1
|
Targeting mGlu1 Receptors in the Treatment of Motor and Cognitive Dysfunctions in Mice Modeling Type 1 Spinocerebellar Ataxia. Cells 2022; 11:cells11233916. [PMID: 36497172 PMCID: PMC9738505 DOI: 10.3390/cells11233916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Type 1 spinocerebellar ataxia (SCA1) is a progressive neurodegenerative disorder with no effective treatment to date. Using mice modeling SCA1, it has been demonstrated that a drug that amplifies mGlu1 receptor activation (mGlu1 receptor PAM, Ro0711401) improves motor coordination without the development of tolerance when cerebellar dysfunction manifests (i.e., in 30-week-old heterozygous ataxin-1 [154Q/2Q] transgenic mice). SCA1 is also associated with cognitive dysfunction, which may precede cerebellar motor signs. Here, we report that otherwise healthy, 8-week-old SCA1 mice showed a defect in spatial learning and memory associated with reduced protein levels of mGlu1α receptors, the GluN2B subunit of NMDA receptors, and cannabinoid CB1 receptors in the hippocampus. Systemic treatment with Ro0711401 (10 mg/kg, s.c.) partially corrected the learning deficit in the Morris water maze and restored memory retention in the SCA1 mice model. This treatment also enhanced hippocampal levels of the endocannabinoid, anandamide, without changing the levels of 2-arachidonylglycerol. These findings suggest that mGlu1 receptor PAMs may be beneficial in the treatment of motor and nonmotor signs associated with SCA1 and encourage further studies in animal models of SCA1 and other types of SCAs.
Collapse
|
2
|
Landucci E, Berlinguer-Palmini R, Baccini G, Boscia F, Gerace E, Mannaioni G, Pellegrini-Giampietro DE. The Neuroprotective Effects of mGlu1 Receptor Antagonists Are Mediated by an Enhancement of GABAergic Synaptic Transmission via a Presynaptic CB1 Receptor Mechanism. Cells 2022; 11:cells11193015. [PMID: 36230976 PMCID: PMC9562021 DOI: 10.3390/cells11193015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, we investigated the cross-talk between mGlu1 and CB1 receptors in modulating GABA hippocampal output in whole-cell voltage clamp recordings in rat hippocampal acute slices, in organotypic hippocampal slices exposed to oxygen and glucose deprivation (OGD) and in gerbils subjected to global ischemia. CB1 receptor expression was studied using immunohistochemistry and the CA1 contents of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were measured by LC-MS/MS. Our results show that mGlu1 receptor antagonists enhance sIPSCs in CA1 pyramidal cells and the basal and ischemic hippocampal release of GABA in vivo in a manner that is mediated by CB1 receptor activation. In hippocampal slices exposed to OGD and in ischemic gerbils, mGlu1 receptor antagonists protected CA1 pyramidal cells against post-ischemic injury and this effect was reduced by CB1 receptor activation. OGD induced a transient increase in the hippocampal content of AEA and this effect is prevented by mGlu1 receptor antagonist. Finally, OGD induced a late disruption of CB1 receptors in the CA1 region and the effect was prevented when CA1 pyramidal cells were protected by mGlu1 antagonists. Altogether, these results suggest a cooperative interaction between mGlu1 receptors and the endocannabinoid system in the mechanisms that lead to post-ischemic neuronal death.
Collapse
Affiliation(s)
- Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy
| | | | - Gilda Baccini
- Institute of Physiology, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| | - Francesca Boscia
- Department of Neuroscience, Division of Pharmacology, University of Naples Federico II, 80131 Naples, Italy
| | - Elisabetta Gerace
- Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health (NeuroFarBa), Section of Pharmacology and Toxicology, University of Florence, 50139 Florence, Italy
| | - Domenico E. Pellegrini-Giampietro
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, 50139 Florence, Italy
- Correspondence: ; Tel.: +39-055-2758210
| |
Collapse
|
3
|
Yamasaki T, Okada M, Hiraishi A, Mori W, Zhang Y, Fujinaga M, Wakizaka H, Kurihara Y, Nengaki N, Zhang MR. Upregulation of Striatal Metabotropic Glutamate Receptor Subtype 1 (mGluR1) in Rats with Excessive Glutamate Release Induced by N-Acetylcysteine. Neurotox Res 2022; 40:26-35. [PMID: 34981453 DOI: 10.1007/s12640-021-00449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/15/2021] [Accepted: 11/16/2021] [Indexed: 10/19/2022]
Abstract
The aim of this study is to investigate the changes in expression of metabotropic glutamate (Glu) receptor subtype 1 (mGluR1), a key molecule involved in neuroexcitetoxicity, during excessive Glu release in the brain by PET imaging. An animal model of excessive Glu release in the brain was produced by intraperitoneally implanting an Alzet osmotic pump containing N-acetylcysteine (NAC), an activator of the cysteine/Glu antiporter, into the abdomen of rats. Basal Glu concentration in the brain was measured by microdialysis, which showed that basal Glu concentration in NAC-treated rats (0.31 µM) was higher than that in saline-treated rats (0.17 µM) at day 7 after the implantation of the osmotic pump. Similarly, PET studies with [11C]ITDM, a useful radioligand for mGluR1 imaging exhibited that the striatal binding potential (BPND) of [11C]ITDM for mGluR1 in PET assessments was increased in NAC-treated animals at day 7 after implantation (2.30) compared with before implantation (1.92). The dynamic changes in striatal BPND during the experimental period were highly correlated with basal Glu concentration. In conclusion, density of mGluR1 is rapidly upregulated by increases in basal Glu concentration, suggesting that mGluR1 might to be a potential biomarker of abnormal conditions in the brain.
Collapse
Affiliation(s)
- Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| | - Maki Okada
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Atsuto Hiraishi
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Wakana Mori
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Hidekatsu Wakizaka
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Yusuke Kurihara
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.,SHI Accelerator Service Co. Ltd, 1-17-6 Osaki, Shinagawa-ku, Tokyo, 141-0032, Japan
| | - Nobuki Nengaki
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.,SHI Accelerator Service Co. Ltd, 1-17-6 Osaki, Shinagawa-ku, Tokyo, 141-0032, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| |
Collapse
|
4
|
Landucci E, Mazzantini C, Lana D, Davolio PL, Giovannini MG, Pellegrini-Giampietro DE. Neuroprotective Effects of Cannabidiol but Not Δ 9-Tetrahydrocannabinol in Rat Hippocampal Slices Exposed to Oxygen-Glucose Deprivation: Studies with Cannabis Extracts and Selected Cannabinoids. Int J Mol Sci 2021; 22:ijms22189773. [PMID: 34575932 PMCID: PMC8468213 DOI: 10.3390/ijms22189773] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Over the past 10 years, a number of scientific studies have demonstrated the therapeutic potential of cannabinoid compounds present in the Cannabis Sativa and Indica plants. However, their role in mechanisms leading to neurodegeneration following cerebral ischemia is yet unclear. (2) Methods: We investigated the effects of Cannabis extracts (Bedrocan, FM2) or selected cannabinoids (Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabigerol) in rat organotypic hippocampal slices exposed to oxygen-glucose deprivation (OGD), an in vitro model of forebrain global ischemia. Cell death in the CA1 subregion of slices was quantified by propidium iodide fluorescence, and morphological analysis and tissue organization were examined by immunohistochemistry and confocal microscopy. (3) Results: Incubation with the Bedrocan extract or THC exacerbated, whereas incubation with the FM2 extract or cannabidiol attenuated CA1 injury induced by OGD. Δ9-THC toxicity was prevented by CB1 receptor antagonists, the neuroprotective effect of cannabidiol was blocked by TRPV2, 5-HT1A, and PPARγ antagonists. Confocal microscopy confirmed that CBD, but not THC, had a significant protective effect toward neuronal damage and tissue disorganization caused by OGD in organotypic hippocampal slices. (4) Conclusions: Our results suggest that cannabinoids play different roles in the mechanisms of post-ischemic neuronal death. In particular, appropriate concentrations of CBD or CBD/THC ratios may represent a valid therapeutic intervention in the treatment of post-ischemic neuronal death.
Collapse
Affiliation(s)
- Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.L.); (M.G.G.); (D.E.P.-G.)
- Correspondence: ; Tel.: +39-055-2758378
| | - Costanza Mazzantini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.L.); (M.G.G.); (D.E.P.-G.)
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.L.); (M.G.G.); (D.E.P.-G.)
| | | | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.L.); (M.G.G.); (D.E.P.-G.)
| | - Domenico E. Pellegrini-Giampietro
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (C.M.); (D.L.); (M.G.G.); (D.E.P.-G.)
| |
Collapse
|
5
|
Castillo CA, Ballesteros-Yáñez I, León-Navarro DA, Albasanz JL, Martín M. Early Effects of the Soluble Amyloid β 25-35 Peptide in Rat Cortical Neurons: Modulation of Signal Transduction Mediated by Adenosine and Group I Metabotropic Glutamate Receptors. Int J Mol Sci 2021; 22:ijms22126577. [PMID: 34205261 PMCID: PMC8234864 DOI: 10.3390/ijms22126577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/04/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022] Open
Abstract
The amyloid β peptide (Aβ) is a central player in the neuropathology of Alzheimer’s disease (AD). The alteration of Aβ homeostasis may impact the fine-tuning of cell signaling from the very beginning of the disease, when amyloid plaque is not deposited yet. For this reason, primary culture of rat cortical neurons was exposed to Aβ25-35, a non-oligomerizable form of Aβ. Cell viability, metabotropic glutamate receptors (mGluR) and adenosine receptors (AR) expression and signalling were assessed. Aβ25-35 increased mGluR density and affinity, mainly due to a higher gene expression and protein presence of Group I mGluR (mGluR1 and mGluR5) in the membrane of cortical neurons. Intriguingly, the main effector of group I mGluR, the phospholipase C β1 isoform, was less responsive. Also, the inhibitory action of group II and group III mGluR on adenylate cyclase (AC) activity was unaltered or increased, respectively. Interestingly, pre-treatment of cortical neurons with an antagonist of group I mGluR reduced the Aβ25-35-induced cell death. Besides, Aβ25-35 increased the density of A1R and A2AR, along with an increase in their gene expression. However, while A1R-mediated AC inhibition was increased, the A2AR-mediated stimulation of AC remained unchanged. Therefore, one of the early events that takes place after Aβ25-35 exposure is the up-regulation of adenosine A1R, A2AR, and group I mGluR, and the different impacts on their corresponding signaling pathways. These results emphasize the importance of deciphering the early events and the possible involvement of metabotropic glutamate and adenosine receptors in AD physiopathology.
Collapse
Affiliation(s)
- Carlos Alberto Castillo
- Department of Nursing, Physiotherapy and Occupational Therapy, School of Physiotherapy and Nursing, University of Castilla-La Mancha, 45071 Toledo, Spain;
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 02071 Albacete, Spain; (I.B.-Y.); (D.A.L.-N.); (M.M.)
| | - Inmaculada Ballesteros-Yáñez
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 02071 Albacete, Spain; (I.B.-Y.); (D.A.L.-N.); (M.M.)
- Department of Inorganic, School of Medicine of Ciudad Real, Organic and Biochemistry, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - David Agustín León-Navarro
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 02071 Albacete, Spain; (I.B.-Y.); (D.A.L.-N.); (M.M.)
- Department of Inorganic, Faculty of Chemical and Technological Sciences, Organic and Biochemistry, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - José Luis Albasanz
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 02071 Albacete, Spain; (I.B.-Y.); (D.A.L.-N.); (M.M.)
- Department of Inorganic, School of Medicine of Ciudad Real, Organic and Biochemistry, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
- Correspondence:
| | - Mairena Martín
- Regional Center for Biomedical Research (CRIB), University of Castilla-La Mancha, 02071 Albacete, Spain; (I.B.-Y.); (D.A.L.-N.); (M.M.)
- Department of Inorganic, Faculty of Chemical and Technological Sciences, Organic and Biochemistry, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| |
Collapse
|
6
|
Mastroiacovo F, Zinni M, Mascio G, Bruno V, Battaglia G, Pansiot J, Imbriglio T, Mairesse J, Baud O, Nicoletti F. Genetic Deletion of mGlu3 Metabotropic Glutamate Receptors Amplifies Ischemic Brain Damage and Associated Neuroinflammation in Mice. Front Neurol 2021; 12:668877. [PMID: 34220677 PMCID: PMC8248796 DOI: 10.3389/fneur.2021.668877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
Backgroud: Type-3 metabotropic glutamate (mGlu3) receptors are found in both neurons and glial cells and regulate synaptic transmission, astrocyte function, and microglial reactivity. Here we show that the genetic deletion of mGlu3 receptors amplifies ischemic brain damage and associated neuroinflammation in adult mice. An increased infarct size was observed in mGlu3-/- mice of both CD1 and C57Black strains 24 h following a permanent occlusion of the middle cerebral artery (MCA) as compared to their respective wild-type (mGlu3+/+ mice) counterparts. Increases in the expression of selected pro-inflammatory genes including those encoding interleukin-1β, type-2 cycloxygenase, tumor necrosis factor-α, CD86, and interleukin-6 were more prominent in the peri-infarct region of mGlu3-/- mice. In contrast, the expression of two genes associated with the anti-inflammatory phenotype of microglia (those encoding the mannose-1-phosphate receptor and the α-subunit of interleukin-4 receptor) and the gene encoding the neuroprotective factor, glial cell line-derived neurotrophic factor, was enhanced in the peri-infarct region of wild-type mice, but not mGlu3-/- mice, following MCA occlusion. In C57Black mice, the genetic deletion of mGlu3 receptors worsened the defect in the paw placement test as assessed in the contralateral forepaw at short times (4 h) following MCA occlusion. These findings suggest that mGlu3 receptors are protective against ischemic brain damage and support the way to the use of selective mGlu3 receptor agonists or positive allosteric modulators in experimental animal models of ischemic stroke.
Collapse
Affiliation(s)
| | - Manuela Zinni
- Inserm UMR1141 NeuroDiderot, University of Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Giada Mascio
- Department of Molecular Pathology, I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - Valeria Bruno
- Department of Molecular Pathology, I.R.C.C.S. Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Battaglia
- Department of Molecular Pathology, I.R.C.C.S. Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Julien Pansiot
- Inserm UMR1141 NeuroDiderot, University of Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Tiziana Imbriglio
- Department of Molecular Pathology, I.R.C.C.S. Neuromed, Pozzilli, Italy
| | - Jerome Mairesse
- Inserm UMR1141 NeuroDiderot, University of Paris Diderot, Sorbonne Paris Cité, Paris, France.,Laboratory of Child Growth and Development, University of Geneva, Geneva, Switzerland
| | - Olivier Baud
- Inserm UMR1141 NeuroDiderot, University of Paris Diderot, Sorbonne Paris Cité, Paris, France.,Laboratory of Child Growth and Development, University of Geneva, Geneva, Switzerland.,Division of Neonatology and Pediatric Intensive Care, Children's University Hospital of Geneva, Geneva, Switzerland
| | - Ferdinando Nicoletti
- Department of Molecular Pathology, I.R.C.C.S. Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Olivero G, Vergassola M, Cisani F, Roggeri A, Pittaluga A. Presynaptic Release-regulating Metabotropic Glutamate Receptors: An Update. Curr Neuropharmacol 2021; 18:655-672. [PMID: 31775600 PMCID: PMC7457419 DOI: 10.2174/1570159x17666191127112339] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/15/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors represent the largest family of glutamate receptors in mammals and act as fine tuners of the chemical transmission in central nervous system (CNS). In the last decade, results concerning the expression and the subcellular localization of mGlu receptors further clarified their role in physio-pathological conditions. Concomitantly, their pharmacological characterization largely improved thanks to the identification of new compounds (chemical ligands and antibodies recognizing epitopic sequences of the receptor proteins) that allowed to decipher the protein compositions of the naive receptors. mGlu receptors are expressed at the presynaptic site of chemical synapses. Here, they modulate intraterminal enzymatic pathways controlling the migration and the fusion of vesicles to synaptic membranes as well as the phosphorylation of colocalized receptors. Both the control of transmitter exocytosis and the phosphorylation of colocalized receptors elicited by mGlu receptors are relevant events that dictate the plasticity of nerve terminals, and account for the main role of presynaptic mGlu receptors as modulators of neuronal signalling. The role of the presynaptic mGlu receptors in the CNS has been the matter of several studies and this review aims at briefly summarizing the recent observations obtained with isolated nerve endings (we refer to as synaptosomes). We focus on the pharmacological characterization of these receptors and on their receptor-receptor interaction / oligo-dimerization in nerve endings that could be relevant to the development of new therapeutic approaches for the cure of central pathologies.
Collapse
Affiliation(s)
| | | | | | | | - Anna Pittaluga
- Department of Pharmacy, University of Genoa, Genoa, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
8
|
Rossi PIA, Musante I, Summa M, Pittaluga A, Emionite L, Ikehata M, Rastaldi MP, Ravazzolo R, Puliti A. Compensatory molecular and functional mechanisms in nervous system of the Grm1(crv4) mouse lacking the mGlu1 receptor: a model for motor coordination deficits. ACTA ACUST UNITED AC 2012; 23:2179-89. [PMID: 22791805 DOI: 10.1093/cercor/bhs200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The metabotropic glutamate type 1 (mGlu1) and type 5 (mGlu5) receptors, the only members of group I mGlu receptors, are implicated in synaptic plasticity and mechanisms of feedback control of glutamate release. They exhibit nearly complementary distributions throughout the central nervous system, well evident in the cerebellum, where mGlu1 receptor is most intensely expressed while mGlu5 receptor is not. Despite their different distribution, they show a similar subcellular localization and use common transducing pathways. We recently described the Grm1(crv4) mouse with motor coordination deficits and renal anomalies caused by a spontaneous mutation inactivating the mGlu1 receptor. To define the neuropathological mechanisms in these mice, we evaluated expression and function of the mGlu5 receptor in cerebral and cerebellar cortices. Western blot and immunofluorescence analyses showed mGlu5 receptor overexpression. Quantitative reverse transcriptase-polymerase chain reaction results indicated that the up-regulation is already evident at RNA level. Functional studies confirmed an enhanced glutamate release from cortical cerebral and cerebellar synaptosomes when compared with wild-type that is abolished by the mGlu5 receptor-specific inhibitor, 2-methyl-6-(phenylethynyl) pyridine hydrochloride (MPEP). Finally, acute MPEP treatment of Grm1(crv4/crv4) mice induced an evident although incomplete improvement of motor coordination, suggesting that mGlu5 receptors enhanced activity worsens, instead of improving, the motor-coordination defects in the Grm1(crv4/crv4) mice.
Collapse
|
9
|
Metabotropic glutamate receptors in neurodegeneration/neuroprotection: still a hot topic? Neurochem Int 2012; 61:559-65. [PMID: 22306345 DOI: 10.1016/j.neuint.2012.01.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 01/14/2012] [Accepted: 01/14/2012] [Indexed: 01/17/2023]
Abstract
Moving from early studies, we here review the most recent evidence linking metabotropic glutamate (mGlu) receptors to processes of neurodegeneration/neuroprotection. The use of knockout mice and subtype-selective drugs has increased our knowledge of the precise role played by individual mGlu receptor subtypes in these processes. Activation of mGlu1 and mGlu5 receptors may either amplify or reduce neuronal damage depending on the context and the nature of the toxic insults. In contrast, mGlu1 and mGlu5 receptors antagonists are consistently protective in in vitro and in vivo models of neuronal death. A series of studies suggest that mGlu1 receptor antagonists or negative allosteric modulators (NAMs) are promising candidates for the treatment of ischemic brain damage, whereas mGlu5 receptor NAMs, which have been clinically developed for the treatment of Parkinson's disease (PD) and l-DOPA-induced dyskinesias, protect nigro-striatal dopaminergic neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity in mice and monkeys. Activation of glial mGlu3 receptors promotes the formation of various neurotrophic factors, such as transforming growth factor-β (TGF-β), glial-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF). Hence, selective mGlu3 receptor agonists or positive allosteric modulators (PAMs) (not yet available) are potentially helpful in the treatment of chronic neurodegenerative disorders such as PD, Alzheimer's disease (AD), and amyotrophic lateral sclerosis. Selective mGlu2 receptor PAMs should be used with caution in AD patients because these drugs are shown to amplify β-amyloid neurotoxicity. Finally, mGlu4 receptor agonists/PAMs share with mGlu5 receptor NAMs the ability to improve motor symptoms associated with PD and attenuate nigro-striatal degeneration at the same time. No data are yet available on the role of mGlu7 and mGlu8 receptors in neurodegeneration/neuroprotection.
Collapse
|
10
|
Landucci E, Scartabelli T, Gerace E, Moroni F, Pellegrini-Giampietro DE. CB1 receptors and post-ischemic brain damage: studies on the toxic and neuroprotective effects of cannabinoids in rat organotypic hippocampal slices. Neuropharmacology 2010; 60:674-82. [PMID: 21130785 DOI: 10.1016/j.neuropharm.2010.11.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Revised: 11/24/2010] [Accepted: 11/26/2010] [Indexed: 12/31/2022]
Abstract
Cannabinoids (CBs) are implicated in a number of physiological and pathological mechanisms in the central nervous system, but their exact role in post-ischemic brain injury is unclear. The toxic and neuroprotective effects of synthetic and endogenous CBs were evaluated in rat organotypic hippocampal slices exposed to 20 min oxygen-glucose deprivation (OGD) and in gerbils subjected to bilateral carotid occlusion for 5 min. When present in the incubation medium, the synthetic CB agonists WIN 55212-2 and CP 55940 (1-30 μM) and the CB1 agonist ACEA exacerbated CA1 injury induced by OGD, whereas the CB1 receptor antagonists AM 251 and LY 320135 were neuroprotective with maximal activity at 1 μM. AM 251 (at 3 mg/kg, i.p.) also attenuated CA1 pyramidal cell death in gerbils in vivo. The endocannabinoid 2-arachidonoylglycerol (2-AG) reduced OGD injury in hippocampal slices at 0.1-1 μM, whereas anandamide (AEA) was neurotoxic at the same concentrations. The effects of WIN 55212-2, AEA and 2-AG in slices were all dependent on the activation of CB1 but not CB2 receptors, except for the toxic effects of AEA that were also dependent on vanilloid TRPV1 receptors. Our results suggest that exogenous administration of CB1 agonists and the production of endocannabinoids "on demand" may produce different, if not opposite, effects on the fate of neurons following cerebral ischemia.
Collapse
Affiliation(s)
- Elisa Landucci
- Dipartimento di Farmacologia Preclinica e Clinica, Università di Firenze, Firenze, Italy
| | | | | | | | | |
Collapse
|
11
|
Kim SH, Han YJ, Park JH, Yoo SJ. Glutamate Induces Endoplasmic Reticulum Stress-Mediated Apoptosis in Primary Rat Astrocytes. ACTA ACUST UNITED AC 2010. [DOI: 10.4235/jkgs.2010.14.4.242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Sung Ho Kim
- Department of Emergency Medicine, Wonkwang University College of Medicine, Iksan, Korea
| | - Yong Jae Han
- Department of Emergency Medicine, Wonkwang University College of Medicine, Iksan, Korea
| | - Jae Hwang Park
- Department of Emergency Medicine, Wonkwang University College of Medicine, Iksan, Korea
| | - Su Jin Yoo
- Department of Emergency Medicine, Wonkwang University College of Medicine, Iksan, Korea
| |
Collapse
|
12
|
Nicoletti F, Bockaert J, Collingridge GL, Conn PJ, Ferraguti F, Schoepp DD, Wroblewski JT, Pin JP. Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 2010; 60:1017-41. [PMID: 21036182 DOI: 10.1016/j.neuropharm.2010.10.022] [Citation(s) in RCA: 483] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/15/2010] [Accepted: 10/21/2010] [Indexed: 12/24/2022]
Abstract
Metabotropic glutamate (mGlu) receptors were discovered in the mid 1980s and originally described as glutamate receptors coupled to polyphosphoinositide hydrolysis. Almost 6500 articles have been published since then, and subtype-selective mGlu receptor ligands are now under clinical development for the treatment of a variety of disorders such as Fragile-X syndrome, schizophrenia, Parkinson's disease and L-DOPA-induced dyskinesias, generalized anxiety disorder, chronic pain, and gastroesophageal reflux disorder. Prof. Erminio Costa was linked to the early times of the mGlu receptor history, when a few research groups challenged the general belief that glutamate could only activate ionotropic receptors and all metabolic responses to glutamate were secondary to calcium entry. This review moves from those nostalgic times to the most recent advances in the physiology and pharmacology of mGlu receptors, and highlights the role of individual mGlu receptor subtypes in the pathophysiology of human disorders. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- F Nicoletti
- Department of Physiology and Pharmacology, University of Rome, Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|