1
|
Esmaeeli S, Murphy K, Swords GM, Ibrahim BA, Brown JW, Llano DA. Visual hallucinations, thalamocortical physiology and Lewy body disease: A review. Neurosci Biobehav Rev 2019; 103:337-351. [PMID: 31195000 DOI: 10.1016/j.neubiorev.2019.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 06/03/2019] [Accepted: 06/08/2019] [Indexed: 12/22/2022]
Abstract
One of the core diagnostic criteria for Dementia with Lewy Bodies (DLB) is the presence of visual hallucinations. The presence of hallucinations, along with fluctuations in the level of arousal and sleep disturbance, point to potential pathological mechanisms at the level of the thalamus. However, the potential role of thalamic dysfunction in DLB, particularly as it relates to the presence of formed visual hallucinations is not known. Here, we review the literature on the pathophysiology of DLB with respect to modern theories of thalamocortical function and attempt to derive an understanding of how such hallucinations arise. Based on the available literature, we propose that combined thalamic-thalamic reticular nucleus and thalamocortical pathology may explain the phenomenology of visual hallucinations in DLB. In particular, diminished α7 cholinergic activity in the thalamic reticular nucleus may critically disinhibit thalamocortical activity. Further, concentrated pathological changes within the posterior regions of the thalamus may explain the predilection for the hallucinations to be visual in nature.
Collapse
Affiliation(s)
- Shooka Esmaeeli
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Kathleen Murphy
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Gabriel M Swords
- University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Baher A Ibrahim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Jeffrey W Brown
- University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Daniel A Llano
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States; Carle Neuroscience Institute, Urbana, IL, United States.
| |
Collapse
|
2
|
Rangel-Barajas C, Rebec GV. Dysregulation of Corticostriatal Connectivity in Huntington's Disease: A Role for Dopamine Modulation. J Huntingtons Dis 2017; 5:303-331. [PMID: 27983564 PMCID: PMC5181679 DOI: 10.3233/jhd-160221] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Aberrant communication between striatum, the main information processing unit of the basal ganglia, and cerebral cortex plays a critical role in the emergence of Huntington’s disease (HD), a fatal monogenetic condition that typically strikes in the prime of life. Although both striatum and cortex undergo substantial cell loss over the course of HD, corticostriatal circuits become dysfunctional long before neurons die. Understanding the dysfunction is key to developing effective strategies for treating a progressively worsening triad of motor, cognitive, and psychiatric symptoms. Cortical output neurons drive striatal activity through the release of glutamate, an excitatory amino acid. Striatal outputs, in turn, release γ-amino butyric acid (GABA) and exert inhibitory control over downstream basal ganglia targets. Ample evidence from transgenic rodent models points to dysregulation of corticostriatal glutamate transmission along with corresponding changes in striatal GABA release as underlying factors in the HD behavioral phenotype. Another contributor is dysregulation of dopamine (DA), a modulator of both glutamate and GABA transmission. In fact, pharmacological manipulation of DA is the only currently available treatment for HD symptoms. Here, we review data from animal models and human patients to evaluate the role of DA in HD, including DA interactions with glutamate and GABA within the context of dysfunctional corticostriatal circuitry.
Collapse
Affiliation(s)
| | - George V. Rebec
- Correspondence to: George V. Rebec, PhD, Department of Psychological and Brain Sciences, Program in
Neuroscience, Indiana University, 1101 E. 10th Street, Bloomington, IN 47405-7007, USA. Tel.: +1 812 855 4832;
Fax: +1 812 855 4520; E-mail:
| |
Collapse
|
3
|
Meunier CNJ, Chameau P, Fossier PM. Modulation of Synaptic Plasticity in the Cortex Needs to Understand All the Players. Front Synaptic Neurosci 2017; 9:2. [PMID: 28203201 PMCID: PMC5285384 DOI: 10.3389/fnsyn.2017.00002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/13/2017] [Indexed: 12/19/2022] Open
Abstract
The prefrontal cortex (PFC) is involved in cognitive tasks such as working memory, decision making, risk assessment and regulation of attention. These functions performed by the PFC are supposed to rely on rhythmic electrical activity generated by neuronal network oscillations determined by a precise balance between excitation and inhibition balance (E/I balance) resulting from the coordinated activities of recurrent excitation and feedback and feedforward inhibition. Functional alterations in PFC functions have been associated with cognitive deficits in several pathologies such as major depression, anxiety and schizophrenia. These pathological situations are correlated with alterations of different neurotransmitter systems (i.e., serotonin (5-HT), dopamine (DA), acetylcholine…) that result in alterations of the E/I balance. The aim of this review article is to cover the basic aspects of the regulation of the E/I balance as well as to highlight the importance of the complementarity role of several neurotransmitters in the modulation of the plasticity of excitatory and inhibitory synapses. We illustrate our purpose by recent findings that demonstrate that 5-HT and DA cooperate to regulate the plasticity of excitatory and inhibitory synapses targeting layer 5 pyramidal neurons (L5PyNs) of the PFC and to fine tune the E/I balance. Using a method based on the decomposition of the synaptic conductance into its excitatory and inhibitory components, we show that concomitant activation of D1-like receptors (D1Rs) and 5-HT1ARs, through a modulation of NMDA receptors, favors long term potentiation (LTP) of both excitation and inhibition and consequently does not modify the E/I balance. We also demonstrate that activation of D2-receptors requires functional 5-HT1ARs to shift the E-I balance towards more inhibition and to favor long term depression (LTD) of excitatory synapses through the activation of glycogen synthase kinase 3β (GSK3β). This cooperation between different neurotransmitters is particularly relevant in view of pathological situations in which alterations of one neurotransmitter system will also have consequences on the regulation of synaptic efficacy by other neurotransmitters. This opens up new perspectives in the development of therapeutic strategies for the pharmacological treatment of neuronal disorders.
Collapse
Affiliation(s)
- Claire N J Meunier
- Institut de Neurosciences Paris-Saclay (NeuroPSI), UMR 91197 CNRS-Université Paris-Saclay Paris, France
| | - Pascal Chameau
- Swammerdam Institute for Life Sciences, Center for NeuroScience, University of Amsterdam Amsterdam, Netherlands
| | - Philippe M Fossier
- Institut de Neurosciences Paris-Saclay (NeuroPSI), UMR 91197 CNRS-Université Paris-Saclay Paris, France
| |
Collapse
|
4
|
Krzyżanowska M, Steiner J, Karnecki K, Kaliszan M, Brisch R, Wiergowski M, Braun K, Jankowski Z, Gos T. Decreased ribosomal DNA transcription in dorsal raphe nucleus neurons differentiates between suicidal and non-suicidal death. Eur Arch Psychiatry Clin Neurosci 2016; 266:217-24. [PMID: 26590846 PMCID: PMC4819736 DOI: 10.1007/s00406-015-0655-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/12/2015] [Indexed: 12/11/2022]
Abstract
An involvement of the central serotonergic system has been implicated in the pathogenesis of suicide. The dorsal raphe nucleus (DRN) is the main source of serotonergic innervation of forebrain limbic structures disturbed in suicidal behaviour. The study was carried out on paraffin-embedded brainstem blocks containing the DRN obtained from 27 suicide completers (predominantly violent) with unknown psychiatric diagnosis and 30 non-suicidal controls. The transcriptional activity of ribosomal DNA (rDNA) in DRN neurons as a surrogate marker of protein biosynthesis was evaluated by the AgNOR silver staining method. Significant decreases in AgNOR parameters suggestive of attenuated rDNA activity were found in the cumulative analysis of all DRN subnuclei in suicide victims versus controls (U test P values < 0.00001). Our findings suggest that the decreased activity of rDNA transcription in DRN neurons plays an important role in suicide pathogenesis. The method accuracy represented by the area under receiver operating characteristic curve (>80 %) suggests a diagnostic value of the observed effect. However, the possible application of the method in forensic differentiation diagnostics between suicidal and non-suicidal death needs further research.
Collapse
Affiliation(s)
- Marta Krzyżanowska
- />Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Johann Steiner
- />Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Karol Karnecki
- />Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Michał Kaliszan
- />Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Ralf Brisch
- />Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Marek Wiergowski
- />Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Katharina Braun
- />Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Zbigniew Jankowski
- />Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204, Gdańsk, Poland. .,Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany. .,Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany.
| |
Collapse
|
5
|
Krzyżanowska M, Steiner J, Brisch R, Mawrin C, Busse S, Braun K, Jankowski Z, Bernstein HG, Bogerts B, Gos T. Ribosomal DNA transcription in dorsal raphe nucleus neurons is increased in residual schizophrenia compared to depressed patients with affective disorders. Psychiatry Res 2015; 230:233-41. [PMID: 26350704 DOI: 10.1016/j.psychres.2015.08.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 08/13/2015] [Accepted: 08/30/2015] [Indexed: 11/15/2022]
Abstract
The central serotonergic system is implicated differentially in the pathogenesis of depression and schizophrenia. The dorsal raphe nucleus (DRN) is the main source of serotonergic innervation of forebrain limbic structures disturbed in both disorders. The study was carried out on paraffin-embedded brains from 27 depressed (15 major depressive disorder, MDD and 12 bipolar disorder, BD) and 17 schizophrenia (9 residual and 8 paranoid) patients and 28 matched controls without mental disorders. The transcriptional activity of ribosomal DNA (rDNA) in DRN neurons was evaluated by the AgNOR silver staining method. A significant effect of diagnosis on rDNA activity was found in the cumulative analysis of all DRN subnuclei. Further analysis revealed an increase in this activity in residual (but not paranoid) schizophrenia compared to depressed (both MDD and BD) patients. The effect was most probably neither confounded by suicide nor related to antidepressant and antipsychotic medication. Our findings suggest that increased activity of rDNA in DRN neurons is a distinct phenomenon in residual schizophrenia, related presumably to differentially disturbed inputs to the DRN and/or their local transformation compared with depressive episodes in patients with affective disorders.
Collapse
Affiliation(s)
- Marta Krzyżanowska
- Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Johann Steiner
- Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Ralf Brisch
- Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | - Christian Mawrin
- Institute of Neuropathology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Stefan Busse
- Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Katharina Braun
- Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany
| | - Zbigniew Jankowski
- Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland
| | | | - Bernhard Bogerts
- Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany
| | - Tomasz Gos
- Department of Forensic Medicine, Medical University of Gdańsk, ul. Dębowa 23, 80-204 Gdańsk, Poland; Department of Psychiatry, Otto-von-Guericke-University, Magdeburg, Germany; Department of Zoology/Developmental Neurobiology, Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany.
| |
Collapse
|
6
|
Xu S, Gullapalli RP, Frost DO. Olanzapine antipsychotic treatment of adolescent rats causes long term changes in glutamate and GABA levels in the nucleus accumbens. Schizophr Res 2015; 161:452-7. [PMID: 25487700 PMCID: PMC4308953 DOI: 10.1016/j.schres.2014.10.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 10/20/2014] [Accepted: 10/23/2014] [Indexed: 10/24/2022]
Abstract
Atypical antipsychotic drugs (AAPDs) are widely used in children and adolescents to treat a variety of psychiatric disorders. However, little is known about the long-term effects of AAPD treatment before the brain is fully developed. Indeed, we and others have previously reported that treatment of adolescent rats with olanzapine (OLA; a widely prescribed AAPD) on postnatal days 28-49, under dosing conditions that approximate those employed therapeutically in humans, causes long-term behavioral and neurobiological perturbations. We have begun to study the mechanisms of these effects. Dopamine (DA) and serotonin (5HT) regulate many neurodevelopmental processes. Currently approved AAPDs exert their therapeutic effects principally through their DAergic activities, although in schizophrenia (SZ) and some other diseases for which AAPDs are prescribed, DAergic dysfunction is accompanied by abnormalities of glutamatergic (GLUergic) and γ-aminobutyric acidergic (GABAergic) transmission. Here, we use proton magnetic resonance spectroscopy ((1)H MRS) to investigate the effects of adolescent OLA administration on GABA and GLU levels. We found that the treatment caused long-term reductions in the levels of both GLU and GABA in the nucleus accumbens (NAc) of adult rats treated with OLA during adolescence. The NAc is a key node in the brain's "reward" system, whose function is also disrupted in schizophrenia. Further research into potential, OLA-induced changes in the levels of GLU and GABA in the NAc and other brain areas, and the dynamics and mechanisms of those changes, are an essential step for devising new adjunct therapies for existing AAPDs and for designing new drugs that increase therapeutic effects and reduce long-term abnormalities when administered to pediatric patients.
Collapse
Affiliation(s)
- Su Xu
- Dept. of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rao P Gullapalli
- Dept. of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Douglas O Frost
- Dept. of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Dept. of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
7
|
Hida H, Mouri A, Mori K, Matsumoto Y, Seki T, Taniguchi M, Yamada K, Iwamoto K, Ozaki N, Nabeshima T, Noda Y. Blonanserin ameliorates phencyclidine-induced visual-recognition memory deficits: the complex mechanism of blonanserin action involving D₃-5-HT₂A and D₁-NMDA receptors in the mPFC. Neuropsychopharmacology 2015; 40:601-13. [PMID: 25120077 PMCID: PMC4289947 DOI: 10.1038/npp.2014.207] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 06/21/2014] [Accepted: 07/21/2014] [Indexed: 11/09/2022]
Abstract
Blonanserin differs from currently used serotonin 5-HT₂A/dopamine-D₂ receptor antagonists in that it exhibits higher affinity for dopamine-D₂/₃ receptors than for serotonin 5-HT₂A receptors. We investigated the involvement of dopamine-D₃ receptors in the effects of blonanserin on cognitive impairment in an animal model of schizophrenia. We also sought to elucidate the molecular mechanism underlying this involvement. Blonanserin, as well as olanzapine, significantly ameliorated phencyclidine (PCP)-induced impairment of visual-recognition memory, as demonstrated by the novel-object recognition test (NORT) and increased extracellular dopamine levels in the medial prefrontal cortex (mPFC). With blonanserin, both of these effects were antagonized by DOI (a serotonin 5-HT₂A receptor agonist) and 7-OH-DPAT (a dopamine-D₃ receptor agonist), whereas the effects of olanzapine were antagonized by DOI but not by 7-OH-DPAT. The ameliorating effect was also antagonized by SCH23390 (a dopamine-D₁ receptor antagonist) and H-89 (a protein kinase A (PKA) inhibitor). Blonanserin significantly remediated the decrease in phosphorylation levels of PKA at Thr(197) and of NR1 (an essential subunit of N-methyl-D-aspartate (NMDA) receptors) at Ser(897) by PKA in the mPFC after a NORT training session in the PCP-administered mice. There were no differences in the levels of NR1 phosphorylated at Ser(896) by PKC in any group. These results suggest that the ameliorating effect of blonanserin on PCP-induced cognitive impairment is associated with indirect functional stimulation of the dopamine-D₁-PKA-NMDA receptor pathway following augmentation of dopaminergic neurotransmission due to inhibition of both dopamine-D₃ and serotonin 5-HT₂A receptors in the mPFC.
Collapse
Affiliation(s)
- Hirotake Hida
- Division of Clinical Sciences and Neuropsychopharmacology, Graduate School of Pharmacy, Meijo University, Nagoya, Japan
| | - Akihiro Mouri
- Division of Clinical Sciences and Neuropsychopharmacology, Graduate School of Pharmacy, Meijo University, Nagoya, Japan
| | - Kentaro Mori
- Division of Clinical Sciences and Neuropsychopharmacology, Graduate School of Pharmacy, Meijo University, Nagoya, Japan
| | - Yurie Matsumoto
- Division of Clinical Sciences and Neuropsychopharmacology, Graduate School of Pharmacy, Meijo University, Nagoya, Japan,Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Takeshi Seki
- Department of Regional Pharmaceutical Care and Science, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Masayuki Taniguchi
- Division of Clinical Sciences and Neuropsychopharmacology, Graduate School of Pharmacy, Meijo University, Nagoya, Japan
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kunihiro Iwamoto
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Toshitaka Nabeshima
- Department of Regional Pharmaceutical Care and Science, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Yukihiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Graduate School of Pharmacy, Meijo University, Nagoya, Japan,Division of Clinical Sciences and Neuropsychopharmacology, Graduate School of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan, Tel: +81 52 741 6021, Fax: +81 52 741 6023, E-mail:
| |
Collapse
|
8
|
Nullmeier S, Panther P, Frotscher M, Zhao S, Schwegler H. Alterations in the hippocampal and striatal catecholaminergic fiber densities of heterozygous reeler mice. Neuroscience 2014; 275:404-19. [PMID: 24969133 DOI: 10.1016/j.neuroscience.2014.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 06/12/2014] [Accepted: 06/15/2014] [Indexed: 02/02/2023]
Abstract
The heterozygous reeler mouse (HRM), haploinsufficient for reelin, shares several neurochemical and behavioral similarities with patients suffering from schizophrenia. It has been shown that defective reelin signaling influences the mesolimbic dopaminergic pathways in a specific manner. However, there is only little information about the impact of reelin haploinsufficiency on the monoaminergic innervation of different brain areas, known to be involved in the pathophysiology of schizophrenia. In the present study using immunocytochemical procedures, we investigated HRM and wild-type mice (WT) for differences in the densities of tyrosine hydroxylase (TH)-immunoreactive (IR) and serotonin (5-HT)-IR fibers in prefrontal cortex, ventral and dorsal hippocampal formation, amygdala and ventral and dorsal striatum. We found that HRM, compared to WT, shows a significant increase in TH-IR fiber densities in dorsal hippocampal CA1, CA3 and ventral CA1. In contrast, HRM exhibits a significant decrease of TH-IR in the shell of the nucleus accumbens (AcbShell), but no differences in the other brain areas investigated. Overall, no genotype differences were found in the 5-HT-IR fiber densities. In conclusion, these results support the view that reelin haploinsufficiency differentially influences the catecholaminergic (esp. dopaminergic) systems in brain areas associated with schizophrenia. The reelin haploinsufficient mouse may provide a useful model for studying the role of reelin in hippocampal dysfunction and its effect on the dopaminergic system as related to schizophrenia.
Collapse
Affiliation(s)
- S Nullmeier
- Institute of Anatomy, University of Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| | - P Panther
- Department of Stereotactic Neurosurgery, University Hospital of Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| | - M Frotscher
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Martinistrasse 52, D-20246 Hamburg, Germany.
| | - S Zhao
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Martinistrasse 52, D-20246 Hamburg, Germany.
| | - H Schwegler
- Institute of Anatomy, University of Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| |
Collapse
|
9
|
Serotonin-glutamate and serotonin-dopamine reciprocal interactions as putative molecular targets for novel antipsychotic treatments: from receptor heterodimers to postsynaptic scaffolding and effector proteins. Psychopharmacology (Berl) 2013. [PMID: 23179966 DOI: 10.1007/s00213-012-2921-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The physical and functional interactions between serotonin-glutamate and serotonin-dopamine signaling have been suggested to be involved in psychosis pathophysiology and are supposed to be relevant for antipsychotic treatment. Type II metabotropic glutamate receptors (mGluRs) and serotonin 5-HT(2A) receptors have been reported to form heterodimers that modulate G-protein-mediated intracellular signaling differentially compared to mGluR2 and 5-HT(2A) homomers. Additionally, direct evidence has been provided that D(2) and 5-HT(2A) receptors form physical heterocomplexes which exert a functional cross-talk, as demonstrated by studies on hallucinogen-induced signaling. Moving from receptors to postsynaptic density (PSD) scenario, the scaffolding protein PSD-95 is known to interact with N-methyl-D-aspartate (NMDA), D(2) and 5-HT(2) receptors, regulating their activation state. Homer1a, the inducible member of the Homer family of PSD proteins that is implicated in glutamatergic signal transduction, is induced in striatum by antipsychotics with high dopamine receptor affinity and in the cortex by antipsychotics with mixed serotonergic/dopaminergic profile. Signaling molecules, such as Akt and glycogen-synthase-kinase-3 (GSK-3), could be involved in the mechanism of action of antipsychotics, targeting dopamine, serotonin, and glutamate neurotransmission. Altogether, these proteins stand at the crossroad of glutamate-dopamine-serotonin signaling pathways and may be considered as valuable molecular targets for current and new antipsychotics. The aim of this review is to provide a critical appraisal on serotonin-glutamate and serotonin-dopamine interplay to support the idea that next generation schizophrenia pharmacotherapy should not exclusively rely on receptor targeting strategies.
Collapse
|
10
|
Revel FG, Moreau JL, Gainetdinov RR, Ferragud A, Velázquez-Sánchez C, Sotnikova TD, Morairty SR, Harmeier A, Groebke Zbinden K, Norcross RD, Bradaia A, Kilduff TS, Biemans B, Pouzet B, Caron MG, Canales JJ, Wallace TL, Wettstein JG, Hoener MC. Trace amine-associated receptor 1 partial agonism reveals novel paradigm for neuropsychiatric therapeutics. Biol Psychiatry 2012; 72:934-42. [PMID: 22705041 DOI: 10.1016/j.biopsych.2012.05.014] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 05/18/2012] [Accepted: 05/19/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Trace amines, compounds structurally related to classical biogenic amines, represent endogenous ligands of the trace amine-associated receptor 1 (TAAR1). Because trace amines also influence the activity of other targets, selective ligands are needed for the elucidation of TAAR1 function. Here we report on the identification and characterization of the first selective and potent TAAR1 partial agonist. METHODS The TAAR1 partial agonist RO5203648 was evaluated for its binding affinity and functional activity at rodent and primate TAAR1 receptors stably expressed in HEK293 cells, for its physicochemical and pharmacokinetic properties, for its effects on the firing frequency of monoaminergic neurons ex vivo, and for its properties in vivo with genetic and pharmacological models of central nervous system disorders. RESULTS RO5203648 showed high affinity and potency at TAAR1, high selectivity versus other targets, and favorable pharmacokinetic properties. In mouse brain slices, RO5203648 increased the firing frequency of dopaminergic and serotonergic neurons in the ventral tegmental area and the dorsal raphe nucleus, respectively. In various behavioral paradigms in rodents and monkeys, RO5203648 demonstrated clear antipsychotic- and antidepressant-like activities as well as potential anxiolytic-like properties. Furthermore, it attenuated drug-taking behavior and was highly effective in promoting attention, cognitive performance, and wakefulness. CONCLUSIONS With the first potent and selective TAAR1 partial agonist, RO5203648, we show that TAAR1 is implicated in a broad range of relevant physiological, behavioral, and cognitive neuropsychiatric dimensions. Collectively, these data uncover important neuromodulatory roles for TAAR1 and suggest that agonists at this receptor might have therapeutic potential in one or more neuropsychiatric domains.
Collapse
Affiliation(s)
- Florent G Revel
- Neuroscience Research, Pharmaceuticals Division, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Panther P, Nullmeier S, Dobrowolny H, Schwegler H, Wolf R. CPB-K mice a mouse model of schizophrenia? Differences in dopaminergic, serotonergic and behavioral markers compared to BALB/cJ mice. Behav Brain Res 2012; 230:215-28. [PMID: 22454846 DOI: 10.1016/j.bbr.2012.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Schizophrenia is characterized by disturbances in social behavior, sensorimotor gating and cognitive function, that are discussed to be caused by a termination of different transmitter systems. Beside morphological alterations in cortical and subcortical areas reduced AMPA- NMDA-, 5-HT2-receptor densities and increased 5-HT1-receptor densities are found in the hippocampus.The two inbred mouse strains CPB-K and BALB/cJ are known to display considerable differences in cognitive function and prepulse inhibition, a stable marker of sensorimotor gating. Furthermore, CPB-K mice exhibit lower NMDA-, AMPA- and increased 5-HT-receptor densities in the hippocampus as compared to BALB/cJ mice. We investigated both mouse strains in social interaction test for differences in social behavior and with immuncytochemical approaches for alterations of dopaminergic and serotonergic parameters. Our results can be summarized as follows: compared to BALB/cJ, CPB-K mice showed:(1) significantly reduced traveling distance and number of contacts in social interaction test, (2) differences in the number of serotonin transporter-immunoreactive neurons and volume of raphe nuclei and a lower serotonergic fiber density in the ventral and dorsal hippocampal subfields CA1 and CA3, (3) no alterations of dopaminergic markers like neuron number, neuron density and volume in subregions of substantia nigra and ventral tegmental area, but a significantly higher dopaminergic fiber density in the dorsal hippocampus, the ventral hippocampus of CA1 and gyrus dentatus, (4) no significant differences in serotonergic and dopaminergic fiber densities in the amygdala.Based on our results and previous studies, CPB-K mice compared to BALB/cJ may serve as an important model to understand the interaction of the serotonergic and dopaminergic system and their impact on sensorimotor gating and cognitive function as related to neuropsychiatric disorders like schizophrenia.
Collapse
Affiliation(s)
- P Panther
- Institute of Anatomy, University of Magdeburg, Haus 43, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | | | | | | | | |
Collapse
|
12
|
Albelda N, Joel D. Current animal models of obsessive compulsive disorder: an update. Neuroscience 2012; 211:83-106. [PMID: 21925243 DOI: 10.1016/j.neuroscience.2011.08.070] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 08/29/2011] [Accepted: 08/31/2011] [Indexed: 12/30/2022]
Affiliation(s)
- N Albelda
- Department of Psychology, Tel Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel
| | | |
Collapse
|
13
|
Wai MSM, Lorke DE, Kwong WH, Zhang L, Yew DT. Profiles of serotonin receptors in the developing human thalamus. Psychiatry Res 2011; 185:238-42. [PMID: 20538346 DOI: 10.1016/j.psychres.2010.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 05/03/2010] [Accepted: 05/05/2010] [Indexed: 11/28/2022]
Abstract
The critical importance of the thalamus and its serotonergic innervation with respect to neuropsychiatric syndromes is increasingly recognized. This study investigates the localization of serotonin (5-hydroxytryptamine; 5-HT) receptors by immunohistochemistry in the thalamic nuclei of human fetuses aged 21 to 32 weeks of gestation. Results indicate that, already at 21 weeks of gestation, two 5-HT receptors are present in the dorsomedial nucleus of the developing thalamus: 5-HT2A receptors are localized in neurons and 5-HT2C receptors in fibers. By 31 and 32 weeks of gestation, 5-HT1A and 5-HT4 receptors are also detected in neuronal fibers of the same nucleus. At this later developmental stage, the percentage of 5-HT2A labeled neurons has significantly increased in the dorsomedial nucleus, and 5-HT2C positive neurons are observed in the centromedian and lateroventral thalamic nuclei as well. In contrast, neither neuronal cells nor fibers display any immunoreactivity for 5-HT3 or 5-HT6 receptors at any of the ages examined. Our observation that 5-HT1A, 5-HT2A, 5-HT2C and 5-HT4 receptors are present in the human thalamus prenatally indicates that 5-HT may play a role during fetal development. Disrupted development of the thalamic serotonergic system during this gestational period may contribute to the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maria S M Wai
- School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | | | | | | | | |
Collapse
|
14
|
Constitutive genetic deletion of the growth regulator Nogo-A induces schizophrenia-related endophenotypes. J Neurosci 2010; 30:556-67. [PMID: 20071518 DOI: 10.1523/jneurosci.4393-09.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The membrane protein Nogo-A, which is predominantly expressed by oligodendrocytes in the adult CNS and by neurons mainly during development, is well known for limiting neurite outgrowth and regeneration in the injured mammalian CNS. In addition, it has recently been proposed that abnormal Nogo-A expression or Nogo receptor (NgR) mutations may confer genetic risks for neuropsychiatric disorders of presumed neurodevelopmental origin, such as schizophrenia. We therefore evaluated whether Nogo-A deletion may lead to schizophrenia-like abnormalities in a mouse model of genetic Nogo-A deficiency. Here, we show that systemic, lifelong knock-out of the Nogo-A gene can lead to specific behavioral abnormalities resembling schizophrenia-related endophenotypes: deficient sensorimotor gating, disrupted latent inhibition, perseverative behavior, and increased sensitivity to the locomotor stimulating effects of amphetamine. These behavioral phenotypes were accompanied by altered monoaminergic transmitter levels in specific striatal and limbic structures, as well as changes in dopamine D2 receptor expression in the same brain regions. Nogo-A deletion was further associated with elevated expression of growth-related markers. In contrast, acute antibody-mediated Nogo-A neutralization in adult wild-type mice failed to produce such phenotypes, suggesting that the phenotypes observed in the knock-out mice might be of developmental origin, and that Nogo-A normally subserves critical functions in neurodevelopment. This study provides the first experimental demonstration that Nogo-A bears neuropsychiatric relevance, and alterations in its expression may be one etiological factor in schizophrenia and related disorders.
Collapse
|
15
|
Drago A, Serretti A. Focus on HTR2C: A possible suggestion for genetic studies of complex disorders. Am J Med Genet B Neuropsychiatr Genet 2009; 150B:601-37. [PMID: 18802918 DOI: 10.1002/ajmg.b.30864] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
HTR2C is one of the most relevant and investigated serotonin receptors. Its role in important brain structures such as the midbrain, the lateral septal complex, the hypothalamus, the olfactory bulb, the pons, the choroid plexus, the nucleus pallidus, the striatum and the amygdala, the nucleus accumbens and the anterior cingulated gyrus candidate it as a promising target for genetic association studies. The biological relevance of these brain structures is reviewed by way of the focus on HTR2C activity, with a special attention paid to psychiatric disorders. Evidence from the genetic association studies that dealt with HTR2C is reviewed and discussed alongside the findings derived from the neuronatmic investigations. The reasons for the discrepancies between these two sets of reports are discussed. As a result, HTR2C is shown to play a pivotal role in many different psychiatric behaviors or psychiatric related disrupted molecular balances, nevertheless, genetic association studies brought inconsistent results so far. The most replicated association involve the feeding behavior and antipsychotic induced side effects, both weight gain and motor related: Cys23Ser (rs6318) and -759C/T (rs3813929) report the most consistent results. The lack of association found in other independent studies dampens the clinical impact of these reports. Here, we report a possible explanation for discrepant findings that is poorly or not at all usually considered, that is that HTR2C may exert different or even opposite activities in the brain depending on the structure analyzed and that mRNA editing activity may compensate possible genetically controlled functional effects. The incomplete coverage of the HTR2C variants is proposed as the best cost-benefit ratio bias to fix. The evidence of brain area specific HTR2C mRNA editing opens a debate about how the brain can differently modulate stress events, and process antidepressant treatments, in different brain areas. The mRNA editing activity on HTR2C may play a major role for the negative association results.
Collapse
Affiliation(s)
- Antonio Drago
- Institute of Psychiatry, University of Bologna, Italy
| | | |
Collapse
|
16
|
Prenatal immune activation leads to multiple changes in basal neurotransmitter levels in the adult brain: implications for brain disorders of neurodevelopmental origin such as schizophrenia. Int J Neuropsychopharmacol 2009; 12:513-24. [PMID: 18752727 DOI: 10.1017/s1461145708009206] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Maternal infection during pregnancy enhances the offspring's risk for severe neuropsychiatric disorders in later life, including schizophrenia. Recent attempts to model this association in animals provided further experimental evidence for a causal relationship between in-utero immune challenge and the postnatal emergence of a wide spectrum of behavioural, pharmacological and neuroanatomical dysfunctions implicated in schizophrenia. However, it still remains unknown whether the prenatal infection-induced changes in brain and behavioural functions may be associated with multiple changes at the neurochemical level. Here, we tested this hypothesis in a recently established mouse model of viral-like infection. Pregnant dams on gestation day 9 were exposed to viral mimetic polyriboinosinic-polyribocytidilic acid (PolyI:C, 5 mg/kg i.v.) or vehicle treatment, and basal neurotransmitter levels were then compared in the adult brains of animals born to PolyI:C- or vehicle-treated mothers by high-performance liquid chromatography on post-mortem tissue. We found that prenatal immune activation significantly increased the levels of dopamine and its major metabolites in the lateral globus pallidus and prefrontal cortex, whilst at the same time it decreased serotonin and its metabolite in the hippocampus, nucleus accumbens and lateral globus pallidus. In addition, a specific reduction of the inhibitory amino acid taurine in the hippocampus was noted in prenatally PolyI:C-exposed offspring relative to controls, whereas central glutamate and gamma-aminobutyric acid (GABA) content was largely unaffected by prenatal immune activation. Our results thus confirm that maternal immunological stimulation during early/middle pregnancy is sufficient to induce long-term changes in multiple neurotransmitter levels in the brains of adult offspring. This further supports the possibility that infection-mediated interference with early fetal brain development may predispose the developing organism to the emergence of neurochemical imbalances in adulthood, which may be critically involved in the precipitation of adult behavioural and pharmacological abnormalities after prenatal immune challenge.
Collapse
|
17
|
Brenes JC, Fornaguera J. The effect of chronic fluoxetine on social isolation-induced changes on sucrose consumption, immobility behavior, and on serotonin and dopamine function in hippocampus and ventral striatum. Behav Brain Res 2009; 198:199-205. [DOI: 10.1016/j.bbr.2008.10.036] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Revised: 10/28/2008] [Accepted: 10/29/2008] [Indexed: 11/25/2022]
|
18
|
Neves G, Kliemann M, Betti AH, Conrado DJ, Tasso L, Fraga CA, Barreiro EJ, Teresa Dalla Costa, Rates SM. Serotonergic neurotransmission mediates hypothermia induced by the N-phenylpiperazine antipsychotic prototypes LASSBio-579 and LASSBio-581. Pharmacol Biochem Behav 2008; 89:23-30. [DOI: 10.1016/j.pbb.2007.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 10/16/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022]
|
19
|
Zuo J, Liu Z, Ouyang X, Liu H, Hao Y, Xu L, Lu XH. Distinct neurobehavioral consequences of prenatal exposure to sulpiride (SUL) and risperidone (RIS) in rats. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:387-97. [PMID: 17935847 DOI: 10.1016/j.pnpbp.2007.09.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2007] [Revised: 09/08/2007] [Accepted: 09/08/2007] [Indexed: 10/22/2022]
Abstract
Antipsychotic treatment during pregnancy is indicated when risk of drug exposure to the fetus is outweighed by the untreated psychosis in the mother. Although increased risk of congenital malformation has not been associated with most available antipsychotic drugs, there is a paucity of knowledge on the subtle neurodevelopmental and behavioral consequences of prenatal receptor blockade by these drugs. In the present study, antipsychotic drugs, sulpiride (SUL, a selective D2 receptor antagonist) and risperidone (RIS, a D2/5HT2 receptor antagonist) were administered to pregnant Sprague-Dawley dams from gestational day 6 to 18. Both RIS and SUL prenatal exposed rats had lower birth body weights compared to controls. RIS exposure had a significant main effect to retard body weight growth in male offspring until postnatal day (PND) 60. Importantly, water maze tests revealed that SUL prenatal exposure impaired visual cue response in visual task performance (stimulus-response, S-R memory), but not place response as reflected in hidden platform task (spatial memory acquisition and retention). In addition, prenatal SUL treatment reduced spontaneous activity as measured in open field. Both behavioral deficits suggest that SUL prenatal exposure may lead to subtle disruption of striatum development and related learning and motor systems. RIS exposure failed to elicit deficits in both water maze tasks and increased rearing in open field test. These results suggest prenatal exposure to SUL and RIS may produce lasting effects on growth, locomotion and memory in rat offspring. And the differences may exist in the effects of antipsychotic drugs which selectively block dopamine D2 receptors (SUL) as compared to second generation drugs (RIS) that potently antagonize serotonin and dopamine receptors.
Collapse
Affiliation(s)
- Jing Zuo
- Institute of Mental Health, the second Xiang-Ya hospital, Central South University, Changsha, Hunan, 410011, PR China
| | | | | | | | | | | | | |
Collapse
|
20
|
|