1
|
Marin Ž, Lacombe C, Rostami S, Arasteh Kani A, Borgonovo A, Cserjan-Puschmann M, Mairhofer J, Striedner G, Wiltschi B. Residue-Specific Incorporation of Noncanonical Amino Acids in Auxotrophic Hosts: Quo Vadis?. Chem Rev 2025; 125:4840-4932. [PMID: 40378355 PMCID: PMC12123629 DOI: 10.1021/acs.chemrev.4c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 04/09/2025] [Accepted: 04/17/2025] [Indexed: 05/18/2025]
Abstract
The residue-specific incorporation of noncanonical amino acids in auxotrophic hosts allows the global exchange of a canonical amino acid with its noncanonical analog. Noncanonical amino acids are not encoded by the standard genetic code, but they carry unique side chain chemistries, e.g., to perform bioorthogonal conjugation reactions or to manipulate the physicochemical properties of a protein such as folding and stability. The method was introduced nearly 70 years ago and is still in widespread use because of its simplicity and robustness. In our study, we review the trends in the field during the last two decades. We give an overview of the application of the method for artificial post-translational protein modifications and the selective functionalization and directed immobilization of proteins. We highlight the trends in the use of noncanonical amino acids for the analysis of nascent proteomes and the engineering of enzymes and biomaterials, and the progress in the biosynthesis of amino acid analogs. We also discuss the challenges for the scale-up of the technique.
Collapse
Affiliation(s)
- Žana Marin
- Department
of Biotechnology and Food Sciences, Institute of Bioprocess Science
and Engineering, BOKU University, Muthgasse 18, 1190Vienna, Austria
- acib
- Austrian
Centre of Industrial Biotechnology, Muthgasse 18, 1190Vienna, Austria
| | - Claudia Lacombe
- Department
of Biotechnology and Food Sciences, Institute of Bioprocess Science
and Engineering, BOKU University, Muthgasse 18, 1190Vienna, Austria
| | - Simindokht Rostami
- Department
of Biotechnology and Food Sciences, Institute of Bioprocess Science
and Engineering, BOKU University, Muthgasse 18, 1190Vienna, Austria
| | - Arshia Arasteh Kani
- Department
of Biotechnology and Food Sciences, Institute of Bioprocess Science
and Engineering, BOKU University, Muthgasse 18, 1190Vienna, Austria
| | - Andrea Borgonovo
- Department
of Biotechnology and Food Sciences, Institute of Bioprocess Science
and Engineering, BOKU University, Muthgasse 18, 1190Vienna, Austria
- acib
- Austrian
Centre of Industrial Biotechnology, Muthgasse 18, 1190Vienna, Austria
| | - Monika Cserjan-Puschmann
- Department
of Biotechnology and Food Sciences, Institute of Bioprocess Science
and Engineering, BOKU University, Muthgasse 18, 1190Vienna, Austria
| | | | - Gerald Striedner
- Department
of Biotechnology and Food Sciences, Institute of Bioprocess Science
and Engineering, BOKU University, Muthgasse 18, 1190Vienna, Austria
| | - Birgit Wiltschi
- Department
of Biotechnology and Food Sciences, Institute of Bioprocess Science
and Engineering, BOKU University, Muthgasse 18, 1190Vienna, Austria
- acib
- Austrian
Centre of Industrial Biotechnology, Muthgasse 18, 1190Vienna, Austria
| |
Collapse
|
2
|
Náplavová A, Kozeleková A, Crha R, Gronenborn AM, Hritz J. Harnessing the power of 19F NMR for characterizing dimerization and ligand binding of 14-3-3 proteins. Int J Biol Macromol 2025; 305:141253. [PMID: 39978522 DOI: 10.1016/j.ijbiomac.2025.141253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/30/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
The main role of dimeric 14-3-3 proteins is to modulate the activity of several hundred binding partners by interacting with phosphorylated residues of the partner proteins, often located in disordered regions. The inherent flexibility or large size of 14-3-3 complexes hampers their structural characterization by X-ray crystallography, cryo-electron microscopy (EM) and traditional solution nuclear magnetic resonance (NMR) spectroscopy. Here, we employ solution 1D 19F-Trp NMR spectroscopy to characterize substrate binding and dimerization of 14-3-3 proteins, focusing on 14-3-3ζ - an abundant human isoform as an example. Both conserved Trp residues are located in distinct functionally important sites - the dimeric interface and the ligand-binding groove. We substituted them by 5F-Trp, thereby introducing a convenient NMR probe. Fluorination of the two Trp did not impact the stability and interaction properties of 14-3-3ζ in a substantive manner, permitting to carry out 19F NMR experiments to assess 14-3-3's structure and behavior. Importantly, 5F-Trp228 reports on binding of substrates in the amphipathic binding groove of 14-3-3ζ and permitted to distinguish distinct recognition modes. Thus, we established that 19F NMR is a powerful approach to evaluate the binding of partner proteins to 14-3-3 and to characterize the properties of the resulting complexes.
Collapse
Affiliation(s)
- Alexandra Náplavová
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czechia; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czechia
| | - Aneta Kozeleková
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czechia; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czechia
| | - Radek Crha
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czechia; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czechia
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh, School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, USA
| | - Jozef Hritz
- Central European Institute of Technology, Masaryk University, Kamenice 5, Brno 625 00, Czechia; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czechia; Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, Brno 625 00, Czechia.
| |
Collapse
|
3
|
Liu X, Guo P, Yu Q, Gao SQ, Yuan H, Tan X, Lin YW. Site-specific incorporation of 19F-nulcei at protein C-terminus to probe allosteric conformational transitions of metalloproteins. Commun Biol 2024; 7:1613. [PMID: 39627324 PMCID: PMC11615248 DOI: 10.1038/s42003-024-07331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
Allosteric conformational change is an important paradigm in the regulation of protein function, which is typically triggered by the binding of small cofactors, metal ions or protein partners. Here, we found those conformational transitions can be effectively monitored by 19F NMR, facilitated by a site-specific 19F incorporation strategy at the protein C-terminus using asparaginyl endopeptidase (AEP). Three case studies show that C-terminal 19F-nuclei can reveal protein dynamics not only adjacent but also distal to C-terminus, including those occurring in a hemoprotein neuroglobin (Ngb), calmodulin (CaM), and a cobalt metalloregulator (CoaR) responding to both cobalt and tetrapyrrole. In Ngb, the heme orientation disorder is affected by missense mutations that perturb backbone rigidity or surface charges close to the heme axial ligands. In CaM, the C-terminal 19F-nuclei is an ideal probe for detecting the binding states of Ca2+, peptides and inhibitors. Furthermore, multiple 19F-moieties were incorporated into the two domains of CoaR, revealing the intrinsically disordered C-terminal metal binding tail might be an allosteric conformational switch to maintain cobalt homeostasis and balance corrinoid biosynthesis. This study demonstrates that the AEP-based 19F-modification strategy can be applied to various targets to study allosteric regulation, especially for those biological processes modulated by the protein C-terminus.
Collapse
Affiliation(s)
- Xichun Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China.
| | - Pengfei Guo
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China
| | - Qiufan Yu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China
| | - Shu-Qin Gao
- Key Lab of Protein Structure and Function of Universities in Hunan Province, Hengyang Medical School, University of South China, Hengyang, China
| | - Hong Yuan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Xiangshi Tan
- Department of Chemistry & Institute of Biomedical Science, Fudan University, Shanghai, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, China.
- Key Lab of Protein Structure and Function of Universities in Hunan Province, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
4
|
Toyama Y, Shimada I. Quantitative analysis of the slow exchange process by 19F NMR in the presence of scalar and dipolar couplings: applications to the ribose 2'- 19F probe in nucleic acids. JOURNAL OF BIOMOLECULAR NMR 2024; 78:215-235. [PMID: 38918317 DOI: 10.1007/s10858-024-00446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Solution NMR spectroscopy is a particularly powerful technique for characterizing the functional dynamics of biomolecules, which is typically achieved through the quantitative characterization of chemical exchange processes via the measurement of spin relaxation rates. In addition to the conventional nuclei such as 15N and 13C, which are abundant in biomolecules, fluorine-19 (19F) has recently garnered attention and is being widely used as a site-specific spin probe. While 19F offers the advantages of high sensitivity and low background, it can be susceptible to artifacts in quantitative relaxation analyses due to a multitude of dipolar and scalar coupling interactions with nearby 1H spins. In this study, we focused on the ribose 2'-19F spin probe in nucleic acids and investigated the effects of 1H-19F spin interactions on the quantitative characterization of slow exchange processes on the millisecond time scale. We demonstrated that the 1H-19F dipolar coupling can significantly affect the interpretation of 19F chemical exchange saturation transfer (CEST) experiments when 1H decoupling is applied, while the 1H-19F interactions have a lesser impact on Carr-Purcell-Meiboom-Gill relaxation dispersion applications. We also proposed a modified CEST scheme to alleviate these artifacts along with experimental verifications on self-complementary RNA systems. The theoretical framework presented in this study can be widely applied to various 19F spin systems where 1H-19F interactions are operative, further expanding the utility of 19F relaxation-based NMR experiments.
Collapse
Affiliation(s)
- Yuki Toyama
- Laboratory for Dynamic Structure of Biomolecules, RIKEN Center for Biosystems Dynamics Research (BDR), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| | - Ichio Shimada
- Laboratory for Dynamic Structure of Biomolecules, RIKEN Center for Biosystems Dynamics Research (BDR), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4, Kagamiyama, Higashi-Hiroshima, 739-8528, Japan.
| |
Collapse
|
5
|
Sengupta I. Insights into the Structure and Dynamics of Proteins from 19F Solution NMR Spectroscopy. Biochemistry 2024; 63:2958-2968. [PMID: 39495741 DOI: 10.1021/acs.biochem.4c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
19F NMR spectroscopy has recently witnessed a resurgence as an attractive analytical tool for the study of the structure and dynamics of biomolecules in vitro and in cells, despite reports of its applications in biomolecular NMR since the 1970s. The high gyromagnetic ratio, large chemical shift dispersion, and complete absence of the spin 1/2 19F nucleus from biomolecules results in background-free, high-resolution 19F NMR spectra. The introduction of 19F probes in a few selected locations in biomolecules reduces spectral crowding despite its increased line width in comparison to typical 1H NMR line widths and allows rapid site-specific measurements from simple 1D spectra alone. The design and synthesis of novel 19F probes with reduced line widths and increased chemical shift sensitivity to the surrounding environment, together with advances in labeling techniques, NMR methodology, and hardware, have overcome several drawbacks of 19F NMR spectroscopy. The increased interest and widespread use of 19F NMR spectroscopy of biomolecules is gradually establishing it as a sensitive and high-resolution probe of biomolecular structure and dynamics, supplementing traditional 13C/15N-based methods. This Review focuses on the advances in 19F solution NMR spectroscopy of proteins in the past 5 years, with an emphasis on novel 19F tags and labeling techniques, NMR experiments to probe protein structure and conformational dynamics in vitro, and in-cell NMR applications.
Collapse
Affiliation(s)
- Ishita Sengupta
- Department of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
6
|
Pan B, Guo C, Liu D, Wüthrich K. Fluorine-19 labeling of the tryptophan residues in the G protein-coupled receptor NK1R using the 5-fluoroindole precursor in Pichia pastoris expression. JOURNAL OF BIOMOLECULAR NMR 2024; 78:133-138. [PMID: 38554216 DOI: 10.1007/s10858-024-00439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/16/2024] [Indexed: 04/01/2024]
Abstract
In NMR spectroscopy of biomolecular systems, the use of fluorine-19 probes benefits from a clean background and high sensitivity. Therefore, 19F-labeling procedures are of wide-spread interest. Here, we use 5-fluoroindole as a precursor for cost-effective residue-specific introduction of 5-fluorotryptophan (5F-Trp) into G protein-coupled receptors (GPCRs) expressed in Pichia pastoris. The method was successfully implemented with the neurokinin 1 receptor (NK1R). The 19F-NMR spectra of 5F-Trp-labeled NK1R showed one well-separated high field-shifted resonance, which was assigned by mutational studies to the "toggle switch tryptophan". Residue-selective labeling thus enables site-specific investigations of this functionally important residue. The method described here is inexpensive, requires minimal genetic manipulation and can be expected to be applicable for yeast expression of GPCRs at large.
Collapse
Affiliation(s)
- Benxun Pan
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Canyong Guo
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Dongsheng Liu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Kurt Wüthrich
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, 92037, USA.
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, Zürich, 8093, Switzerland.
| |
Collapse
|
7
|
Hanson GSM, Coxon CR. Fluorinated Tags to Study Protein Conformation and Interactions Using 19F NMR. Chembiochem 2024; 25:e202400195. [PMID: 38744671 DOI: 10.1002/cbic.202400195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/19/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
The incorporation of fluorine atoms into a biomacromolecule provides a background-free and environmentally sensitive reporter of structure, conformation and interactions using 19F NMR. There are several methods to introduce the 19F reporter - either by synthetic incorporation via solid phase peptide synthesis; by suppressing the incorporation or biosynthesis of a natural amino acid and supplementing the growth media with a fluorinated counterpart during protein expression; and by genetic code expansion to add new amino acids to the amino acid alphabet. This review aims to discuss progress in the field of introducing fluorinated handles into biomolecules for NMR studies by post-translational bioconjugation or 'fluorine-tagging'. We will discuss the range of chemical tagging 'warheads' that have been used, explore the applications of fluorine tags, discuss ways to enhance reporter sensitivity and how the signal to noise ratios can be boosted. Finally, we consider some key challenges of the field and offer some ideas for future directions.
Collapse
Affiliation(s)
- George S M Hanson
- EaStChem School of Chemistry, University of Edinburgh, Joseph Black Building, Kings Buildings, West Mains Road, EH9 3FJ, Edinburgh, UK
| | - Christopher R Coxon
- EaStChem School of Chemistry, University of Edinburgh, Joseph Black Building, Kings Buildings, West Mains Road, EH9 3FJ, Edinburgh, UK
| |
Collapse
|
8
|
Vitali V, Torricella F, Massai L, Messori L, Banci L. Enlarging the scenario of site directed 19F labeling for NMR spectroscopy of biomolecules. Sci Rep 2023; 13:22017. [PMID: 38086881 PMCID: PMC10716153 DOI: 10.1038/s41598-023-49247-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023] Open
Abstract
The possibility of using selectively incorporated 19F nuclei for NMR spectroscopic studies has retrieved increasing interest in recent years. The high gyromagnetic ratio of 19F and its absence in native biomolecular systems make this nucleus an interesting alternative to standard 1H NMR spectroscopy. Here we show how we can attach a label, carrying a 19F atom, to protein tyrosines, through the use of a specific three component Mannich-type reaction. To validate the efficacy and the specificity of the approach, we tested it on two selected systems with the aid of ESI MS measurements.
Collapse
Affiliation(s)
- Valentina Vitali
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Francesco Torricella
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Lara Massai
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy.
- Department of Chemistry "Ugo Schiff", University of Florence, Via Della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Florence, Italy.
| |
Collapse
|
9
|
Duan P, Dregni AJ, Hong M. Solid-State NMR 19F- 1H- 15N Correlation Experiments for Resonance Assignment and Distance Measurements of Multifluorinated Proteins. J Phys Chem A 2022; 126:7021-7032. [PMID: 36150071 PMCID: PMC10867861 DOI: 10.1021/acs.jpca.2c05154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several solid-state NMR techniques have been introduced recently to measure nanometer distances involving 19F, whose high gyromagnetic ratio makes it a potent nuclear spin for structural investigation. These solid-state NMR techniques either use 19F correlation with 1H or 13C to obtain qualitative interatomic contacts or use the rotational-echo double-resonance (REDOR) pulse sequence to measure quantitative distances. However, no NMR technique is yet available for disambiguating 1H-19F distances in multiply fluorinated proteins and protein-ligand complexes. Here, we introduce a three-dimensional (3D) 19F-15N-1H correlation experiment that resolves the distances of multiple fluorines to their adjacent amide protons. We show that optimal polarization transfer between 1H and 19F spins is achieved using an out-and-back 1H-19F REDOR sequence. We demonstrate this 3D correlation experiment on the model protein GB1 and apply it to the multidrug-resistance transporter, EmrE, complexed to a tetrafluorinated substrate. This technique should be useful for resolving and assigning distance constraints in multiply fluorinated proteins, leading to significant savings of time and precious samples compared to producing several singly fluorinated samples. Moreover, the method enables structural determination of protein-ligand complexes for ligands that contain multiple fluorines.
Collapse
Affiliation(s)
- Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| | - Aurelio J. Dregni
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| |
Collapse
|
10
|
Olson NM, Johnson JA, Peterson KE, Henisch SC, Marshall AP, Smanski MJ, Carlson EE, Pomerantz WC. Development of a single culture E. coli expression system for the enzymatic synthesis of fluorinated tyrosine and its incorporation into proteins. J Fluor Chem 2022; 261-262. [PMID: 37197608 PMCID: PMC10187777 DOI: 10.1016/j.jfluchem.2022.110014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Current experiments that rely on biosynthetic metabolic protein labeling with 19F often require fluorinated amino acids, which in the case of 2- and 3-fluorotyrosine can be expensive. However, using these amino acids has provided valuable insight into protein dynamics, structure, and function. Here, we develop a new in-cell method for fluorinated tyrosine generation from readily available substituted phenols and subsequent metabolic labeling of proteins in a single bacterial expression culture. This approach uses a dual-gene plasmid encoding for a model protein BRD4(D1) and a tyrosine phenol lyase from Citrobacter freundii, which catalyzes the formation of tyrosine from phenol, pyruvate, and ammonium. Our system demonstrated both enzymatic fluorotyrosine production and expression of 19F-labeled proteins as analyzed by 19F NMR and LC-MS methods. Further optimization of our system should provide a cost-effective alternative to a variety of traditional protein-labeling strategies.
Collapse
|
11
|
G Protein-coupled Receptor (GPCR) Reconstitution and Labeling for Solution Nuclear Magnetic Resonance (NMR) Studies of the Structural Basis of Transmembrane Signaling. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092658. [PMID: 35566006 PMCID: PMC9101874 DOI: 10.3390/molecules27092658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022]
Abstract
G protein-coupled receptors (GPCRs) are a large membrane protein family found in higher organisms, including the human body. GPCRs mediate cellular responses to diverse extracellular stimuli and thus control key physiological functions, which makes them important targets for drug design. Signaling by GPCRs is related to the structure and dynamics of these proteins, which are modulated by extrinsic ligands as well as by intracellular binding partners such as G proteins and arrestins. Here, we review some basics of using nuclear magnetic resonance (NMR) spectroscopy in solution for the characterization of GPCR conformations and intermolecular interactions that relate to transmembrane signaling.
Collapse
|
12
|
Yang D, Gronenborn AM, Chong LT. Development and Validation of Fluorinated, Aromatic Amino Acid Parameters for Use with the AMBER ff15ipq Protein Force Field. J Phys Chem A 2022; 126:2286-2297. [PMID: 35352936 PMCID: PMC9014858 DOI: 10.1021/acs.jpca.2c00255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/15/2022] [Indexed: 12/27/2022]
Abstract
We developed force field parameters for fluorinated, aromatic amino acids enabling molecular dynamics (MD) simulations of fluorinated proteins. These parameters are tailored to the AMBER ff15ipq protein force field and enable the modeling of 4, 5, 6, and 7F-tryptophan, 3F- and 3,5F-tyrosine, and 4F- or 4-CF3-phenylalanine. The parameters include 181 unique atomic charges derived using the implicitly polarized charge (IPolQ) scheme in the presence of SPC/Eb explicit water molecules and 9 unique bond, angle, or torsion terms. Our simulations of benchmark peptides and proteins maintain expected conformational propensities on the μs time scale. In addition, we have developed an open-source Python program to calculate fluorine relaxation rates from MD simulations. The extracted relaxation rates from protein simulations are in good agreement with experimental values determined by 19F NMR. Collectively, our results illustrate the power and robustness of the IPolQ lineage of force fields for modeling the structure and dynamics of fluorine-containing proteins at the atomic level.
Collapse
Affiliation(s)
- Darian
T. Yang
- Molecular
Biophysics and Structural Biology Graduate Program, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania 15260, United States
- Department
of Structural Biology, University of Pittsburgh
School of Medicine, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Angela M. Gronenborn
- Department
of Structural Biology, University of Pittsburgh
School of Medicine, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Lillian T. Chong
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
13
|
Maleckis A, Abdelkader EH, Herath ID, Otting G. Synthesis of fluorinated leucines, valines and alanines for use in protein NMR. Org Biomol Chem 2022; 20:2424-2432. [PMID: 35262139 DOI: 10.1039/d2ob00145d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Efficient syntheses of fluorinated leucines, valines and alanines are described. The synthetic routes provide expedient access to various 13C/15N/D isotopologues requiring solely readily available and inexpensive isotope containing reagents such as NaBD4, carbon-13C dioxide and sodium azide-1-15N. The lightly fluorinated leucines and valines were found to be good substrates for cell-free protein expression and even 3-fluoroalanine, which is highly toxic to bacteria in vivo, could be incorporated into proteins this way. 19F-NMR spectra of the protein GB1 produced with these amino acids showed large chemical shift dispersions. Particularly high incorporation yields and clean 19F-NMR spectra were obtained for GB1 produced with valine residues, which had been synthesized with a single fluorine substituting a hydrogen stereospecifically in one of the methyl groups.
Collapse
Affiliation(s)
- Ansis Maleckis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006, Riga, Latvia.
| | - Elwy H Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Iresha D Herath
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
14
|
Qianzhu H, Abdelkader EH, Herath ID, Otting G, Huber T. Site-Specific Incorporation of 7-Fluoro-L-tryptophan into Proteins by Genetic Encoding to Monitor Ligand Binding by 19F NMR Spectroscopy. ACS Sens 2022; 7:44-49. [PMID: 35005899 DOI: 10.1021/acssensors.1c02467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A mutant aminoacyl-tRNA synthetase identified by a library selection system affords site-specific incorporation of 7-fluoro-L-tryptophan in response to an amber stop codon. The enzyme allows the production of proteins with a single hydrogen atom replaced by a fluorine atom as a sensitive nuclear magnetic resonance (NMR) probe. The substitution of a single hydrogen atom by another element that is as closely similar in size and hydrophobicity as possible minimizes possible perturbations in the structure, stability, and solubility of the protein. The fluorine atom enables site-selective monitoring of the protein response to ligand binding by 19F NMR spectroscopy, as demonstrated with the Zika virus NS2B-NS3 protease.
Collapse
Affiliation(s)
- Haocheng Qianzhu
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Elwy H. Abdelkader
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Iresha D. Herath
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
15
|
Gronenborn AM. Small, but powerful and attractive: 19F in biomolecular NMR. Structure 2022; 30:6-14. [PMID: 34995480 PMCID: PMC8797020 DOI: 10.1016/j.str.2021.09.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/03/2021] [Accepted: 09/20/2021] [Indexed: 01/09/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a versatile tool for probing structure, dynamics, folding, and interactions at atomic resolution. While naturally occurring magnetically active isotopes, such as 1H, 13C, or 15N, are most commonly used in biomolecular NMR, with 15N and 13C isotopic labeling routinely employed at the present time, 19F is a very attractive and sensitive alternative nucleus, which offers rich information on biomolecules in solution and in the solid state. This perspective summarizes the unique benefits of solution and solid-state 19F NMR spectroscopy for the study of biological systems. Particular focus is on the most recent studies and on future unique and important potential applications of fluorine NMR methodology.
Collapse
|
16
|
Abstract
Membrane proteins (MPs) play essential roles in numerous cellular processes. Because around 70% of the currently marketed drugs target MPs, a detailed understanding of their structure, binding properties, and functional dynamics in a physiologically relevant environment is crucial for a more detailed understanding of this important protein class. We here summarize the benefits of using lipid nanodiscs for NMR structural investigations and provide a detailed overview of the currently used lipid nanodisc systems as well as their applications in solution-state NMR. Despite the increasing use of other structural methods for the structure determination of MPs in lipid nanodiscs, solution NMR turns out to be a versatile tool to probe a wide range of MP features, ranging from the structure determination of small to medium-sized MPs to probing ligand and partner protein binding as well as functionally relevant dynamical signatures in a lipid nanodisc setting. We will expand on these topics by discussing recent NMR studies with lipid nanodiscs and work out a key workflow for optimizing the nanodisc incorporation of an MP for subsequent NMR investigations. With this, we hope to provide a comprehensive background to enable an informed assessment of the applicability of lipid nanodiscs for NMR studies of a particular MP of interest.
Collapse
Affiliation(s)
- Umut Günsel
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Strasse 2, 85748 Garching, Germany
| | - Franz Hagn
- Bavarian NMR Center (BNMRZ) at the Department of Chemistry, Technical University of Munich, Ernst-Otto-Fischer-Strasse 2, 85748 Garching, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| |
Collapse
|
17
|
Buchholz CR, Pomerantz WCK. 19F NMR viewed through two different lenses: ligand-observed and protein-observed 19F NMR applications for fragment-based drug discovery. RSC Chem Biol 2021; 2:1312-1330. [PMID: 34704040 PMCID: PMC8496043 DOI: 10.1039/d1cb00085c] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022] Open
Abstract
19F NMR has emerged as a powerful tool in drug discovery, particularly in fragment-based screens. The favorable magnetic resonance properties of the fluorine-19 nucleus, the general absence of fluorine in biological settings, and its ready incorporation into both small molecules and biopolymers, has enabled multiple applications of 19F NMR using labeled small molecules and proteins in biophysical, biochemical, and cellular experiments. This review will cover developments in ligand-observed and protein-observed 19F NMR experiments tailored towards drug discovery with a focus on fragment screening. We also cover the key advances that have furthered the field in recent years, including quantitative, structural, and in-cell methodologies. Several case studies are described for each application to highlight areas for innovation and to further catalyze new NMR developments for using this versatile nucleus.
Collapse
Affiliation(s)
- Caroline R Buchholz
- Department of Medicinal Chemistry, University of Minnesota 308 Harvard Street SE Minneapolis Minnesota 55455 USA
| | - William C K Pomerantz
- Department of Medicinal Chemistry, University of Minnesota 308 Harvard Street SE Minneapolis Minnesota 55455 USA
- Department of Chemistry, University of Minnesota 207 Pleasant St. SE Minneapolis Minnesota 55455 USA
| |
Collapse
|
18
|
Gimenez D, Phelan A, Murphy CD, Cobb SL. 19F NMR as a tool in chemical biology. Beilstein J Org Chem 2021; 17:293-318. [PMID: 33564338 PMCID: PMC7849273 DOI: 10.3762/bjoc.17.28] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
We previously reviewed the use of 19F NMR in the broad field of chemical biology [Cobb, S. L.; Murphy, C. D. J. Fluorine Chem. 2009, 130, 132-140] and present here a summary of the literature from the last decade that has the technique as the central method of analysis. The topics covered include the synthesis of new fluorinated probes and their incorporation into macromolecules, the application of 19F NMR to monitor protein-protein interactions, protein-ligand interactions, physiologically relevant ions and in the structural analysis of proteins and nucleic acids. The continued relevance of the technique to investigate biosynthesis and biodegradation of fluorinated organic compounds is also described.
Collapse
Affiliation(s)
- Diana Gimenez
- Department of Chemistry, Durham University, South Road, Durham, DH13LE, UK
| | - Aoife Phelan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Steven L Cobb
- Department of Chemistry, Durham University, South Road, Durham, DH13LE, UK
| |
Collapse
|
19
|
Danmaliki GI, Hwang PM. Solution NMR spectroscopy of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183356. [PMID: 32416193 DOI: 10.1016/j.bbamem.2020.183356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 02/06/2023]
Abstract
Integral membrane proteins (IMPs) perform unique and indispensable functions in the cell, making them attractive targets for fundamental research and drug discovery. Developments in protein production, isotope labeling, sample preparation, and pulse sequences have extended the utility of solution NMR spectroscopy for studying IMPs with multiple transmembrane segments. Here we review some recent applications of solution NMR for studying structure, dynamics, and interactions of polytopic IMPs, emphasizing strategies used to overcome common technical challenges.
Collapse
Affiliation(s)
- Gaddafi I Danmaliki
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Peter M Hwang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada; Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
20
|
Ruben EA, Gandhi PS, Chen Z, Koester SK, DeKoster GT, Frieden C, Di Cera E. 19F NMR reveals the conformational properties of free thrombin and its zymogen precursor prethrombin-2. J Biol Chem 2020; 295:8227-8235. [PMID: 32358061 PMCID: PMC7294081 DOI: 10.1074/jbc.ra120.013419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/28/2020] [Indexed: 11/06/2022] Open
Abstract
The conformational properties of trypsin-like proteases and their zymogen forms remain controversial because of a lack of sufficient information on their free forms. Specifically, it is unclear whether the free protease is zymogen-like and shifts to its mature form upon a ligand-induced fit or exists in multiple conformations in equilibrium from which the ligand selects the optimal fit via conformational selection. Here we report the results of 19F NMR measurements that reveal the conformational properties of a protease and its zymogen precursor in the free form. Using the trypsin-like, clotting protease thrombin as a relevant model system, we show that its conformation is quite different from that of its direct zymogen precursor prethrombin-2 and more similar to that of its fully active Na+-bound form. The results cast doubts on recent hypotheses that free thrombin is zymogen-like and transitions to protease-like forms upon ligand binding. Rather, they validate the scenario emerged from previous findings of X-ray crystallography and rapid kinetics supporting a pre-existing equilibrium between open (E) and closed (E*) forms of the active site. In this scenario, prethrombin-2 is more dynamic and exists predominantly in the E* form, whereas thrombin is more rigid and exists predominantly in the E form. Ligand binding to thrombin takes place exclusively in the E form without significant changes in the overall conformation. In summary, these results disclose the structural architecture of the free forms of thrombin and prethrombin-2, consistent with an E*-E equilibrium and providing no evidence that free thrombin is zymogen-like.
Collapse
Affiliation(s)
- Eliza A Ruben
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | | | - Zhiwei Chen
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Sarah K Koester
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Gregory T DeKoster
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carl Frieden
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
21
|
Welte H, Zhou T, Mihajlenko X, Mayans O, Kovermann M. What does fluorine do to a protein? Thermodynamic, and highly-resolved structural insights into fluorine-labelled variants of the cold shock protein. Sci Rep 2020; 10:2640. [PMID: 32060391 PMCID: PMC7021800 DOI: 10.1038/s41598-020-59446-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/29/2020] [Indexed: 11/21/2022] Open
Abstract
Fluorine labelling represents one promising approach to study proteins in their native environment due to efficient suppressing of background signals. Here, we systematically probe inherent thermodynamic and structural characteristics of the Cold shock protein B from Bacillus subtilis (BsCspB) upon fluorine labelling. A sophisticated combination of fluorescence and NMR experiments has been applied to elucidate potential perturbations due to insertion of fluorine into the protein. We show that single fluorine labelling of phenylalanine or tryptophan residues has neither significant impact on thermodynamic stability nor on folding kinetics compared to wild type BsCspB. Structure determination of fluorinated phenylalanine and tryptophan labelled BsCspB using X-ray crystallography reveals no displacements even for the orientation of fluorinated aromatic side chains in comparison to wild type BsCspB. Hence we propose that single fluorinated phenylalanine and tryptophan residues used for protein labelling may serve as ideal probes to reliably characterize inherent features of proteins that are present in a highly biological context like the cell.
Collapse
Affiliation(s)
- Hannah Welte
- Department of Chemistry, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany.,Graduate School Chemical Biology KoRS-CB, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Tiankun Zhou
- Department of Biology, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Xenia Mihajlenko
- Department of Chemistry, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Olga Mayans
- Graduate School Chemical Biology KoRS-CB, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany.,Department of Biology, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany
| | - Michael Kovermann
- Department of Chemistry, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany. .,Graduate School Chemical Biology KoRS-CB, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany. .,Zukunftskolleg, Universitätsstrasse 10, Universität Konstanz, DE-78457, Konstanz, Germany.
| |
Collapse
|
22
|
Edwards JM, Harris P, Bukrinski JT, Golovanov AP. Use of 19 F Differential Labelling for the Simultaneous Detection and Monitoring of Three Individual Proteins in a Serum Environment. Chempluschem 2020; 84:443-446. [PMID: 31943902 DOI: 10.1002/cplu.201900110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/14/2019] [Indexed: 11/12/2022]
Abstract
Protein behavior in complex mixtures, such as biological fluids, is often modeled by simplified buffer systems in solution. Here we have used the recently described differential 19 F labelling approach (with NMR detection) to monitor and compare the solution behaviour of three proteins at once: human serum albumin (HSA), transferrin (TrF), and immunoglobulin G (IgG), both in serum and in buffer. We demonstrate that monitoring three proteins simultaneously and independently in biological fluid is possible, and that the presence of other endogenous components greatly changes the association characteristics of these proteins. For example, in the simplified model buffer system, all three proteins diffuse at a similar rate, while in serum HSA diffuses around three times faster than TrF, and four times faster than IgG. This 19 F NMR approach allows characterization of the behaviour of complex multiprotein systems in their native environment, e. g., in biological fluids.
Collapse
Affiliation(s)
- John M Edwards
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Pernille Harris
- DTU Chemistry, Technical University of Denmark Building 207, 2800, Kgs. Lyngby, Denmark
| | | | - Alexander P Golovanov
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| |
Collapse
|
23
|
Abstract
Inhibitor discovery for protein-protein interactions has proven difficult due to the large protein surface areas and dynamic interfaces involved. This is particularly the case when targeting transcription-factor-protein interactions. To address this challenge, structural biology approaches for ligand discovery using X-ray crystallography, mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy have had a significant impact on advancing small molecule inhibitors into the clinic, including the U.S. Food and Drug Administration approved drug, Venetoclax. Inspired by the protein-observed NMR approach using 1H-15N-HSQC NMR which detects chemical shift perturbations of 15N-labeled amides, we have applied a complementary protein-observed 19F NMR approach using 19F-labeled side-chains that are enriched at protein-protein-interaction interfaces. This protein-observed 19F NMR assay is abbreviated PrOF NMR to distinguish the experiment from the more commonly employed ligand-observed 19F NMR methods. In this Account, we describe our efforts using PrOF NMR as a ligand discovery tool, particularly for fragment-based ligand discovery (FBLD). We metabolically label the aromatic amino acids on proteins due to the enrichment of aromatic residues at protein interfaces. We choose the 19F nucleus due to its high signal sensitivity and the hyperresponsiveness of 19F to changes in chemical environment. Simultaneous labeling with two different types of fluorinated aromatic amino acids for PrOF NMR has also been achieved. We first describe the technical aspects of considering the application of PrOF NMR for characterizing native protein-protein interactions and for ligand screening. Several test cases are further described with a focus on a transcription factor coactivator interaction with the KIX domain of CBP/p300 and two epigenetic regulatory domains, the bromodomains of BRD4 and BPTF. Through these case studies, we highlight medicinal chemistry applications in FBLD, selectivity screens, structure-activity relationship (SAR) studies, and ligand deconstruction approaches. These studies have led to the discovery of some of the first inhibitors for BPTF and a novel inhibitor class for the N-terminal bromodomain of BRD4. The speed, ease of interpretation, and relatively low concentration of protein needed for NMR-based binding experiments affords a rapid, structural biology-based method to discover and characterize both native and new ligands for bromodomains, and it may find utility in the study of additional epigenetic proteins and transcription-factor-protein interactions.
Collapse
Affiliation(s)
- Anand Divakaran
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th St. SE, Minneapolis, Minnesota 55455, United States
| | - Steven E. Kirberger
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - William C. K. Pomerantz
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th St. SE, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
24
|
Schiedel M, Moroglu M, Ascough DMH, Chamberlain AER, Kamps JJAG, Sekirnik AR, Conway SJ. Chemical Epigenetics: The Impact of Chemical and Chemical Biology Techniques on Bromodomain Target Validation. Angew Chem Int Ed Engl 2019; 58:17930-17952. [DOI: 10.1002/anie.201812164] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/08/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Matthias Schiedel
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Mustafa Moroglu
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - David M. H. Ascough
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Anna E. R. Chamberlain
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Jos J. A. G. Kamps
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Angelina R. Sekirnik
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Stuart J. Conway
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
25
|
Schiedel M, Moroglu M, Ascough DMH, Chamberlain AER, Kamps JJAG, Sekirnik AR, Conway SJ. Chemische Epigenetik: der Einfluss chemischer und chemo‐biologischer Techniken auf die Zielstruktur‐Validierung von Bromodomänen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Matthias Schiedel
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Mustafa Moroglu
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - David M. H. Ascough
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Anna E. R. Chamberlain
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Jos J. A. G. Kamps
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Angelina R. Sekirnik
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Stuart J. Conway
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| |
Collapse
|
26
|
Boeszoermenyi A, Chhabra S, Dubey A, Radeva DL, Burdzhiev NT, Chanev CD, Petrov OI, Gelev VM, Zhang M, Anklin C, Kovacs H, Wagner G, Kuprov I, Takeuchi K, Arthanari H. Aromatic 19F- 13C TROSY: a background-free approach to probe biomolecular structure, function, and dynamics. Nat Methods 2019; 16:333-340. [PMID: 30858598 PMCID: PMC6549241 DOI: 10.1038/s41592-019-0334-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 01/30/2019] [Indexed: 12/30/2022]
Abstract
Atomic-level information about the structure and dynamics of biomolecules is critical for an understanding of their function. Nuclear magnetic resonance (NMR) spectroscopy provides unique insights into the dynamic nature of biomolecules and their interactions, capturing transient conformers and their features. However, relaxation-induced line broadening and signal overlap make it challenging to apply NMR spectroscopy to large biological systems. Here we took advantage of the high sensitivity and broad chemical shift range of 19F nuclei and leveraged the remarkable relaxation properties of the aromatic 19F-13C spin pair to disperse 19F resonances in a two-dimensional transverse relaxation-optimized spectroscopy spectrum. We demonstrate the application of 19F-13C transverse relaxation-optimized spectroscopy to investigate proteins and nucleic acids. This experiment expands the scope of 19F NMR in the study of the structure, dynamics, and function of large and complex biological systems and provides a powerful background-free NMR probe.
Collapse
Affiliation(s)
- Andras Boeszoermenyi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sandeep Chhabra
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Abhinav Dubey
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Denitsa L Radeva
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| | | | - Christo D Chanev
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| | - Ognyan I Petrov
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| | - Vladimir M Gelev
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| | - Meng Zhang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | | | | | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ilya Kuprov
- School of Chemistry, University of Southampton, Highfield, Southampton, UK
| | - Koh Takeuchi
- Molecular Profiling Research Center for Drug Discovery , National Institute of Advanced Industrial Science and Technology, Tokyo, Japan.
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
27
|
Gee CT, Arntson KE, Koleski EJ, Staebell RL, Pomerantz WCK. Dual Labeling of the CBP/p300 KIX Domain for 19 F NMR Leads to Identification of a New Small-Molecule Binding Site. Chembiochem 2018; 19:963-969. [PMID: 29430847 PMCID: PMC6251716 DOI: 10.1002/cbic.201700686] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Indexed: 12/15/2022]
Abstract
Protein-Observed Fluorine NMR (PrOF NMR) spectroscopy is an emerging technique for screening and characterizing small-molecule-protein interactions. The choice of which amino acid to label for PrOF NMR can be critical for analysis. Here we report the first use of a protein containing two different fluoroaromatic amino acids for NMR studies. Using the KIX domain of the CBP/p300 as a model system, we examine ligand binding of several small-molecule compounds elaborated from our previous fragment screen and identify a new ligand binding site distinct from those used by native transcription factors. This site was further supported by computational modeling (FTMap and Schrödinger) and 1 H,15 N HSQC/HMQC NMR spectroscopy. Metabolic labeling with multiple fluorinated amino acids provides useful probes for further studying ligand binding and has led to new insight for allosterically regulating transcription-factor protein interactions with small-molecule ligands.
Collapse
Affiliation(s)
- Clifford T Gee
- Department of Chemistry, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, MN, 55455, USA
| | - Keith E Arntson
- Department of Chemistry, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, MN, 55455, USA
| | - Edward J Koleski
- Department of Chemistry, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, MN, 55455, USA
| | - Rachel Lynn Staebell
- Department of Chemistry, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, MN, 55455, USA
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant Street, SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
28
|
Imiołek M, Karunanithy G, Ng WL, Baldwin AJ, Gouverneur V, Davis BG. Selective Radical Trifluoromethylation of Native Residues in Proteins. J Am Chem Soc 2018; 140:1568-1571. [PMID: 29301396 PMCID: PMC5806083 DOI: 10.1021/jacs.7b10230] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Indexed: 12/20/2022]
Abstract
The incorporation of fluorine can not only significantly facilitate the study of proteins but also potentially modulate their function. Though some biosynthetic methods allow global residue-replacement, post-translational fluorine incorporation would constitute a fast and efficient alternative. Here, we reveal a mild method for direct protein radical trifluoromethylation at native residues as a strategy for symmetric-multifluorine incorporation on mg scales with high recoveries. High selectivity toward tryptophan residues enhanced the utility of this direct trifluoromethylation technique allowing ready study of fluorinated protein constructs using 19F-NMR.
Collapse
Affiliation(s)
- Mateusz Imiołek
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United
Kingdom
| | - Gogulan Karunanithy
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United
Kingdom
| | - Wai-Lung Ng
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United
Kingdom
| | - Andrew J. Baldwin
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United
Kingdom
| | - Véronique Gouverneur
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United
Kingdom
| | - Benjamin G. Davis
- Chemistry Research Laboratory,
Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, United
Kingdom
| |
Collapse
|
29
|
Sugiki T, Furuita K, Fujiwara T, Kojima C. Current NMR Techniques for Structure-Based Drug Discovery. Molecules 2018; 23:molecules23010148. [PMID: 29329228 PMCID: PMC6017608 DOI: 10.3390/molecules23010148] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/28/2017] [Accepted: 01/09/2018] [Indexed: 12/22/2022] Open
Abstract
A variety of nuclear magnetic resonance (NMR) applications have been developed for structure-based drug discovery (SBDD). NMR provides many advantages over other methods, such as the ability to directly observe chemical compounds and target biomolecules, and to be used for ligand-based and protein-based approaches. NMR can also provide important information about the interactions in a protein-ligand complex, such as structure, dynamics, and affinity, even when the interaction is too weak to be detected by ELISA or fluorescence resonance energy transfer (FRET)-based high-throughput screening (HTS) or to be crystalized. In this study, we reviewed current NMR techniques. We focused on recent progress in NMR measurement and sample preparation techniques that have expanded the potential of NMR-based SBDD, such as fluorine NMR (19F-NMR) screening, structure modeling of weak complexes, and site-specific isotope labeling of challenging targets.
Collapse
Affiliation(s)
- Toshihiko Sugiki
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| | - Kyoko Furuita
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| | | | - Chojiro Kojima
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
- Graduate School of Engineering, Yokohama National University, Yokohama 240-8501, Japan.
| |
Collapse
|
30
|
Ampaw A, Carroll M, von Velsen J, Bhattasali D, Cohen A, Bowler MW, Jakeman DL. Observing enzyme ternary transition state analogue complexes by 19F NMR spectroscopy. Chem Sci 2017; 8:8427-8434. [PMID: 29619190 PMCID: PMC5863612 DOI: 10.1039/c7sc04204c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/23/2017] [Indexed: 11/21/2022] Open
Abstract
Ternary transition state analogue (TSA) complexes probing the isomerization of β-d-glucose 1-phosphate (G1P) into d-glucose 6-phosphate (G6P) catalyzed by catalytically active, fluorinated (5-fluorotryptophan), β-phosphoglucomutase (βPGM) have been observed directly by 19F NMR spectroscopy. In these complexes MgF3- and AlF4- are surrogates for the transferring phosphate. However, the relevance of these metal fluorides as TSA complexes has been queried. The 1D 19F spectrum of a ternary TSA complex presented a molar equivalence between fluorinated enzyme, metal fluoride and non-isomerizable fluoromethylenephosphonate substrate analogue. Ring flips of the 5-fluoroindole ring remote from the active site were observed by both 19F NMR and X-ray crystallography, but did not perturb function. This data unequivocally demonstrates that the concentration of the metal fluoride complexes is equivalent to the concentration of enzyme and ligand in the TSA complex in aqueous solution.
Collapse
Affiliation(s)
- Anna Ampaw
- Department of Chemistry , Dalhousie University , Halifax , NS , Canada B3H 4R2 .
| | - Madison Carroll
- Department of Chemistry , Dalhousie University , Halifax , NS , Canada B3H 4R2 .
| | - Jill von Velsen
- European Molecular Biology Laboratory , Grenoble Outstation , 71 avenue des Martyrs , CS 90181 F-38042 Grenoble , France
| | | | - Alejandro Cohen
- Proteomics and Mass Spectrometry Core Facility , Life Sciences Research Institute , Dalhousie University , Halifax , NS , Canada B3H 4R2
| | - Matthew W Bowler
- European Molecular Biology Laboratory , Grenoble Outstation , 71 avenue des Martyrs , CS 90181 F-38042 Grenoble , France
| | - David L Jakeman
- Department of Chemistry , Dalhousie University , Halifax , NS , Canada B3H 4R2 .
- College of Pharmacy , Dalhousie University , Halifax , NS , Canada B3H 4R2
| |
Collapse
|
31
|
Mamillapalli S, Miyagi M, Bann JG. Stability of domain 4 of the anthrax toxin protective antigen and the effect of the VWA domain of CMG2 on stability. Protein Sci 2016; 26:355-364. [PMID: 27874231 DOI: 10.1002/pro.3087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 01/04/2023]
Abstract
The major immunogenic component of the current anthrax vaccine, anthrax vaccine adsorbed (AVA) is protective antigen (PA). We have shown recently that the thermodynamic stability of PA can be significantly improved by binding to the Von-Willebrand factor A (VWA) domain of capillary morphogenesis protein 2 (CMG2), and improvements in thermodynamic stability may improve storage and long-term stability of PA for use as a vaccine. In order to understand the origin of this increase in stability, we have isolated the receptor binding domain of PA, domain 4 (D4), and have studied the effect of the addition of CMG2 on thermodynamic stability. We are able to determine a binding affinity between D4 and CMG2 (∼300 nM), which is significantly weaker than that between full-length PA and CMG2 (170-300 pM). Unlike full-length PA, we observe very little change in stability of D4 on binding to CMG2, using either fluorescence or 19 F-NMR experiments. Because in previous experiments we could observe a stabilization of both domain 4 and domain 2, the mechanism of stabilization of PA by CMG2 is likely to involve a mutual stabilization of these two domains.
Collapse
Affiliation(s)
| | - Masaru Miyagi
- Case Center for Proteomics and Bioinformatics, Department of Pharmacology and Department of Opthamology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, 44106
| | - James G Bann
- Department of Chemistry, Wichita State University, Wichita, Kansas, 67260
| |
Collapse
|
32
|
Marchetti R, Perez S, Arda A, Imberty A, Jimenez‐Barbero J, Silipo A, Molinaro A. "Rules of Engagement" of Protein-Glycoconjugate Interactions: A Molecular View Achievable by using NMR Spectroscopy and Molecular Modeling. ChemistryOpen 2016; 5:274-96. [PMID: 27547635 PMCID: PMC4981046 DOI: 10.1002/open.201600024] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 12/20/2022] Open
Abstract
Understanding the dynamics of protein-ligand interactions, which lie at the heart of host-pathogen recognition, represents a crucial step to clarify the molecular determinants implicated in binding events, as well as to optimize the design of new molecules with therapeutic aims. Over the last decade, advances in complementary biophysical and spectroscopic methods permitted us to deeply dissect the fine structural details of biologically relevant molecular recognition processes with high resolution. This Review focuses on the development and use of modern nuclear magnetic resonance (NMR) techniques to dissect binding events. These spectroscopic methods, complementing X-ray crystallography and molecular modeling methodologies, will be taken into account as indispensable tools to provide a complete picture of protein-glycoconjugate binding mechanisms related to biomedicine applications against infectious diseases.
Collapse
Affiliation(s)
- Roberta Marchetti
- Department of Chemical SciencestUniversity of Napoli Federico IIVia Cintia 480126NapoliItaly
| | - Serge Perez
- Department Molecular Pharmacochemistry UMR 5063CNRS and University of GrenobleAlpes, BP 5338041 Grenoble cedex 9France
| | - Ana Arda
- Bizkaia Technological ParkCIC bioGUNEBuilding 801A-148160Derio-BizkaiaSpain
| | - Anne Imberty
- Centre de Recherche sur les CNRSand University of Grenoble Macromolécules Végétales, UPR 5301Alpes, BP 5338041Grenoble cedex 9France
| | | | - Alba Silipo
- Department of Chemical SciencestUniversity of Napoli Federico IIVia Cintia 480126NapoliItaly
| | - Antonio Molinaro
- Department of Chemical SciencestUniversity of Napoli Federico IIVia Cintia 480126NapoliItaly
| |
Collapse
|
33
|
Gee CT, Arntson KE, Urick AK, Mishra NK, Hawk LML, Wisniewski AJ, Pomerantz WCK. Protein-observed (19)F-NMR for fragment screening, affinity quantification and druggability assessment. Nat Protoc 2016; 11:1414-27. [PMID: 27414758 DOI: 10.1038/nprot.2016.079] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
NMR spectroscopy can be used to quantify the binding affinity between proteins and low-complexity molecules, termed 'fragments'; this versatile screening approach allows researchers to assess the druggability of new protein targets. Protein-observed (19)F-NMR (PrOF NMR) using (19)F-labeled amino acids generates relatively simple spectra that are able to provide dynamic structural information toward understanding protein folding and function. Changes in these spectra upon the addition of fragment molecules can be observed and quantified. This protocol describes the sequence-selective labeling of three proteins (the first bromodomains of Brd4 and BrdT, and the KIX domain of the CREB-binding protein) using commercially available fluorinated aromatic amino acids and fluorinated precursors as example applications of the method developed by our research group. Fragment-screening approaches are discussed, as well as Kd determination, ligand-efficiency calculations and druggability assessment, i.e., the ability to target these proteins using small-molecule ligands. Experiment times on the order of a few minutes and the simplicity of the NMR spectra obtained make this approach well-suited to the investigation of small- to medium-sized proteins, as well as the screening of multiple proteins in the same experiment.
Collapse
Affiliation(s)
- Clifford T Gee
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Keith E Arntson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew K Urick
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Neeraj K Mishra
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Laura M L Hawk
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrea J Wisniewski
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota, USA
| | | |
Collapse
|
34
|
Arntson KE, Pomerantz WCK. Protein-Observed Fluorine NMR: A Bioorthogonal Approach for Small Molecule Discovery. J Med Chem 2015; 59:5158-71. [PMID: 26599421 DOI: 10.1021/acs.jmedchem.5b01447] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The (19)F isotope is 100% naturally abundant and is the second most sensitive and stable NMR-active nucleus. Unlike the ubiquitous hydrogen atom, fluorine is nearly absent in biological systems, making it a unique bioorthogonal atom for probing molecular interactions in biology. Over 73 fluorinated proteins have been studied by (19)F NMR since the seminal studies of Hull and Sykes in 1974. With advances in cryoprobe production and fluorinated amino acid incorporation strategies, protein-based (19)F NMR offers opportunities to the medicinal chemist for characterizing and ultimately discovering new small molecule protein ligands. This review will highlight new advances using (19)F NMR for characterizing small molecule interactions with both small and large proteins as well as detailing NMR resonance assignment challenges and amino acid incorporation approaches.
Collapse
Affiliation(s)
- Keith E Arntson
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota , 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
35
|
Kasireddy C, Bann JG, Mitchell-Koch KR. Demystifying fluorine chemical shifts: electronic structure calculations address origins of seemingly anomalous (19)F-NMR spectra of fluorohistidine isomers and analogues. Phys Chem Chem Phys 2015; 17:30606-12. [PMID: 26524669 PMCID: PMC4643390 DOI: 10.1039/c5cp05502d] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fluorine NMR spectroscopy is a powerful tool for studying biomolecular structure, dynamics, and ligand binding, yet the origins of (19)F chemical shifts are not well understood. Herein, we use electronic structure calculations to describe the changes in (19)F chemical shifts of 2F- and 4F-histidine/(5-methyl)-imidazole upon acid titration. While the protonation of the 2F species results in a deshielded chemical shift, protonation of the 4F isomer results in an opposite, shielded chemical shift. The deshielding of 2F-histidine/(5-methyl)-imidazole upon protonation can be rationalized by concomitant decreases in charge density on fluorine and a reduced dipole moment. These correlations do not hold for 4F-histidine/(5-methyl)-imidazole, however. Molecular orbital calculations reveal that for the 4F species, there are no lone pair electrons on the fluorine until protonation. Analysis of a series of 4F-imidazole analogues, all with delocalized fluorine electron density, indicates that the deshielding of (19)F chemical shifts through substituent effects correlates with increased C-F bond polarity. In summary, the delocalization of fluorine electrons in the neutral 4F species, with gain of a lone pair upon protonation may help explain the difficulty in developing a predictive framework for fluorine chemical shifts. Ideas debated by chemists over 40 years ago, regarding fluorine's complex electronic effects, are shown to have relevance for understanding and predicting fluorine NMR spectra.
Collapse
Affiliation(s)
- Chandana Kasireddy
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0051, USA.
| | - James G Bann
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0051, USA.
| | - Katie R Mitchell-Koch
- Department of Chemistry, Wichita State University, 1845 Fairmount, Wichita, Kansas 67260-0051, USA.
| |
Collapse
|
36
|
Matei E, Gronenborn AM. 19
F Paramagnetic Relaxation Enhancement: A Valuable Tool for Distance Measurements in Proteins. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
37
|
Matei E, Gronenborn AM. (19)F Paramagnetic Relaxation Enhancement: A Valuable Tool for Distance Measurements in Proteins. Angew Chem Int Ed Engl 2015; 55:150-4. [PMID: 26510989 DOI: 10.1002/anie.201508464] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Indexed: 11/11/2022]
Abstract
Fluorine NMR paramagnetic relaxation enhancement was evaluated as a versatile approach for extracting distance information in selectively F-labeled proteins. Proof of concept and initial applications are presented for the HIV-inactivating lectin cyanovirin-N. Single F atoms were introduced at the 4-, 5-, 6- or 7 positions of Trp49 and the 4-position of Phe4, Phe54, and Phe80. The paramagnetic nitroxide spin label was attached to Cys residues that were placed into the protein at positions 50 or 52. (19)F-T2 NMR spectra with different relaxation delays were recorded and the transverse (19)F-PRE rate, (19)F-Γ2 , was used to determine the average distance between the F nucleus and the paramagnetic center. Our data show that experimental (19)F PRE-based distances correspond to 0.93 of the (1)HN-PRE distances, in perfect agreement with the gyromagnetic γ(19)F/γ(1)H ratio, thereby demonstrating that (19)F PREs are excellent alternative parameters for quantitative distance measurements in selectively F-labeled proteins.
Collapse
Affiliation(s)
- Elena Matei
- Department of Structural Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15260 (USA)
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15260 (USA).
| |
Collapse
|
38
|
Sharaf NG, Gronenborn AM. (19)F-modified proteins and (19)F-containing ligands as tools in solution NMR studies of protein interactions. Methods Enzymol 2015; 565:67-95. [PMID: 26577728 DOI: 10.1016/bs.mie.2015.05.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
(19)F solution NMR is a powerful and versatile tool to study protein structure and protein-ligand interactions due to the favorable NMR characteristics of the (19)F atom, its absence in naturally occurring biomolecules, and small size. Protocols to introduce (19)F atoms into both proteins and their ligands are readily available and offer the ability to conduct protein-observe (using (19)F-labeled proteins) or ligand-observe (using (19)F-containing ligands) NMR experiments. This chapter provides two protocols for the (19)F-labeling of proteins, using an Escherichia coli expression system: (i) amino acid type-specific incorporation of (19)F-modified amino acids and (ii) site-specific incorporation of (19)F-modified amino acids using recombinantly expressed orthogonal amber tRNA/tRNA synthetase pairs. In addition, we discuss several applications, involving (19)F-modified proteins and (19)F-containing ligands.
Collapse
Affiliation(s)
- Naima G Sharaf
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
39
|
Synthesis and characterization of [S2MoS2Cu(n-SPhF)]2−(n=o, m, p) clusters: Potential 19F-NMR structural probes for Orange Protein. INORG CHEM COMMUN 2014. [DOI: 10.1016/j.inoche.2014.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Chadegani F, Lovell S, Mullangi V, Miyagi M, Battaile KP, Bann JG. (19)F nuclear magnetic resonance and crystallographic studies of 5-fluorotryptophan-labeled anthrax protective antigen and effects of the receptor on stability. Biochemistry 2014; 53:690-701. [PMID: 24387629 PMCID: PMC3985773 DOI: 10.1021/bi401405s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The anthrax protective antigen (PA)
is an 83 kDa protein that is
one of three protein components of the anthrax toxin, an AB toxin
secreted by Bacillus anthracis. PA is capable of
undergoing several structural changes, including oligomerization to
either a heptameric or octameric structure called the prepore, and
at acidic pH a major conformational change to form a membrane-spanning
pore. To follow these structural changes at a residue-specific level,
we have conducted initial studies in which we have biosynthetically
incorporated 5-fluorotryptophan (5-FTrp) into PA, and we have studied
the influence of 5-FTrp labeling on the structural stability of PA
and on binding to the host receptor capillary morphogenesis protein
2 (CMG2) using 19F nuclear magnetic resonance (NMR). There
are seven tryptophans in PA, but of the four domains in PA, only two
contain tryptophans: domain 1 (Trp65, -90, -136, -206, and -226) and
domain 2 (Trp346 and -477). Trp346 is of particular interest because
of its proximity to the CMG2 binding interface, and because it forms
part of the membrane-spanning pore. We show that the 19F resonance of Trp346 is sensitive to changes in pH, consistent with
crystallographic studies, and that receptor binding significantly
stabilizes Trp346 to both pH and temperature. In addition, we provide
evidence that suggests that resonances from tryptophans distant from
the binding interface are also stabilized by the receptor. Our studies
highlight the positive impact of receptor binding on protein stability
and the use of 19F NMR in gaining insight into structural
changes in a high-molecular weight protein.
Collapse
Affiliation(s)
- Fatemeh Chadegani
- Department of Chemistry, Wichita State University , Wichita, Kansas 67260, United States
| | | | | | | | | | | |
Collapse
|
41
|
Fluorine-19 NMR of integral membrane proteins illustrated with studies of GPCRs. Curr Opin Struct Biol 2013; 23:740-747. [PMID: 23932201 DOI: 10.1016/j.sbi.2013.07.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 07/02/2013] [Indexed: 01/26/2023]
Abstract
Fluorine-19 is a spin-½ NMR isotope with high sensitivity and large chemical shift dispersion, which makes it attractive for high resolution NMR spectroscopy in solution. For studies of membrane proteins it is further of interest that (19)F is rarely found in biological materials, which enables observation of extrinsic (19)F labels with minimal interference from background signals. Today, after a period with rather limited use of (19)F NMR in structural biology, we witness renewed interest in this technology for studies of complex supramolecular systems. Here we report on recent (19)F NMR studies with the G protein-coupled receptor family of membrane proteins.
Collapse
|
42
|
Pond MP, Wenke BB, Preimesberger MR, Rice SL, Lecomte JTJ. 3-Fluorotyrosine as a complementary probe of hemoglobin structure and dynamics: a (19)F-NMR study of Synechococcus sp. PCC 7002 GlbN. Chem Biodivers 2013; 9:1703-17. [PMID: 22976963 DOI: 10.1002/cbdv.201100448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The hemoglobin from the cyanobacterium Synechococcus sp. PCC 7002 (GlbN) contains three tyrosines (Tyr5, Tyr22, and Tyr53), each of which undergoes a structural rearrangement when the protein binds an exogenous ligand such as cyanide. We explored the use of 3-fluorotyrosine and (19)F-NMR spectroscopy for the characterization of GlbN. Assignment of (19)F resonances in fluorinated GlbN (GlbN*) was achieved with individual Tyr5Phe and Tyr53Phe replacements. We observed marked variations in chemical shift and linewidth reflecting the dependence of structural and dynamic properties on oxidation state, ligation state, and covalent attachment of the heme group. The isoelectronic complexes of ferric GlbN* with cyanide and ferrous GlbN* with carbon monoxide gave contrasting spectra, the latter exhibiting heterogeneity and enhanced internal motions on a microsecond-to-millisecond time scale. The strength of the H-bond network involving Tyr22 (B10) and bound cyanide was tested at high pH. 3-Fluorotyrosine at position 22 had a pK(a) value at least 3 units higher than its intrinsic value, 8.5. In addition, evidence was found for long-range communication among the tyrosine sites. These observations demonstrated the utility of the 3-fluorotyrosine approach to gain insight in hemoglobin properties.
Collapse
Affiliation(s)
- Matthew P Pond
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
43
|
Pomerantz WC, Wang N, Lipinski AK, Wang R, Cierpicki T, Mapp AK. Profiling the dynamic interfaces of fluorinated transcription complexes for ligand discovery and characterization. ACS Chem Biol 2012; 7:1345-50. [PMID: 22725662 DOI: 10.1021/cb3002733] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The conformationally dynamic binding surfaces of transcription complexes present a particular challenge for ligand discovery and characterization. In the case of the KIX domain of the master coactivator CBP/p300, few small molecules have been reported that target its two allosterically regulated binding sites despite the important roles that KIX plays in processes ranging from memory formation to hematopoiesis. Taking advantage of the enrichment of aromatic amino acids at protein interfaces, here we show that the incorporation of six (19)F-labeled aromatic side chains within the KIX domain enables recapitulation of the differential binding footprints of three natural activator peptides (MLL, c-Myb, and pKID) in complex with KIX and effectively reports on allosteric changes upon binding using 1D NMR spectroscopy. Additionally, the examination of both the previously described KIX protein-protein interaction inhibitor Napthol-ASE-phosphate and newly discovered ligand 1-10 rapidly revealed both the binding sites and the affinities of these small molecules. Significantly, the utility of using fluorinated transcription factors for ligand discovery was demonstrated through a fragment screen leading to a new low molecular weight fragment ligand for CBP/p300, 1G7. Aromatic amino acids are enriched at protein-biomolecule interfaces; therefore, this quantitative and facile approach will be broadly useful for studying dynamic transcription complexes and screening campaigns complementing existing biophysical methods for studying these dynamic interfaces.
Collapse
Affiliation(s)
- William C. Pomerantz
- Department of Chemistry, ‡Program in Chemical
Biology and §Department of Pathology, University of Michigan, Ann Arbor Michigan 48109, United States
| | - Ningkun Wang
- Department of Chemistry, ‡Program in Chemical
Biology and §Department of Pathology, University of Michigan, Ann Arbor Michigan 48109, United States
| | - Ashley K. Lipinski
- Department of Chemistry, ‡Program in Chemical
Biology and §Department of Pathology, University of Michigan, Ann Arbor Michigan 48109, United States
| | - Rurun Wang
- Department of Chemistry, ‡Program in Chemical
Biology and §Department of Pathology, University of Michigan, Ann Arbor Michigan 48109, United States
| | - Tomasz Cierpicki
- Department of Chemistry, ‡Program in Chemical
Biology and §Department of Pathology, University of Michigan, Ann Arbor Michigan 48109, United States
| | - Anna K. Mapp
- Department of Chemistry, ‡Program in Chemical
Biology and §Department of Pathology, University of Michigan, Ann Arbor Michigan 48109, United States
| |
Collapse
|
44
|
Kitevski-LeBlanc JL, Prosser RS. Current applications of 19F NMR to studies of protein structure and dynamics. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2012; 62:1-33. [PMID: 22364614 DOI: 10.1016/j.pnmrs.2011.06.003] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 07/01/2011] [Indexed: 05/20/2023]
Affiliation(s)
- Julianne L Kitevski-LeBlanc
- Department of Chemistry, University of Toronto, UTM, 3359 Mississauga Rd., North Mississauga, Ontario, Canada
| | | |
Collapse
|
45
|
Shi P, Li D, Chen H, Xiong Y, Wang Y, Tian C. In situ 19F NMR studies of an E. coli membrane protein. Protein Sci 2012; 21:596-600. [PMID: 22362702 DOI: 10.1002/pro.2040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/26/2012] [Accepted: 01/28/2012] [Indexed: 12/16/2022]
Abstract
In this report, (19)F spin incorporation in a specific site of a specific membrane protein in E. coli was accomplished via trifluoromethyl-phenylalanine ((19) F-tfmF). Site-specific (19)F chemical shifts and longitudinal relaxation times of diacylglycerol kinase (DAGK), an E. coli membrane protein, were measured in its native membrane using in situ magic angle spinning (MAS) solid state nuclear magnetic resonance (NMR). Comparing with solution NMR data of the purified DAGK in detergent micelles, the in situ MAS-NMR data illustrated that (19)F chemical shift values of residues at different membrane protein locations were influenced by interactions between membrane proteins and their surrounding lipid or lipid mimic environments, while (19)F side chain longitudinal relaxation values were probably affected by different interactions of DAGK with planar lipid bilayer versus globular detergent micelles.
Collapse
Affiliation(s)
- Pan Shi
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | | | | | | | | | | |
Collapse
|
46
|
Shi P, Li D, Chen H, Xiong Y, Tian C. Site-specific solvent exposure analysis of a membrane protein using unnatural amino acids and 19F nuclear magnetic resonance. Biochem Biophys Res Commun 2011; 414:379-83. [DOI: 10.1016/j.bbrc.2011.09.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
|
47
|
Basehore HK, Ropson IJ. Residual interactions in unfolded bile acid-binding protein by 19F NMR. Protein Sci 2011; 20:327-35. [PMID: 21280124 DOI: 10.1002/pro.563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The folding initiation mechanism of human bile acid-binding protein (BABP) has been examined by (19) F NMR. Equilibrium unfolding studies of BABP labeled with fluorine at all eight of its phenylalanine residues showed that at least two sites experience changes in solvent exposure at high denaturant concentrations. Peak assignments were made by site-specific 4FPhe incorporation. The resonances for proteins specifically labeled at Phe17, Phe47, and Phe63 showed changes in chemical shift at denaturant concentrations at which the remaining five phenylalanine residues appear to be fully solvent-exposed. Phe17 is a helical residue that was not expected to participate in a folding initiation site. Phe47 and Phe63 form part of a hydrophobic core region that may be conserved as a site for folding initiation in the intracellular lipid-binding protein family.
Collapse
Affiliation(s)
- H Kenney Basehore
- Department of Biochemistry and Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17022, USA
| | | |
Collapse
|
48
|
Garai K, Mustafi SM, Baban B, Frieden C. Structural differences between apolipoprotein E3 and E4 as measured by (19)F NMR. Protein Sci 2010; 19:66-74. [PMID: 19904741 DOI: 10.1002/pro.283] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The apolipoprotein E family contains three major isoforms (ApoE4, E3, and E2) that are directly involved with lipoprotein metabolism and cholesterol transport. ApoE3 and apoE4 differ in only a single amino acid with an arginine in apoE4 changed to a cysteine at position 112 in apoE3. Yet only apoE4 is recognized as a risk factor for Alzheimer's disease. Here we used (19)F NMR to examine structural differences between apoE4 and apoE3 and the effect of the C-terminal domain on the N-terminal domain. After incorporation of 5-(19)F-tryptophan the 1D (19)F NMR spectra were compared for the N-terminal domain and for the full length proteins. The NMR spectra of the N-terminal region (residues 1-191) are reasonably well resolved while those of the full length wild-type proteins are broad and ill-defined suggesting considerable conformational heterogeneity. At least four of the seven tryptophan residues in the wild type protein appear to be solvent exposed. NMR spectra of the wild-type proteins were compared to apoE containing four mutations in the C-terminal region that gives rise to a monomeric form either of apoE3 under native conditions (Zhang et al., Biochemistry 2007; 46: 10722-10732) or apoE4 in the presence of 1 M urea. For either wild-type or mutant proteins the differences in tryptophan resonances in the N-terminal region of the protein suggest structural differences between apoE3 and apoE4. We conclude that these differences occur both as a consequence of the Arg158Cys mutation and as a consequence of the interaction with the C-terminal domain.
Collapse
Affiliation(s)
- Kanchan Garai
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
49
|
Jones DH, Cellitti SE, Hao X, Zhang Q, Jahnz M, Summerer D, Schultz PG, Uno T, Geierstanger BH. Site-specific labeling of proteins with NMR-active unnatural amino acids. JOURNAL OF BIOMOLECULAR NMR 2010; 46:89-100. [PMID: 19669620 DOI: 10.1007/s10858-009-9365-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 07/17/2009] [Indexed: 05/19/2023]
Abstract
A large number of amino acids other than the canonical amino acids can now be easily incorporated in vivo into proteins at genetically encoded positions. The technology requires an orthogonal tRNA/aminoacyl-tRNA synthetase pair specific for the unnatural amino acid that is added to the media while a TAG amber or frame shift codon specifies the incorporation site in the protein to be studied. These unnatural amino acids can be isotopically labeled and provide unique opportunities for site-specific labeling of proteins for NMR studies. In this perspective, we discuss these opportunities including new photocaged unnatural amino acids, outline usage of metal chelating and spin-labeled unnatural amino acids and expand the approach to in-cell NMR experiments.
Collapse
Affiliation(s)
- David H Jones
- Genomics Institute of the Novartis Research Foundation, San Diego, CA 92121-1125, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Elvington SM, Liu CW, Maduke MC. Substrate-driven conformational changes in ClC-ec1 observed by fluorine NMR. EMBO J 2009; 28:3090-102. [PMID: 19745816 DOI: 10.1038/emboj.2009.259] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 08/12/2009] [Indexed: 11/10/2022] Open
Abstract
The CLC 'Cl(-) channel' family consists of both Cl(-)/H(+) antiporters and Cl(-) channels. Although CLC channels can undergo large, conformational changes involving cooperativity between the two protein subunits, it has been hypothesized that conformational changes in the antiporters may be limited to small movements localized near the Cl(-) permeation pathway. However, to date few studies have directly addressed this issue, and therefore little is known about the molecular movements that underlie CLC-mediated antiport. The crystal structure of the Escherichia coli antiporter ClC-ec1 provides an invaluable molecular framework, but this static picture alone cannot depict the protein movements that must occur during ion transport. In this study we use fluorine nuclear magnetic resonance (NMR) to monitor substrate-induced conformational changes in ClC-ec1. Using mutational analysis, we show that substrate-dependent (19)F spectral changes reflect functionally relevant protein movement occurring at the ClC-ec1 dimer interface. Our results show that conformational change in CLC antiporters is not restricted to the Cl(-) permeation pathway and show the usefulness of (19)F NMR for studying conformational changes in membrane proteins of known structure.
Collapse
Affiliation(s)
- Shelley M Elvington
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305-5345, USA
| | | | | |
Collapse
|