1
|
Sudhakaran S, Mandlik R, Kumawat S, Raturi G, Gupta SK, Shivaraj SM, Patil G, Deshmukh R, Sharma TR, Sonah H. Evolutionary analysis of tonoplast intrinsic proteins (TIPs) unraveling the role of TIP3s in plant seed development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109022. [PMID: 39137680 DOI: 10.1016/j.plaphy.2024.109022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/05/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Tonoplast intrinsic proteins (TIPs) are crucial in facilitating the transportation of water and various small solutes across biological membranes. The evolutionary path and functional roles of TIPs is poorly understood in plants. In the present study, a total of 976 TIPs were identified in 104 diverse species and subsequently studied to trace their lineage-specific evolutionary path and tissue-specific function. Interestingly, TIPs were found to be absent in lower forms such as algae and fungi and they evolved later in primitive plants like bryophytes. Bryophytes possess a distant class of TIPs, denoted as TIP6, which is not found in higher plants. The aromatic/arginine (ar/R) selectivity filter found in TIP6 of certain liverworts share similarity with hybrid intrinsic protein (HIP), suggesting an evolutionary kinship. As plants evolved to more advanced forms, TIPs diversified into five different sub-groups (TIP1 to TIP5). Notably, TIP5 is a sub-group unique to angiosperms. The evolutionary history of the TIP subfamily reveals an interesting observation that the TIP3 subgroup has evolved within seed-bearing Spermatophyta. Further, TIPs exhibit tissue-specific expression that is conserved within various plant species. Specifically, the TIP3s were found to be exclusively expressed in seeds. Quantitative PCR analysis of TIP3s showed gradually increasing expression in soybean seed developmental stages. The expression of TIP3s in different plant species was also found to be gradually increasing during seed maturation. The results presented here address the knowledge gap concerning the evolutionary background of TIPs, specifically TIP3 in plants, and provide valuable insights for a deeper comprehension of the functions of TIPs in plants.
Collapse
Affiliation(s)
- Sreeja Sudhakaran
- Department of Biotechnology, Central University of Haryana, Haryana, India; Department of Biotechnology, Panjab University, Chandigarh, India
| | - Rushil Mandlik
- Department of Biotechnology, Central University of Haryana, Haryana, India
| | - Surbhi Kumawat
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Gaurav Raturi
- Department of Plant and Soil Sciences, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, USA
| | | | - S M Shivaraj
- Department of Science, Alliance University, Bengaluru, India
| | - Gunvant Patil
- Department of Plant and Soil Sciences, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, USA
| | - Rupesh Deshmukh
- Department of Biotechnology, Central University of Haryana, Haryana, India
| | - Tilak Raj Sharma
- Division of Crop Science, Indian Council of Agricultural Research, New Delhi, India
| | - Humira Sonah
- Department of Biotechnology, Central University of Haryana, Haryana, India.
| |
Collapse
|
2
|
Bhuiyan AUA, Chowdhury MZH, Mim MF, Siddique SS, Haque MA, Rahman MS, Islam SMN. Seed priming with Metarhizium anisopliae (MetA1) improves physiology, growth and yield of wheat. Heliyon 2024; 10:e36600. [PMID: 39263142 PMCID: PMC11388754 DOI: 10.1016/j.heliyon.2024.e36600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Microorganisms offer a sustainable way to increase crop production and promote eco-friendly farming. The endophytic fungus Metarhizium anisopliae is known for its multiple roles in plant ecosystems, including plant protection, symbiosis, and abiotic stress mitigation. In this study, we evaluated the potential of seed priming with M. anisopliae isolate MetA1 (MA) to enhance germination, photosynthetic efficiency, growth, and yield of two wheat varieties, BARI Gom 26 (BG26) and BARI Gom 33 (BG33) under field conditions. The study demonstrated that MA seed priming significantly improved wheat germination (by 13% and 26.04%) of BG26 and BG33, respectively. Overall, photosynthetic performance, indicated by increased leaf angle, leaf thickness, relative chlorophyll content, and linear electron flow (LEF), quantum yield of Photo System II (Phi2) was increased in MA primed wheat plants, while reducing non-photochemical quenching like NPQt, PhiNO, PhiNPQ of both varieties. These enhancements were attributed to increased shoot biomass (by 215.64% for BG26 and 280.38% for BG33), root biomass (by 141.79% for BG26 and 207.4% for BG33), effective tiller percentage (by 9.17% for BG26 and 5.7% for BG33), spike length (by 25.05% for BG26 and 25.42% for BG33), grain yield parameters such as filled grain percentage (by 23.8% for BG26 and 12.5% for BG33), and grain weight per plant (by 168.62% for BG26 and 119.62% for BG33). The findings of the research demonstrated the potential of M. anisopliae for field use in an agricultural setting, providing a sustainable means of increasing food production.
Collapse
Affiliation(s)
- Ashkar-Ul-Alam Bhuiyan
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Zahid Hasan Chowdhury
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mahjabin Ferdaous Mim
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Shaikh Sharmin Siddique
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Ashraful Haque
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Sazzadur Rahman
- Plant Physiology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, 1701, Bangladesh
| | - Shah Mohammad Naimul Islam
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| |
Collapse
|
3
|
Ji Y, Liu G, Yan S, Jiang X, Wu M, Liu W, Li Y, Yang A, Dai P, Du S, Li Y, Wang J, Zhang X. GWAS combined with QTL mapping reveals the genetic loci of leaf morphological characters in Nicotiana tabacum. BMC PLANT BIOLOGY 2024; 24:583. [PMID: 38898384 PMCID: PMC11188574 DOI: 10.1186/s12870-024-05261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Leaf morphology plays a crucial role in photosynthetic efficiency and yield potential in crops. Cigar tobacco plants, which are derived from common tobacco (Nicotiana tabacum L.), possess special leaf characteristics including thin and delicate leaves with few visible veins, making it a good system for studying the genetic basis of leaf morphological characters. RESULTS In this study, GWAS and QTL mapping were simultaneously performed using a natural population containing 185 accessions collected worldwide and an F2 population consisting of 240 individuals, respectively. A total of 26 QTLs related to leaf morphological traits were mapped in the F2 population at three different developmental stages, and some QTL intervals were repeatedly detected for different traits and at different developmental stages. Among the 206 significant SNPs identified in the natural population using GWAS, several associated with the leaf thickness phenotype were co-mapped via QTL mapping. By analyzing linkage disequilibrium and transcriptome data from different tissues combined with gene functional annotations, 7 candidate genes from the co-mapped region were identified as the potential causative genes associated with leaf thickness. CONCLUSIONS These results presented a valuable cigar tobacco resource showing the genetic diversity regarding its leaf morphological traits at different developmental stages. It also provides valuable information for novel genes and molecular markers that will be useful for further functional verification and for molecular breeding of leaf morphological traits in crops in the future.
Collapse
Affiliation(s)
- Yan Ji
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, CN-266000, China
| | - Guoxiang Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, CN-266000, China
| | - Sifan Yan
- Ruijin Branch, Jiangxi Ganzhou Tobacco Company of China Tobacco Corporation, Ganzhou, CN-341000, China
| | - Xun Jiang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, CN-266000, China
| | - Mengting Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, CN-266000, China
| | - Wei Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, CN-610065, China
| | - Yuan Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, CN-266000, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, CN-266000, China
| | - Peigang Dai
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, CN-266000, China
| | - Shuaibin Du
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, CN-266000, China
| | - Yangyang Li
- Hunan Tobacco Research Institute, Changsha, 410004, Hunan, China.
| | - Jun Wang
- Deyang Company of Sichuan Provincial Tobacco Corporation, Deyang, CN-618400, China.
| | - Xingwei Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, CN-266000, China.
| |
Collapse
|
4
|
Pivato M, Ballottari M. Chlamydomonas reinhardtii cellular compartments and their contribution to intracellular calcium signalling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5312-5335. [PMID: 34077536 PMCID: PMC8318260 DOI: 10.1093/jxb/erab212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/11/2021] [Indexed: 05/12/2023]
Abstract
Calcium (Ca2+)-dependent signalling plays a well-characterized role in the response to different environmental stimuli, in both plant and animal cells. In the model organism for green algae, Chlamydomonas reinhardtii, Ca2+ signals were reported to have a crucial role in different physiological processes, such as stress responses, photosynthesis, and flagella functions. Recent reports identified the underlying components of the Ca2+ signalling machinery at the level of specific subcellular compartments and reported in vivo imaging of cytosolic Ca2+ concentration in response to environmental stimuli. The characterization of these Ca2+-related mechanisms and proteins in C. reinhardtii is providing knowledge on how microalgae can perceive and respond to environmental stimuli, but also on how this Ca2+ signalling machinery has evolved. Here, we review current knowledge on the cellular mechanisms underlying the generation, shaping, and decoding of Ca2+ signals in C. reinhardtii, providing an overview of the known and possible molecular players involved in the Ca2+ signalling of its different subcellular compartments. The advanced toolkits recently developed to measure time-resolved Ca2+ signalling in living C. reinhardtii cells are also discussed, suggesting how they can improve the study of the role of Ca2+ signals in the cellular response of microalgae to environmental stimuli.
Collapse
Affiliation(s)
- Matteo Pivato
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Matteo Ballottari
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
5
|
Polle JE, Roth R, Ben-Amotz A, Goodenough U. Ultrastructure of the green alga Dunaliella salina strain CCAP19/18 (Chlorophyta) as investigated by quick-freeze deep-etch electron microscopy. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101953] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Ahl LI, Mravec J, Jørgensen B, Rudall PJ, Rønsted N, Grace OM. Dynamics of intracellular mannan and cell wall folding in the drought responses of succulent Aloe species. PLANT, CELL & ENVIRONMENT 2019; 42:2458-2471. [PMID: 30980422 PMCID: PMC6851777 DOI: 10.1111/pce.13560] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 05/17/2023]
Abstract
Plants have evolved a multitude of adaptations to survive extreme conditions. Succulent plants have the capacity to tolerate periodically dry environments, due to their ability to retain water in a specialized tissue, termed hydrenchyma. Cell wall polysaccharides are important components of water storage in hydrenchyma cells. However, the role of the cell wall and its polysaccharide composition in relation to drought resistance of succulent plants are unknown. We investigate the drought response of leaf-succulent Aloe (Asphodelaceae) species using a combination of histological microscopy, quantification of water content, and comprehensive microarray polymer profiling. We observed a previously unreported mode of polysaccharide and cell wall structural dynamics triggered by water shortage. Microscopical analysis of the hydrenchyma cell walls revealed highly regular folding patterns indicative of predetermined cell wall mechanics in the remobilization of stored water and the possible role of homogalacturonan in this process. The in situ distribution of mannans in distinct intracellular compartments during drought, for storage, and apparent upregulation of pectins, imparting flexibility to the cell wall, facilitate elaborate cell wall folding during drought stress. We conclude that cell wall polysaccharide composition plays an important role in water storage and drought response in Aloe.
Collapse
Affiliation(s)
- Louise Isager Ahl
- Natural History Museum of Denmark, Faculty of ScienceUniversity of CopenhagenCopenhagen KDK‐1353Denmark
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, Faculty of ScienceUniversity of CopenhagenFrederiksberg CDK‐1871Denmark
| | - Bodil Jørgensen
- Department of Plant and Environmental Sciences, Faculty of ScienceUniversity of CopenhagenFrederiksberg CDK‐1871Denmark
| | - Paula J. Rudall
- Department of Comparative Plant and Fungal BiologyRoyal Botanic Gardens, KewRichmondTW9 3AEUK
| | - Nina Rønsted
- Natural History Museum of Denmark, Faculty of ScienceUniversity of CopenhagenCopenhagen KDK‐1353Denmark
| | - Olwen M. Grace
- Department of Comparative Plant and Fungal BiologyRoyal Botanic Gardens, KewRichmondTW9 3AEUK
| |
Collapse
|
7
|
Schott EJ, Di Lella S, Bachvaroff TR, Amzel LM, Vasta GR. Lacking catalase, a protistan parasite draws on its photosynthetic ancestry to complete an antioxidant repertoire with ascorbate peroxidase. BMC Evol Biol 2019; 19:146. [PMID: 31324143 PMCID: PMC6642578 DOI: 10.1186/s12862-019-1465-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 06/24/2019] [Indexed: 01/06/2023] Open
Abstract
Background Antioxidative enzymes contribute to a parasite’s ability to counteract the host’s intracellular killing mechanisms. The facultative intracellular oyster parasite, Perkinsus marinus, a sister taxon to dinoflagellates and apicomplexans, is responsible for mortalities of oysters along the Atlantic coast of North America. Parasite trophozoites enter molluscan hemocytes by subverting the phagocytic response while inhibiting the typical respiratory burst. Because P. marinus lacks catalase, the mechanism(s) by which the parasite evade the toxic effects of hydrogen peroxide had remained unclear. We previously found that P. marinus displays an ascorbate-dependent peroxidase (APX) activity typical of photosynthetic eukaryotes. Like other alveolates, the evolutionary history of P. marinus includes multiple endosymbiotic events. The discovery of APX in P. marinus raised the questions: From which ancestral lineage is this APX derived, and what role does it play in the parasite’s life history? Results Purification of P. marinus cytosolic APX activity identified a 32 kDa protein. Amplification of parasite cDNA with oligonucleotides corresponding to peptides of the purified protein revealed two putative APX-encoding genes, designated PmAPX1 and PmAPX2. The predicted proteins are 93% identical, and PmAPX2 carries a 30 amino acid N-terminal extension relative to PmAPX1. The P. marinus APX proteins are similar to predicted APX proteins of dinoflagellates, and they more closely resemble chloroplastic than cytosolic APX enzymes of plants. Immunofluorescence for PmAPX1 and PmAPX2 shows that PmAPX1 is cytoplasmic, while PmAPX2 is localized to the periphery of the central vacuole. Three-dimensional modeling of the predicted proteins shows pronounced differences in surface charge of PmAPX1 and PmAPX2 in the vicinity of the aperture that provides access to the heme and active site. Conclusions PmAPX1 and PmAPX2 phylogenetic analysis suggests that they are derived from a plant ancestor. Plant ancestry is further supported by the presence of ascorbate synthesis genes in the P. marinus genome that are similar to those in plants. The localizations and 3D structures of the two APX isoforms suggest that APX fulfills multiple functions in P. marinus within two compartments. The possible role of APX in free-living and parasitic stages of the life history of P. marinus is discussed. Electronic supplementary material The online version of this article (10.1186/s12862-019-1465-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eric J Schott
- Department of Microbiology & Immunology, University of Maryland School of Medicine, and Institute of Marine and Environmental Technology, 701 E. Pratt Street, Baltimore, MD, 21202, USA.,Present address: University of Maryland Center for Environmental Science, Institute of Marine and Environmental Technology, 701 E. Pratt Street, Baltimore, MD, 21202, USA
| | - Santiago Di Lella
- Instituto de Química Biológica - Ciencias Exactas y Naturales, IQUIBICEN / CONICET, Departamento de Química Biológica, Fac. de Cs. Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Capital Federal, Argentina
| | - Tsvetan R Bachvaroff
- University of Maryland Center for Environmental Science, Institute of Marine and Environmental Technology, 701 E. Pratt Street, Baltimore, MD, 21202, USA
| | - L Mario Amzel
- Department of Biophysics & Biophysical Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD, 21205, USA
| | - Gerardo R Vasta
- Department of Microbiology & Immunology, University of Maryland School of Medicine, and Institute of Marine and Environmental Technology, 701 E. Pratt Street, Baltimore, MD, 21202, USA.
| |
Collapse
|
8
|
Tran QG, Cho K, Park SB, Kim U, Lee YJ, Kim HS. Impairment of starch biosynthesis results in elevated oxidative stress and autophagy activity in Chlamydomonas reinhardtii. Sci Rep 2019; 9:9856. [PMID: 31285472 PMCID: PMC6614365 DOI: 10.1038/s41598-019-46313-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 06/26/2019] [Indexed: 02/08/2023] Open
Abstract
Autophagy is a self-degradation system wherein cellular materials are recycled. Although autophagy has been extensively studied in yeast and mammalian systems, integrated stress responses in microalgae remain poorly understood. Accordingly, we carried out a comparative study on the oxidative stress responses of Chlamydomonas reinhardtii wild-type and a starchless (sta6) mutant previously shown to accumulate high lipid content under adverse conditions. To our surprise, the sta6 mutant exhibited significantly higher levels of lipid peroxidation in the same growth conditions compared to controls. The sta6 mutant was more sensitive to oxidative stress induced by H2O2, whereas the wild-type was relatively more resistant. In addition, significantly up-regulated autophagy-related factors including ATG1, ATG101, and ATG8 were maintained in the sta6 mutant regardless of nitrogen availability. Also, the sta6 mutant exhibited relatively higher ATG8 protein level compared to wild-type under non-stress condition, and quickly reached a saturation point of autophagy when H2O2 was applied. Our results indicate that, in addition to the impact of carbon allocation, the increased lipid phenotype of the sta6 mutant may result from alterations in the cellular oxidative state, which in turn activates autophagy to clean up oxidatively damaged components and fuel lipid production.
Collapse
Affiliation(s)
- Quynh-Giao Tran
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.,Department of Environmental Biotechnology, KRIBB school of Biotechnology, Korea University of Science & Technology (UST), Daejeon, 34113, Republic of Korea
| | - Kichul Cho
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Campus E 7.1, Saarbrücken, 66123, Germany
| | - Su-Bin Park
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.,Department of Environmental Biotechnology, KRIBB school of Biotechnology, Korea University of Science & Technology (UST), Daejeon, 34113, Republic of Korea
| | - Urim Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.,Department of Environmental Biotechnology, KRIBB school of Biotechnology, Korea University of Science & Technology (UST), Daejeon, 34113, Republic of Korea
| | - Yong Jae Lee
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea. .,Department of Environmental Biotechnology, KRIBB school of Biotechnology, Korea University of Science & Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
9
|
Coneva V, Chitwood DH. Genetic and Developmental Basis for Increased Leaf Thickness in the Arabidopsis Cvi Ecotype. FRONTIERS IN PLANT SCIENCE 2018; 9:322. [PMID: 29593772 PMCID: PMC5861201 DOI: 10.3389/fpls.2018.00322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/27/2018] [Indexed: 05/16/2023]
Abstract
Leaf thickness is a quantitative trait that is associated with the ability of plants to occupy dry, high irradiance environments. Despite its importance, leaf thickness has been difficult to measure reproducibly, which has impeded progress in understanding its genetic basis, and the associated anatomical mechanisms that pattern it. Here, we used a custom-built dual confocal profilometer device to measure leaf thickness in the Arabidopsis Ler × Cvi recombinant inbred line population and found statistical support for four quantitative trait loci (QTL) associated with this trait. We used publically available data for a suite of traits relating to flowering time and growth responses to light quality and show that three of the four leaf thickness QTL coincide with QTL for at least one of these traits. Using time course photography, we quantified the relative growth rate and the pace of rosette leaf initiation in the Ler and Cvi ecotypes. We found that Cvi rosettes grow slower than Ler, both in terms of the rate of leaf initiation and the overall rate of biomass accumulation. Collectively, these data suggest that leaf thickness is tightly linked with physiological status and may present a tradeoff between the ability to withstand stress and rapid vegetative growth. To understand the anatomical basis of leaf thickness, we compared cross-sections of Cvi and Ler leaves and show that Cvi palisade mesophyll cells elongate anisotropically contributing to leaf thickness. Flow cytometry of whole leaves show that endopolyploidy accompanies thicker leaves in Cvi. Overall, our data suggest that mechanistically, an altered schedule of cellular events affecting endopolyploidy and increasing palisade mesophyll cell length contribute to increase of leaf thickness in Cvi. Ultimately, knowledge of the genetic basis and developmental trajectory leaf thickness will inform the mechanisms by which natural selection acts to produce variation in this adaptive trait.
Collapse
|
10
|
Shebanova A, Ismagulova T, Solovchenko A, Baulina O, Lobakova E, Ivanova A, Moiseenko A, Shaitan K, Polshakov V, Nedbal L, Gorelova O. Versatility of the green microalga cell vacuole function as revealed by analytical transmission electron microscopy. PROTOPLASMA 2017; 254:1323-1340. [PMID: 27677801 DOI: 10.1007/s00709-016-1024-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/08/2016] [Indexed: 05/22/2023]
Abstract
Vacuole is a multifunctional compartment central to a large number of functions (storage, catabolism, maintenance of the cell homeostasis) in oxygenic phototrophs including microalgae. Still, microalgal cell vacuole is much less studied than that of higher plants although knowledge of the vacuolar structure and function is essential for understanding physiology of nutrition and stress tolerance of microalgae. Here, we combined the advanced analytical and conventional transmission electron microscopy methods to obtain semi-quantitative, spatially resolved at the subcellular level information on elemental composition of the cell vacuoles in several free-living and symbiotic chlorophytes. We obtained a detailed record of the changes in cell and vacuolar ultrastructure in response to environmental stimuli under diverse conditions. We suggested that the vacuolar inclusions could be divided into responsible for storage of phosphorus (mainly in form of polyphosphate) and those accommodating non-protein nitrogen (presumably polyamine) reserves, respectively.The ultrastructural findings, together with the data on elemental composition of different cell compartments, allowed us to speculate on the role of the vacuolar membrane in the biosynthesis and sequestration of polyphosphate. We also describe the ultrastructural evidence of possible involvement of the tonoplast in the membrane lipid turnover and exchange of energy and metabolites between chloroplasts and mitochondria. These processes might play a significant role in acclimation in different stresses including nitrogen starvation and extremely high level of CO2 and might also be of importance for microalgal biotechnology. Advantages and limitations of application of analytical electron microscopy to biosamples such as microalgal cells are discussed.
Collapse
Affiliation(s)
| | | | - Alexei Solovchenko
- Lomonosov Moscow State University, Moscow, Russia.
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia.
- Faculty of Biology, Moscow State University, Leninskie Gori 1/12, 119234, GSP-1 Moscow, Russia.
| | - Olga Baulina
- Lomonosov Moscow State University, Moscow, Russia
| | | | - Alexandra Ivanova
- Komarov Botanical Institute, Russian Academy of Sciences, St. Petersburg, Russia
- St. Petersburg State University, St. Petersburg, Russia
| | | | | | - Vladimir Polshakov
- Faculty of fundamental medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Ladislav Nedbal
- Institute of Bio- and Geosciences / Plant Sciences (IBG-2), Forschungszentrum Jülich, Jülich, Germany
| | | |
Collapse
|
11
|
Schreiber V, Dersch J, Puzik K, Bäcker O, Liu X, Stork S, Schulz J, Heimerl T, Klingl A, Zauner S, Maier UG. The Central Vacuole of the Diatom Phaeodactylum tricornutum: Identification of New Vacuolar Membrane Proteins and of a Functional Di-leucine-based Targeting Motif. Protist 2017; 168:271-282. [PMID: 28495413 DOI: 10.1016/j.protis.2017.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 02/24/2017] [Accepted: 03/04/2017] [Indexed: 01/22/2023]
Abstract
Diatoms are unicellular organisms evolved by secondary endosymbiosis. Although studied in many aspects, the functions of vacuolar-like structures of these organisms are rarely investigated. One of these structures is a dominant central vacuole-like compartment with a marbled phenotype, which is supposed to represent a chrysolaminarin-storing and carbohydrate mobilization compartment. However, other functions as well as targeting of proteins to this compartment are not shown experimentally. In order to study trafficking of membrane proteins to the vacuolar membrane, we scanned the genome for intrinsic vacuolar membrane proteins and used one representative for targeting studies. Our work led to the identification of several proteins located in the vacuolar membrane as well as the sub-compartmentalized localization of one protein. In addition, we show that a di-leucine-based motif is an important signal for correct targeting to the central vacuole of diatoms, like it is in plants.
Collapse
Affiliation(s)
| | - Josefine Dersch
- Laboratory for Cell Biology, Philipps-Universität Marburg, Germany
| | - Katharina Puzik
- Laboratory for Cell Biology, Philipps-Universität Marburg, Germany
| | - Oliver Bäcker
- Laboratory for Cell Biology, Philipps-Universität Marburg, Germany
| | - Xiaojuan Liu
- Laboratory for Cell Biology, Philipps-Universität Marburg, Germany
| | - Simone Stork
- Laboratory for Cell Biology, Philipps-Universität Marburg, Germany
| | - Julian Schulz
- Laboratory for Cell Biology, Philipps-Universität Marburg, Germany
| | - Thomas Heimerl
- LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Germany
| | - Andreas Klingl
- LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Germany
| | - Stefan Zauner
- Laboratory for Cell Biology, Philipps-Universität Marburg, Germany
| | - Uwe G Maier
- Laboratory for Cell Biology, Philipps-Universität Marburg, Germany; LOEWE Centre for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Germany.
| |
Collapse
|
12
|
Taheri R, Razmjou A, Szekely G, Hou J, Ghezelbash GR. Biodesalination-On harnessing the potential of nature's desalination processes. BIOINSPIRATION & BIOMIMETICS 2016; 11:041001. [PMID: 27387607 DOI: 10.1088/1748-3190/11/4/041001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Water scarcity is now one of the major global crises, which has affected many aspects of human health, industrial development and ecosystem stability. To overcome this issue, water desalination has been employed. It is a process to remove salt and other minerals from saline water, and it covers a variety of approaches from traditional distillation to the well-established reverse osmosis. Although current water desalination methods can effectively provide fresh water, they are becoming increasingly controversial due to their adverse environmental impacts including high energy intensity and highly concentrated brine waste. For millions of years, microorganisms, the masters of adaptation, have survived on Earth without the excessive use of energy and resources or compromising their ambient environment. This has encouraged scientists to study the possibility of using biological processes for seawater desalination and the field has been exponentially growing ever since. Here, the term biodesalination is offered to cover all of the techniques which have their roots in biology for producing fresh water from saline solution. In addition to reviewing and categorizing biodesalination processes for the first time, this review also reveals unexplored research areas in biodesalination having potential to be used in water treatment.
Collapse
Affiliation(s)
- Reza Taheri
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | | | | | | | | |
Collapse
|
13
|
Xu F, Wu X, Jiang LH, Zhao H, Pan J. An organelle K+ channel is required for osmoregulation in Chlamydomonas reinhardtii. J Cell Sci 2016; 129:3008-14. [PMID: 27311484 DOI: 10.1242/jcs.188441] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/13/2016] [Indexed: 11/20/2022] Open
Abstract
Fresh water protozoa and algae face hypotonic challenges in their living environment. Many of them employ a contractile vacuole system to uptake excessive water from the cytoplasm and expel it to the environment to achieve cellular homeostasis. K(+), a major osmolyte in contractile vacuole, is predicted to create higher osmolarity for water influx. Molecular mechanisms for K(+) permeation through the plasma membrane have been well studied. However, how K(+) permeates organelles such as the contractile vacuole is not clear. Here, we show that the six-transmembrane K(+) channel KCN11 in Chlamydomonas is exclusively localized to contractile vacuole. Ectopic expression of KCN11 in HEK293T cells results in voltage-gated K(+) channel activity. Disruption of the gene or mutation of key residues for K(+) permeability of the channel leads to dysfunction of cell osmoregulation in very hypotonic conditions. The contractile cycle is inhibited in the mutant cells with a slower rate of contractile vacuole swelling, leading to cell death. These data demonstrate a new role for six-transmembrane K(+) channels in contractile vacuole functioning and provide further insights into osmoregulation mediated by the contractile vacuole.
Collapse
Affiliation(s)
- Feifei Xu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaoan Wu
- Laboratory of Biomechanics, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Lin-Hua Jiang
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Hucheng Zhao
- Laboratory of Biomechanics, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province 266071, China
| |
Collapse
|
14
|
Mangeon A, Pardal R, Menezes-Salgueiro AD, Duarte GL, de Seixas R, Cruz FP, Cardeal V, Magioli C, Ricachenevsky FK, Margis R, Sachetto-Martins G. AtGRP3 Is Implicated in Root Size and Aluminum Response Pathways in Arabidopsis. PLoS One 2016; 11:e0150583. [PMID: 26939065 PMCID: PMC4777284 DOI: 10.1371/journal.pone.0150583] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
AtGRP3 is a glycine-rich protein (GRP) from Arabidopsis thaliana shown to interact with the receptor-like kinase AtWAK1 in yeast, in vitro and in planta. In this work, phenotypic analyses using transgenic plants were performed in order to better characterize this GRP. Plants of two independent knockout alleles of AtGRP3 develop longer roots suggesting its involvement in root size determination. Confocal microscopy analysis showed an abnormal cell division and elongation in grp3-1 knockout mutants. Moreover, we also show that grp3-1 exhibits an enhanced Aluminum (Al) tolerance, a feature also described in AtWAK1 overexpressing plants. Together, these results implicate AtGRP3 function root size determination during development and in Al stress.
Collapse
Affiliation(s)
- Amanda Mangeon
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941–617, Brazil
| | - Renan Pardal
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941–617, Brazil
| | - Adriana Dias Menezes-Salgueiro
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941–617, Brazil
| | - Guilherme Leitão Duarte
- Programa de Pós-Graduação em Botânica (PPGBot), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501–970, Brazil
| | - Ricardo de Seixas
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941–617, Brazil
| | - Fernanda P. Cruz
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941–617, Brazil
| | - Vanessa Cardeal
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941–617, Brazil
| | - Claudia Magioli
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941–617, Brazil
| | | | - Rogério Margis
- Centro de Biotecnologia e Departamento de Biofísica da Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501–970, Brazil
| | - Gilberto Sachetto-Martins
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941–617, Brazil
| |
Collapse
|
15
|
Charrier A, Bérard JB, Bougaran G, Carrier G, Lukomska E, Schreiber N, Fournier F, Charrier AF, Rouxel C, Garnier M, Cadoret JP, Saint-Jean B. High-affinity nitrate/nitrite transporter genes (Nrt2) in Tisochrysis lutea: identification and expression analyses reveal some interesting specificities of Haptophyta microalgae. PHYSIOLOGIA PLANTARUM 2015; 154:572-90. [PMID: 25640753 DOI: 10.1111/ppl.12330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 05/26/2023]
Abstract
Microalgae have a diversity of industrial applications such as feed, food ingredients, depuration processes and energy. However, microalgal production costs could be substantially improved by controlling nutrient intake. Accordingly, a better understanding of microalgal nitrogen metabolism is essential. Using in silico analysis from transcriptomic data concerning the microalgae Tisochrysis lutea, four genes encoding putative high-affinity nitrate/nitrite transporters (TlNrt2) were identified. Unlike most of the land plants and microalgae, cloning of genomic sequences and their alignment with complementary DNA (cDNA) sequences did not reveal the presence of introns in all TlNrt2 genes. The deduced TlNRT2 protein sequences showed similarities to NRT2 proteins of other phyla such as land plants and green algae. However, some interesting specificities only known among Haptophyta were also revealed, especially an additional sequence of 100 amino acids forming an atypical extracellular loop located between transmembrane domains 9 and 10 and the function of which remains to be elucidated. Analyses of individual TlNrt2 gene expression with different nitrogen sources and concentrations were performed. TlNrt2.1 and TlNrt2.3 were strongly induced by low NO3 (-) concentration and repressed by NH4 (+) substrate and were classified as inducible genes. TlNrt2.2 was characterized by a constitutive pattern whatever the substrate. Finally, TlNrt2.4 displayed an atypical response that was not reported earlier in literature. Interestingly, expression of TlNrt2.4 was rather related to internal nitrogen quota level than external nitrogen concentration. This first study on nitrogen metabolism of T. lutea opens avenues for future investigations on the function of these genes and their implication for industrial applications.
Collapse
Affiliation(s)
- Aurélie Charrier
- Physiology and Biotechnology of Algae Laboratory, IFREMER, Nantes, 44311, France
| | - Jean-Baptiste Bérard
- Physiology and Biotechnology of Algae Laboratory, IFREMER, Nantes, 44311, France
| | - Gaël Bougaran
- Physiology and Biotechnology of Algae Laboratory, IFREMER, Nantes, 44311, France
| | - Grégory Carrier
- Physiology and Biotechnology of Algae Laboratory, IFREMER, Nantes, 44311, France
| | - Ewa Lukomska
- Physiology and Biotechnology of Algae Laboratory, IFREMER, Nantes, 44311, France
| | - Nathalie Schreiber
- Physiology and Biotechnology of Algae Laboratory, IFREMER, Nantes, 44311, France
| | - Flora Fournier
- Physiology and Biotechnology of Algae Laboratory, IFREMER, Nantes, 44311, France
| | - Aurélie F Charrier
- Physiology and Biotechnology of Algae Laboratory, IFREMER, Nantes, 44311, France
| | - Catherine Rouxel
- Physiology and Biotechnology of Algae Laboratory, IFREMER, Nantes, 44311, France
| | - Matthieu Garnier
- Physiology and Biotechnology of Algae Laboratory, IFREMER, Nantes, 44311, France
| | - Jean-Paul Cadoret
- Physiology and Biotechnology of Algae Laboratory, IFREMER, Nantes, 44311, France
| | - Bruno Saint-Jean
- Physiology and Biotechnology of Algae Laboratory, IFREMER, Nantes, 44311, France
| |
Collapse
|
16
|
Hamamoto S, Uozumi N. Organelle-localized potassium transport systems in plants. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:743-7. [PMID: 24810770 DOI: 10.1016/j.jplph.2013.09.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/06/2013] [Accepted: 09/06/2013] [Indexed: 05/03/2023]
Abstract
Some intracellular organelles found in eukaryotes such as plants have arisen through the endocytotic engulfment of prokaryotic cells. This accounts for the presence of plant membrane intrinsic proteins that have homologs in prokaryotic cells. Other organelles, such as those of the endomembrane system, are thought to have evolved through infolding of the plasma membrane. Acquisition of intracellular components (organelles) in the cells supplied additional functions for survival in various natural environments. The organelles are surrounded by biological membranes, which contain membrane-embedded K(+) transport systems allowing K(+) to move across the membrane. K(+) transport systems in plant organelles act coordinately with the plasma membrane intrinsic K(+) transport systems to maintain cytosolic K(+) concentrations. Since it is sometimes difficult to perform direct studies of organellar membrane proteins in plant cells, heterologous expression in yeast and Escherichia coli has been used to elucidate the function of plant vacuole K(+) channels and other membrane transporters. The vacuole is the largest organelle in plant cells; it has an important task in the K(+) homeostasis of the cytoplasm. The initial electrophysiological measurements of K(+) transport have categorized three classes of plant vacuolar cation channels, and since then molecular cloning approaches have led to the isolation of genes for a number of K(+) transport systems. Plants contain chloroplasts, derived from photoautotrophic cyanobacteria. A novel K(+) transport system has been isolated from cyanobacteria, which may add to our understanding of K(+) flux across the thylakoid membrane and the inner membrane of the chloroplast. This chapter will provide an overview of recent findings regarding plant organellar K(+) transport proteins.
Collapse
Affiliation(s)
- Shin Hamamoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan.
| |
Collapse
|
17
|
Feeney M, Frigerio L, Kohalmi SE, Cui Y, Menassa R. Reprogramming cells to study vacuolar development. FRONTIERS IN PLANT SCIENCE 2013; 4:493. [PMID: 24348496 PMCID: PMC3848493 DOI: 10.3389/fpls.2013.00493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 11/15/2013] [Indexed: 05/29/2023]
Abstract
During vegetative and embryonic developmental transitions, plant cells are massively reorganized to support the activities that will take place during the subsequent developmental phase. Studying cellular and subcellular changes that occur during these short transitional periods can sometimes present challenges, especially when dealing with Arabidopsis thaliana embryo and seed tissues. As a complementary approach, cellular reprogramming can be used as a tool to study these cellular changes in another, more easily accessible, tissue type. To reprogram cells, genetic manipulation of particular regulatory factors that play critical roles in establishing or repressing the seed developmental program can be used to bring about a change of cell fate. During different developmental phases, vacuoles assume different functions and morphologies to respond to the changing needs of the cell. Lytic vacuoles (LVs) and protein storage vacuoles (PSVs) are the two main vacuole types found in flowering plants such as Arabidopsis. Although both are morphologically distinct and carry out unique functions, they also share some similar activities. As the co-existence of the two vacuole types is short-lived in plant cells, how they replace each other has been a long-standing curiosity. To study the LV to PSV transition, LEAFY COTYLEDON2, a key transcriptional regulator of seed development, was overexpressed in vegetative cells to activate the seed developmental program. At the cellular level, Arabidopsis leaf LVs were observed to convert to PSV-like organelles. This presents the opportunity for further research to elucidate the mechanism of LV to PSV transitions. Overall, this example demonstrates the potential usefulness of cellular reprogramming as a method to study cellular processes that occur during developmental transitions.
Collapse
Affiliation(s)
- Mistianne Feeney
- Department of Biology, University of Western OntarioLondon, ON, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
- School of Life Sciences, University of WarwickCoventry, UK
| | | | | | - Yuhai Cui
- Department of Biology, University of Western OntarioLondon, ON, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
| | - Rima Menassa
- Department of Biology, University of Western OntarioLondon, ON, Canada
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
| |
Collapse
|
18
|
Kawafune K, Hongoh Y, Hamaji T, Nozaki H. Molecular identification of rickettsial endosymbionts in the non-phagotrophic volvocalean green algae. PLoS One 2012; 7:e31749. [PMID: 22363720 PMCID: PMC3283676 DOI: 10.1371/journal.pone.0031749] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/12/2012] [Indexed: 02/01/2023] Open
Abstract
Background The order Rickettsiales comprises Gram-negative obligate intracellular bacteria (also called rickettsias) that are mainly associated with arthropod hosts. This group is medically important because it contains human-pathogenic species that cause dangerous diseases. Until now, there has been no report of non-phagotrophic photosynthetic eukaryotes, such as green plants, harboring rickettsias. Methodology/Principal Findings We examined the bacterial endosymbionts of two freshwater volvocalean green algae: unicellular Carteria cerasiformis and colonial Pleodorina japonica. Epifluorescence microscopy using 4′-6-deamidino-2-phenylindole staining revealed the presence of endosymbionts in all C. cerasiformis NIES-425 cells, and demonstrated a positive correlation between host cell size and the number of endosymbionts. Strains both containing and lacking endosymbionts of C. cerasiformis (NIES-425 and NIES-424) showed a >10-fold increase in cell number and typical sigmoid growth curves over 192 h. A phylogenetic analysis of 16 S ribosomal (r)RNA gene sequences from the endosymbionts of C. cerasiformis and P. japonica demonstrated that they formed a robust clade (hydra group) with endosymbionts of various non-arthropod hosts within the family Rickettsiaceae. There were significantly fewer differences in the 16 S rRNA sequences of the rickettsiacean endosymbionts between C. cerasiformis and P. japonica than in the chloroplast 16 S rRNA or 18 S rRNA of the host volvocalean cells. Fluorescence in situ hybridization demonstrated the existence of the rickettsiacean endosymbionts in the cytoplasm of two volvocalean species. Conclusions/Significance The rickettsiacean endosymbionts are likely not harmful to their volvocalean hosts and may have been recently transmitted from other non-arthropod organisms. Because rickettsias are the closest relatives of mitochondria, incipient stages of mitochondrial endosymbiosis may be deduced using both strains with and without C. cerasiformis endosymbionts.
Collapse
Affiliation(s)
- Kaoru Kawafune
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yuichi Hongoh
- Department of Biological Sciences, School of Bioscience and Biotechnology, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan
| | - Takashi Hamaji
- Department of Botany, Graduate School of Science, Kyoto University, Oiwake-cho, Kita-shirakawa, Sakyo-ku, Kyoto, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
19
|
Saito C, Uemura T, Awai C, Tominaga M, Ebine K, Ito J, Ueda T, Abe H, Morita MT, Tasaka M, Nakano A. The occurrence of 'bulbs', a complex configuration of the vacuolar membrane, is affected by mutations of vacuolar SNARE and phospholipase in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:64-73. [PMID: 21645145 DOI: 10.1111/j.1365-313x.2011.04665.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The plant vacuole fulfills a variety of functions, and is essential for plant growth and development. We previously identified complex and mobile structures on the continuous vacuolar membrane, which we refer to as 'bulbs'. To ascertain their biological significance and function, we searched for markers associated with bulbs, and mutants that show abnormalities with respect to bulbs. We observed bulb-like structures after expression of non-membranous proteins as well as the functional soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) molecules VAM3 and VTI11. Bulbs are formed in more tissues than previously reported, including flowering organs, suspension culture cells, endodermal cells in the flowering stem, and at very early stages of seed germination. Using existing and newly developed marker lines, we found that the frequency of bulb occurrence is significantly decreased in multiple shoot gravitropism (sgr) mutants, which are known to have a defect in vacuolar membrane properties in endodermal cells. Based on results with new marker lines, which enabled us to observe the process of bulb biogenesis, and analysis of the phenotypes of these mutants, we propose multiple mechanisms for bulb formation, one of which may be that used for formation of transvacuolar strands.
Collapse
Affiliation(s)
- Chieko Saito
- Molecular Membrane Biology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pittman JK. Vacuolar Ca(2+) uptake. Cell Calcium 2011; 50:139-46. [PMID: 21310481 DOI: 10.1016/j.ceca.2011.01.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 12/31/2010] [Accepted: 01/03/2011] [Indexed: 12/22/2022]
Abstract
Calcium transporters that mediate the removal of Ca(2+) from the cytosol and into internal stores provide a critical role in regulating Ca(2+) signals following stimulus induction and in preventing calcium toxicity. The vacuole is a major calcium store in many organisms, particularly plants and fungi. Two main pathways facilitate the accumulation of Ca(2+) into vacuoles, Ca(2+)-ATPases and Ca(2+)/H(+) exchangers. Here I review the biochemical and regulatory features of these transporters that have been characterised in yeast and plants. These Ca(2+) transport mechanisms are compared with those being identified from other vacuolated organisms including algae and protozoa. Studies suggest that Ca(2+) uptake into vacuoles and other related acidic Ca(2+) stores occurs by conserved mechanisms which developed early in evolution.
Collapse
Affiliation(s)
- Jon K Pittman
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
21
|
Miranda K, Pace DA, Cintron R, Rodrigues JCF, Fang J, Smith A, Rohloff P, Coelho E, de Haas F, de Souza W, Coppens I, Sibley LD, Moreno SNJ. Characterization of a novel organelle in Toxoplasma gondii with similar composition and function to the plant vacuole. Mol Microbiol 2010; 76:1358-75. [PMID: 20398214 DOI: 10.1111/j.1365-2958.2010.07165.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Toxoplasma gondii belongs to the phylum Apicomplexa and is an important cause of congenital disease and infection in immunocompromised patients. Like most apicomplexans, T. gondii possesses several plant-like features, such as the chloroplast-like organelle, the apicoplast. We describe and characterize a novel organelle in T. gondii tachyzoites, which is visible by light microscopy and possesses a broad similarity to the plant vacuole. Electron tomography shows the interaction of this vacuole with other organelles. The presence of a plant-like vacuolar proton pyrophosphatase (TgVP1), a vacuolar proton ATPase, a cathepsin L-like protease (TgCPL), an aquaporin (TgAQP1), as well as Ca(2+)/H(+) and Na(+)/H(+) exchange activities, supports similarity to the plant vacuole. Biochemical characterization of TgVP1 in enriched fractions shows a functional similarity to the respective plant enzyme. The organelle is a Ca(2+) store and appears to have protective effects against salt stress potentially linked to its sodium transport activity. In intracellular parasites, the organelle fragments, with some markers colocalizing with the late endosomal marker, Rab7, suggesting its involvement with the endocytic pathway. Studies on the characterization of this novel organelle will be relevant to the identification of novel targets for chemotherapy against T. gondii and other apicomplexan parasites as well.
Collapse
Affiliation(s)
- Kildare Miranda
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yagisawa F, Nishida K, Yoshida M, Ohnuma M, Shimada T, Fujiwara T, Yoshida Y, Misumi O, Kuroiwa H, Kuroiwa T. Identification of novel proteins in isolated polyphosphate vacuoles in the primitive red alga Cyanidioschyzon merolae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:882-93. [PMID: 19709388 DOI: 10.1111/j.1365-313x.2009.04008.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant vacuoles are organelles bound by a single membrane, and involved in various functions such as intracellular digestion, metabolite storage, and secretion. To understand their evolution and fundamental mechanisms, characterization of vacuoles in primitive plants would be invaluable. Algal cells often contain polyphosphate-rich compartments, which are thought to be the counterparts of seed plant vacuoles. Here, we developed a method for isolating these vacuoles from Cyanidioschyzon merolae, and identified their proteins by MALDI TOF-MS. The vacuoles were of unexpectedly high density, and were highly enriched at the boundary between 62 and 80% w/v iodixanol by density-gradient ultracentrifugation. The vacuole-containing fraction was subjected to SDS-PAGE, and a total of 46 proteins were identified, including six lytic enzymes, 13 transporters, six proteins for membrane fusion or vesicle trafficking, five non-lytic enzymes, 13 proteins of unknown function, and three miscellaneous proteins. Fourteen proteins were homologous to known vacuolar or lysosomal proteins from seed plants, yeasts or mammals, suggesting functional and evolutionary relationships between C. merolae vacuoles and these compartments. The vacuolar localization of four novel proteins, namely CMP249C (metallopeptidase), CMJ260C (prenylated Rab receptor), CMS401C (ABC transporter) and CMT369C (o-methyltransferase), was confirmed by labeling with specific antibodies or transient expression of hemagglutinin-tagged proteins. The results presented here provide insights into the proteome of C. merolae vacuoles and shed light on their functions, as well as indicating new features.
Collapse
Affiliation(s)
- Fumi Yagisawa
- Research Information Center for Extremophiles, Rikkyo (St Paul's) University, Nishi-Ikebukuro, Tokyo 171-8501, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mangeon A, Magioli C, Menezes-Salgueiro AD, Cardeal V, de Oliveira C, Galvão VC, Margis R, Engler G, Sachetto-Martins G. AtGRP5, a vacuole-located glycine-rich protein involved in cell elongation. PLANTA 2009; 230:253-65. [PMID: 19434422 DOI: 10.1007/s00425-009-0940-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Accepted: 04/22/2009] [Indexed: 05/10/2023]
Abstract
Although several glycine-rich protein (GRP) genes were isolated and characterized, very little is known about their function. The primary structure of AtGRP5 from Arabidopsis thaliana has a signal peptide followed by a region with high glycine content. In this work, green fluorescent protein fusions were obtained in order to characterize the sub-cellular localization of the AtGRP5 protein. The results indicated that this protein is the first described vacuolar GRP. Sense, antisense and RNAi transgenic A. thaliana plants were generated and analyzed phenotypically. Plants overexpressing AtGRP5 showed longer roots and an enhanced elongation of the inflorescence axis, while antisense and RNAi plants demonstrated the opposite phenotype. The analysis of a knockout T-DNA line corroborates the phenotypes obtained with the antisense and RNAi plants. Altogether, these results suggest that this vacuolar GRP could be involved in organ growth by promoting cell elongation processes.
Collapse
Affiliation(s)
- Amanda Mangeon
- Laboratório de Genômica Funcional e Transdução de Sinal, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, C.P. 68011, 21941-970, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Chapter 4 Functions of RAB and SNARE Proteins in Plant Life. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 274:183-233. [DOI: 10.1016/s1937-6448(08)02004-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Ebine K, Ueda T. Unique mechanism of plant endocytic/vacuolar transport pathways. JOURNAL OF PLANT RESEARCH 2009; 122:21-30. [PMID: 19082690 DOI: 10.1007/s10265-008-0200-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Accepted: 10/23/2008] [Indexed: 05/08/2023]
Abstract
The post-Golgi traffic network in plant cells is highly complex, which is correlated with the large number of genes related to this function. RABs and SNAREs are key regulators of tethering and fusion of transport vesicles to target membranes, and the numbers of these regulators have also expanded in plant lineages. In addition to this increase in the net number of genes, plants also seem to have evolved new gene families tailored to fulfill plant-unique functions. In this article, we summarize recent progress in studies on plant-unique RABs and SNAREs functioning in post-Golgi trafficking, with a special focus on the endocytic pathway.
Collapse
Affiliation(s)
- Kazuo Ebine
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
26
|
|