. Brain Behav Immun 2024; 119:919-944. [PMID: 38718909 DOI: 10.1016/j.bbi.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/16/2024] [Accepted: 05/02/2024] [Indexed: 05/21/2024] Open
Abstract
Neuroinflammation and accumulation of Amyloid Beta (Aβ) accompanied by deterioration of special memory are hallmarks of Alzheimer's disease (AD). Effective preventative and treatment options for AD are still needed. Microglia in AD brains are characterized by elevated levels of microRNA-17 (miR-17), which is accompanied by defective autophagy, Aβ accumulation, and increased inflammatory cytokine production. However, the effect of targeting miR-17 on AD pathology and memory loss is not clear. To specifically inhibit miR-17 in microglia, we generated mannose-coated lipid nanoparticles (MLNPs) enclosing miR-17 antagomir (Anti-17 MLNPs), which are targeted to mannose receptors readily expressed on microglia. We used a 5XFAD mouse model (AD) that recapitulates many AD-related phenotypes observed in humans. Our results show that Anti-17 MLNPs, delivered to 5XFAD mice by intra-cisterna magna injection, specifically deliver Anti-17 to microglia. Anti-17 MLNPs downregulated miR-17 expression in microglia but not in neurons, astrocytes, and oligodendrocytes. Anti-17 MLNPs attenuated inflammation, improved autophagy, and reduced Aβ burdens in the brains. Additionally, Anti-17 MLNPs reduced the deterioration in spatial memory and decreased anxiety-like behavior in 5XFAD mice. Therefore, targeting miR-17 using MLNPs is a viable strategy to prevent several AD pathologies. This selective targeting strategy delivers specific agents to microglia without the adverse off-target effects on other cell types. Additionally, this approach can be used to deliver other molecules to microglia and other immune cells in other organs.
Collapse
Affiliation(s)
- Asmaa Badr
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Kylene P Daily
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Mostafa Eltobgy
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Shady Estfanous
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Michelle H Tan
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Jimmy Chun-Tien Kuo
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, the United States of America
| | - Owen Whitham
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Cierra Carafice
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Gauruv Gupta
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Heba M Amer
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Mohamed M Shamseldin
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Amir Yousif
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Nicholas P Deems
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, the United States of America
| | - Julie Fitzgerald
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210
| | - Pearlly Yan
- Genomics Shared Resource, Comprehensive Cancer Center, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, the United States of America
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, the United States of America
| | - Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, the United States of America
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, the United States of America
| | - Hazem E Ghoneim
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Purnima Dubey
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, Ohio State University, Columbus, OH, the United States of America
| | - Robert J Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, the United States of America
| | | | - Amal O Amer
- Department of Microbial Infection and Immunity, Infectious Diseases Institute, The Heart and Lung Research Institute, The Ohio State University, Columbus, OH, the United States of America.
| |
Collapse
|
2
|
Eugenín J, Beltrán-Castillo S, Irribarra E, Pulgar-Sepúlveda R, Abarca N, von Bernhardi R. Microglial reactivity in brainstem chemosensory nuclei in response to hypercapnia. Front Physiol 2024; 15:1332355. [PMID: 38476146 PMCID: PMC10927973 DOI: 10.3389/fphys.2024.1332355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Microglia, the resident immune cells of the CNS, surveil, detect, and respond to various extracellular signals. Depending on the nature of these signals, an integrative microglial response can be triggered, resulting in a phenotypic transformation. Here, we evaluate whether hypercapnia modifies microglia phenotype in brainstem respiratory-related nuclei. Adult C57BL/6 inbred mice were exposed to 10% CO2 enriched air (hypercapnia), or pure air (control), for 10 or 30 min and immediately processed for immunohistochemistry to detect the ubiquitous microglia marker, ionized calcium binding adaptor molecule 1 (Iba1). Hypercapnia for thirty, but not 10 min reduced the Iba1 labeling percent coverage in the ventral respiratory column (VRC), raphe nucleus (RN), and nucleus tractus solitarius (NTS) and the number of primary branches in VRC. The morphological changes persisted, at least, for 60 min breathing air after the hypercapnic challenge. No significant changes were observed in Iba1+ cells in the spinal trigeminal nucleus (Sp5) and the hippocampus. In CF-1 outbred mice, 10% CO2 followed by 60 min of breathing air, resulted in the reduction of Iba1 labeling percent coverage and the number and length of primary branches in VRC, RN, and NTS. No morphological change was observed in Iba1+ cells in Sp5 and hippocampus. Double immunofluorescence revealed that prolonged hypercapnia increased the expression of CD86, an inflammatory marker for reactive state microglia, in Iba1+ cells in VRC, RN, and NTS, but not in Sp5 and hippocampus in CF-1 mice. By contrast, the expression of CD206, a marker of regulatory state microglia, persisted unmodified. In brainstem, but not in hippocampal microglia cultures, hypercapnia increased the level of IL1β, but not that of TGFβ measured by ELISA. Our results show that microglia from respiratory-related chemosensory nuclei, are reactive to prolonged hypercapnia acquiring an inflammatory-like phenotype.
Collapse
Affiliation(s)
- Jaime Eugenín
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Sebastián Beltrán-Castillo
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Estefanía Irribarra
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | | | - Nicolás Abarca
- Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Rommy von Bernhardi
- Facultad de Odontología y Ciencias de la Rehabilitación, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
3
|
Rebelo AL, Drake RR, Marchetti-Deschmann M, Saldova R, Pandit A. Changes in tissue protein N-glycosylation and associated molecular signature occur in the human Parkinsonian brain in a region-specific manner. PNAS NEXUS 2024; 3:pgad439. [PMID: 38178977 PMCID: PMC10766401 DOI: 10.1093/pnasnexus/pgad439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024]
Abstract
Parkinson's disease (PD) associated state of neuroinflammation due to the aggregation of aberrant proteins is widely reported. One type of post-translational modification involved in protein stability is glycosylation. Here, we aimed to characterize the human Parkinsonian nigro-striatal N-glycome, and related transcriptome/proteome, and its correlation with endoplasmic reticulum (ER) stress and unfolded protein response (UPR), providing a comprehensive characterization of the PD molecular signature. Significant changes were seen upon a PD: a 3% increase in sialylation and 5% increase in fucosylation in both regions, and a 2% increase in oligomannosylated N-glycans in the substantia nigra. In the latter, a decrease in the mRNA expression of sialidases and an upregulation in the UPR pathway were also seen. To show the correlation between these, we also describe a small in vitro study where changes in specific glycosylation trait enzymes (inhibition of sialyltransferases) led to impairments in cell mitochondrial activity, changes in glyco-profile, and upregulation in UPR pathways. This complete characterization of the human nigro-striatal N-glycome provides an insight into the glycomic profile of PD through a transversal approach while combining the other PD "omics" pieces, which can potentially assist in the development of glyco-focused therapeutics.
Collapse
Affiliation(s)
- Ana Lúcia Rebelo
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 TK33, Galway, Ireland
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, SC 29425, Charleston, USA
| | | | - Radka Saldova
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 TK33, Galway, Ireland
- National Institute for Bioprocessing Research and Training (NIBRT), University College Dublin, A94 X099, Dublin, Ireland
- School of Medicine, College of Health and Agricultural Science, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 TK33, Galway, Ireland
| |
Collapse
|
4
|
Tassan Mazzocco M, Murtaj V, Martins D, Schellino R, Coliva A, Toninelli E, Vercelli A, Turkheimer F, Belloli S, Moresco RM. Exploring the neuroprotective effects of montelukast on brain inflammation and metabolism in a rat model of quinolinic acid-induced striatal neurotoxicity. J Neuroinflammation 2023; 20:34. [PMID: 36782185 PMCID: PMC9923670 DOI: 10.1186/s12974-023-02714-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND One intrastriatal administration of quinolinic acid (QA) in rats induces a lesion with features resembling those observed in Huntington's disease. Our aim is to evaluate the effects of the cysteinyl leukotriene receptor antagonist montelukast (MLK), which exhibited neuroprotection in different preclinical models of neurodegeneration, on QA-induced neuroinflammation and regional metabolic functions. METHODS The right and left striatum of Sprague Dawley and athymic nude rats were injected with QA and vehicle (VEH), respectively. Starting from the day before QA injection, animals were treated with 1 or 10 mg/kg of MLK or VEH for 14 days. At 14 and 30 days post-lesion, animals were monitored with magnetic resonance imaging (MRI) and positron emission tomography (PET) using [18F]-VC701, a translocator protein (TSPO)-specific radiotracer. Striatal neuroinflammatory response was measured post-mortem in rats treated with 1 mg/kg of MLK by immunofluorescence. Rats treated with 10 mg/kg of MLK also underwent a [18F]-FDG PET study at baseline and 4 months after lesion. [18F]-FDG PET data were then used to assess metabolic connectivity between brain regions by applying a covariance analysis method. RESULTS MLK treatment was not able to reduce the QA-induced increase in striatal TSPO PET signal and MRI lesion volume, where we only detected a trend towards reduction in animals treated with 10 mg/kg of MLK. Post-mortem immunofluorescence analysis revealed that MLK attenuated the increase in striatal markers of astrogliosis and activated microglia in the lesioned hemisphere. We also found a significant increase in a marker of anti-inflammatory activity (MannR) and a trend towards reduction in a marker of pro-inflammatory activity (iNOS) in the lesioned striatum of MLK-compared to VEH-treated rats. [18F]-FDG uptake was significantly reduced in the striatum and ipsilesional cortical regions of VEH-treated rats at 4 months after lesion. MLK administration preserved glucose metabolism in these cortical regions, but not in the striatum. Finally, MLK was able to counteract changes in metabolic connectivity and measures of network topology induced by QA, in both lesioned and non-lesioned hemispheres. CONCLUSIONS Overall, MLK treatment produced a significant neuroprotective effect by reducing neuroinflammation assessed by immunofluorescence and preserving regional brain metabolism and metabolic connectivity from QA-induced neurotoxicity in cortical and subcortical regions.
Collapse
Affiliation(s)
- Margherita Tassan Mazzocco
- PhD Program in Neuroscience, Medicine and Surgery Department, University of Milano-Bicocca, Milan, Italy
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Valentina Murtaj
- PhD Program in Neuroscience, Medicine and Surgery Department, University of Milano-Bicocca, Milan, Italy
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Roberta Schellino
- Department of Neuroscience "Rita Levi Montalcini" and Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Angela Coliva
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Elisa Toninelli
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Alessandro Vercelli
- Department of Neuroscience "Rita Levi Montalcini" and Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Turin, Italy
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sara Belloli
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Milan, Italy
| | - Rosa Maria Moresco
- Nuclear Medicine Department, San Raffaele Scientific Institute (IRCCS), Milan, Italy.
- Institute of Molecular Bioimaging and Physiology (IBFM), CNR, Milan, Italy.
- Technomed Foundation and Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
5
|
Suvarna V, Sawant N, Desai N. A Review on Recent Advances in Mannose-Functionalized Targeted Nanocarrier Delivery Systems in Cancer and Infective Therapeutics. Crit Rev Ther Drug Carrier Syst 2023; 40:43-82. [PMID: 36734913 DOI: 10.1615/critrevtherdrugcarriersyst.2022041853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Unmodified nanocarriers used in the chemotherapy of cancers and various infectious diseases exhibit prolonged blood circulation time, prevent enzymatic degradation and increase chemical stability of encapsulated therapeutics. However, off-target effect and lack of specificity associated with unmodified nanoparticles (NPs) limit their applications in the health care system. Mannose (Man) receptors with significant overexpression on antigen-presenting cells and macrophages are among the most admired targets for cancer and anti-infective therapeutics. Therefore, development of Man functionalized nanocarriers targeting Man receptors, for target specific drug delivery in the chemotherapy have been extensively studied. Present review expounds diverse Man-conjugated NPs with their potential for targeted drug delivery, improved biodistribution profiles and localization. Additionally, the review gives detailed account of the interactions of mannosylated NPs with various biological systems and their characterization not discussed in earlier published reports is discussed.
Collapse
Affiliation(s)
- Vasanti Suvarna
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Niserga Sawant
- C.U. Shah College of Pharmacy, SNDT Women's University, Santacruz (W), Mumbai 400049, Maharashtra, India
| | - Namita Desai
- Department of Pharmaceutics, C. U. Shah College of Pharmacy, SNDT Women's University, Santacruz (W), Mumbai - 400049, Maharashtra, India
| |
Collapse
|
6
|
Gaige S, Barbouche R, Barbot M, Boularand S, Dallaporta M, Abysique A, Troadec JD. Constitutively active microglial populations limit anorexia induced by the food contaminant deoxynivalenol. J Neuroinflammation 2022; 19:280. [PMID: 36403004 PMCID: PMC9675145 DOI: 10.1186/s12974-022-02631-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/26/2022] [Indexed: 11/21/2022] Open
Abstract
Microglia are involved in neuroinflammatory processes during diverse pathophysiological conditions. To date, the possible contribution of these cells to deoxynivalenol (DON)-induced brain inflammation and anorexia has not yet been evaluated. DON, one of the most abundant trichothecenes found in cereals, has been implicated in mycotoxicosis in both humans and farm animals. DON-induced toxicity is characterized by reduced food intake, weight gain, and immunological effects. We previously showed that exposure to DON induces an inflammatory response within the hypothalamus and dorsal vagal complex (DVC) which contributes to DON-induced anorexia. Here, in response to anorectic DON doses, we reported microglial activation within two circumventricular organs (CVOs), the area postrema (AP) and median eminence (ME) located in the DVC and the hypothalamus, respectively. Interestingly, this microglial activation was observed while DON-induced anorexia was ongoing (i.e., 3 and 6 h after DON administration). Next, we took advantage of pharmacological microglia deletion using PLX3397, a colony-stimulating factor 1 receptor (CSF1R)-inhibitor. Surprisingly, microglia-depleted mice exhibited an increased sensitivity to DON since non-anorectic DON doses reduced food intake in PLX3397-treated mice. Moreover, low DON doses induced c-Fos expression within feeding behavior-associated structures in PLX3397-treated mice but not in control mice. In parallel, we have highlighted heterogeneity in the phenotype of microglial cells present in and around the AP and ME of control animals. In these areas, microglial subpopulations expressed IBA1, TMEM119, CD11b and CD68 to varying degrees. In addition, a CD68 positive subpopulation showed, under resting conditions, a noticeable phagocytotic/endocytotic activity. We observed that DON strongly reduced CD68 in the hypothalamus and DVC. Finally, inactivation of constitutively active microglia by intraperitoneal administration of minocycline resulted in anorexia with a DON dose ineffective in control mice. Taken together, these results strongly suggest that various populations of microglial cells residing in and around the CVOs are maintained in a functionally active state even under physiological conditions. We propose that these microglial cell populations are attempting to protect the brain parenchyma from hazardous molecules coming from the blood. This study could contribute to a better understanding of how microglia respond to environmental contaminants.
Collapse
Affiliation(s)
- Stéphanie Gaige
- Aix-Marseille University, CNRS, Laboratoire de Neurosciences Cognitives, UMR 7291, 3 Place Victor Hugo, 13331, Marseille, France
| | - Rym Barbouche
- Aix-Marseille University, CNRS, Laboratoire de Neurosciences Cognitives, UMR 7291, 3 Place Victor Hugo, 13331, Marseille, France
| | - Manon Barbot
- Aix-Marseille University, CNRS, Laboratoire de Neurosciences Cognitives, UMR 7291, 3 Place Victor Hugo, 13331, Marseille, France
| | - Sarah Boularand
- Aix-Marseille University, CNRS, Centrale Marseille, FSCM (FR1739), PRATIM, 13397, Marseille, France
| | - Michel Dallaporta
- Aix-Marseille University, CNRS, Laboratoire de Neurosciences Cognitives, UMR 7291, 3 Place Victor Hugo, 13331, Marseille, France
| | - Anne Abysique
- Aix-Marseille University, CNRS, Laboratoire de Neurosciences Cognitives, UMR 7291, 3 Place Victor Hugo, 13331, Marseille, France.
| | - Jean-Denis Troadec
- Aix-Marseille University, CNRS, Laboratoire de Neurosciences Cognitives, UMR 7291, 3 Place Victor Hugo, 13331, Marseille, France.
| |
Collapse
|
7
|
Mousavifar L, Lewicky JD, Taponard A, Bagul R, Rivat M, Abdullayev S, Martel AL, Fraleigh NL, Nakamura A, Veyrier FJ, Le HT, Roy R. Synthesis & Evaluation of Novel Mannosylated Neoglycolipids for Liposomal Delivery System Applications. Pharmaceutics 2022; 14:2300. [PMID: 36365120 PMCID: PMC9692915 DOI: 10.3390/pharmaceutics14112300] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 07/03/2024] Open
Abstract
Glycosylated NPs, including liposomes, are known to target various receptors involved in cellular carbohydrate transport, of which the mannoside binding receptors are attracting particular attention for their expression on various immune cells, cancers, and cells involved in maintaining central nervous system (CNS) integrity. As part of our interest in NP drug delivery, mannosylated glycoliposomal delivery systems formed from the self-assembly of amphiphilic neoglycolipids were developed, with a C12-alkyl mannopyranoside (ML-C12) being identified as a lead compoundcapable of entrapping, protecting, and improving the delivery of structurally diverse payloads. However, ML-C12 was not without limitations in both the synthesis of the glycolipids, and the physicochemical properties of the resulting glycoliposomes. Herein, the chemical syntheses of a novel series of mannosylated neoglycolipids are reported with the goal of further improving on the previous ML-C12 glyconanoparticles. The current work aimed to use a self-contingent strategy which overcomes previous synthetic limitations to produce neoglycolipids that have one exposed mannose residue, an aromatic scaffold, and two lipid tails with varied alkyl chains. The azido-ending carbohydrates and the carboxylic acid-ending lipid tails were ligated using a new one-pot modified Staudinger chemistry that differed advantageously to previous syntheses. The formation of stable neoglycoliposomes of controllable and ideal sizes (≈100-400 nm) was confirmed via dynamic light scattering (DLS) experiments and transmission electron microscopy (TEM). Beyond chemical advantages, the present study further aimed to establish potential improvements in the biological activity of the neoglycoliposomes. Concanavalin A (Con A) agglutination studies demonstrated efficient and stable cross-linking abilities dependent on the length of the linkers and lipid tails. The efficacy of the glycoliposomes in improving cytosolic uptake was investigated using Nile Red as probe in immune and cancer cell lines. Preliminary ex vivo safety assessments showed that the mannosylated glycoliposomes are hemocompatible, and non-immunogenic. Finally, using a model peptide therapeutic, the relative entrapment capacity and plasma stability of the optimal glycoliposome delivery system was evaluated and compared to the previous neoglycoliposomes. Overall, the new lead glycoliposome showed improved biological activity over ML-C12, in addition to having several chemical benefits including the lack of stereocenters, a longer linker allowing better sugar availability, and ease of synthesis using novel one-pot modified Staudinger chemistry.
Collapse
Affiliation(s)
- Leila Mousavifar
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Jordan D. Lewicky
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada
| | - Alexis Taponard
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Rahul Bagul
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Madleen Rivat
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Shuay Abdullayev
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| | - Alexandrine L. Martel
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada
| | - Nya L. Fraleigh
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada
| | - Arnaldo Nakamura
- Armand-Frappier Santé Biotechnologie Research Centre, Institut National de la Recherche Scientifique, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Frédéric J. Veyrier
- Armand-Frappier Santé Biotechnologie Research Centre, Institut National de la Recherche Scientifique, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Hoang-Thanh Le
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, ON P3E 2H2, Canada
- Medicinal Sciences Division, NOSM University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | - René Roy
- Glycosciences and Nanomaterial Laboratory, Université du Québec à Montréal, P.O. Box 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada
| |
Collapse
|
8
|
Hao Y, Su C, Liu X, Sui H, Shi Y, Zhao L. Bioengineered microglia-targeted exosomes facilitate Aβ clearance via enhancing activity of microglial lysosome for promoting cognitive recovery in Alzheimer's disease. BIOMATERIALS ADVANCES 2022; 136:212770. [PMID: 35929330 DOI: 10.1016/j.bioadv.2022.212770] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
Aggregation of amyloid in the form of senile plaques is currently considered to be one of the main mechanisms driving the development of Alzheimer's disease (AD). Therefore, targeting amyloid homeostasis is an important treatment strategy for AD. Microglia, as the main immune cells, contribute to endocytosis and clearance of amyloid beta (Aβ) via lysosome mediated degradation. As abnormal lysosomal function in microglia is associated with inefficient clearance of Aβ in AD, we designed bioengineered microglia-targeting exosomes to promote the targeted delivery of gemfibrozil (Gem) and restore the lysosomal activity of microglia in clearing Aβ aggregation. Our results suggested that mannose-modified exosomes laden with Gem (MExo-Gem) can not only bind with Aβ but also specifically target microglia through the interaction between Exo-delivered mannose and mannose receptors expressed in microglia, thus promoting Aβ entry into microglia. Exosomal Gem activated lysosomal activity and accelerated lysosome-mediated clearance of Aβ in microglia. Finally, MExo-Gem improved the learning and memory ability of AD model mice.
Collapse
Affiliation(s)
- Yunni Hao
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Chang Su
- School of Veterinary Medicine, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Xintong Liu
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Haijuan Sui
- Department of Pharmacology, Jinzhou Medical University, Jinzhou 121000, PR China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China.
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou 121000, PR China.
| |
Collapse
|
9
|
Klarić TS, Lauc G. The dynamic brain N-glycome. Glycoconj J 2022; 39:443-471. [PMID: 35334027 DOI: 10.1007/s10719-022-10055-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 01/17/2023]
Abstract
The attachment of carbohydrates to other macromolecules, such as proteins or lipids, is an important regulatory mechanism termed glycosylation. One subtype of protein glycosylation is asparagine-linked glycosylation (N-glycosylation) which plays a key role in the development and normal functioning of the vertebrate brain. To better understand the role of N-glycans in neurobiology, it's imperative we analyse not only the functional roles of individual structures, but also the collective impact of large-scale changes in the brain N-glycome. The systematic study of the brain N-glycome is still in its infancy and data are relatively scarce. Nevertheless, the prevailing view has been that the neuroglycome is inherently restricted with limited capacity for variation. The development of improved methods for N-glycomics analysis of brain tissue has facilitated comprehensive characterisation of the complete brain N-glycome under various experimental conditions on a larger scale. Consequently, accumulating data suggest that it's more dynamic than previously recognised and that, within a general framework, it has a given capacity to change in response to both intrinsic and extrinsic stimuli. Here, we provide an overview of the many factors that can alter the brain N-glycome, including neurodevelopment, ageing, diet, stress, neuroinflammation, injury, and disease. Given this emerging evidence, we propose that the neuroglycome has a hitherto underappreciated plasticity and we discuss the therapeutic implications of this regarding the possible reversal of pathological changes via interventions. We also briefly review the merits and limitations of N-glycomics as an analytical method before reflecting on some of the outstanding questions in the field.
Collapse
Affiliation(s)
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
10
|
Sen MK, Mahns DA, Coorssen JR, Shortland PJ. The roles of microglia and astrocytes in phagocytosis and myelination: Insights from the cuprizone model of multiple sclerosis. Glia 2022; 70:1215-1250. [PMID: 35107839 PMCID: PMC9302634 DOI: 10.1002/glia.24148] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
In human demyelinating diseases such as multiple sclerosis (MS), an imbalance between demyelination and remyelination can trigger progressive degenerative processes. The clearance of myelin debris (phagocytosis) from the site of demyelination by microglia is critically important to achieve adequate remyelination and to slow the progression of the disease. However, how microglia phagocytose the myelin debris, and why clearance is impaired in MS, is not fully known; likewise, the role of the microglia in remyelination remains unclear. Recent studies using cuprizone (CPZ) as an animal model of central nervous system demyelination revealed that the up‐regulation of signaling proteins in microglia facilitates effective phagocytosis of myelin debris. Moreover, during demyelination, protective mediators are released from activated microglia, resulting in the acceleration of remyelination in the CPZ model. In contrast, inadequate microglial activation or recruitment to the site of demyelination, and the production of toxic mediators, impairs remyelination resulting in progressive demyelination. In addition to the microglia‐mediated phagocytosis, astrocytes play an important role in the phagocytic process by recruiting microglia to the site of demyelination and producing regenerative mediators. The current review is an update of these emerging findings from the CPZ animal model, discussing the roles of microglia and astrocytes in phagocytosis and myelination.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, Penrith, Australia
| | - Jens R Coorssen
- Faculty of Applied Health Sciences and Faculty of Mathematics & Science, Brock University, St. Cathari, Canada
| | | |
Collapse
|
11
|
Williams SE, Noel M, Lehoux S, Cetinbas M, Xavier RJ, Sadreyev RI, Scolnick EM, Smoller JW, Cummings RD, Mealer RG. Mammalian brain glycoproteins exhibit diminished glycan complexity compared to other tissues. Nat Commun 2022; 13:275. [PMID: 35022400 PMCID: PMC8755730 DOI: 10.1038/s41467-021-27781-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 12/08/2021] [Indexed: 01/14/2023] Open
Abstract
Glycosylation is essential to brain development and function, but prior studies have often been limited to a single analytical technique and excluded region- and sex-specific analyses. Here, using several methodologies, we analyze Asn-linked and Ser/Thr/Tyr-linked protein glycosylation between brain regions and sexes in mice. Brain N-glycans are less complex in sequence and variety compared to other tissues, consisting predominantly of high-mannose and fucosylated/bisected structures. Most brain O-glycans are unbranched, sialylated O-GalNAc and O-mannose structures. A consistent pattern is observed between regions, and sex differences are minimal compared to those in plasma. Brain glycans correlate with RNA expression of their synthetic enzymes, and analysis of glycosylation genes in humans show a global downregulation in the brain compared to other tissues. We hypothesize that this restricted repertoire of protein glycans arises from their tight regulation in the brain. These results provide a roadmap for future studies of glycosylation in neurodevelopment and disease.
Collapse
Affiliation(s)
- Sarah E Williams
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maxence Noel
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sylvain Lehoux
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Murat Cetinbas
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ramnik J Xavier
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward M Scolnick
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Robert G Mealer
- Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- The Stanley Center for Psychiatric Research at Broad Institute of Harvard/MIT, Cambridge, MA, USA.
- Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
12
|
Improving the Utility of a Dynorphin Peptide Analogue Using Mannosylated Glycoliposomes. Int J Mol Sci 2021; 22:ijms22157996. [PMID: 34360762 PMCID: PMC8348236 DOI: 10.3390/ijms22157996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/27/2022] Open
Abstract
Peptide therapeutics offer numerous advantages in the treatment of diseases and disorders of the central nervous system (CNS). However, they are not without limitations, especially in terms of their pharmacokinetics where their metabolic lability and low blood–brain barrier penetration hinder their application. Targeted nanoparticle delivery systems are being tapped for their ability to improve the delivery of therapeutics into the brain non-invasively. We have developed a family of mannosylated glycoliposome delivery systems for targeted drug delivery applications. Herein, we demonstrate via in vivo distribution studies the potential of these glycoliposomes to improve the utility of CNS active therapeutics using dynantin, a potent and selective dynorphin peptide analogue antagonist of the kappa opioid receptor (KOR). Glycoliposomal entrapment protected dynantin against known rapid metabolic degradation and ultimately improved brain levels of the peptide by approximately 3–3.5-fold. Moreover, we linked this improved brain delivery with improved KOR antagonist activity by way of an approximately 30–40% positive modulation of striatal dopamine levels 20 min after intranasal administration. Overall, the results clearly highlight the potential of our glycoliposomes as a targeted delivery system for therapeutic agents of the CNS.
Collapse
|
13
|
Tanaka S, Ohgidani M, Hata N, Inamine S, Sagata N, Shirouzu N, Mukae N, Suzuki SO, Hamasaki H, Hatae R, Sangatsuda Y, Fujioka Y, Takigawa K, Funakoshi Y, Iwaki T, Hosoi M, Iihara K, Mizoguchi M, Kato TA. CD206 Expression in Induced Microglia-Like Cells From Peripheral Blood as a Surrogate Biomarker for the Specific Immune Microenvironment of Neurosurgical Diseases Including Glioma. Front Immunol 2021; 12:670131. [PMID: 34267749 PMCID: PMC8276757 DOI: 10.3389/fimmu.2021.670131] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023] Open
Abstract
Targeting the unique glioma immune microenvironment is a promising approach in developing breakthrough immunotherapy treatments. However, recent advances in immunotherapy, including the development of immune checkpoint inhibitors, have not improved the outcomes of patients with glioma. A way of monitoring biological activity of immune cells in neural tissues affected by glioma should be developed to address this lack of sensitivity to immunotherapy. Thus, in this study, we sought to examine the feasibility of non-invasive monitoring of glioma-associated microglia/macrophages (GAM) by utilizing our previously developed induced microglia-like (iMG) cells. Primary microglia (pMG) were isolated from surgically obtained brain tissues of 22 patients with neurological diseases. iMG cells were produced from monocytes extracted from the patients’ peripheral blood. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed a significant correlation of the expression levels of representative markers for M1 and M2 microglia phenotypes between pMG and the corresponding iMG cells in each patient (Spearman’s correlation coefficient = 0.5225, P <0.0001). Synchronous upregulation of CD206 expression levels was observed in most patients with glioma (6/9, 66.7%) and almost all patients with glioblastoma (4/5, 80%). Therefore, iMG cells can be used as a minimally invasive tool for monitoring the disease-related immunological state of GAM in various brain diseases, including glioma. CD206 upregulation detected in iMG cells can be used as a surrogate biomarker of glioma.
Collapse
Affiliation(s)
- Shunya Tanaka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobuhiro Hata
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shogo Inamine
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriaki Sagata
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noritoshi Shirouzu
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nobutaka Mukae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoshi O Suzuki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideomi Hamasaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryusuke Hatae
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuhei Sangatsuda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Fujioka
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Takigawa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Funakoshi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toru Iwaki
- Department of Neuropathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masako Hosoi
- Department of Psychosomatic Medicine, Kyushu University Hospital, Fukuoka, Japan
| | - Koji Iihara
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masahiro Mizoguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Rebelo AL, Gubinelli F, Roost P, Jan C, Brouillet E, Van Camp N, Drake RR, Saldova R, Pandit A. Complete spatial characterisation of N-glycosylation upon striatal neuroinflammation in the rodent brain. J Neuroinflammation 2021; 18:116. [PMID: 33993882 PMCID: PMC8127229 DOI: 10.1186/s12974-021-02163-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neuroinflammation is an underlying pathology of all neurological conditions, the understanding of which is still being comprehended. A specific molecular pathway that has been overlooked in neuroinflammation is glycosylation (i.e., post-translational addition of glycans to the protein structure). N-glycosylation is a specific type of glycosylation with a cardinal role in the central nervous system (CNS), which is highlighted by congenital glycosylation diseases that result in neuropathological symptoms such as epilepsy and mental retardation. Changes in N-glycosylation can ultimately affect glycoproteins' functions, which will have an impact on cell machinery. Therefore, characterisation of N-glycosylation alterations in a neuroinflammatory scenario can provide a potential target for future therapies. METHODS With that aim, the unilateral intrastriatal injection of lipopolysaccharide (LPS) in the adult rat brain was used as a model of neuroinflammation. In vivo and post-mortem, quantitative and spatial characterisation of both neuroinflammation and N-glycome was performed at 1-week post-injection of LPS. These aspects were investigated through a multifaceted approach based on positron emission tomography (PET), quantitative histology, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), liquid chromatography and matrix-assisted laser desorption ionisation mass spectrometry imaging (MALDI-MSI). RESULTS In the brain region showing LPS-induced neuroinflammation, a significant decrease in the abundance of sialylated and core fucosylated structures was seen (approximately 7.5% and 8.5%, respectively), whereas oligomannose N-glycans were significantly increased (13.5%). This was confirmed by MALDI-MSI, which provided a high-resolution spatial distribution of N-glycans, allowing precise comparison between normal and diseased brain hemispheres. CONCLUSIONS Together, our data show for the first time the complete profiling of N-glycomic changes in a well-characterised animal model of neuroinflammation. These data represent a pioneering step to identify critical targets that may modulate neuroinflammation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ana Lúcia Rebelo
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
| | - Francesco Gubinelli
- CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Pauline Roost
- CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Caroline Jan
- CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Emmanuel Brouillet
- CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Nadja Van Camp
- CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, USA
| | - Radka Saldova
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland
- National Institute for Bioprocessing Research and Training (NIBRT), University College Dublin, Dublin, Ireland
- UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical, Dublin, Ireland
| | - Abhay Pandit
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland, Galway, Ireland.
| |
Collapse
|
15
|
Su M, Hu H, Zhao X, Huang C, Yang B, Yin Z. Construction of mannose-modified polyethyleneimine-block-polycaprolactone cationic polymer micelles and its application in acute lung injury. Drug Deliv Transl Res 2021; 12:1080-1095. [PMID: 33893615 DOI: 10.1007/s13346-021-00976-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2021] [Indexed: 11/30/2022]
Abstract
This study evaluated the D-mannose modified polyethyleneimine-block-polycaprolactone biomacromolecule copolymer micelles (PCL-PEI-mannose) as a targeted delivery of the glucocorticoid dexamethasone (DXM) to lung inflammation tissues and enhances the vehicle for its anti-inflammatory effects. Dexamethasone was encapsulated in the hydrophobic core of cationic polymer micelles by solvent evaporation. The polymeric micelles exhibited sustained-release within 48 h, good blood compatibility, and colloidal stability in vitro. The cellular uptake of mannose-modified micelles was higher compared with the non-modified micelles. And drug-loaded targeted micelles could inhibit the production of inflammatory factors in activated RAW264.7 cells. The distribution results indicated that drug-loaded targeted micelles highly improved the lung targeting ability, reduced the wet/dry ratio of injured lung tissue, and relieved the lung inflammation, accompanied by the decrease of inflammatory cell infiltration, myeloperoxidase activity, and inflammatory mediator levels in bronchoalveolar lavage fluid. These findings suggested that PCL-PEI-mannose delivery system could facilitate the lung-specific delivery and inhibit the inflammatory response. Collectively, PCL-PEI-mannose polymer micelles could be used as a potential delivery system for the treatment of acute lung injury (ALI).
Collapse
Affiliation(s)
- Meiling Su
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Heping Hu
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xuan Zhao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chengyuan Huang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Bowen Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zongning Yin
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Nazareth L, St John J, Murtaza M, Ekberg J. Phagocytosis by Peripheral Glia: Importance for Nervous System Functions and Implications in Injury and Disease. Front Cell Dev Biol 2021; 9:660259. [PMID: 33898462 PMCID: PMC8060502 DOI: 10.3389/fcell.2021.660259] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022] Open
Abstract
The central nervous system (CNS) has very limited capacity to regenerate after traumatic injury or disease. In contrast, the peripheral nervous system (PNS) has far greater capacity for regeneration. This difference can be partly attributed to variances in glial-mediated functions, such as axon guidance, structural support, secretion of growth factors and phagocytic activity. Due to their growth-promoting characteristic, transplantation of PNS glia has been trialed for neural repair. After peripheral nerve injuries, Schwann cells (SCs, the main PNS glia) phagocytose myelin debris and attract macrophages to the injury site to aid in debris clearance. One peripheral nerve, the olfactory nerve, is unique in that it continuously regenerates throughout life. The olfactory nerve glia, olfactory ensheathing cells (OECs), are the primary phagocytes within this nerve, continuously clearing axonal debris arising from the normal regeneration of the nerve and after injury. In contrast to SCs, OECs do not appear to attract macrophages. SCs and OECs also respond to and phagocytose bacteria, a function likely critical for tackling microbial invasion of the CNS via peripheral nerves. However, phagocytosis is not always effective; inflammation, aging and/or genetic factors may contribute to compromised phagocytic activity. Here, we highlight the diverse roles of SCs and OECs with the focus on their phagocytic activity under physiological and pathological conditions. We also explore why understanding the contribution of peripheral glia phagocytosis may provide us with translational strategies for achieving axonal regeneration of the injured nervous system and potentially for the treatment of certain neurological diseases.
Collapse
Affiliation(s)
- Lynn Nazareth
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia
| | - James St John
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Mariyam Murtaza
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Jenny Ekberg
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
17
|
Rodriguez M, Soler Y, Muthu Karuppan MK, Zhao Y, Batrakova EV, El-Hage N. Targeting Beclin1 as an Adjunctive Therapy against HIV Using Mannosylated Polyethylenimine Nanoparticles. Pharmaceutics 2021; 13:223. [PMID: 33561939 PMCID: PMC7915950 DOI: 10.3390/pharmaceutics13020223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/29/2021] [Accepted: 01/31/2021] [Indexed: 12/13/2022] Open
Abstract
Using nanoparticle-based RNA interference (RNAi), we have previously shown that silencing the host autophagic protein, Beclin1, in HIV-infected human microglia and astrocytes restricts HIV replication and its viral-associated inflammatory responses. Here, we confirmed the efficacy of Beclin1 small interfering RNA (siBeclin1) as an adjunctive antiviral and anti-inflammatory therapy in myeloid human microglia and primary human astrocytes infected with HIV, both with and without exposure to combined antiretroviral (cART) drugs. To specifically target human microglia and human astrocytes, we used a nanoparticle (NP) comprised of linear cationic polyethylenimine (PEI) conjugated with mannose (Man) and encapsulated with siBeclin1. The target specificity of the PEI-Man NP was confirmed in vitro using human neuronal and glial cells transfected with the NP encapsulated with fluorescein isothiocyanate (FITC). PEI-Man-siBeclin1 NPs were intranasally delivered to healthy C57BL/6 mice in order to report the biodistribution of siBeclin1 in different areas of the brain, measured using stem-loop RT-PCR. Postmortem brains recovered at 1-48 h post-treatment with the PEI-Man-siRNA NP showed no significant changes in the secretion of the chemokines regulated on activation, normal T cell expressed and secreted (RANTES) and monocyte chemotactic protein-1 (MCP-1) and showed significant decreases in the secretion of the cytokines interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) when compared to phosphate-buffered saline (PBS)-treated brains. Nissl staining showed minimal differences between the neuronal structures when compared to PBS-treated brains, which correlated with no adverse behavioral affects. To confirm the brain and peripheral organ distribution of PEI-siBeclin1 in living mice, we used the In vivo Imaging System (IVIS) and demonstrated a significant brain accumulation of siBeclin1 through intranasal administration.
Collapse
Affiliation(s)
- Myosotys Rodriguez
- Department of Immunology and Nanomedicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA; (M.R.); (Y.S.); (M.K.M.K.)
| | - Yemmy Soler
- Department of Immunology and Nanomedicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA; (M.R.); (Y.S.); (M.K.M.K.)
| | - Mohan Kumar Muthu Karuppan
- Department of Immunology and Nanomedicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA; (M.R.); (Y.S.); (M.K.M.K.)
| | - Yuling Zhao
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.Z.); (E.V.B.)
| | - Elena V. Batrakova
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (Y.Z.); (E.V.B.)
| | - Nazira El-Hage
- Department of Immunology and Nanomedicine, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA; (M.R.); (Y.S.); (M.K.M.K.)
| |
Collapse
|
18
|
Shang Z, Chan SY, Song Q, Li P, Huang W. The Strategies of Pathogen-Oriented Therapy on Circumventing Antimicrobial Resistance. RESEARCH (WASHINGTON, D.C.) 2020; 2020:2016201. [PMID: 33083786 PMCID: PMC7539235 DOI: 10.34133/2020/2016201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/02/2020] [Indexed: 12/23/2022]
Abstract
The emerging antimicrobial resistance (AMR) poses serious threats to the global public health. Conventional antibiotics have been eclipsed in combating with drug-resistant bacteria. Moreover, the developing and deploying of novel antimicrobial drugs have trudged, as few new antibiotics are being developed over time and even fewer of them can hit the market. Alternative therapeutic strategies to resolve the AMR crisis are urgently required. Pathogen-oriented therapy (POT) springs up as a promising approach in circumventing antibiotic resistance. The tactic underling POT is applying antibacterial compounds or materials directly to infected regions to treat specific bacteria species or strains with goals of improving the drug efficacy and reducing nontargeting and the development of drug resistance. This review exemplifies recent trends in the development of POTs for circumventing AMR, including the adoption of antibiotic-antibiotic conjugates, antimicrobial peptides, therapeutic monoclonal antibodies, nanotechnologies, CRISPR-Cas systems, and microbiota modulations. Employing these alternative approaches alone or in combination shows promising advantages for addressing the growing clinical embarrassment of antibiotics in fighting drug-resistant bacteria.
Collapse
Affiliation(s)
- Zifang Shang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Siew Yin Chan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Qing Song
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), Xi'an 710072, China
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
19
|
Lewicky JD, Fraleigh NL, Boraman A, Martel AL, Nguyen TMD, Schiller PW, Shiao TC, Roy R, Montaut S, Le HT. Mannosylated glycoliposomes for the delivery of a peptide kappa opioid receptor antagonist to the brain. Eur J Pharm Biopharm 2020; 154:290-296. [PMID: 32717389 DOI: 10.1016/j.ejpb.2020.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 06/03/2020] [Accepted: 07/21/2020] [Indexed: 10/23/2022]
Abstract
Dynantin is a potent and selective synthetic polypeptide kappa opioid receptor antagonist which has potential antidepressant and anxiolytic-like therapeutic applications, however its clinical development has been hampered by plasma stability issues and poor penetration of the blood brain barrier. Targeted liposome delivery systems represent a promising and non-invasive approach to improving the delivery of therapeutic agents across the blood brain barrier. As part of our work focused on targeted drug delivery, we have developed a novel mannosylated liposome system. Herein, we investigate these glycoliposomes for the targeted delivery of dynantin to the central nervous system. Cholesterol was tested and optimized as a formulation excipient, where it improved particle stability as measured via particle size, entrapment and ex vivo plasma stability of dynantin. The in vitro PRESTO-TANGO assay system was used to confirm that glycoliposomal entrapment did not impact the affinity or activity of the peptide at its receptor. Finally, in vivo distribution studies in mice showed that the mannosylated glycoliposomes significantly improved delivery of dynantin to the brain. Overall, the results clearly demonstrate the potential of our glycoliposomes as a targeted delivery system for therapeutic agents of the central nervous system.
Collapse
Affiliation(s)
- Jordan D Lewicky
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, Ontario P3E 2H2, Canada
| | - Nya L Fraleigh
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, Ontario P3E 2H2, Canada
| | - Amanda Boraman
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, Ontario P3E 2H2, Canada; Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada
| | - Alexandrine L Martel
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, Ontario P3E 2H2, Canada
| | - Thi M-D Nguyen
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, 110 Pine Avenue W, Montreal, Quebec H2W 1R7, Canada
| | - Peter W Schiller
- Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montreal, 110 Pine Avenue W, Montreal, Quebec H2W 1R7, Canada; Department of Pharmacology and Physiology, University of Montreal, 2900 Boulevard Édouard-Montpetit, Montreal, Quebec H3T 1J4, Canada
| | - Tze Chieh Shiao
- Department of Chemistry, Université du Québec à Montréal, Montreal, Quebec H3C 3P8, Canada
| | - René Roy
- Department of Chemistry, Université du Québec à Montréal, Montreal, Quebec H3C 3P8, Canada
| | - Sabine Montaut
- Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada; Biomolecular Sciences Programme, Laurentian University, Subdury, Ontario, Canada
| | - Hoang-Thanh Le
- Health Sciences North Research Institute, 56 Walford Road, Sudbury, Ontario P3E 2H2, Canada; Department of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada; Northern Ontario School of Medicine, Medicinal Sciences Division, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada; Department of Biology, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada.
| |
Collapse
|
20
|
Pannell M, Economopoulos V, Wilson TC, Kersemans V, Isenegger PG, Larkin JR, Smart S, Gilchrist S, Gouverneur V, Sibson NR. Imaging of translocator protein upregulation is selective for pro-inflammatory polarized astrocytes and microglia. Glia 2020; 68:280-297. [PMID: 31479168 PMCID: PMC6916298 DOI: 10.1002/glia.23716] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/08/2019] [Accepted: 08/20/2019] [Indexed: 01/06/2023]
Abstract
Translocator protein (TSPO) expression is increased in activated glia, and has been used as a marker of neuroinflammation in PET imaging. However, the extent to which TSPO upregulation reflects a pro- or anti-inflammatory phenotype remains unclear. Our aim was to determine whether TSPO upregulation in astrocytes and microglia/macrophages is limited to a specific inflammatory phenotype. TSPO upregulation was assessed by flow cytometry in cultured astrocytes, microglia, and macrophages stimulated with lipopolysaccharide (LPS), tumor necrosis factor (TNF), or interleukin-4 (Il-4). Subsequently, mice were injected intracerebrally with either a TNF-inducing adenovirus (AdTNF) or IL-4. Glial expression of TSPO and pro-/anti-inflammatory markers was assessed by immunohistochemistry/fluorescence and flow cytometry. Finally, AdTNF or IL-4 injected mice underwent PET imaging with injection of the TSPO radioligand 18 F-DPA-713, followed by ex vivo autoradiography. TSPO expression was significantly increased in pro-inflammatory microglia/macrophages and astrocytes both in vitro, and in vivo after AdTNF injection (p < .001 vs. control hemisphere), determined both histologically and by FACS. Both PET imaging and autoradiography revealed a significant (p < .001) increase in 18 F-DPA-713 binding in the ipsilateral hemisphere of AdTNF-injected mice. In contrast, no increase in either TSPO expression assessed histologically and by FACS, or ligand binding by PET/autoradiography was observed after IL-4 injection. Taken together, these results suggest that TSPO imaging specifically reveals the pro-inflammatory population of activated glial cells in the brain in response to inflammatory stimuli. Since the inflammatory phenotype of glial cells is critical to their role in neurological disease, these findings may enhance the utility and application of TSPO imaging.
Collapse
Affiliation(s)
- Maria Pannell
- Department of OncologyCancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of OxfordOxfordUK
| | - Vasiliki Economopoulos
- Department of OncologyCancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of OxfordOxfordUK
| | | | - Veerle Kersemans
- Department of OncologyCancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of OxfordOxfordUK
| | | | - James R. Larkin
- Department of OncologyCancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of OxfordOxfordUK
| | - Sean Smart
- Department of OncologyCancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of OxfordOxfordUK
| | - Stuart Gilchrist
- Department of OncologyCancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of OxfordOxfordUK
| | | | - Nicola R. Sibson
- Department of OncologyCancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, University of OxfordOxfordUK
| |
Collapse
|
21
|
Patil TS, Deshpande AS. Mannosylated nanocarriers mediated site-specific drug delivery for the treatment of cancer and other infectious diseases: A state of the art review. J Control Release 2020; 320:239-252. [PMID: 31991156 DOI: 10.1016/j.jconrel.2020.01.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 01/06/2023]
Abstract
The non-modified nanocarriers-based therapies for the treatment of cancer and other infectious diseases enhanced the chemical stability of therapeutically active agents, protected them from enzymatic degradation and extended their blood circulation time. However, the lack of specificity and off-target effects limit their applications. Mannose receptors overexpressed on antigen presenting cells such as dendritic cells and macrophages are one of the most desirable targets for treating cancer and other infectious diseases. Therefore, the development of mannosylated nanocarrier formulation is one of the most extensively explored approaches for targeting these mannose receptors. The present manuscript gives readers the background information on C-type lectin receptors followed by the roles, expression, and distribution of the mannose receptors. It further provides a detailed account of different mannosylated nanocarrier formulations. It also gives the tabular information on most relevant and recently granted patents on mannosylated systems. The overview of mannosylated nanocarrier formulations depicted site-specific targeting, enhanced pharmacokinetic/pharmacodynamic profiles, and improved transfection efficiency of the therapeutically active agents. This suggests the bright future ahead for mannosylated nanocarriers in the treatment of cancer and other infectious diseases. Nevertheless, the mechanism behind the enhanced immune response by mannosylated nanocarriers and their thorough clinical and preclinical evaluation need to explore further.
Collapse
Affiliation(s)
- Tulshidas S Patil
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India.
| | - Ashwini S Deshpande
- School of Pharmacy & Technology Management, SVKM's NMIMS, Shirpur, Maharashtra, India.
| |
Collapse
|
22
|
Kierdorf K, Masuda T, Jordão MJC, Prinz M. Macrophages at CNS interfaces: ontogeny and function in health and disease. Nat Rev Neurosci 2019; 20:547-562. [PMID: 31358892 DOI: 10.1038/s41583-019-0201-x] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2019] [Indexed: 12/16/2022]
Abstract
The segregation and limited regenerative capacity of the CNS necessitate a specialized and tightly regulated resident immune system that continuously guards the CNS against invading pathogens and injury. Immunity in the CNS has generally been attributed to neuron-associated microglia in the parenchyma, whose origin and functions have recently been elucidated. However, there are several other specialized macrophage populations at the CNS borders, including dural, leptomeningeal, perivascular and choroid plexus macrophages (collectively known as CNS-associated macrophages (CAMs)), whose origins and roles in health and disease have remained largely uncharted. CAMs are thought to be involved in regulating the fine balance between the proper segregation of the CNS, on the one hand, and the essential exchange between the CNS parenchyma and the periphery, on the other. Recent studies that have been empowered by major technological advances have shed new light on these cells and suggest central roles for CAMs in CNS physiology and in the pathogenesis of diseases.
Collapse
Affiliation(s)
- Katrin Kierdorf
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Takahiro Masuda
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany. .,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany. .,Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
23
|
HIV Infection Induces Extracellular Cathepsin B Uptake and Damage to Neurons. Sci Rep 2019; 9:8006. [PMID: 31142756 PMCID: PMC6541605 DOI: 10.1038/s41598-019-44463-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 04/23/2019] [Indexed: 01/22/2023] Open
Abstract
HIV-associated neurocognitive disorders prevail in 20-50 percent of infected individuals. Macrophages transmigrate through the blood brain barrier during HIV-1 infection, triggering neuronal dysfunction. HIV-infected macrophages secrete cathepsin B (CATB), and serum amyloid p component (SAPC), inducing neuronal apoptosis by an unknown mechanism. We hypothesized that HIV infection facilitates CATB/SAPC secretion from macrophages followed by neuronal internalization, promoting dysfunction. SK-N-SH neuronal cells were exposed to active recombinant histidine-tagged cathepsin B (His-CATB). His-CATB entry was tracked by intracellular flow cytometry, and neuronal dysfunction was verified by western blot. Macrophage-derived extracellular vesicles (EVs) were tested for the presence of CATB and SAPC. Neurons internalized His-CATB, an effect that was partially decreased by pre-treatment with anti-CATB antibody. Pre-treatment with CATB and SAPC antibodies decreased cleavage of caspase-3 and restored synaptophysin in neurons. Neurons exposed to macrophage-conditioned media differentially internalized His-CATB, dependent on the HIV replication levels. Finally, CATB and SAPC were secreted in EVs. We report for the first time that CATB is secreted from macrophages both free and in EVs, and is internalized by neurons. Moreover, HIV-replication levels modulate the amount of CATB neuronal uptake, and neuronal dysfunction can be decreased with CATB antibodies. In conclusion, the CATB/SAPC complex represents a novel target against HIV-associated neurocognitive disorders.
Collapse
|
24
|
Pongrac IM, Radmilović MD, Ahmed LB, Mlinarić H, Regul J, Škokić S, Babič M, Horák D, Hoehn M, Gajović S. D-mannose-Coating of Maghemite Nanoparticles Improved Labeling of Neural Stem Cells and Allowed Their Visualization by ex vivo MRI after Transplantation in the Mouse Brain. Cell Transplant 2019; 28:553-567. [PMID: 31293167 PMCID: PMC7103599 DOI: 10.1177/0963689719834304] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 12/26/2018] [Accepted: 02/05/2019] [Indexed: 12/14/2022] Open
Abstract
Magnetic resonance imaging (MRI) of superparamagnetic iron oxide-labeled cells can be used as a non-invasive technique to track stem cells after transplantation. The aim of this study was to (1) evaluate labeling efficiency of D-mannose-coated maghemite nanoparticles (D-mannose(γ-Fe2O3)) in neural stem cells (NSCs) in comparison to the uncoated nanoparticles, (2) assess nanoparticle utilization as MRI contrast agent to visualize NSCs transplanted into the mouse brain, and (3) test nanoparticle biocompatibility. D-mannose(γ-Fe2O3) labeled the NSCs better than the uncoated nanoparticles. The labeled cells were visualized by ex vivo MRI and their localization subsequently confirmed on histological sections. Although the progenitor properties and differentiation of the NSCs were not affected by labeling, subtle effects on stem cells could be detected depending on dose increase, including changes in cell proliferation, viability, and neurosphere diameter. D-mannose coating of maghemite nanoparticles improved NSC labeling and allowed for NSC tracking by ex vivo MRI in the mouse brain, but further analysis of the eventual side effects might be necessary before translation to the clinic.
Collapse
Affiliation(s)
- Igor M. Pongrac
- University of Zagreb School of Medicine, Croatian Institute for Brain
Research, Zagreb, Croatia
| | | | - Lada Brkić Ahmed
- University of Zagreb School of Medicine, Croatian Institute for Brain
Research, Zagreb, Croatia
| | - Hrvoje Mlinarić
- University of Zagreb School of Medicine, Croatian Institute for Brain
Research, Zagreb, Croatia
| | - Jan Regul
- University of Zagreb School of Medicine, Croatian Institute for Brain
Research, Zagreb, Croatia
| | - Siniša Škokić
- University of Zagreb School of Medicine, Croatian Institute for Brain
Research, Zagreb, Croatia
| | - Michal Babič
- Institute of Macromolecular Chemistry, Academy of Sciences, Prague, Czech
Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Academy of Sciences, Prague, Czech
Republic
| | - Mathias Hoehn
- Max Planck Institute for Metabolism Research, In-vivo-NMR Laboratory,
Cologne, Germany
| | - Srećko Gajović
- University of Zagreb School of Medicine, Croatian Institute for Brain
Research, Zagreb, Croatia
| |
Collapse
|
25
|
Klein B, Mrowetz H, Barker CM, Lange S, Rivera FJ, Aigner L. Age Influences Microglial Activation After Cuprizone-Induced Demyelination. Front Aging Neurosci 2018; 10:278. [PMID: 30297998 PMCID: PMC6160739 DOI: 10.3389/fnagi.2018.00278] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 08/28/2018] [Indexed: 01/17/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory CNS disease, which causes demyelinated lesions and damages white and gray matter regions. Aging is a significant factor in the progression of MS, and microglia, the immune cells of the CNS tissue, play an important role in all disease stages. During aging, microglia are functionally altered. These age-related changes probably already begin early and might influence the progression of CNS pathologies. The aim of the present study was to investigate whether microglia in the middle-aged CNS already react differently to demyelination. For this purpose, several microglia markers (ionized calcium binding adaptor molecule 1 (Iba-1), P2RY12, F4/80, CD68, major histocompatibility complex II (MHCII), macrophage receptor with collagenous structure (Marco), Translocator protein 18 kD (TSPO), CD206, and CD163) were analyzed in the acute cuprizone demyelination model in young (2-month-old) and middle-aged (10-month-old) mice. In addition, microglial proliferation was quantified using double-labeling with proliferating cell nuclear antigen (PCNA) and bromodeoxyuridine (BrdU), which was injected with the onset of remyelination. To compare age-related microglial changes during de- and remyelination in both gray and white matter, the hilus of the dorsal hippocampal dentate gyrus (DG) and the splenium of the corpus callosum (CC) were analyzed in parallel. Age-related changes in microglia of healthy controls were more pronounced in the analyzed gray matter region (higher levels of F4/80 and Marco as well as lower expression of CD68 in middle-aged mice). During de- and remyelination, a stronger increase of the microglial markers Iba-1, CD68 and TSPO was observed in the splenium of the younger groups. There was a significant reduction of P2RY12 during demyelination, however, this was age- and region-dependent. The induction of the anti-inflammatory markers CD206 and CD163 was stronger in the middle-aged group, but also differed between the two analyzed regions. De- and remyelination led to a significant increase in PCNA+ microglia only in young groups within the white matter region. The number of BrdU+ microglia was not changed during de- or remyelination. These results clearly show that microglia are already altered during middle-age and also react differently to CNS demyelination, however, this is highly region-dependent.
Collapse
Affiliation(s)
- Barbara Klein
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Heike Mrowetz
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Conor Michael Barker
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Simona Lange
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| | - Francisco J Rivera
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria.,Laboratory of Stem Cells and Neuroregeneration, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on the Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.,Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
26
|
Sharma A, Porterfield JE, Smith E, Sharma R, Kannan S, Kannan RM. Effect of mannose targeting of hydroxyl PAMAM dendrimers on cellular and organ biodistribution in a neonatal brain injury model. J Control Release 2018; 283:175-189. [PMID: 29883694 PMCID: PMC6091673 DOI: 10.1016/j.jconrel.2018.06.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/21/2018] [Accepted: 06/02/2018] [Indexed: 01/02/2023]
Abstract
Neurotherapeutics for the treatment of central nervous system (CNS) disorders must overcome challenges relating to the blood-brain barrier (BBB), brain tissue penetration, and the targeting of specific cells. Neuroinflammation mediated by activated microglia is a major hallmark of several neurological disorders, making these cells a desirable therapeutic target. Building on the promise of hydroxyl-terminated generation four polyamidoamine (PAMAM) dendrimers (D4-OH) for penetrating the injured BBB and targeting activated glia, we explored if conjugation of targeting ligands would enhance and modify brain and organ uptake. Since mannose receptors [cluster of differentiation (CD) 206] are typically over-expressed on injured microglia, we conjugated mannose to the surface of multifunctional D4-OH using highly efficient, atom-economical, and orthogonal Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC) click chemistry and evaluated the effect of mannose conjugation on the specific cell uptake of targeted and non-targeted dendrimers both in vitro and in vivo. In vitro results indicate that the conjugation of mannose as a targeting ligand significantly changes the mechanism of dendrimer internalization, giving mannosylated dendrimer a preference for mannose receptor-mediated endocytosis as opposed to non-specific fluid phase endocytosis. We further investigated the brain uptake and biodistribution of targeted and non-targeted fluorescently labeled dendrimers in a maternal intrauterine inflammation-induced cerebral palsy (CP) rabbit model using quantification methods based on fluorescence spectroscopy and confocal microscopy. We found that the conjugation of mannose modified the distribution of D4-OH throughout the body in this neonatal rabbit CP model without lowering the amount of dendrimer delivered to injured glia in the brain, even though significantly higher glial uptake was not observed in this model. Mannose conjugation to the dendrimer modifies the dendrimer's interaction with cells, but does not minimize its inherent inflammation-targeting abilities.
Collapse
Affiliation(s)
- Anjali Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Joshua E Porterfield
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Elizabeth Smith
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Rishi Sharma
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Sujatha Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA; Kennedy Krieger Institute - Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD 21218, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine, Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Hugo W. Moser Research Institute at Kennedy Krieger, Inc., Baltimore, MD 21205, USA; Kennedy Krieger Institute - Johns Hopkins University for Cerebral Palsy Research Excellence, Baltimore, MD 21218, USA.
| |
Collapse
|
27
|
Dalle Vedove E, Costabile G, Merkel OM. Mannose and Mannose-6-Phosphate Receptor-Targeted Drug Delivery Systems and Their Application in Cancer Therapy. Adv Healthc Mater 2018; 7:e1701398. [PMID: 29719138 PMCID: PMC6108418 DOI: 10.1002/adhm.201701398] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/16/2018] [Indexed: 12/21/2022]
Abstract
In order to overcome the main disadvantages of conventional cancer therapies, which prove to be inadequate because of their lack of selectivity, the development of targeted delivery systems is one of the main focuses in anticancer research. It is repeatedly shown that decorating the surface of nanocarriers with high-affinity targeting ligands, such as peptides or small molecules, is an effective way to selectively deliver therapeutics by enhancing their specific cellular uptake via the binding between a specific receptor and the nanosystems. Nowadays, the need of finding new potential biological targets with a high endocytic efficiency as well as a low tendency to mutate is urgent and, in this context, mannose and mannose-6-phosphate receptors appear promising to target anticancer drugs to cells where their expression is upregulated. Moreover, they open the path to encouraging applications in immune-based and gene therapies as well as in theragnostic purposes. In this work, the potential of mannose- and mannose-6-phosphate-targeted delivery systems in cancer therapy is discussed, emphasizing their broad application both in direct treatments against cancer cells with conventional chemotherapeutics or by gene therapy and also their encouraging capabilities in immunotherapy and diagnostics purposes.
Collapse
Affiliation(s)
- Elena Dalle Vedove
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, 81337 Munich, Germany
| | - Gabriella Costabile
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, 81337 Munich, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, 81337 Munich, Germany
| |
Collapse
|
28
|
Wu C, Zhao X, Babu V S, Yuan G, Wang W, Su J, Liu X, Lin L. Distribution of mannose receptor in blunt snout bream (Megalobrama amblycephala) during the embryonic development and its immune response to the challenge of Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2018; 78:52-59. [PMID: 29627477 DOI: 10.1016/j.fsi.2018.03.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/14/2018] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
The mannose receptor (MR) is a type I transmembrane protein. Its ectodomain has eight C-type lectin-like domains, which are able to recognize and mediate the phagocytosis of a wide range of pathogens. Comprehensive studies have revealed that mammalian MR is widely distributed in the mononuclear phagocyte system (MPS, previously known as the reticuloendothelial system) and play a key role both in the physiological clearance and cell activation. Hitherto, neither the MR distribution, nor the function of clearance and cell activation has been investigated in fish. In the previous study, we have reported the full-length cDNA of blunt snout bream MR, analyzed its structure and relative mRNA expression during embryogenesis and in the liver, head kidney, spleen and intestine of fish after stimulation with killed Aeromonas hydrophila. In the present study, we developed a rabbit polyclonal antibody against MR and undertook a systematic survey of the expression of MR at the protein level by immunohistochemistry. To get more information about MR function, the mRNA expression of MR, pro-inflammatory factor TNF-α and anti-inflammatory factor ARG2 genes was measured by qRT-PCR in the liver, head kidney, and spleen after A. hydrophila challenge. We first observed MR expression in the yolk sac at the fertilized egg stage and possibly MR was expressed by early macrophages. We also showed the MR distribution in head kidney, body kidney, spleen, liver, intestine, muscle, brain, heart, and gills. Following A. hydrophila challenge the MR immunoreactive cells became more widespread in head kidney and spleen, which are the major reticuloendothelial systems of fish. The quantitative studies at mRNA levels showed that there exists a high correlation between MR expression and immune cytokine expressions after bacteria challenge.
Collapse
Affiliation(s)
- Changsong Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China; Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Xiaoheng Zhao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China; Huaihai Institute of Technology, Lianyungang, 222000, China
| | - Sarath Babu V
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Weimin Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China
| | - Xiaoling Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, 430070, China.
| | - Li Lin
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| |
Collapse
|
29
|
Takagi S, Furube E, Nakano Y, Morita M, Miyata S. Microglia are continuously activated in the circumventricular organs of mouse brain. J Neuroimmunol 2017; 331:74-86. [PMID: 29107327 DOI: 10.1016/j.jneuroim.2017.10.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022]
Abstract
Microglia are the primary resident immune cells of the brain parenchyma and transform into the amoeboid form in the "activated state" under pathological conditions from the ramified form in the "resting state" under physiologically healthy conditions. In the present study, we found that microglia in the circumventricular organs (CVOs) of adult mice displayed the amoeboid form with fewer branched cellular processes even under normal conditions; however, those in other brain regions showed the ramified form, which is characterized by well-branched and dendritic cellular processes. Moreover, microglia in the CVOs showed the strong protein expression of the M1 markers CD16/32 and CD86 and M2 markers CD206 and Ym1 without any pathological stimulation. Thus, the present results indicate that microglia in the CVOs of adult mice are morphologically and functionally activated under normal conditions, possibly due to the specialized features of the CVOs, namely, the entry of blood-derived molecules into parenchyma through fenestrated capillaries and the presence of neural stem cells.
Collapse
Affiliation(s)
- Shohei Takagi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Eriko Furube
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yousuke Nakano
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; Department of Anatomy and Brain Science, Kansai Medical University, Hirakata, Japan
| | - Mitsuhiro Morita
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
30
|
Alternative activation-skewed microglia/macrophages promote hematoma resolution in experimental intracerebral hemorrhage. Neurobiol Dis 2017; 103:54-69. [PMID: 28365213 DOI: 10.1016/j.nbd.2017.03.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 02/24/2017] [Accepted: 03/28/2017] [Indexed: 12/27/2022] Open
Abstract
Microglia/macrophages (MMΦ) are highly plastic phagocytes that can promote both injury and repair in diseased brain through the distinct function of classically activated and alternatively activated subsets. The role of MMΦ polarization in intracerebral hemorrhage (ICH) is unknown. Herein, we comprehensively characterized MMΦ dynamics after ICH in mice and evaluated the relevance of MMΦ polarity to hematoma resolution. MMΦ accumulated within the hematoma territory until at least 14days after ICH induction. Microglia rapidly reacted to the hemorrhagic insult as early as 1-1.5h after ICH and specifically presented a "protective" alternatively activated phenotype. Substantial numbers of activated microglia and newly recruited monocytes also assumed an early alternatively activated phenotype, but the phenotype gradually shifted to a mixed spectrum over time. Ultimately, markers of MMΦ classic activation dominated at the chronic stage of ICH. We enhanced MMΦ alternative activation by administering intraperitoneal injections of rosiglitazone, and subsequently observed elevations in CD206 expression on brain-isolated CD11b+ cells and increases in IL-10 levels in serum and perihematomal tissue. Enhancement of MMΦ alternative activation correlated with hematoma volume reduction and improvement in neurologic deficits. Intraventricular injection of alternative activation signature cytokine IL-10 accelerated hematoma resolution, whereas microglial phagocytic ability was abolished by IL-10 receptor neutralization. Our results suggest that MMΦ respond dynamically to brain hemorrhage by exhibiting diverse phenotypic changes at different stages of ICH. Alternative activation-skewed MMΦ aid in hematoma resolution, and IL-10 signaling might contribute to regulation of MMΦ phagocytosis and hematoma clearance in ICH.
Collapse
|
31
|
Ohgidani M, Kato TA, Haraguchi Y, Matsushima T, Mizoguchi Y, Murakawa-Hirachi T, Sagata N, Monji A, Kanba S. Microglial CD206 Gene Has Potential as a State Marker of Bipolar Disorder. Front Immunol 2017; 7:676. [PMID: 28119691 PMCID: PMC5220016 DOI: 10.3389/fimmu.2016.00676] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/21/2016] [Indexed: 01/06/2023] Open
Abstract
The pathophysiology of bipolar disorder, especially the underlying mechanisms of the bipolarity between manic and depressive states, has yet to be clarified. Microglia, immune cells in the brain, play important roles in the process of brain inflammation, and recent positron emission tomography studies have indicated microglial overactivation in the brain of patients with bipolar disorder. We have recently developed a technique to induced microglia-like (iMG) cells from peripheral blood (monocytes). We introduce a novel translational approach focusing on bipolar disorder using this iMG technique. We hypothesize that immunological conditional changes in microglia may contribute to the shift between manic and depressive states, and thus we herein analyzed gene profiling patterns of iMG cells from three patients with rapid cycling bipolar disorder during both manic and depressive states, respectively. We revealed that the gene profiling patterns are different between manic and depressive states. The profiling pattern of case 1 showed that M1 microglia is dominant in the manic state compared to the depressive state. However, the patterns of cases 2 and 3 were not consistent with the pattern of case 1. CD206, a mannose receptor known as a typical M2 marker, was significantly downregulated in the manic state among all three patients. This is the first report to indicate the importance of shifting microglial M1/M2 characteristics, especially the CD206 gene expression pattern between depressive and manic states. Further translational studies are needed to dig up the microglial roles in the underlying biological mechanisms of bipolar disorder.
Collapse
Affiliation(s)
- Masahiro Ohgidani
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Innovation Center for Medical Redox Navigation, Kyushu University, Fukuoka, Japan
| | - Yoshinori Haraguchi
- Department of Psychiatry, Graduate School of Medical Sciences, Saga University , Saga , Japan
| | - Toshio Matsushima
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Yoshito Mizoguchi
- Department of Psychiatry, Graduate School of Medical Sciences, Saga University , Saga , Japan
| | - Toru Murakawa-Hirachi
- Department of Psychiatry, Graduate School of Medical Sciences, Saga University , Saga , Japan
| | - Noriaki Sagata
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| | - Akira Monji
- Department of Psychiatry, Graduate School of Medical Sciences, Saga University , Saga , Japan
| | - Shigenobu Kanba
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University , Fukuoka , Japan
| |
Collapse
|
32
|
Mitochondrial function in hypoxic ischemic injury and influence of aging. Prog Neurobiol 2016; 157:92-116. [PMID: 27321753 DOI: 10.1016/j.pneurobio.2016.06.006] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 03/30/2016] [Accepted: 06/12/2016] [Indexed: 12/11/2022]
Abstract
Mitochondria are a major target in hypoxic/ischemic injury. Mitochondrial impairment increases with age leading to dysregulation of molecular pathways linked to mitochondria. The perturbation of mitochondrial homeostasis and cellular energetics worsens outcome following hypoxic-ischemic insults in elderly individuals. In response to acute injury conditions, cellular machinery relies on rapid adaptations by modulating posttranslational modifications. Therefore, post-translational regulation of molecular mediators such as hypoxia-inducible factor 1α (HIF-1α), peroxisome proliferator-activated receptor γ coactivator α (PGC-1α), c-MYC, SIRT1 and AMPK play a critical role in the control of the glycolytic-mitochondrial energy axis in response to hypoxic-ischemic conditions. The deficiency of oxygen and nutrients leads to decreased energetic reliance on mitochondria, promoting glycolysis. The combination of pseudohypoxia, declining autophagy, and dysregulation of stress responses with aging adds to impaired host response to hypoxic-ischemic injury. Furthermore, intermitochondrial signal propagation and tissue wide oscillations in mitochondrial metabolism in response to oxidative stress are emerging as vital to cellular energetics. Recently reported intercellular transport of mitochondria through tunneling nanotubes also play a role in the response to and treatments for ischemic injury. In this review we attempt to provide an overview of some of the molecular mechanisms and potential therapies involved in the alteration of cellular energetics with aging and injury with a neurobiological perspective.
Collapse
|
33
|
Macedo-Ramos H, Batista AF, Carrier-Ruiz A, Alves L, Allodi S, Ribeiro-Resende VT, Teixeira LM, Baetas-da-Cruz W. Evidence of involvement of the mannose receptor in the internalization of Streptococcus pneumoniae by Schwann cells. BMC Microbiol 2014; 14:211. [PMID: 25085553 PMCID: PMC4236529 DOI: 10.1186/s12866-014-0211-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/21/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The ability of S. pneumoniae to generate infections depends on the restrictions imposed by the host's immunity, in order to prevent the bacterium from spreading from the nasopharynx to other tissues, such as the brain. Some authors claim that strains of S. pneumoniae, which fail to survive in the bloodstream, can enter the brain directly from the nasal cavity by axonal transport through the olfactory and/or trigeminal nerves. However, from the immunological point of view, glial cells are far more responsive to bacterial infections than are neurons. This hypothesis is consistent with several recent reports showing that bacteria can infect glial cells from the olfactory bulb and trigeminal ganglia. Since our group previously demonstrated that Schwann cells (SCs) express a functional and appropriately regulated mannose receptor (MR), we decided to test whether SCs are involved in the internalization of S. pneumoniae via MR. RESULTS Immediately after the interaction step, as well as 3 h later, the percentage of association was approximately 56.5%, decreasing to 47.2% and 40.8% after 12 and 24 h, respectively. Competition assays by adding a 100-fold excess of mannan prior to the S. pneumoniae infection reduced the number of infected cells at 3 and 24 h. A cytochemistry assay with Man/BSA-FITC binding was performed in order to verify a possible overlap between mannosylated ligands and internalized bacteria. Incubation of the SCs with Man/BSA-FITC resulted in a large number of intracellular S. pneumoniae, with nearly complete loss of the capsule. Moreover, the anti-pneumococcal antiserum staining colocalized with the internalized man/BSA-FITC, suggesting that both markers are present within the same endocytic compartment of the SC. CONCLUSIONS Our data offer novel evidence that SCs could be essential for pneumococcal cells to escape phagocytosis and killing by innate immune cells. On the other hand, the results also support the idea that SCs are immunocompetent cells of the PNS that can mediate an efficient immune response against pathogens via MR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wagner Baetas-da-Cruz
- Faculdade de Medicina, Centro de Cirurgia Experimental, Laboratório Translacional em Fisiologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
34
|
Jain K, Kesharwani P, Gupta U, Jain NK. A review of glycosylated carriers for drug delivery. Biomaterials 2012; 33:4166-86. [DOI: 10.1016/j.biomaterials.2012.02.033] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 02/16/2012] [Indexed: 02/03/2023]
|
35
|
Shkurupiy VA, Guseva EV, Potapova OV, Nadeev AP. Morphological changes in the brain of mice with systemic candidiasis treated with composition of amphotericin B and oxidized dextran. Bull Exp Biol Med 2012; 151:95-8. [PMID: 22442811 DOI: 10.1007/s10517-011-1267-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We observed morphological manifestation of encephalitis 3, 7, 10 and 28 days after intravenous infection of adult male CBA mice with Candida albicans. Compounds were administered intraperitoneally every other day starting from the next day postinfection. Untreated animals (100%) died over the period between days 18 and 20 postinfection; 60% animals receiving oxidized dextran alone survived by day 28 of observation. All animals treated with amphotericin B and composition of amphotericin B and oxidized dextran survived. On day 3 postinfection, the count of macrophage infiltrates and granulomas in the cerebral interstitium of mice treated with amphotericin B was equal to that in untreated mice, but was sufficiently lower in animals treated with the composition or oxidized dextran alone. On day 10, this index was similar in all groups and was approximately 5 times lower than in untreated animals on day 3. On day 28, macrophage infiltrates and granulomas were absent in the brain of all treated mice. These data suggest that oxidized dextran produced a therapeutic effect, which manifested earlier than the effect of amphotericin B and potentiated its effect, probably due to its competition with Candida albicans for mannose receptors on the brain-blood barrier endothelium.
Collapse
Affiliation(s)
- V A Shkurupiy
- Research Center of Clinical and Experimental Medicine, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk, Russia
| | | | | | | |
Collapse
|
36
|
Giraldi-Guimarães A, de Freitas HT, Coelho BDP, Macedo-Ramos H, Mendez-Otero R, Cavalcante LA, Baetas-da-Cruz W. Bone marrow mononuclear cells and mannose receptor expression in focal cortical ischemia. Brain Res 2012; 1452:173-84. [PMID: 22459039 DOI: 10.1016/j.brainres.2012.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 02/15/2012] [Accepted: 03/01/2012] [Indexed: 11/20/2022]
Abstract
The use of bone marrow mononuclear cells (BMMCs) has been shown as a putative efficient therapy for stroke. However, the mechanisms of therapeutic action are not yet completely known. Mannose receptor (MR) is a subgroup of the C-type lectin receptor superfamily involved in innate immune response in several tissues. Although known primarily for its immune function, MR also has important roles in cell migration, cell debris clearance and tissue remodeling during inflammation and wound healing. Here we analyzed MR expression in brains of rats one week after induction of unilateral focal cortical ischemia by thermocoagulation in blood vessels of sensorimotor cortex. Additionally, we evaluated possible changes in such expression in cortices of rats subjected to ischemia plus treatment with BMMCs. Our results showed high expression of MR in an unknown GFAP(+) cell type and in phagocytic macrophages/microglia within the lesion boundary zone whereas in the non-injured (contralateral) cortical parenchyma, low levels of MR expression were observed. Moreover, therapy with BMMCs induced overexpression of MR in ipsilateral (injured) cortex. Previous studies from our group have shown functional recovery and decreased neurodegeneration in BMMC-treated rats in the same model of focal cortical ischemia. Thus, we suggest that ischemic injury induces large increase in MR expression as part of a mechanism for clearance of damage-associated molecular patterns (DAMPs). In addition, induction of MR overexpression by BMMCs might increase the efficiency of clearance, being one of the protective mechanisms of these cells.
Collapse
Affiliation(s)
- Arthur Giraldi-Guimarães
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro-UENF, Campos dos Goytacazes, RJ, CEP: 28013-602, Brazil
| | | | | | | | | | | | | |
Collapse
|
37
|
Macedo-Ramos H, Campos FSO, Carvalho LA, Ramos IB, Teixeira LM, De Souza W, Cavalcante LA, Baetas-da-Cruz W. Olfactory ensheathing cells as putative host cells for Streptococcus pneumoniae: evidence of bacterial invasion via mannose receptor-mediated endocytosis. Neurosci Res 2010; 69:308-13. [PMID: 21192991 DOI: 10.1016/j.neures.2010.12.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 12/10/2010] [Accepted: 12/19/2010] [Indexed: 11/17/2022]
Abstract
Olfactory ensheathing cells (OECs) are a special glia that ensheath olfactory receptor axons that enter the brain via olfactory phila, thus, providing a potential route for access of pathogens. Streptococcus pneumoniae (Sp), that has a capsule rich in mannosyl residues, is the most common cause of rhinosinusitis that may evolve to meningitis. We have tested whether OECs in vitro express the mannose receptor (MR), and could internalize Sp via MR. Cultures were infected by a suspension of Sp (ATCC 49619), recognized by an anti-Sp antibody, in a 100:1 bacteria:cells ratio. Competition assays, by means of mannan, showed around a 15-fold reduction in the number of internalized bacteria. To verify whether MR could be involved in Sp uptake, OECs were reacted with an antibody against the MR C-terminal peptide (anti-cMR) and bacteria were visualized with Sytox Green. Selective cMR-immunoreaction was seen in perinuclear compartments containing bacteria whereas mannan-treated cultures showed an extremely low percentage of internalized bacteria and only occasional adhered bacteria. Our data suggest the involvement of MR in adhesion of bacteria to OEC surface, and in their internalization. Data are also coherent with a role of OECs as a host cell prior to (and during) bacterial invasion of the brain.
Collapse
Affiliation(s)
- Hugo Macedo-Ramos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Ghosh S, Das N, Mandal AK, Dungdung SR, Sarkar S. Mannosylated liposomal cytidine 5' diphosphocholine prevent age related global moderate cerebral ischemia reperfusion induced mitochondrial cytochrome c release in aged rat brain. Neuroscience 2010; 171:1287-99. [PMID: 20883746 DOI: 10.1016/j.neuroscience.2010.09.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/18/2010] [Accepted: 09/23/2010] [Indexed: 10/19/2022]
Abstract
Mitochondrial dysfunctions generating from cerebral ischemia-reperfusion exert a potential threat on neuronal cell survival and hence, accelerate the aging process and age dependent neuropathology. Thirty min moderate cerebral ischemia induced by bilateral common carotid artery occlusion (BCCAO) followed by 30 min reperfusion caused an increased diene production, depleted glutathione (GSH) content, reduced superoxide dismutase (SOD) and catalase activities and pyramidal neuronal loss in young (2 months old) and aged (20 months old) rat brain compared to sham operated controls. Cytidine 5' diphosphocholine (CDP-Choline) is a known neuroprotective drug. CDP-Choline after metabolism in the liver suffers hydrolysis and splits into cytidine and choline before entering systemic circulation and hardly circumvents blood brain barrier (BBB) as such. Previous reports show CDP-Choline liposomes significantly increased in vivo uptake compared to "free drug" administration in cerebral ischemia. To enhance the therapeutic concentration build up in brain we sought to formulate mannosylated liposomal CDP-Choline (MLCDP) utilizing the mannose receptors. We tested the therapeutic supremacy of MLCDP over liposomal CDP-Choline (LCDP) in global moderate cerebral ischemia reperfusion induced neuronal damage. CDP-Choline in MLCDP delivery system was found potent to exert substantial protection against global moderate cerebral ischemia reperfusion induced mitochondrial damage in aged rat brain. Membrane lipid peroxidation, GSSG/GSH ratio and reactive oxygen species (ROS) generation in cerebral tissue were found to be higher in aged, compared to young rat. Further decline of those parameters was observed in aged rat brain by the induction of global moderate cerebral ischemia and reperfusion. MLCDP treatment when compared to free or LCDP treatment prevented global moderate cerebral ischemia-reperfusion induced mitochondrial damage as evident ultra structurally and release of cytochrome c (cyt c) from mitochondria into cytosol and protected mitochondria to restore its normal structure and functions.
Collapse
Affiliation(s)
- S Ghosh
- Biomembrane Division, Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Kolkata-700032, India
| | | | | | | | | |
Collapse
|
39
|
Kraus B, Wolff H, Elstner EF, Heilmann J. Hyperforin is a modulator of inducible nitric oxide synthase and phagocytosis in microglia and macrophages. Naunyn Schmiedebergs Arch Pharmacol 2010; 381:541-53. [PMID: 20369228 DOI: 10.1007/s00210-010-0512-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 03/08/2010] [Indexed: 01/06/2023]
Abstract
Upon activation, microglia, the immunocompetent cells in the brain, get highly phagocytic and release pro-inflammatory mediators like nitric oxide (NO). Excessive NO production is pivotal in neurodegenerative disorders, and there is evidence that abnormalities in NO production and inflammatory responses may at least support a range of neuropsychiatric disorders, including depression. Although extracts of St. John's wort (Hypericum perforatum L.) have been used for centuries in traditional medicine, notably for the treatment of depression, there is still considerable lack in scientific knowledge about the impact on microglia. We used N11 and BV2 mouse microglia, as well as RAW 264.7 macrophages to investigate the effects of St. John's wort extract and constituents thereof on NO production Moreover, flow cytometry and fluorescence microscopy were employed to analyze the influence on phagocytosis, transcription factor activation states, and cell motility. We found that extracts of St. John's wort efficiently suppress lipopolysaccharide-induced NO release and identified hyperforin as the responsible compound, being effective at concentrations between 0.25 and 0.75 microM. The reduced NO production was mediated by diminished inducible nitric oxide synthase expression on the mRNA and protein level. In addition, at similar concentrations, hyperforin reduced zymosan phygocytosis to 20-40% and putatively acted by downregulating the CD206 macrophage mannose receptor and modulation of cell motility. We found that the observed effects correlate with a suppression of the activated state of Nf-kappaB and phospho-CREB, while c-JUN, STAT1, and HIF-1alpha activity and cyclooxygenase-2 expression remained unaffected by hyperforin. These results reveal that hyperforin influences pro-inflammatory and immunological responses of microglia that are involved in the progression of neuropathologic disorders.
Collapse
Affiliation(s)
- Birgit Kraus
- Institute of Pharmaceutical Biology, University of Regensburg, Universitätsstrasse 31, Regensburg, Germany.
| | | | | | | |
Collapse
|
40
|
Wehbe K, Pineau R, Eimer S, Vital A, Loiseau H, Déléris G. Differentiation between normal and tumor vasculature of animal and human glioma by FTIR imaging. Analyst 2010; 135:3052-9. [DOI: 10.1039/c0an00513d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Wong KS, Proulx K, Rost MS, Sumanas S. Identification of vasculature-specific genes by microarray analysis of Etsrp/Etv2 overexpressing zebrafish embryos. Dev Dyn 2009; 238:1836-50. [PMID: 19504456 DOI: 10.1002/dvdy.21990] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Signaling pathways controlling vasculogenesis, angiogenesis, and myelopoiesis are still poorly understood, in part because not all genes important for vasculature or myeloid cell formation have been characterized. To identify novel potential regulators of vasculature and myeloid cell formation we performed microarray analysis of zebrafish embryos that overexpress Ets1-related protein (Etsrp/Etv2/ER71), sufficient to induce vasculogenesis and myelopoiesis (Sumanas and Lin [2006] Development 121:3141-3150; Lee [2008] Cell Stem Cell 2:497-507; Sumanas et al. [2008] Blood 111:4500-4510). We performed sequence homology and expression analysis for up-regulated genes that were novel or previously unassociated with the zebrafish vasculature formation. Angiotensin II type 2 receptor (agtr2), src homology 2 domain containing E (she), mannose receptor C1 (mrc1), endothelial cell-specific adhesion molecule (esam), yes-related kinase (yrk/fyn), zinc finger protein, multitype 2b (zfpm2b/fog2b), and stabilin 2 (stab2) were specifically expressed in vascular endothelial cells during early development while keratin18 expression was localized to the myeloid cells. Identification of vasculature and myeloid-specific genes will be important for dissecting molecular mechanisms of vasculogenesis/angiogenesis and myelopoiesis.
Collapse
Affiliation(s)
- Kuan Shen Wong
- Cincinnati Children's Hospital Medical Center, Division of Developmental Biology, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
42
|
Baetas-da-Cruz W, Alves L, Pessolani MCV, Barbosa HS, Régnier-Vigouroux A, Corte-Real S, Cavalcante LA. Schwann cells express the macrophage mannose receptor and MHC class II. Do they have a role in antigen presentation? J Peripher Nerv Syst 2009; 14:84-92. [DOI: 10.1111/j.1529-8027.2009.00217.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Yutin N, Wolf MY, Wolf YI, Koonin EV. The origins of phagocytosis and eukaryogenesis. Biol Direct 2009; 4:9. [PMID: 19245710 PMCID: PMC2651865 DOI: 10.1186/1745-6150-4-9] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 02/26/2009] [Indexed: 11/10/2022] Open
Abstract
Background Phagocytosis, that is, engulfment of large particles by eukaryotic cells, is found in diverse organisms and is often thought to be central to the very origin of the eukaryotic cell, in particular, for the acquisition of bacterial endosymbionts including the ancestor of the mitochondrion. Results Comparisons of the sets of proteins implicated in phagocytosis in different eukaryotes reveal extreme diversity, with very few highly conserved components that typically do not possess readily identifiable prokaryotic homologs. Nevertheless, phylogenetic analysis of those proteins for which such homologs do exist yields clues to the possible origin of phagocytosis. The central finding is that a subset of archaea encode actins that are not only monophyletic with eukaryotic actins but also share unique structural features with actin-related proteins (Arp) 2 and 3. All phagocytic processes are strictly dependent on remodeling of the actin cytoskeleton and the formation of branched filaments for which Arp2/3 are responsible. The presence of common structural features in Arp2/3 and the archaeal actins suggests that the common ancestors of the archaeal and eukaryotic actins were capable of forming branched filaments, like modern Arp2/3. The Rho family GTPases that are ubiquitous regulators of phagocytosis in eukaryotes appear to be of bacterial origin, so assuming that the host of the mitochondrial endosymbiont was an archaeon, the genes for these GTPases come via horizontal gene transfer from the endosymbiont or in an earlier event. Conclusion The present findings suggest a hypothetical scenario of eukaryogenesis under which the archaeal ancestor of eukaryotes had no cell wall (like modern Thermoplasma) but had an actin-based cytoskeleton including branched actin filaments that allowed this organism to produce actin-supported membrane protrusions. These protrusions would facilitate accidental, occasional engulfment of bacteria, one of which eventually became the mitochondrion. The acquisition of the endosymbiont triggered eukaryogenesis, in particular, the emergence of the endomembrane system that eventually led to the evolution of modern-type phagocytosis, independently in several eukaryotic lineages. Reviewers This article was reviewed by Simonetta Gribaldo, Gaspar Jekely, and Pierre Pontarotti. For the full reviews, please go to the Reviewers' Reports section.
Collapse
Affiliation(s)
- Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| | | | | | | |
Collapse
|
44
|
Lefkowitz DL, Lefkowitz SS. Microglia and myeloperoxidase: a deadly partnership in neurodegenerative disease. Free Radic Biol Med 2008; 45:726-31. [PMID: 18554520 DOI: 10.1016/j.freeradbiomed.2008.05.021] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 05/03/2008] [Accepted: 05/21/2008] [Indexed: 01/28/2023]
Abstract
The role of inflammation in Alzheimer's disease, Parkinson's disease, and multiple sclerosis has recently come under increased scrutiny. Associated with these inflammatory responses are tumor necrosis factor-alpha (TNF-alpha) and reactive oxygen species (ROS), both believed to be derived from brain microglia. In addition to the above, the presence of myeloperoxidase (MPO) in these diseased brains has been reported by a number of investigators. However, the possible role of MPO and enzymatically inactive MPO (iMPO) as the "choreographers" of the destruction done by TNF-alpha and ROS is not generally recognized. Previously, our laboratory has reported that MPO/iMPO enhance macrophage generation of ROS and expression of proinflammatory cytokine genes as well as gene products. Recent studies in our laboratory indicate that the same response occurs with microglia. A paradigm is presented for the perpetuation of inflammation associated with neurodegenerative diseases. This model describes the unrecognized consequences of the stimulation of microglia by MPO or iMPO. Both MPO and iMPO and/or its receptor may represent new therapeutic targets for the treatment of these diseases.
Collapse
Affiliation(s)
- Doris L Lefkowitz
- School of Biological Sciences, Section of Molecular Genetics and Microbiology, University of Texas at Austin, 1 University Station A5000, Austin, TX 78712-0162, USA.
| | | |
Collapse
|
45
|
Zucchetti I, Marino R, Pinto MR, Lambris JD, Du Pasquier L, De Santis R. ciCD94-1, an ascidian multipurpose C-type lectin-like receptor expressed in Ciona intestinalis hemocytes and larval neural structures. Differentiation 2007; 76:267-82. [PMID: 17924966 DOI: 10.1111/j.1432-0436.2007.00214.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
C-type lectins play an important role in the immune system and are part of a large superfamily that includes C-type lectin-like domain (CTLD)-containing proteins. Divergent evolution, acting on the CTLD fold, has generated the Ca2+-dependent carbohydrate-binding lectins and molecules, as the lectin-like natural killer (NK) receptors that bind proteins, rather than sugars, in a Ca(2+)-independent manner. We have studied ciCD94-1, a CTLD-containing protein from the tunicate Ciona intestinalis, which is a homolog of the CD94 vertebrate receptor that is expressed on NK cells and modulates their cytotoxic activity by interacting with MHC class I molecules. ciCD94-1 shares structural features with the CTLD-containing molecules that recognize proteins, suggesting that it could be located along the evolutionary pathway leading to the NK receptors. ciCD94-1 was up-regulated in response to inflammation induced by lipopolysaccharide (LPS) acting on a blood cell type present in both the tunic and circulating blood. Furthermore, an anti-ciCD94-1 antibody specifically inhibited the phagocytic activity of these cells. ciCD94-1 was also expressed during development in the larva and in the early stages of metamorphosis in structures related to the nervous system, and loss of its function affected the correct differentiation of these territories. These findings suggest that ciCD94-1 has different roles in immunity and in development, thus strengthening the concept of gene co-option during evolution and of an evolutionary relationship between the nervous and the immune systems.
Collapse
Affiliation(s)
- Ivana Zucchetti
- Laboratory of Cell Biology, Stazione Zoologica "Anton Dohrn" Villa Comunale, 80121 Naples, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Sturge J, Todd SK, Kogianni G, McCarthy A, Isacke CM. Mannose receptor regulation of macrophage cell migration. J Leukoc Biol 2007; 82:585-93. [PMID: 17596337 DOI: 10.1189/jlb.0107053] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The migration of macrophages through peripheral tissues is an essential step in the host response to infection, inflammation, and ischemia as well as in tumor progression and tissue repair. The mannose receptor (MR; CD206, previously known as the macrophage MR) is a 175-kDa type I transmembrane glycoprotein and is a member of a family of four recycling endocytic receptors, which share a common extracellular domain structure but distinct ligand-binding properties and cell type expression patterns. MR has been shown to bind and internalize carbohydrate and collagen ligands and more recently, to have a role in myoblast motility and muscle growth. Given that the related Endo180 (CD280) receptor has also been shown to have a promigratory role, we hypothesized that MR may be involved in regulating macrophage migration and/or chemotaxis. Contrary to expectation, bone marrow-derived macrophages (BMM) from MR-deficient mice showed an increase in random cell migration and no impairment in chemotactic response to a gradient of CSF-1. To investigate whether the related promigratory Endo180 receptor might compensate for lack of MR, mice with homozygous deletions in MR and Endo180 were generated. These animals showed no obvious phenotypic abnormality, and their BMM, like those from MR-deficient mice, retained an enhanced migratory behavior. As MR is down-regulated during macrophage activation, these findings have implications for the regulation of macrophage migration during different stages of pathogenesis.
Collapse
Affiliation(s)
- Justin Sturge
- Breakthrough Breast Cancer Research Centre, 237 Fulham Road, London, SW3 6JB UK
| | | | | | | | | |
Collapse
|
47
|
Kel J, Oldenampsen J, Luca M, Drijfhout JW, Koning F, Nagelkerken L. Soluble mannosylated myelin peptide inhibits the encephalitogenicity of autoreactive T cells during experimental autoimmune encephalomyelitis. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:272-80. [PMID: 17200200 PMCID: PMC1762692 DOI: 10.2353/ajpath.2007.060335] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We have previously shown that immunization with a mannosylated myelin peptide in complete adjuvant induces tolerance instead of disease in experimental autoimmune encephalomyelitis (EAE), a rodent model for multiple sclerosis. In this report we demonstrate that treatment with a soluble mannosylated epitope of proteolipid protein (M-PLP(139-151)) significantly inhibits disease mediated by autoreactive myelin-specific T cells during EAE. Treatment with M-PLP(139-151), applied in different EAE models, significantly reduced the incidence of disease and the severity of clinical symptoms. Delayed-type hypersensitivity responses were abolished after peptide treatment, emphasizing the impact on peripheral T-cell reactivity. Histological analysis of spinal cord tissue from mice treated with M-PLP(139-151) revealed the presence of only few macrophages and T cells. Moreover, little expression of interferon-gamma, interleukin-23, or major histocompatibility complex class II antigen was detected. Immune modulation by M-PLP(139-151) was primarily antigen-specific because an irrelevant mannosylated peptide showed no significant effect on delayed-type hypersensitivity responses or on the course of EAE. Therefore, mannosylated antigens may represent a novel therapeutic approach for antigen-specific modulation of autoreactive T cells in vivo.
Collapse
Affiliation(s)
- Junda Kel
- Business Unit Biomedical Research, TNO Quality of Life, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
48
|
Sarkar S, Das N. Mannosylated liposomal flavonoid in combating age-related ischemia–reperfusion induced oxidative damage in rat brain. Mech Ageing Dev 2006; 127:391-7. [PMID: 16480758 DOI: 10.1016/j.mad.2005.12.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 12/28/2005] [Accepted: 12/28/2005] [Indexed: 12/21/2022]
Abstract
Active oxygen species alter the activities of the enzymes involved in the defence against free radicals and substantially influence the aging process and age-dependent neuropathology. Unilamellar liposomes were used to deliver flavonoidal antioxidant quercetin (QC) to rat brain. Antioxidant potential of QC loaded in mannosylated (QC 7.2 micromol/kg b.wt.) liposomes (50 nm) was investigated by an in vivo model of cerebral ischemia and reperfusion on Sprague Dawley young (2 months old, b.wt. 160-180 g) and aged (20 months old, b.wt. 415-440 g) rats. Animals were made ischemic for 30 min by bilateral clamping of the common carotid artery followed by a 30 min cerebral reperfusion by withdrawing the clamping. Diene level and (GSSG/GSH) ratio were found to be higher in normal aged, compared to normal young rat brain. Superoxide dismutase, catalase, glucose-6-phosphate dehydrogenase, glutathione reductase and glutathione S-transferase activities were lower in normal aged rat brain. Further reduction of these antioxidant enzymes was observed in aged rat brain by the induction of cerebral ischemia and reperfusion. Mannosylated liposomally encapsulated QC treatment resulted in a significant preservation of the activities of antioxidant enzymes and a marked inhibition of cellular edema formation in neuronal cells of young and old rats.
Collapse
Affiliation(s)
- Sibani Sarkar
- Biomembrane Division, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | | |
Collapse
|
49
|
Luca ME, Kel JM, van Rijs W, Wouter Drijfhout J, Koning F, Nagelkerken L. Mannosylated PLP(139-151) induces peptide-specific tolerance to experimental autoimmune encephalomyelitis. J Neuroimmunol 2005; 160:178-87. [PMID: 15710471 DOI: 10.1016/j.jneuroim.2004.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Revised: 11/23/2004] [Accepted: 11/24/2004] [Indexed: 02/02/2023]
Abstract
SJL mice immunized with mannosylated (M-) PLP(139-151) in complete adjuvant do not develop EAE and little CNS mononuclear cell infiltration; other mannosylated peptides were ineffective in this experimental setting. Despite apparently normal T cell responses, M-PLP(139-151)-immunized mice show impaired delayed-type-sensitivity to PLP(139-151) but a normal response to other peptides. After re-immunization with PLP(139-151) in complete adjuvant, these mice are largely tolerant to EAE, show less T cell proliferation and decreased peptide-specific IgG2a. Our data suggest that M-PLP(139-151) induces peptide-specific tolerance to EAE via a mechanism of deletion or impaired migration of encephalitogenic T cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Movement/immunology
- Cells, Cultured
- Central Nervous System/immunology
- Central Nervous System/pathology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Female
- Hypersensitivity, Delayed/immunology
- Hypersensitivity, Delayed/pathology
- Immunodominant Epitopes/immunology
- Injections, Subcutaneous
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/pathology
- Mannose/metabolism
- Mice
- Molecular Sequence Data
- Myelin Proteolipid Protein/administration & dosage
- Myelin Proteolipid Protein/immunology
- Myelin Proteolipid Protein/metabolism
- Peptide Fragments/administration & dosage
- Peptide Fragments/immunology
- Peptide Fragments/metabolism
- Self Tolerance/immunology
- Severity of Illness Index
- Th1 Cells/immunology
- Th1 Cells/pathology
Collapse
Affiliation(s)
- Mariken E Luca
- Division of Biomedical Research, TNO Prevention and Health, Zernikedreef 9, 2333 CK Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|